1
|
Carelli S, Posteraro B, Torelli R, De Carolis E, Vallecoccia MS, Xhemalaj R, Cutuli SL, Tanzarella ES, Dell'Anna AM, Lombardi G, Cammarota F, Caroli A, Grieco DL, Sanguinetti M, Antonelli M, De Pascale G. Prognostic value of serial (1,3)-β-D-glucan measurements in ICU patients with invasive candidiasis. Crit Care 2024; 28:236. [PMID: 38997712 PMCID: PMC11241937 DOI: 10.1186/s13054-024-05022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND To determine whether a decrease in serum (1,3)-β-D-glucan (BDG) was associated with reduced mortality and to investigate the performance of BDG downslope in predicting clinical outcome in invasive candidiasis. METHODS Observational cohort study in ICU patients over a ten-year period (2012-2022) in Italy. Proven invasive candidiasis with at least 2 BDG determinations were considered. RESULTS In the study population of 103 patients (age 47 [35-62] years, SAPS II score 67 [52-77]) 68 bloodstream and 35 intrabdominal infections were recorded. Serial measurements showed that in 54 patients BDG decreased over time (BDG downslope group) while in 49 did not (N-BDG downslope group). Candida albicans was the pathogen most frequently isolated (61%) followed by C. parapsilosis (17%) and C. glabrata (12%), in absence of any inter-group difference. Invasive candidiasis related mortality was lower in BDG downslope than in N-BDG downslope group (17% vs 53%, p < 0.01). The multivariate Cox regression analysis showed the association of septic shock at infection occurrence and chronic liver disease with invasive candidiasis mortality (HR [95% CI] 3.24 [1.25-8.44] p = 0.02 and 7.27 [2.33-22.66] p < 0.01, respectively) while a BDG downslope was the only predictor of survival (HR [95% CI] 0.19 [0.09-0.43] p < 0.01). The area under the receiver operator characteristic curve for the performance of BDG downslope as predictor of good clinical outcome was 0.74 (p = 0.02) and our model showed that a BDG downslope > 70% predicted survival with both specificity and positive predictive value of 100%. CONCLUSIONS A decrease in serum BDG was associated with reduced mortality and a steep downslope predicted survival with high specificity in invasive candidiasis.
Collapse
Affiliation(s)
- Simone Carelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Brunella Posteraro
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Sole Vallecoccia
- Anesthesia and Intensive Care Unit, Department of Emergency and Critical Care, Santa Maria Nuova Hospital, Florence, Italy
| | - Rikardo Xhemalaj
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Lucio Cutuli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eloisa Sofia Tanzarella
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Maria Dell'Anna
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianmarco Lombardi
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiola Cammarota
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Caroli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
3
|
Azizah NS, Irawan B, Kusmoro J, Safriansyah W, Farabi K, Oktavia D, Doni F, Miranti M. Sweet Basil ( Ocimum basilicum L.)-A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:4148. [PMID: 38140476 PMCID: PMC10748370 DOI: 10.3390/plants12244148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
An urgent demand for natural compound alternatives to conventional medications has arisen due to global health challenges, such as drug resistance and the adverse effects associated with synthetic drugs. Plant extracts are considered an alternative due to their favorable safety profiles and potential for reducing side effects. Sweet basil (Ocimum basilicum L.) is a valuable plant resource and a potential candidate for the development of pharmaceutical medications. A single pure compound or a combination of compounds exhibits exceptional medicinal properties, including antiviral activity against both DNA and RNA viruses, antibacterial effects against both Gram-positive and Gram-negative bacteria, antifungal properties, antioxidant activity, antidiabetic potential, neuroprotective qualities, and anticancer properties. The plant contains various phytochemical constituents, which mostly consist of linalool, eucalyptol, estragole, and eugenol. For centuries, community and traditional healers across the globe have employed O. basilicum L. to treat a wide range of ailments, including flu, fever, colds, as well as issues pertaining to digestion, reproduction, and respiration. In addition, the current research presented underscores the significant potential of O. basilicum-related nanotechnology applications in addressing diverse challenges and advancing numerous fields. This promising avenue of exploration holds great potential for future scientific and technological advancements, promising improved utilization of medicinal products derived from O. basilicum L.
Collapse
Affiliation(s)
- Nabilah Sekar Azizah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Budi Irawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Wahyu Safriansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Dina Oktavia
- Department of Transdisciplinary, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| |
Collapse
|
4
|
Invasive Pulmonary Aspergillosis: Not Only a Disease Affecting Immunosuppressed Patients. Diagnostics (Basel) 2023; 13:diagnostics13030440. [PMID: 36766545 PMCID: PMC9914306 DOI: 10.3390/diagnostics13030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Fungal infections have become a common threat in Intensive Care Units (ICU). The epidemiology of invasive fungal diseases (IFD) has been extensively studied in patients severely immunosuppressed over the last 20-30 years, however, the type of patients that have been admitted to hospitals in the last decade has made the healthcare system and ICU a different setting with more vulnerable hosts. Patients admitted to an ICU tend to have older age and higher severity of disease. Moreover, the number of patients being treated in ICU are often immunosuppressed as a result of the widespread use of immunomodulatory agents, such as corticosteroids, chemotherapy, and biological agents. The development of Invasive Pulmonary aspergillosis (IPA) reflects a different clinical trajectory to affected patients. The increasing use of corticosteroids would probably explain the higher incidence of IPA especially in critically ill patients. In refractory septic shock, severe community-acquired pneumonia (SCAP), and acute respiratory distress syndrome (ARDS), the use of corticosteroids has re-emerged in order to decrease unacceptably high mortality rates associated with these clinical conditions. It is also pertinent to note that different reports have used different diagnosis criteria, and this might explain the different incidence rates. Another layer of complexity to better understand current IPA data is related to more aggressive acquisition of samples through invasive respiratory examinations.
Collapse
|
5
|
Yang Q, Xie J, Cai Y, Wang N, Wang Y, Zhang L, Li Y, Yu J, Li Y, Wang H, Zhang K. Efficacy and Safety of Combination Antifungals as Empirical, Preemptive, and Targeted Therapies for Invasive Fungal Infections in Intensive-Care Units. Infect Drug Resist 2022; 15:5331-5344. [PMID: 36110125 PMCID: PMC9470118 DOI: 10.2147/idr.s381851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose To determine whether combinations of antifungal drugs are effective and safe for patients in intensive-care units. Methods This study compared the efficacy and safety of caspofungin (CAS), voriconazole (VOR), amphotericin B liposome (L-AmB), CAS+VOR, and CAS+L-AmB as empirical, preemptive, and targeted therapies for invasive fungal infection (IFI). Results Comparing the CAS, VOR, and CAS+VOR groups revealed that there were no differences in response rates between all therapy types, IFI-associated death within 90 days was less common in the CAS+VOR group (1.8%) than the VOR group (14.3%), and there were more adverse events in the VOR group than in the CAS group (P < 0.05). For empirical or preemptive therapy, the CAS group had a better response rate (80.0%) than the CAS+VOR group (47.1%), and there were more adverse events in the VOR group than in the CAS group (P < 0.05). For targeted therapy, no differences were found for efficacy and safety. There were no differences among the CAS, L-AmB, and CAS+L-AmB groups in efficacy and safety. Conclusion Patients who received CAS monotherapy as an empirical or preemptive therapy could achieve good outcomes. Patients who received CAS+VOR or CAS+L-AmB achieved almost the same outcomes when compared with those who received CAS, VOR, and L-AmB monotherapy as targeted therapies, but those who received CAS+VOR had a lower IFI mortality rate than did those who received VOR monotherapy.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Cai
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Na Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Li Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Youjia Li
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jingjie Yu
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ya Li
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Haitao Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Kanghuai Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
6
|
Burillo A, Bouza E. Faster infection diagnostics for intensive care unit (ICU) patients. Expert Rev Mol Diagn 2022; 22:347-360. [PMID: 35152813 DOI: 10.1080/14737159.2022.2037422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The patient admitted to intensive care units (ICU) is critically ill, to some extent immunosuppressed, with a high risk of infection, sometimes by multidrug-resistant microorganisms. In this context, the intensivist expects from the microbiology service quick and understandable information so that appropriate antimicrobial treatment for that particular patient and infection can be initiated. AREAS COVERED : In this review of recent literature (2015-2021), we identified diagnostic methods for the most prevalent infections in these patients through a search of the databases Pubmed, evidence-based medicine online, York University reviewers group, Cochrane, MBE-Trip, and Sumsearch using the terms: adult, clinical laboratory techniques, critical care, early diagnosis, microbiology, molecular diagnostic techniques, spectrometry and metagenomics. EXPERT OPINION : There has been an exponential surge in diagnostic systems used directly on blood and other samples to expedite microbial identification and antimicrobial susceptibility testing of pathogens. Few studies have thus far assessed their clinical impact; final outcomes will also depend on preanalytical and post-analytical factors. Besides, many of the resistance mechanisms cannot yet be detected with molecular techniques, which impairs the prediction of the actual resistance phenotype. Nonetheless, this is an exciting field with much yet to explore.
Collapse
Affiliation(s)
- Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain.,Gregorio Marañón Health Research Institute, Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain.,Gregorio Marañón Health Research Institute, Doctor Esquerdo 46, 28007, Madrid, Spain.,CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Av. Monforte de Lemos 3-5, Pabellón 11, Planta, 28029 Madrid, Spain
| |
Collapse
|
7
|
Ou WF, Wong LT, Wu CL, Chao WC. Culture positivity may correlate with long-term mortality in critically ill patients. BMC Infect Dis 2021; 21:1188. [PMID: 34836508 PMCID: PMC8620521 DOI: 10.1186/s12879-021-06898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background The long-term outcome is currently a crucial issue in critical care, and we aim to address the association between culture positivity and long-term mortality in critically ill patients. Methods We used the 2015–2019 critical care database at Taichung Veterans General Hospital and Taiwanese nationwide death registration files. Multivariable Cox proportional hazards regression model was conducted to determine hazard ratio (HR) and 95% confidence interval (CI). Results We enrolled 4488 critically ill patients, and the overall mortality was 55.2%. The follow-up duration among survivors was 2.2 ± 1.3 years. We found that 52.6% (2362/4488) of critically ill patients had at least one positive culture during the admission, and the number of patients with positive culture in the blood, respiratory tract and urinary tract were 593, 1831 and 831, respectively. We identified that a positive culture from blood (aHR 1.233; 95% CI 1.104–1.378), respiratory tract (aHR 1.217; 95% CI 1.109–1.364) and urinary tract (aHR 1.230; 95% CI 1.109–1.364) correlated with an increased risk of long-term mortality after adjusting relevant covariates. Conclusions Through linking two databases, we found that positive culture in the blood, respiratory tract and urinary tract during admission correlated with increased long-term overall mortality in critically ill patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06898-8.
Collapse
Affiliation(s)
- Wei-Fan Ou
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Ting Wong
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Liang Wu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, No, 1650, Section 4, Taiwan Boulevard, Xitun District, Taichung, 40705, Taiwan.,Department of Computer Science, Tunghai University, Taichung, Taiwan.,Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan.,Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.,Artificial Intelligence Studio, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Cheng Chao
- Department of Critical Care Medicine, Taichung Veterans General Hospital, No, 1650, Section 4, Taiwan Boulevard, Xitun District, Taichung, 40705, Taiwan. .,Department of Computer Science, Tunghai University, Taichung, Taiwan. .,Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan. .,Big Data Center, Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
8
|
Guo M, Tong Z. Risk Factors Associated with Invasive Pulmonary Mycosis Among Severe Influenza Patients in Beijing City, China. Int J Gen Med 2021; 14:7381-7390. [PMID: 34744451 PMCID: PMC8565897 DOI: 10.2147/ijgm.s329323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Influenza co-infection with fungal infection increases the risk of death. Our study was to estimate risk factors associated with invasive pulmonary mycosis (IPM) among severe influenza patients at a single center in Beijing, China. Methods A retrospective chart review was carried out of all patients with severe influenza admitted to respiratory the department including the respiratory intensive care unit (RICU) during the 2014 to 2019 influenza seasons in Beijing Chao-yang hospital, China. We compared the differences of characteristics and examination outcomes between IPM patients and non-IPM patients, and explored the predictors of IPM by a multivariate logistic regression. Results Influenza associated IPM was found in 65 of 131 (49.62%) patients. The average age of IPM patients was 57.28±14.56 years and 70.77% were male. The mortality rate was much higher in the IPM group than the non-IPM group (34.85% versus 18.46%, P=0.026). Older age, hypoimmunity, liver disease, hypertension, positive serum GM test, steroids using, gasping, gastrointestinal symptoms, high APECHEII, low oxygenation index, other viruses co-infection, bacterial co-infection, low lymphocyte counts, low CD4+ T-cell counts, low CD8+ T-cell counts, low RBC, low hemoglobin, low platelets, high N%, low total protein, high CRP, low albumin, low fibrinogen, high BUN, positive serum GM test, more mechanical ventilation requirement, and more renal replacement requirement were risk factors of influenza IPM co-infection. Conclusion IPM is a severe complication of influenza hospitalizations. It is associated with increasing mortality, longer hospital stays, and higher hospital charges compared with non-IPM patients. Clinicians caring for patients with severe influenza should consider IPM.
Collapse
Affiliation(s)
- Maoqing Guo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| |
Collapse
|
9
|
Echinocandins Accelerate Particle Transport Velocity in the Murine Tracheal Epithelium: Dependency on Intracellular Ca 2+ Stores. Antimicrob Agents Chemother 2021; 65:e0066921. [PMID: 34491804 PMCID: PMC8522769 DOI: 10.1128/aac.00669-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mucociliary clearance of lower airways is modulated by different physiologic stimuli and also by pathophysiologic agents like polluting substances or pharmaceutical molecules. In the present investigation, we measured the particle transport velocity (PTV) of mouse tracheae as a surrogate for mucociliary clearance. In mouse tracheal preparations, we detected a sustained increase in the PTV under the application of the echinocandins caspofungin, anidulafungin, and micafungin. In further experiments, we observed the effects of echinocandins on the PTV were dependent on intracellular Ca2+ homeostasis. In Ca2+-free buffer solutions, the amplitude of the echinocandin-evoked rise in the PTV was significantly reduced relative to that in the experiments in Ca2+-containing solutions. Depletion of intracellular Ca2+ stores of the endoplasmic reticulum (ER) by caffeine completely prevented an increase in the PTV with subsequent caspofungin applications. Mitochondrial Ca2+ stores seemed to be unaffected by echinocandin treatment. We also observed no altered generation of reactive oxygen species under the application of echinocandins as probable mediators of the PTV. Consequently, the observed echinocandin effects on the PTV depend upon the Ca2+ influx and Ca2+ contents of the ER. We assume that all three echinocandins act intracellularly on ER Ca2+ stores to activate Ca2+-dependent signal transduction cascades, enhancing the PTV.
Collapse
|
10
|
Wang J, Wu C, Wang Y, Chen C, Cheng J, Rao X, Sun H. The Role of HMGB1 in Invasive Candida albicans Infection. Mycopathologia 2021; 186:789-805. [PMID: 34608551 DOI: 10.1007/s11046-021-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/25/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION High mobility group box 1 (HMGB1) is an important "late" inflammatory mediator in bacterial sepsis. Ethyl pyruvate (EP), an inhibitor of HMGB1, can prevent bacterial sepsis by decreasing HMGB1 levels. However, the role of HMGB1 in fungal sepsis is still unclear. Therefore, we investigated the role of HMGB1 and EP in invasive C. albicans infection. METHODS We measured serum HMGB1 levels in patients with sepsis with C. albicans infection and without fungal infection, and control subjects. We collected clinical indices to estimate correlations between HMGB1 levels and disease severity. Furthermore, we experimentally stimulated mice with C. albicans and C. albicans + EP. Then, we examined HMGB1 levels from serum and tissue, investigated serum levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), determined pathological changes in tissues, and assessed mortality. RESULTS Serum HMGB1 levels in patients with severe sepsis with C. albicans infection were elevated. Increased HMGB1 levels were correlated with procalcitonin (PCT), C-reactive protein (CRP), 1,3-β-D-Glucan (BDG) and C. albicans sepsis severity. HMGB1 levels in serum and tissues were significantly increased within 7 days after mice were infected with C. albicans. The administration of EP inhibited HMGB1 levels, decreased tissue damage, increased survival rates and inhibited the release of TNF-α and IL-6. CONCLUSIONS HMGB1 levels were significantly increased in invasive C. albicans infections. EP prevented C. albicans lethality by decreasing HMGB1 expression and release. HMGB1 may provide an effective diagnostic and therapeutic target for invasive C. albicans infections.
Collapse
Affiliation(s)
- JiaoJiao Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - ChuanXin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - YunYing Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - ChongXiang Chen
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - XiaoLong Rao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
11
|
Kaba L, Giraud-Gatineau A, Jimeno MT, Rolain JM, Colson P, Raoult D, Chaudet H. Consequences of the COVID-19 Outbreak Lockdown on Non-Viral Infectious Agents as Reported by a Laboratory-Based Surveillance System at the IHU Méditerranée Infection, Marseille, France. J Clin Med 2021; 10:jcm10153210. [PMID: 34361994 PMCID: PMC8348674 DOI: 10.3390/jcm10153210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The objective of this paper is to describe the surveillance system MIDaS and to show how this system has been used for evaluating the consequences of the French COVID-19 lockdown on the bacterial mix of AP-HM and the antibiotic resistance. MIDas is a kind of surveillance activity hub, allowing the automatic construction of surveillance control boards. We investigated the diversity and resistance of bacterial agents from respiratory, blood, and urine samples during the lockdown period (from week 12 to 35 of 2020), using the same period of years from 2017 to 2019 as control. Taking into account the drop in patient recruitment, several species have exhibited significant changes in their relative abundance (either increasing or decreasing) with changes up to 9%. The changes were more important for respiratory and urine samples than for blood samples. The relative abundance in respiratory samples for the whole studied period was higher during the lockdown. A significant increase in the percentage of wild phenotypes during the lockdown was observed for several species. The use of the MIDaS syndromic collection and surveillance system made it possible to efficiently detect, analyze, and follow changes of the microbiological population as during the lockdown period.
Collapse
Affiliation(s)
- Lanceï Kaba
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (L.K.); (A.G.-G.); (J.-M.R.); (P.C.); (D.R.)
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), VITROME, 13005 Marseille, France
- Institut Supérieur des Sciences et de Médecine Vétérinaire (ISSMV) de Dalaba, BP 09 Dalaba, Guinea
| | - Audrey Giraud-Gatineau
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (L.K.); (A.G.-G.); (J.-M.R.); (P.C.); (D.R.)
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), VITROME, 13005 Marseille, France
- French Armed Forces Center for Epidemiology and Public Health (CESPA), Service de Santé des Armées (SSA), 13014 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | | | - Jean-Marc Rolain
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (L.K.); (A.G.-G.); (J.-M.R.); (P.C.); (D.R.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (L.K.); (A.G.-G.); (J.-M.R.); (P.C.); (D.R.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (L.K.); (A.G.-G.); (J.-M.R.); (P.C.); (D.R.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Hervé Chaudet
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (L.K.); (A.G.-G.); (J.-M.R.); (P.C.); (D.R.)
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), VITROME, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
- Correspondence: ; Tel.: +33-413-732-401; Fax: +33-413-732-402
| |
Collapse
|
12
|
Van Daele R, Bekkers B, Lindfors M, Broman LM, Schauwvlieghe A, Rijnders B, Hunfeld NGM, Juffermans NP, Taccone FS, Coimbra Sousa CA, Jacquet LM, Laterre PF, Nulens E, Grootaert V, Lyster H, Reed A, Patel B, Meersseman P, Debaveye Y, Wauters J, Vandenbriele C, Spriet I. A Large Retrospective Assessment of Voriconazole Exposure in Patients Treated with Extracorporeal Membrane Oxygenation. Microorganisms 2021; 9:microorganisms9071543. [PMID: 34361978 PMCID: PMC8303158 DOI: 10.3390/microorganisms9071543] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Voriconazole is one of the first-line therapies for invasive pulmonary aspergillosis. Drug concentrations might be significantly influenced by the use of extracorporeal membrane oxygenation (ECMO). We aimed to assess the effect of ECMO on voriconazole exposure in a large patient population. METHODS Critically ill patients from eight centers in four countries treated with voriconazole during ECMO support were included in this retrospective study. Voriconazole concentrations were collected in a period on ECMO and before/after ECMO treatment. Multivariate analyses were performed to evaluate the effect of ECMO on voriconazole exposure and to assess the impact of possible saturation of the circuit's binding sites over time. RESULTS Sixty-nine patients and 337 samples (190 during and 147 before/after ECMO) were analyzed. Subtherapeutic concentrations (<2 mg/L) were observed in 56% of the samples during ECMO and 39% without ECMO (p = 0.80). The median trough concentration, for a similar daily dose, was 2.4 (1.2-4.7) mg/L under ECMO and 2.5 (1.4-3.9) mg/L without ECMO (p = 0.58). Extensive inter-and intrasubject variability were observed. Neither ECMO nor squared day of ECMO (saturation) were retained as significant covariates on voriconazole exposure. CONCLUSIONS No significant ECMO-effect was observed on voriconazole exposure. A large proportion of patients had voriconazole subtherapeutic concentrations.
Collapse
Affiliation(s)
- Ruth Van Daele
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
- Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium;
- Correspondence:
| | - Britt Bekkers
- Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Mattias Lindfors
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17177 Stockholm, Sweden; (M.L.); (L.M.B.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17177 Stockholm, Sweden; (M.L.); (L.M.B.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Alexander Schauwvlieghe
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, 3015 CP Rotterdam, The Netherlands;
| | - Bart Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, 3015 CP Rotterdam, The Netherlands;
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 CP Rotterdam, The Netherlands
| | - Nicole G. M. Hunfeld
- Department of Intensive Care and Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CP Rotterdam, The Netherlands;
| | - Nicole P. Juffermans
- Department of Intensive Care, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (F.S.T.); (C.A.C.S.)
| | - Carlos Antônio Coimbra Sousa
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (F.S.T.); (C.A.C.S.)
| | - Luc-Marie Jacquet
- Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, 1050 Brussels, Belgium;
| | - Pierre-François Laterre
- Department of Intensive Care, Cliniques Universitaires St-Luc, Université Catholique de Louvain, 1050 Brussels, Belgium;
| | - Eric Nulens
- Laboratory Medicine, Medical Microbiology, Algemeen Ziekenhuis Sint-Jan, Brugge-Oostende, 8000 Brugge, Belgium;
| | - Veerle Grootaert
- Pharmacy Department, Algemeen Ziekenhuis Sint-Jan Brugge-Oostende AV, 8000 Brugge, Belgium;
| | - Haifa Lyster
- Pharmacy Department, Royal Brompton & Harefield Hospitals, London SW3 6NP, UK;
- Cardiothoracic Transplant Unit, Royal Brompton & Harefield Hospitals, London SW3 6NP, UK;
| | - Anna Reed
- Cardiothoracic Transplant Unit, Royal Brompton & Harefield Hospitals, London SW3 6NP, UK;
- Imperial College London, London SW3 6NP, UK
| | - Brijesh Patel
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College, London SW3 6NP, UK;
- Department of Adult Intensive Care, The Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
| | - Philippe Meersseman
- Department of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
- Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium;
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Adult Intensive Care, The Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
- Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
13
|
Li H, Li M, Yan J, Gao L, Zhou L, Wang Y, Li Q, Wang J, Chen T, Wang T, Zheng J, Qiang W, Zhang Y, Shi Q. Voriconazole therapeutic drug monitoring in critically ill patients improves efficacy and safety of antifungal therapy. Basic Clin Pharmacol Toxicol 2020; 127:495-504. [PMID: 32639669 DOI: 10.1111/bcpt.13465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Since voriconazole plasma trough concentration (VPC) is related to its efficacy and adverse events, therapeutic drug monitoring (TDM) is recommended to perform. However, there is no report about the data of voriconazole TDM in critically ill patients in China. This retrospective study was performed to determine whether voriconazole TDM was associated with treatment response and/or voriconazole adverse events in critically ill patients, and to identify the potential risk factors associated with VPC. A total of 216 critically ill patients were included. Patients were divided into two groups: those underwent voriconazole TDM (TDM group, n = 125) or did not undergo TDM (non-TDM group, n = 91). The clinical response and adverse events were recorded and compared. Furthermore, in TDM group, multivariate logistic regression analysis was performed to identify the possible risk factors resulting in the variability in initial VPC. The complete response in the TDM group was significantly higher than that in the non-TDM group (P = .012). The incidence of adverse events strongly associated with voriconazole in the non-TDM group was significantly higher than that in the TDM group (19.8% vs 9.6%; P = .033). The factors, including age (OR 0.934, 95% CI: 0.906-0.964), male (OR 5.929, 95% CI: 1.524-23.062), serum albumin level (OR 1.122, 95% CI: 1.020-1.234), diarrhoea (OR 4.953, 95% CI: 1.495-16.411) and non-intravenous administration (OR 4.763, 95% CI: 1.576-14.39), exerted the greatest effects on subtherapeutic VPC (VPC < 1.5 mg/L) in multivariate analysis. Intravenous administration (OR 7.657, 95% CI: 1.957-29.968) was a significant predictor of supratherapeutic VPC (VPC > 4.0 mg/L). TDM can result in a favourable clinical efficacy and a lower incidence of adverse events strongly associated with voriconazole in critically ill patients. Subtherapeutic VPC was closely related to younger age, male, hyperalbuminaemia, diarrhoea and non-intravenous administration, and intravenous administration was a significant predictor of supratherapeutic VPC.
Collapse
Affiliation(s)
- Hao Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mo Li
- Department of Statistical Sciences and Operation Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinqi Yan
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Gao
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linjing Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianjun Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Zheng
- Department of Clinical Research Center, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Qiang
- Department of Endocrinology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yongjian Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qindong Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Becchetti C, Ferrarese A, Cattelan A, Barbieri S, Feltracco P, Saluzzo F, Cillo U, Senzolo M, Germani G, Burra P. Geotrichum capitatum Invasive Infection Early After Liver Transplant. EXP CLIN TRANSPLANT 2019; 18:737-740. [PMID: 31801448 DOI: 10.6002/ect.2019.0170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Geotrichum capitatum is a rare fungal pathogen that has infrequently affected immunocompromised patients with onco-hematologic diseases. Geotrichum capitatum invasive infection has been associated with poor prognosis, with a mortality rate ranging from 50% to 90%. Here, we report the first case of Geotrichum capitatum invasive fungal infection in a liver transplant recipient from an unrelated deceased donor, who was effectively treated with amphotericin B and voriconazole. We also reviewed the available literature in the field.
Collapse
Affiliation(s)
- Chiara Becchetti
- From the Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019; 24:molecules24203713. [PMID: 31619024 PMCID: PMC6832927 DOI: 10.3390/molecules24203713] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
The current rise in invasive fungal infections due to the increase in immunosuppressive therapies is a real concern. Moreover, the emergence of resistant strains induces therapeutic failures. In light of these issues, new classes of antifungals are anticipated. Therefore, the plant kingdom represents an immense potential of natural resources to exploit for these purposes. The aim of this review is to provide information about the antifungal effect of some important essential oils, and to describe the advances made in determining the mechanism of action more precisely. Finally, the issues of toxicity and resistance of fungi to essential oils will be discussed.
Collapse
|
16
|
Prisco L, Ganau M, Aurangzeb S, Moswela O, Hallett C, Raby S, Fitzgibbon K, Kearns C, Sen A. A pragmatic approach to intravenous anaesthetics and electroencephalographic endpoints for the treatment of refractory and super-refractory status epilepticus in critical care. Seizure 2019; 75:153-164. [PMID: 31623937 DOI: 10.1016/j.seizure.2019.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Status epilepticus is a common neurological emergency, with overall mortality around 20%. Over half of cases are first time presentations of seizures. The pathological process by which spontaneous seizures are generated arises from an imbalance in excitatory and inhibitory neuronal networks, which if unchecked, can result in alterations in intracellular signalling pathways and electrolyte shifts, which bring about changes in the blood brain barrier, neuronal cell death and eventually cerebral atrophy. This narrative review focusses on the treatment of status epilepticus in adults. Anaesthetic agents interrupt neuronal activity by enhancing inhibitory or decreasing excitatory transmission, primarily via GABA and NMDA receptors. Intravenous anaesthetic agents are commonly used as second or third line drugs in the treatment of refractory status epilepticus, but the optimal timing and choice of anaesthetic drug has not yet been established by high quality evidence. Titration of antiepileptic and anaesthetic drugs in critically ill patients presents a particular challenge, due to alterations in drug absorbtion and metabolism as well as changes in drug distrubution, which arise from fluid shifts and altered protein binding. Furthermore, side effects associated with prolonged infusions of anaesthetic drugs can lead to multi-organ dysfunction and a need for critical care support. Electroencelography can identify patterns of burst suppression, which may be a target to guide weaning of intravenous therapy. Continuous elctroencephalography has the potential to directly impact clinical care, but despite its utility, major barriers exist which have limited its widespread use in clinical practice. A flow chart outlining the timing and dosage of anaesthetic agents used at our institution is provided.
Collapse
Affiliation(s)
- Lara Prisco
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Anaesthesia Neuroimaging Research Group, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Mario Ganau
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sidra Aurangzeb
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Olivia Moswela
- Pharmacy Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Claire Hallett
- Pharmacy Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Simon Raby
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karina Fitzgibbon
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christopher Kearns
- Neurosciences Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
17
|
Hu C, Su H, Luo J, Han L, Liu Q, Wu W, Mu Y, Guan P, Sun T, Huang X. Design, synthesis and antifungal evaluation of borrelidin derivatives. Bioorg Med Chem 2018; 26:6035-6049. [DOI: 10.1016/j.bmc.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
|
18
|
Lepesheva GI, Friggeri L, Waterman MR. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology 2018; 145:1820-1836. [PMID: 29642960 PMCID: PMC6185833 DOI: 10.1017/s0031182018000562] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The efficiency of treatment of human infections with the unicellular eukaryotic pathogens such as fungi and protozoa remains deeply unsatisfactory. For example, the mortality rates from nosocomial fungemia in critically ill, immunosuppressed or post-cancer patients often exceed 50%. A set of six systemic clinical azoles [sterol 14α-demethylase (CYP51) inhibitors] represents the first-line antifungal treatment. All these drugs were discovered empirically, by monitoring their effects on fungal cell growth, though it had been proven that they kill fungal cells by blocking the biosynthesis of ergosterol in fungi at the stage of 14α-demethylation of the sterol nucleus. This review briefs the history of antifungal azoles, outlines the situation with the current clinical azole-based drugs, describes the attempts of their repurposing for treatment of human infections with the protozoan parasites that, similar to fungi, also produce endogenous sterols, and discusses the most recently acquired knowledge on the CYP51 structure/function and inhibition. It is our belief that this information should be helpful in shifting from the traditional phenotypic screening to the actual target-driven drug discovery paradigm, which will rationalize and substantially accelerate the development of new, more efficient and pathogen-oriented CYP51 inhibitors.
Collapse
Affiliation(s)
- Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
19
|
Fungal β-Glucan Activates the NLRP3 Inflammasome in Human Bronchial Epithelial Cells Through ROS Production. Inflammation 2018; 41:164-173. [PMID: 29063476 DOI: 10.1007/s10753-017-0674-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has developed as an important bridge between innate immune and infection recently, and has the ability to drive proteolytic procaspase-1 into bioactive caspase-1, then responsible for proteolytic processing of inflammatory cytokines IL-1β and IL-18. Fungal β-glucan, a major component of fungal cell wall, triggers inflammatory response in multiple immune cells, but rarely described in epithelial cells. Also, the relationship between fungal β-glucan and NLRP3 inflammasome is not clear yet. In this study, we first identified that curdlan, a large particulate β-glucan, could activate the NLRP3 inflammasome in LPS-primed human bronchial epithelial cells (HBECs). RT-PCR and Western Blot showed that curdlan upregulate the mRNA as well as intracellular protein expression of NLRP3 and IL-1β in HBECs, along with the activity of caspase-1, and the level of mature IL-1β in cell supernatants was higher by ELISA detection. Further studies demonstrated that the activation of NLRP3 inflammasome could be attenuated by NAC, an inhibitor of ROS. Thus, it indicated curdlan activate NLRP3 inflammasome through a pathway requiring ROS production in HBECs. These findings may provide a new therapeutic target, NLRP3 inflammasome, in invasive pulmonary fungal infections.
Collapse
|
20
|
Deng Q, Lv HR, Lin XM, Zhao MF, Geng L, Li YM. Empirical antifungal treatment for diagnosed and undiagnosed invasive fungal disease in patients with hematologic malignancies. Curr Med Res Opin 2018; 34:1209-1216. [PMID: 28956459 DOI: 10.1080/03007995.2017.1386167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Empirical antifungal therapy is effective in some patients with risk factors for invasive fungal disease (IFD) who do not qualify for the EORTC/MSG criteria for IFD, but who fail to respond to anti-bacterial and anti-viral therapy. OBJECTIVE This retrospective single-center study investigated the epidemiology of IFD and empirical antifungal therapy in patients with hematological malignancies. METHODS This study recruited 893 patients with hematologic malignancies who had failed to respond to anti-bacterial and anti-viral treatment and received antifungal therapy, but not for antifungal prophylaxis. Antifungal therapy regimens included amphotericin B, voriconazole, itraconazole and caspofungin. A total of 689 patients were diagnosed with proven, probable, or possible IFD, while 159 patients did not meet the EORTC/MSG criteria for IFD diagnosis but recovered with antifungal treatment, and 45 were excluded from having IFD. Effective treatment was defined as the disappearance or resolution of clinical symptoms of IFD. RESULTS Patients diagnosed with IFD underwent chemotherapy at a higher proportion, and had significantly higher neutrophil counts compared to those who did not qualify for the EORTC/MSG criteria for IFD but responded to antifungals. The mortality due to all causes within 3 months was significantly higher for patients diagnosed with proven IFD, compared with those who did not qualify for the EORTC/MSG criteria for IFD. There was no discontinuation reported due to adverse events of caspofungin. CONCLUSION Empirical antifungal treatment could help save the lives of some patients with severe infections who are strongly suspected of having IFD.
Collapse
Affiliation(s)
- Qi Deng
- a Department of Hematology , The First Central Hospital of Tianjin , Tianjin , China
| | - Hai-Rong Lv
- a Department of Hematology , The First Central Hospital of Tianjin , Tianjin , China
| | - Xue-Mei Lin
- a Department of Hematology , The First Central Hospital of Tianjin , Tianjin , China
| | - Ming-Feng Zhao
- a Department of Hematology , The First Central Hospital of Tianjin , Tianjin , China
| | - Li Geng
- a Department of Hematology , The First Central Hospital of Tianjin , Tianjin , China
| | - Yu-Ming Li
- a Department of Hematology , The First Central Hospital of Tianjin , Tianjin , China
| |
Collapse
|
21
|
O'Leary RA, Einav S, Leone M, Madách K, Martin C, Martin-Loeches I. Management of invasive candidiasis and candidaemia in critically ill adults: expert opinion of the European Society of Anaesthesia Intensive Care Scientific Subcommittee. J Hosp Infect 2018; 98:382-390. [PMID: 29222034 DOI: 10.1016/j.jhin.2017.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The global burden of invasive fungal disease is increasing. Candida albicans remains the leading cause of fungal bloodstream infections, although non-albicans candidal infections are emerging. Areas of controversy regarding diagnosis and management are hampering our ability to respond effectively to this evolving threat. The purpose of this narrative review is to address current controversies and provide recommendations to supplement guidelines. DIAGNOSIS OF INVASIVE CANDIDIASIS Diagnosis of invasive candidiasis requires a combination of diagnostic tests and patient risk factors. Beta-D glucan and Candida albicans germ tube antibody are both used as biomarkers as adjuncts to diagnosis, although direct culture remains the gold standard. Scoring systems are available to help distinguish between colonization and invasive disease. TREATMENT OF INVASIVE CANDIDIASIS Echinocandins are recommended as first-line therapy in candidaemia, with de-escalation to fluconazole when clinical stability is achieved. Empirical therapy is highly recommended in high-risk patients, but a more targeted pre-emptive approach is now being favoured. The evidence for prophylactic therapy remains weak. SUMMARY Mortality attributable to invasive candidiasis may be as high as 70%. Prompt diagnosis and treatment, in conjunction with source control, are the key to improving outcomes.
Collapse
Affiliation(s)
- R-A O'Leary
- Multidisciplinary Intensive Care, St James's University Hospital, Department of Clinical Medicine, Trinity College, Wellcome Trust-HRB Clinical Research Facility, St James Hospital, Dublin, Ireland
| | - S Einav
- General Intensive Care Unit, Shaare Zedek Medical Centre and Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - M Leone
- Aix Marseille University, Anaesthesia and Intensive Care Unit and Trauma Centre, Nord Hospital, Assistance Publique Hôpitaux de Marseille, APHM, Marseille, France
| | - K Madách
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - C Martin
- Aix Marseille University, Anaesthesia and Intensive Care Unit and Trauma Centre, Nord Hospital, Assistance Publique Hôpitaux de Marseille, APHM, Marseille, France
| | - I Martin-Loeches
- Multidisciplinary Intensive Care, St James's University Hospital, Department of Clinical Medicine, Trinity College, Wellcome Trust-HRB Clinical Research Facility, St James Hospital, Dublin, Ireland.
| |
Collapse
|
22
|
Suzuki Y, Togano T, Ohto H, Kume H. Visceral Mycoses in Autopsied Cases in Japan from 1989 to 2013. Med Mycol J 2018; 59:E53-E62. [DOI: 10.3314/mmj.18-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuhko Suzuki
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Tomiteru Togano
- Department of Hematology, National Center for Global Health and Medicine
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Hikaru Kume
- Department of Pathology, Kitasato University School of Medicine
| |
Collapse
|
23
|
Kaur H, Chakrabarti A. Strategies to Reduce Mortality in Adult and Neonatal Candidemia in Developing Countries. J Fungi (Basel) 2017; 3:E41. [PMID: 29371558 PMCID: PMC5715942 DOI: 10.3390/jof3030041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023] Open
Abstract
Candidemia, the commonest invasive fungal infection, is associated with high morbidity and mortality in developing countries, though the exact prevalence is not known due to lack of systematic epidemiological data from those countries. The limited studies report a very high incidence of candidemia and unique epidemiology with a different spectrum of Candida species. The recent global emergence of multi-drug resistant Candida auris is looming large as an important threat in hospitalized patients of developing countries. While managing candidemia cases in those countries several challenges are faced, which include poor infrastructure; compromised healthcare and infection control practices; misuse and overuse of antibiotics and steroids; lack of awareness in fungal infections; non-availability of advance diagnostic tests and antifungal drugs in many areas; poor compliance to antifungal therapy and stewardship program. Considering the above limitations, innovative strategies are required to reduce mortality due to candidemia in adults and neonates. In the present review, we have unraveled the challenges of candidemia faced by low resource countries and propose a ten part strategy to reduce mortality due candidemia.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
24
|
Current Approaches Towards Development of Molecular Markers in Diagnostics of Invasive Aspergillosis. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Ankrah AO, Sathekge MM, Dierckx RAJO, Glaudemans AWJM. Imaging fungal infections in children. Clin Transl Imaging 2016; 4:57-72. [PMID: 26913275 PMCID: PMC4752574 DOI: 10.1007/s40336-015-0159-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022]
Abstract
Fungal infections in children rarely occur, but continue to have a high morbidity and mortality despite the development of newer antifungal agents. It is essential for these infections to be diagnosed at the earliest possible stage so appropriate treatment can be initiated promptly. The addition of high-resolution computer tomography (HR CT) has helped in early diagnosis making; however, it lacks both sensitivity and specificity. Metabolic changes precede anatomical changes and hybrid imaging with positron emission tomography (PET) integrated with imaging modalities with high anatomical resolution such as CT or magnetic resonance imaging (MRI) is likely to detect these infections at an earlier stage with higher diagnostic accuracy rates. Several authors presented papers highlighting the advantages of PET/CT in imaging fungal infections. These papers, however, usually involve a limited number of patients and mostly adults. Fungal infections behave different in children than in adults, since there are differences in epidemiology, imaging findings, and response to treatment with antifungal drugs. This paper reviews the literature and explores the use of hybrid imaging for diagnosis and therapy decision making in children with fungal infections.
Collapse
Affiliation(s)
- Alfred O Ankrah
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO 9700 RB Groningen, The Netherlands ; Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO 9700 RB Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO 9700 RB Groningen, The Netherlands
| |
Collapse
|