1
|
Zhang J, Xu S, Liu J, Liu T, Fan Z, Zhou Y, Basnet J, Zhang L, Li X, Yang J, Xing X. Construction of a ceRNA network and screening of potential biomarkers and molecular targets in male smokers with chronic obstructive pulmonary disease. Front Genet 2024; 15:1376721. [PMID: 38933922 PMCID: PMC11199688 DOI: 10.3389/fgene.2024.1376721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Background Circular RNAs (circRNAs) play an important role in the occurrence and development of diseases. However, the role of circRNAs in male smokers with chronic obstructive pulmonary disease (COPD) remains unclear. Methods Stable COPD patients and healthy controls were recruited. Peripheral blood mononuclear cells (PBMCs) were extracted. After high-throughput RNA sequencing (RNA-Seq) of PBMCs, a bioinformatics method was used to analyse differentially expressed (DE) circRNAs (DEcircRNAs) and mRNAs (DEmRNAs). Results Total of 114 DEcircRNAs and 58 DEmRNAs were identified. Functional enrichment analysis showed that processes related to COPD include the regulation of interleukin (IL)-18, IL-5 and the NLRP3 inflammasome; differentiation of T helper type 1 (Th1), Th2, and Th17 cells, and the AMPK, Wnt, JAK-STAT, and PI3K-Akt signalling pathways. In the protein-protein interaction (PPI) network, the core genes were MYO16, MYL4, SCN4A, NRCAM, HMCN1, MYOM2, and IQSEC3. Small-molecule prediction results revealed potential drugs for the COPD treatment. Additionally, the circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory network was constructed. Conclusion This study identified a set of dysregulated circRNAs and mRNAs and revealed potentially important genes, pathways, new small-molecule drugs and ceRNA regulatory networks in male smokers with COPD. These circRNAs might be prospective biomarkers or potential molecular targets of the ceRNA mechanism for COPD.
Collapse
Affiliation(s)
- Jihua Zhang
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Shuanglan Xu
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jie Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ting Liu
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Zeqin Fan
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yunchun Zhou
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jorina Basnet
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Liqiong Zhang
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Xiao Li
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiqian Xing
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
2
|
Faisal Z, Mazhar A, Batool SA, Akram N, Hassan M, Khan MU, Afzaal M, Hassan UU, Shah YA, Desta DT. Exploring the multimodal health-promoting properties of resveratrol: A comprehensive review. Food Sci Nutr 2024; 12:2240-2258. [PMID: 38628180 PMCID: PMC11016399 DOI: 10.1002/fsn3.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
Resveratrol, a natural polyphenol in various plants, has gained significant attention for its potential health-promoting properties. It has been demonstrated, after reviewing various clinical and in vitro studies, that resveratrol possesses potent antioxidant potential. Resveratrol demonstrates cellular component protection by directly neutralizing free radicals (FRs) and enhancing the expression of natural antioxidant enzymes, thereby mitigating oxidative damage to proteins, lipids, and nucleic acids. Clinical trials have shown promising results, indicating that resveratrol supplementation can enhance antioxidant defenses and reduce oxidative damage markers in various populations. In addition to its antioxidant effects, resveratrol exhibits potent anti-inflammatory properties. It can modulate key inflammatory pathways, such as nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), thereby suppressing the production of pro-inflammatory cytokines and chemokines. Furthermore, resveratrol's multimodal effects extend beyond its antioxidant and anti-inflammatory properties. It has been discovered to exert regulatory effects on various cellular processes, including apoptosis, cell cycle progression, angiogenesis, and immunological responses. The primary aim of this review paper is to provide a thorough overview of the current knowledge on resveratrol, including its chemical composition, bioaccessibility, clinical effectiveness, and utilization in nanotechnology to enhance its bioavailability. From future perspectives, revising the administration methods for certain contexts and understanding the underlying systems responsible for resveratrol's effects will require further inquiry. For the highest potential health results, advanced trial-based research is necessary for combinational nano-delivery of resveratrol.
Collapse
Affiliation(s)
- Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Aimen Mazhar
- Department of Human NutritionBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Maleeha Hassan
- Department of Dietetics and Nutritional ScienceUniversity of SialkotSialkotPakistan
| | - Muhammad Usman Khan
- Department of Food Science and TechnologyBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Usman Ul Hassan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural and Medical Science Research CentreUniversity of NizwaNizwaOman
| | - Derese Tamiru Desta
- School of Nutrition, Food Science and TechnologyHawassa UniversityHawassaEthiopia
| |
Collapse
|
3
|
Noh M, Sim JY, Kim J, Ahn JH, Min HY, Lee JU, Park JS, Jeong JY, Lee JY, Lee SY, Lee HJ, Park CS, Lee HY. Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132932. [PMID: 37988864 DOI: 10.1016/j.jhazmat.2023.132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a group of illnesses associated with unresolved inflammation in response to toxic environmental stimuli. Persistent exposure to PM is a major risk factor for COPD, but the underlying mechanism remains unclear. Using our established mouse model of PM-induced COPD, we find that repeated PM exposure provokes macrophage-centered chronic inflammation and COPD development. Mechanistically, chronic PM exposure induces transcriptional downregulation of HAAO, KMO, KYNU, and QPRT in macrophages, which are the enzymes of de novo NAD+ synthesis pathway (kynurenine pathway; KP), via elevated chromatin binding of the CCCTC-binding factor (CTCF) near the transcriptional regulatory regions of the enzymes. Subsequent reduction of NAD+ and SIRT1 function increases histone acetylation, resulting in elevated expression of pro-inflammatory genes in PM-exposed macrophages. Activation of SIRT1 by nutraceutical resveratrol mitigated PM-induced chronic inflammation and COPD development. In agreement, increased levels of histone acetylation and decreased expression of KP enzymes were observed in pulmonary macrophages of COPD patients. We newly provide an evidence that dysregulated NAD+ metabolism and consecutive SIRT1 deficiency significantly contribute to the pathological activation of macrophages during PM-mediated COPD pathogenesis. Additionally, targeting PM-induced intertwined metabolic and epigenetic reprogramming in macrophages is an effective strategy for COPD treatment.
Collapse
Affiliation(s)
- Myungkyung Noh
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jisung Kim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jee Hwan Ahn
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Jong-Uk Lee
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan 31538, South Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, South Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi do, South Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
4
|
Brauwers B, Machado FVC, Beijers RJHCG, Spruit MA, Franssen FME. Combined Exercise Training and Nutritional Interventions or Pharmacological Treatments to Improve Exercise Capacity and Body Composition in Chronic Obstructive Pulmonary Disease: A Narrative Review. Nutrients 2023; 15:5136. [PMID: 38140395 PMCID: PMC10747351 DOI: 10.3390/nu15245136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that is associated with significant morbidity, mortality, and healthcare costs. The burden of respiratory symptoms and airflow limitation can translate to reduced physical activity, in turn contributing to poor exercise capacity, muscle dysfunction, and body composition abnormalities. These extrapulmonary features of the disease are targeted during pulmonary rehabilitation, which provides patients with tailored therapies to improve the physical and emotional status. Patients with COPD can be divided into metabolic phenotypes, including cachectic, sarcopenic, normal weight, obese, and sarcopenic with hidden obesity. To date, there have been many studies performed investigating the individual effects of exercise training programs as well as nutritional and pharmacological treatments to improve exercise capacity and body composition in patients with COPD. However, little research is available investigating the combined effect of exercise training with nutritional or pharmacological treatments on these outcomes. Therefore, this review focuses on exploring the potential additional beneficial effects of combinations of exercise training and nutritional or pharmacological treatments to target exercise capacity and body composition in patients with COPD with different metabolic phenotypes.
Collapse
Affiliation(s)
- Bente Brauwers
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine, Life Sciences, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Felipe V. C. Machado
- BIOMED (Biomedical Research Institute), REVAL (Rehabilitation Research Centre), Hasselt University, 3590 Hasselt, Belgium;
| | - Rosanne J. H. C. G. Beijers
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Martijn A. Spruit
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Frits M. E. Franssen
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
5
|
Mahar R, Chakraborty A, Nainwal N. Formulation of Resveratrol-Loaded Polycaprolactone Inhalable Microspheres Using Tween 80 as an Emulsifier: Factorial Design and Optimization. AAPS PharmSciTech 2023; 24:131. [PMID: 37291478 DOI: 10.1208/s12249-023-02587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Resveratrol (RSV) is a bioactive phytoconstituent that has potential applications in respiratory diseases. However, poor oral bioavailability is the major hurdle to its clinical use. In the present work, resveratrol-loaded polycaprolactone (PCL) inhalable microspheres (MSs) were formulated to improve their therapeutic potential. The inhalable microspheres were formulated using the emulsion-solvent evaporation method. In this research, inhalable resveratrol microspheres were prepared using Tween 80 in place of polyvinyl alcohol which formed insoluble lumps. A 32 factorial design was applied taking polymer (PCL) and emulsifier (Tween 80) as independent variables and drug loading (DL) and encapsulation efficiency (EE) as dependent variables. The DL and EE of the optimized formulation were found to be 30.6% and 63.84% respectively. The in vitro aerosolization study performed using the Anderson cascade impactor showed that the fine particle fraction (FPF) of optimized resveratrol polycaprolactone microspheres (RSV-PCL-MSs) blended with lactose, and RSV-PCL-MSs were significantly higher than those of the pure drugs. The MMADT (theoretical mass median aerodynamic diameter) of optimized RSV-PCL-MSs was found to be 3.25 ± 1.15. The particle size of microspheres was within the inhalable range, i.e., between 1 and 5 µm. The morphological analysis showed spherical-shaped particles with smooth surfaces. The in vitro release study showed sustained drug release from the microspheres for up to 12 h. The study concluded that resveratrol-loaded inhalable microspheres may be an efficient delivery system to treat COPD.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248161, India
- School of Pharmaceutical Sciences, Himgiri Zee University, Dehradun, Sherpur, 248197, Uttarakhand, India
| | | | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences and Technology, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
6
|
Esfahani M, Rahbar AH, Asl SS, Bashirian S, Mir Moeini ES, Mehri F. The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat. Saf Health Work 2023; 14:118-123. [PMID: 36941929 PMCID: PMC10024237 DOI: 10.1016/j.shaw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Background Chronic exposure to silica is related with the provocation of an inflammatory response and oxidative stress mechanism. Vitamin D has multiple benefits in biological activities particularly respiratory system disease. Method In this research, 20 male Wistar rats were randomly allocated into four groups (5 rats /group) as follow: Group1 received saline as (negative control) group. The group 2 received a single IT instillation of silica (positive control) group; the group 3 was co-administrated with single IT silica and Vitamin D (20 mg/kg/day) daily for a period of 90 days. The rats of group 4 received Vitamin D daily for a period of 90 days. Results Silica significantly increased serum and lung total Oxidant Status (TOS). Meanwhile, silica reduced serum and lung total antioxidant capacity (TAC), GSH and tumor necrosis factor-α (TNF-a). Vitamin D treatment meaningfully reversed oxidative stress, antioxidants status and inflammatory response. Also, Vitamin D improved histopathological changes caused by silica. Conclusion These findings indicate that Vitamin D exerts protective effects against silica-induced lung injury. It seems that Vitamin D has potential use as a therapeutic object for silica induced lung injure.
Collapse
Affiliation(s)
- Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Rahbar
- Ayatollah Bahari Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, School of Medicine Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saed Bashirian
- Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Effat Sadat Mir Moeini
- Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences. Hamadan, Iran
- Corresponding author.
| |
Collapse
|
7
|
Deng M, Tong R, Bian Y, Hou G. Astaxanthin attenuates cigarette smoking-induced oxidative stress and inflammation in a sirtuin 1-dependent manner. Biomed Pharmacother 2023; 159:114230. [PMID: 36696799 DOI: 10.1016/j.biopha.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress and chronic inflammation play key roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and anti-inflammatory effects This study aimed to explore the protective role and underlying mechanism of AXT in the pathogenesis of COPD. In this study, we found AXT alleviated pulmonary emphysema in a CS-exposed mouse model and regulated the expression of MMP-9/TIMP-1. And, AXT attenuates CSE-induced small airway fibrosis. Meanwhile, AXT inhibited Nrf2-modulated oxidative stress and the p65 NF-κB-regulated inflammatory pathway in both the mouse model and CSE-treated HBE cells. Mechanistically, AXT could directly bind to SIRT1 (the binding energy of the complex was -8.8 kcal/mol) and regulate the deacetylation activity of SIRT1. Finally, by activating SIRT1 deacetylation, AXT deacetylated Nrf2 and contributed to its action of reducing oxidative stress by generating antioxidant enzymes, and inhibiting p65 NF-κB transcriptional activity to suppress the inflammatory response. Our results show that treatment with AXT significantly reverses the oxidative stress and inflammation induced by cigarette smoke both in vivo and in vitro in a sirtuin 1-dependent manner.
Collapse
Affiliation(s)
- Mingming Deng
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Run Tong
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Yiding Bian
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Gang Hou
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China..
| |
Collapse
|
8
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
9
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
10
|
Burgin HJ, Crameri JJ, Stojanovski D, Sanchez MIGL, Ziemann M, McKenzie M. Stimulating Mitochondrial Biogenesis with Deoxyribonucleosides Increases Functional Capacity in ECHS1-Deficient Cells. Int J Mol Sci 2022; 23:12610. [PMID: 36293464 PMCID: PMC9604038 DOI: 10.3390/ijms232012610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) 'knockout' (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid β-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells. DNs treatment also altered global nuclear gene expression, with key gene sets including 'respiratory electron transport' and 'formation of ATP by chemiosmotic coupling' increased in both CON and ECHS1 KO cells. Genes involved in OXPHOS complex I biogenesis were also upregulated in both CON and ECHS1 KO cells following dNs treatment, with a corresponding increase in the steady-state levels of holocomplex I in ECHS1 KO cells. Steady-state levels of OXPHOS complex V, and the CIII2/CIV and CI/CIII2/CIV supercomplexes, were also increased by dNs treatment in ECHS1 KO cells. Importantly, treatment with dNs increased both basal and maximal mitochondrial oxygen consumption in ECHS1 KO cells when metabolizing either glucose or the fatty acid palmitoyl-L-carnitine. These findings highlight the ability of dNs to improve overall mitochondrial respiratory function, via the stimulation mitochondrial biogenesis, in the face of combined defects in OXPHOS and FAO due to ECHS1 deficiency.
Collapse
Affiliation(s)
- Harrison James Burgin
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
| | - Jordan James Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - M. Isabel G. Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery Melbourne, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
11
|
Omer AK, Khorshidi S, Mortazavi N, Rahman HS. A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections. Int J Gen Med 2022; 15:4817-4835. [PMID: 35592539 PMCID: PMC9112189 DOI: 10.2147/ijgm.s361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of successful therapy, vaccines for protection are continuously being developed. Since vaccines must be thoroughly tested, viral respiratory tract infections (VRTIs), mainly coronaviruses, have seriously affected human health worldwide in recent years. In this review, we presented the relevant data which originated from trusted publishers regarding the practical benefits of functional foods (FFs) and their dietary sources, in addition to natural plant products, in viral respiratory and COVID-19 prevention and immune-boosting activities. As a result, FFs were confirmed to be functionally active ingredients for preventing COVID-19 and VRTIs. Furthermore, the antiviral activity and immunological effects of FFs against VRTIs and COVID-19 and their potential main mechanisms of action are also being reviewed. Therefore, to prevent COVID-19 and VRTIs, it is critical to identify controlling the activities and immune-enhancing functional food constituents as early as possible. We further aimed to summarize functional food constituents as a dietary supplement that aids in immune system boosting and may effectively reduce VRTIs and COVID-19 and promote therapeutic efficacy.
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Razga Company, Sulaimaniyah, Kurdistan Region, Iraq
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Negar Mortazavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| |
Collapse
|
12
|
Clinical significance of serum HMGB1 in COPD and correlation with severity of airflow restriction and immune function. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: To explore the serum HMGB1 levels in patients with smoking-induced chronic obstructive pulmonary disease (COPD) and the correlations with airflow restriction and immune function.
Methods: A total of 136 COPD patients were divided into mild, moderate and severe + extremely severe groups. Thirty-five healthy subjects were selected as control group. Serum HMGB1 levels were measured by ELISA, and the correlations with pulmonary and immune function indices were analyzed. Receiver operating characteristic (ROC) curve was plotted.
Results: PaO2, eosinophil count, FEV1/FVC, FEV1% pred, and IgA, IgM, IgG levels of COPD patients were lower than those of control group, and decreased with airflow restriction aggravation. PaCO2, leukocyte count, neutrophil percentage, modified British Medical Research Council (mMRC) scale and COPD Assessment Test (CAT) scores, D-Dimer (D-D), PCT, CRP and HMGB1 levels, myeloid dendritic cell (mDC) and plasmacytoid dendritic cell (pDC) counts, and mDCs/pDCs of COPD patients exceeded those of control group, and increased with airflow restriction aggravation (P<0.05). HMGB1 levels of COPD patients were negatively correlated with FEV1/FVC, FEV1% pred, IgA, IgM and IgG levels and positively correlated with mDC count, pDC count and mDCs/pDCs (P<0.0001). The area under ROC curve was 0.883, the optimal cutoff value was 3.63 ng/mL, and sensitivity and specificity were 86.7% and 85.9%, respectively.
Conclusions: Serum HMGB1 level in patients with smoking-induced COPD rises with airflow restriction aggravation and has significant correlations with the decline of pulmonary and immune functions, with high predictive value for COPD. HMGB1 is a potential biomarker for evaluating COPD progression.
Collapse
|
13
|
Kim MO, Lee JW, Lee JK, Song YN, Oh ES, Ro H, Yoon D, Jeong YH, Park JY, Hong ST, Ryu HW, Lee SU, Lee DY. Black Ginseng Extract Suppresses Airway Inflammation Induced by Cigarette Smoke and Lipopolysaccharides In Vivo. Antioxidants (Basel) 2022; 11:antiox11040679. [PMID: 35453364 PMCID: PMC9025275 DOI: 10.3390/antiox11040679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor that can induce airway enlargement, airway obstruction, and airway mucus hypersecretion. Although studies have shown that Korean black ginseng extract (BGE) has potent anti-inflammatory and antioxidant activities, the CS-induced inflammatory responses and molecular mechanisms are yet to be examined. The aim of this study was to examine the effect of BGE on the airway inflammatory response and its molecular mechanisms, using CS/lipopolysaccharides (LPS)-exposed animals and PMA-stimulated human airway epithelial NCI-H292 cells. The results show that BGE inhibited the recruitment of immune cells and the release of inflammatory mediators, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, elastase, and reactive oxygen species (ROS) in the airways of CS/LPS-exposed animals. BGE inhibited mucus secretion and the expression of Mucin 5AC (MUC5AC). Furthermore, BGE exhibited an anti-inflammatory effect by downregulating a signaling pathway mediated by transforming growth factor-β-activated kinase (TAK) 1, an important protein that accelerates inflammation by cigarette smoke (CS). Overall, the findings show that BGE inhibits lung inflammation and mucus secretion by decreasing the activation of TAK1 both in human epithelial cells and in CS/LPS-exposed animals, and could be a potential adjuvant in the treatment and prevention of airway inflammatory diseases caused by airway irritants such as CS.
Collapse
Affiliation(s)
- Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae Kyoung Lee
- Rpbio Research Institute, Rpbio Co., Ltd., Suwon 16229, Korea;
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hyunju Ro
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
| | - Yun-Hwa Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Ji-Yoon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Sung-Tae Hong
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| |
Collapse
|
14
|
Alesci A, Nicosia N, Fumia A, Giorgianni F, Santini A, Cicero N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022; 27:424. [PMID: 35056739 PMCID: PMC8778251 DOI: 10.3390/molecules27020424] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The use of polyphenols as adjuvants in lowering risk factors for various debilitating diseases has been investigated in recent years due to their possible antioxidant action. Polyphenols represent a fascinating and relatively new subject of research in nutraceuticals and nutrition, with interest rapidly expanding since they can help maintain health by controlling metabolism, weight, chronic diseases, and cell proliferation. Resveratrol is a phenolic compound found mostly in the pulp, peels, seeds, and stems of red grapes. It has a wide variety of biological actions that can be used to prevent the beginning of various diseases or manage their symptoms. Resveratrol can influence multiple inflammatory and non-inflammatory responses, protecting organs and tissues, thanks to its interaction with immune cells and its activity on SIRT1. This compound has anti-inflammatory, antioxidant, anti-apoptotic, neuroprotective, cardioprotective, anticancer, and antiviral properties, making it a potential adjunct to traditional pharmaceutical therapy in public health. This review aims to provide a comprehensive analysis of resveratrol in terms of active biological effects and mechanism of action in modifying the immune cellular response to promote human psychophysical health.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (A.A.); (N.N.)
| | - Noemi Nicosia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (A.A.); (N.N.)
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Cracow, Poland
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, Viale Gazzi, 98147 Messina, Italy;
| | - Federica Giorgianni
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (F.G.); (N.C.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (F.G.); (N.C.)
- Science4life Spin-off Company, University of Messina, 98168 Messina, Italy
- Consorzio di Ricerca sul Rischio Biologico in Agricoltura (Co.Ri.Bi.A), 90129 Palermo, Italy
| |
Collapse
|
15
|
Marín-Hinojosa C, Eraso CC, Sanchez-Lopez V, Hernández LC, Otero-Candelera R, Lopez-Campos JL. Nutriepigenomics and chronic obstructive pulmonary disease: potential role of dietary and epigenetics factors in disease development and management. Am J Clin Nutr 2021; 114:1894-1906. [PMID: 34477827 DOI: 10.1093/ajcn/nqab267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Over recent decades, a number of studies have revealed the possible role of different types of diets, as well as the nutritional elements they are made up of, in the pathogenesis of chronic obstructive pulmonary disease (COPD). To date, dietary factors have been identified to play a role in the prevention of COPD, with evidence from antioxidant nutrients, vitamins, and fiber intake. Additionally, certain dietary patterns such as the Mediterranean diet, together with other Western diets, provide evidence of the influence on COPD development, promoting lung health through nutritional approaches, and giving us an opportunity for intervention. The effect of diet on COPD is conveyed by 3 mechanisms: regulation of inflammation, oxidative stress, and carbon dioxide produced/oxygen intake. Current advances have begun to highlight the possible role of diet in modifying gene expression in certain individuals that predisposes them to COPD through epigenetic modifications. The relation between dietary intake and epigenetic factors has therefore outlined nutriepigenomics as a possible missing link in the relation between environmental exposure to smoke and the appearance of a subsequent chronic bronchial obstruction. This review summarizes the evidence regarding the influence of dietary patterns and nutrients and epigenetic regulatory mechanisms on COPD development and prevention with the aim of encouraging clinical research on the impact of dietary modifications on COPD-related clinical outcomes. This review highlights the importance of proposing and carrying out future studies focused on the modulating effects of certain nutrients on epigenetic changes in patients with specific COPD phenotypes (bronchiectasis, emphysema, asthma/COPD, chronic bronchitis), and their individual responses to cigarette smoking, environmental pollution, or other noxious particles. The objectives of these future studies must be directed to the development of novel therapeutic approaches and personalized management of COPD.
Collapse
Affiliation(s)
- Carmen Marín-Hinojosa
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria Caballero Eraso
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Veronica Sanchez-Lopez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Carrasco Hernández
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Remedios Otero-Candelera
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
17
|
Gozzi-Silva SC, Teixeira FME, Duarte AJDS, Sato MN, Oliveira LDM. Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve? Front Nutr 2021; 8:674258. [PMID: 34557509 PMCID: PMC8453008 DOI: 10.3389/fnut.2021.674258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nutrition is an important tool that can be used to modulate the immune response during infectious diseases. In addition, through diet, important substrates are acquired for the biosynthesis of regulatory molecules in the immune response, influencing the progression and treatment of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this way, nutrition can promote lung health status. A range of nutrients, such as vitamins (A, C, D, and E), minerals (zinc, selenium, iron, and magnesium), flavonoids and fatty acids, play important roles in reducing the risk of pulmonary chronic diseases and viral infections. Through their antioxidant and anti-inflammatory effects, nutrients are associated with better lung function and a lower risk of complications since they can decrease the harmful effects from the immune system during the inflammatory response. In addition, bioactive compounds can even contribute to epigenetic changes, including histone deacetylase (HDAC) modifications that inhibit the transcription of proinflammatory cytokines, which can contribute to the maintenance of homeostasis in the context of infections and chronic inflammatory diseases. These nutrients also play an important role in activating immune responses against pathogens, which can help the immune system during infections. Here, we provide an updated overview of the roles played by dietary factors and how they can affect respiratory health. Therefore, we will show the anti-inflammatory role of flavonoids, fatty acids, vitamins and microbiota, important for the control of chronic inflammatory diseases and allergies, in addition to the antiviral role of vitamins, flavonoids, and minerals during pulmonary viral infections, addressing the mechanisms involved in each function. These mechanisms are interesting in the discussion of perspectives associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its pulmonary complications since patients with severe disease have vitamins deficiency, especially vitamin D. In addition, researches with the use of flavonoids have been shown to decrease viral replication in vitro. This way, a full understanding of dietary influences can improve the lung health of patients.
Collapse
Affiliation(s)
- Sarah Cristina Gozzi-Silva
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev 2021; 30:30/160/210041. [PMID: 34415848 DOI: 10.1183/16000617.0041-2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
COPD is a major cause of morbidity and mortality worldwide. Multimorbidity is common in COPD patients and a key modifiable factor, which requires timely identification and targeted holistic management strategies to improve outcomes and reduce the burden of disease.We discuss the use of integrative approaches, such as cluster analysis and network-based theory, to understand the common and novel pathobiological mechanisms underlying COPD and comorbid disease, which are likely to be key to informing new management strategies.Furthermore, we discuss the current understanding of mechanistic drivers to multimorbidity in COPD, including hypotheses such as multimorbidity as a result of shared common exposure to noxious stimuli (e.g. tobacco smoke), or as a consequence of loss of function following the development of pulmonary disease. In addition, we explore the links to pulmonary disease processes such as systemic overspill of pulmonary inflammation, immune cell priming within the inflamed COPD lung and targeted messengers such as extracellular vesicles as a result of local damage as a cause for multimorbidity in COPD.Finally, we focus on current and new management strategies which may target these underlying mechanisms, with the aim of holistic, patient-centred treatment rather than single disease management.
Collapse
Affiliation(s)
- H Burke
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - T M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospitals Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
19
|
Hoang T. An approach of fatty acids and resveratrol in the prevention of COVID-19 severity. Phytother Res 2021; 35:2269-2273. [PMID: 33200839 PMCID: PMC7753401 DOI: 10.1002/ptr.6956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Tung Hoang
- Institute of Research and Development, Duy Tan UniversityDa NangVietnam
- Faculty of PharmacyDuy Tan UniversityDa NangVietnam
| |
Collapse
|
20
|
Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 2020; 142:111147. [PMID: 33171276 PMCID: PMC7648491 DOI: 10.1016/j.exger.2020.111147] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.
Collapse
Affiliation(s)
- Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
21
|
Easter M, Bollenbecker S, Barnes JW, Krick S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E6924. [PMID: 32967225 PMCID: PMC7555616 DOI: 10.3390/ijms21186924] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Di Ciaula A, Portincasa P. The environment as a determinant of successful aging or frailty. Mech Ageing Dev 2020; 188:111244. [PMID: 32335099 DOI: 10.1016/j.mad.2020.111244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The number of elderly persons is rising rapidly, and healthspan is a key factor in determining the well-being of individuals and the sustainability of national health systems. Environmental health is crucial for a "successful aging". Complex relationships between environmental factors and non-communicable diseases play a major role, causing or accelerating disabilities. Besides genetic factors, aging results from the concurrence of several environmental factors starting from early (i.e. in utero) life, able to increase susceptibility to diseases in adulthood, and to promote frailty in the elderly. In aged people, an unhealthy environment contributes to a fast and early decline and increases vulnerability. Exposure to pollutants facilitates the onset and progression of cardiovascular, respiratory, metabolic and neurologic diseases through direct effects and epigenetic mechanisms negatively affecting biological age. Healthy diet, healthy environment and constant physical activity could counteract, at least in part, the negative effects of environmental stressors. Almost all environmental factors generating detrimental effects on aging are modifiable, with relevant implications in terms of primary prevention measures potentially leading to decreased frailty, to an increase in the number of years lived without diseases or disability, and to a significant reduction in health expenditure.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy; Division of Internal Medicine, Hospital of Bisceglie (ASL BAT), Bisceglie, Italy; International Society of Doctors for Environment (ISDE).
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
23
|
Martin LM, Johnson PJ, Amorim JR, DeClue AE. Effects of Orally Administered Resveratrol on TNF, IL-1β, Leukocyte Phagocytic Activity and Oxidative Burst Function in Horses: A Prospective, Randomized, Double-Blinded, Placebo-Controlled Study. Int J Mol Sci 2020; 21:ijms21041453. [PMID: 32093379 PMCID: PMC7073105 DOI: 10.3390/ijms21041453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Resveratrol, a phytophenol, is a commonly used equine nutraceutical supplement touted to exert anti-inflammatory effects. The effect of orally administered resveratrol on tumor necrosis factor (TNF), interleukin-1β (IL-1β), leukocyte phagocytic activity or oxidative burst function have not been reported in horses. The objective of this study was to determine the effects of a commercially available, orally administered resveratrol product on innate immune functions in healthy adult horses. Whole blood was collected from 12 horses prior to and following 3 weeks of treatment with either the manufacturer’s recommended dose of resveratrol or placebo. Phagocytosis, oxidative burst and pathogen associated molecular pattern (PAMP) motif-stimulated leukocyte production of TNF and IL-1β were compared pre- and post-treatment between treatment groups. Phagocytosis and oxidative burst capacity were evaluated via flow cytometry. Tumor necrosis factor and IL-1β were measured using cytotoxicity and ELISA assays, respectively. There were no significant differences in phagocytosis, oxidative burst or stimulated TNF or IL-1β production between resveratrol and placebo treatment groups. Orally administered resveratrol at a routinely recommended dose for a duration of 3 weeks did not significantly affect phagocytic activity, oxidative burst function or PAMP-stimulated leukocyte cytokine production.
Collapse
|
24
|
Belchamber KBR, Donnelly LE. Targeting defective pulmonary innate immunity - A new therapeutic option? Pharmacol Ther 2020; 209:107500. [PMID: 32061706 DOI: 10.1016/j.pharmthera.2020.107500] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Chronic pulmonary conditions now account for 1 in 15 deaths in the US and mortality is increasing. Chronic obstructive pulmonary disease (COPD) is due to become the 3rd largest cause of mortality by 2030 and mortality from other respiratory conditions such as asthma, idiopathic pulmonary fibrosis and cystic fibrosis are not reducing. There is an urgent need for novel therapies to address this problem as many of the current strategies targeting inflammation are not sufficient. The innate immune system of the lung is an important defence against invading pathogens, but in many chronic pulmonary diseases, this system mounts an inappropriate response. In COPD, macrophages are increased in number, but fail to clear pathogens correctly and become highly activated. This leads to increased damage and remodelling of the airways. In idiopathic fibrosis, there is a switch of macrophage phenotype to a cell that promotes abnormal repair. Neutrophils also display dysfunction in COPD where aberrant migratory profiles may lead to increased damage to lung tissue and emphysema; while in cystic fibrosis the proteolytic lung environment damages neutrophil receptors leading to ineffective phagocytosis and migration. Targeting the innate immune system to restore 'normal function' could have enormous benefits. Improving phagocytosis of pathogens could reduce exacerbations and hence the associated decline in lung function, and novel therapeutics such as sulforaphane appear to do this in vitro. Other natural products such as resveratrol and derivatives also have anti-inflammatory properties. Statins have traditionally been used to manage cholesterol levels in hypercholesterolaemia, however these molecules also have beneficial effects on the innate immune cells. Statins have been shown to be anti-inflammatory and restore aberrant neutrophil chemotaxis in aged cells. Other possible agents that may be efficacious are senolytics. These compounds include natural products such as quercetin which have anti-inflammatory properties but can also suppress viral replication. As viruses have been shown to suppress phagocytosis of macrophages, it is possible that these compounds could have benefit during viral exacerbations to protect this innate response. These compounds demonstrate that it is possible to address defective innate responses in the lung but a better understanding of the mechanisms driving defective innate immunity in pulmonary disease may lead to improved therapeutics.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
25
|
Beijers RJ, Gosker HR, Sanders KJ, de Theije C, Kelders M, Clarke G, Cryan JF, van den Borst B, Schols AM. Resveratrol and metabolic health in COPD: A proof-of-concept randomized controlled trial. Clin Nutr 2020; 39:2989-2997. [PMID: 31996311 DOI: 10.1016/j.clnu.2020.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Patients with COPD are often characterized by disturbed metabolic health which is reflected in altered body composition. Current studies in healthy subjects suggest that resveratrol improves metabolic health by enhancing muscle mitochondrial function and adipose tissue morphology. The primary objective was to investigate the effect of four weeks resveratrol supplementation on muscle mitochondrial function in patients with COPD. Secondary objectives were to investigate the effect of resveratrol on adipose tissue inflammatory and metabolic gene expression, systemic inflammation and body composition in patients with COPD. METHODS In a double-blind randomized placebo-controlled proof-of-concept study, 21 COPD patients (FEV1: 53 ± 15% predicted; age: 67 ± 9 years and BMI: 24.5 ± 3.3 kg/m2) received resveratrol (150 mg/day) or placebo for four weeks. Before and after intervention, blood samples, quadriceps muscle and subcutaneous abdominal fat biopsies were obtained for metabolic and inflammatory profiling. Body composition was assessed by dual energy X-ray absorptiometry. RESULTS Muscle mitochondrial biogenesis regulators AMPK, SIRT1 and PGC-1α as well as mitochondrial respiration, Oxphos complexes, oxidative enzyme activities and kynurenine aminotransferases were not improved by resveratrol. Plasma high-sensitive C-reactive protein and kynurenine did not change after resveratrol supplementation. Adipose tissue inflammatory markers were unaffected by resveratrol, while markers of glycolysis and lipolysis were significantly increased compared to placebo supplementation. Body weight decreased after resveratrol supplementation (resveratrol -0.95 ± 1.01 kg vs placebo -0.16 ± 0.66 kg, p = 0.049) due to a reduction in lean mass (resveratrol -1.79 ± 1.67 kg vs 0.37 ± 0.86 kg, p = 0.026). CONCLUSION We do not confirm previously reported positive effects of resveratrol on skeletal muscle mitochondrial function in patients with COPD, but show an unexpected decline in lean mass. CLINICAL TRIAL REGISTRY Clinicaltrials.gov NCT02245932.
Collapse
Affiliation(s)
- Rosanne Jhcg Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Harry R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Karin Jc Sanders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Chiel de Theije
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Marco Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Gerard Clarke
- APC Microbiome Ireland & Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Bram van den Borst
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Annemie Mwj Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
26
|
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and Its Effects on the Vascular System. Int J Mol Sci 2019; 20:E1523. [PMID: 30934670 PMCID: PMC6479680 DOI: 10.3390/ijms20071523] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/18/2022] Open
Abstract
Resveratrol, the phenolic substance isolated initially from Veratrum grandiflorum and richly present in grapes, wine, peanuts, soy, and berries, has been attracting attention of scientists and medical doctors for many decades. Herein, we review its effects on the vascular system. Studies utilizing cell cultures and pre-clinical models showed that resveratrol alleviates oxidative stress and inflammation. Furthermore, resveratrol suppresses vascular smooth muscle cell proliferation, promotes autophagy, and has been investigated in the context of vascular senescence. Pre-clinical models unambiguously demonstrated numerous vasculoprotective effects of resveratrol. In clinical trials, resveratrol moderately diminished systolic blood pressure in hypertensive patients, as well as blood glucose in patients with diabetes mellitus. Yet, open questions remain, as exemplified by a recent report which states that the intake of resveratrol might blunt certain positive effects of exercise in older persons, and further research addressing the framework for long-term use of resveratrol as a food supplement, will stay in demand.
Collapse
Affiliation(s)
- Johannes M Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
27
|
Multi-target natural products as alternatives against oxidative stress in Chronic Obstructive Pulmonary Disease (COPD). Eur J Med Chem 2019; 163:911-931. [DOI: 10.1016/j.ejmech.2018.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
|
28
|
Abstract
Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.
Collapse
|