1
|
Arellano-García LI, Portillo MP, Martínez JA, Courtois A, Milton-Laskibar I. Postbiotics for the management of obesity, insulin resistance/type 2 diabetes and NAFLD. Beyond microbial viability. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39644489 DOI: 10.1080/10408398.2024.2437143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Highly prevalent comorbidities associated with metabolic syndrome, such as abdominal obesity, nonalcoholic fatty liver disease (NAFLD) and insulin-resistance/Type 2 diabetes (IR/T2D) share alterations in gut microbiota composition as a potential triggering factor. Recent studies put the attention in the potential usage of postbiotics (inactivated probiotics) on these metabolic alterations. This review summarizes the current evidence regarding the efficacy of postbiotic administration in both, preclinical and clinical studies, for the management of obesity, NAFLD and IR/T2D. Data from preclinical studies (rodents) suggest that postbiotic administration effectively prevents obesity, whereas clinical studies corroborate these benefits also in overweight/obese subjects receiving inactivated bacteria. As for NAFLD, although preclinical studies indicate that postbiotic administration improves different liver markers, no data obtained in humans have been published so far since all the studies are ongoing clinical trials. Finally, while the administration of inactivated bacteria demonstrated to be a promising approach for the management of IR/T2D in rodents, data from clinical trials indicates that in humans, this approach is more effective on IR than in T2D. In conclusion, the available scientific data indicate that postbiotic administration not only is safer, but also as effective as probiotic administration for the management of obesity associated prevalent metabolic alterations.
Collapse
Affiliation(s)
- Laura Isabel Arellano-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| | - J Alfredo Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Arnaud Courtois
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
- Centre Antipoison de Nouvelle Aquitaine, CHU de Bordeaux, Bordeaux, France
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Ramos-Lopez O, Assmann TS, Astudillo Muñoz EY, Baquerizo-Sedano L, Barrón-Cabrera E, Bernal CA, Bressan J, Cuevas-Sierra A, Dávalos A, De la Cruz-Mosso U, De la Garza AL, De Luis DA, Díaz de la Garza RI, Dos Santos K, Fernández-Condori RC, Fernández-Quintela A, Garcia Diaz DF, Gonzalez-Becerra K, Lopes Rosado E, López de Las Hazas MC, Marín Alejandre BA, Angel Martin A, Martinez-Lopez E, Martínez-Urbistondo D, Milagro FI, Hermsdorff HHM, Muguerza B, Nicoletti CF, Obregón Rivas AM, Parra-Rojas I, Portillo MP, Santos JL, Steemburgo T, Tejero ME, Terán AC, Treviño V, Vizmanos B, Martinez JA. Guidance and Position of RINN22 regarding Precision Nutrition and Nutriomics. Lifestyle Genom 2024; 18:1-19. [PMID: 39617000 DOI: 10.1159/000542789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Precision nutrition is based on the integration of individual's phenotypical and biological characteristics including genetic variants, epigenetic marks, gut microbiota profiles, and metabolite fingerprints as well as medical history, lifestyle practices, and environmental and cultural factors. Thus, nutriomics areas including nutrigenomics, nutrigenetics, nutriepigenetics, nutrimetabolomics, and nutrimetagenomics have emerged to comprehensively understand the complex interactions between nutrients, diet, and the human body's molecular processes through precision nutrition. SUMMARY This document from the Ibero-American Network of Nutriomics and Precision Nutrition (RINN22; https://rinn22.com/) provides a comprehensive overview of the concepts of precision nutrition approaches to guide their application in clinical and public health as well as establish the position of RINN22 regarding the current and future state of precision nutrition. KEY MESSAGES The progress and participation of nutriomics to precision nutrition is an essential pillar for addressing diet-related diseases and developing innovative managing strategies, which will be promoted by advances in bioinformatics, machine learning, and integrative software, as well as the description of specific novel biomarkers. In this context, synthesizing and critically evaluating the latest developments, potential applications, and future needs in the field of nutrition is necessary with a holistic perspective, incorporating progress in omics technologies aimed at precision nutrition interventions. This approach must address and confront healthy, social, food security, physically active lifestyle, sanitation, and sustainability challenges with preventive, participatory, and predictive strategies of personalized, population, and planetary nutrition for a precision tailored health.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Taís Silveira Assmann
- Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elcy Yaned Astudillo Muñoz
- Grupo de Investigación Gerencia del Cuidado, Facultad de Ciencias de la Salud, Universidad Libre Pereira, Pereira, Colombia
| | | | - Elisa Barrón-Cabrera
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacan, Mexico
| | - Claudio Adrián Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Amanda Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Alimentacion Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI), UAM+CSIC, Madrid, Spain
| | - Alberto Dávalos
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA) Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Ulises De la Cruz-Mosso
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura De la Garza
- Universidad Autónoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Mexico
| | - Daniel A De Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | | | - Karina Dos Santos
- Graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro (PPGBMC/UNIRIO), Rio de Janeiro, Brazil
| | | | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Vitoria-Gasteiz, Spain
| | - Diego F Garcia Diaz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karina Gonzalez-Becerra
- Instituto de Investigación en Genética Molecular, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico
| | - Eliane Lopes Rosado
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA) Alimentación, CEI UAM+CSIC, Madrid, Spain
| | | | - Alberto Angel Martin
- Escuela de Nutrición y Dietética, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Erika Martinez-Lopez
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Diego Martínez-Urbistondo
- Departamento de Medicina Interna, Area de Medicina Vascular-Madrid, Clinica Universidad de Navarra, Madrid, Spain
| | - Fermin I Milagro
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | | | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | | | - Ana Maria Obregón Rivas
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de Los Bravo, Mexico
| | - Maria Puy Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Vitoria-Gasteiz, Spain
| | - José L Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thais Steemburgo
- Graduate Program in Food, Nutrition, and Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Anny Cristina Terán
- Hospital Verdi Cevallos Balda, Ministerio de Salud Pública del Ecuador, Portoviejo, Ecuador
| | - Victor Treviño
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Bárbara Vizmanos
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - J Alfredo Martinez
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Centre of Medicine and Endocrinology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
3
|
Singar S, Nagpal R, Arjmandi BH, Akhavan NS. Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients 2024; 16:2673. [PMID: 39203810 PMCID: PMC11357412 DOI: 10.3390/nu16162673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Personalized nutrition (PN) represents a transformative approach in dietary science, where individual genetic profiles guide tailored dietary recommendations, thereby optimizing health outcomes and managing chronic diseases more effectively. This review synthesizes key aspects of PN, emphasizing the genetic basis of dietary responses, contemporary research, and practical applications. We explore how individual genetic differences influence dietary metabolisms, thus underscoring the importance of nutrigenomics in developing personalized dietary guidelines. Current research in PN highlights significant gene-diet interactions that affect various conditions, including obesity and diabetes, suggesting that dietary interventions could be more precise and beneficial if they are customized to genetic profiles. Moreover, we discuss practical implementations of PN, including technological advancements in genetic testing that enable real-time dietary customization. Looking forward, this review identifies the robust integration of bioinformatics and genomics as critical for advancing PN. We advocate for multidisciplinary research to overcome current challenges, such as data privacy and ethical concerns associated with genetic testing. The future of PN lies in broader adoption across health and wellness sectors, promising significant advancements in public health and personalized medicine.
Collapse
Affiliation(s)
- Saiful Singar
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA; (S.S.); (R.N.); (B.H.A.)
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA; (S.S.); (R.N.); (B.H.A.)
| | - Bahram H. Arjmandi
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA; (S.S.); (R.N.); (B.H.A.)
| | - Neda S. Akhavan
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
4
|
Agrawal P, Kaur J, Singh J, Rasane P, Sharma K, Bhadariya V, Kaur S, Kumar V. Genetics, Nutrition, and Health: A New Frontier in Disease Prevention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:326-338. [PMID: 38015713 DOI: 10.1080/27697061.2023.2284997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The field of nutrition research has traditionally focused on the effects of macronutrients and micronutrients on the body. However, it has become evident that individuals have unique genetic makeups that influence their response to food. Nutritional genomics, which includes nutrigenetics and nutrigenomics, explores the interaction between an individual's genetic makeup, diet, and health outcomes. Nutrigenetics studies the impact of genetic variation on an individual's response to dietary nutrients, while nutrigenomics investigates how dietary components affect gene regulation and expression. These disciplines seek to understand the impact of diet on the genome, transcriptome, proteome, and metabolome. It provides insights into the mechanisms underlying the effect of diet on gene expression. Nutrients can cause the modification of genetic expression through epigenetic changes, such as DNA methylation and histone modifications. The aim of nutrigenomics is to create personalized diets based on the unique metabolic profile of an individual, gut microbiome, and genetic makeup to prevent diseases and promote health. Nutrigenomics has the potential to revolutionize the field of nutrition by combining the practicality of personalized nutrition with knowledge of genetic factors underlying health and disease. Thus, nutrigenomics offers a promising approach to improving health outcomes (in terms of disease prevention) through personalized nutrition strategies based on an individual's genetic and metabolic characteristics.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Kartik Sharma
- Faculty of Agro-Industry, Prince of Songkla University, Songkla, Thailand
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
Navarro-Rios D, Panduro A, Roman S, Ramos-Lopez O. CD36 polymorphism, sugary drinks, and sedentarism are associated with hypertriglyceridemic waist phenotype. INT J VITAM NUTR RES 2024; 94:37-44. [PMID: 36274589 DOI: 10.1024/0300-9831/a000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Background: The hypertriglyceridemic waist (HTGW) phenotype is characterized by concomitant increases in waist circumference (WC) and blood triglyceride levels (TG), which have been identified as a predictor of metabolic disorders. This study aimed to analyze associations between food consumption, exercise, and the CD36 gene rs1761667 G>A polymorphism with the HTGW phenotype in adult Mexicans. Methods: This cross-sectional study included a total of 255 participants (both genders, between 18-64 years of age). The HTGW phenotype was defined as WC >88 cm in women, WC >102 cm in men, and TG >150 mg/dL. Body composition was analyzed by electrical bioimpedance. Dietary intakes (macro and micronutrients) were evaluated through a validated 64-item food frequency questionnaire and a 24-h recall. Physical exercise was subjectively recorded asking the participants if they regularly performed some systematic exercise or sport of moderate intensity at least 150-300 minutes a week. Biochemical tests were determined by an automated system. A Taqman real-time assay was used to detect the rs1761667 (G>A) polymorphism of the CD36 gene. A multivariate logistic regression model was performed to analyze the variables potentially associated with the HTGW phenotype (adjusted for age, energy intake, and total fat mass). Results: Overall, 21.6% of the population presented the HTGW phenotype; compared to the HTGW-, also, they were older, had more body fat, higher glucose, cholesterol and insulin levels, and high blood pressure. Female sex (OR=2.92, 95% CI: 1.12-7.60, p=0.028), body mass index (OR=1.19, 95% CI: 1.07-1.32, p=0.001), total cholesterol (OR=1.01, 95% CI:1.00-1.02, p=0.039), daily consumption of sugary drinks (OR=6.94, 95% CI: 1.80-26.8, p=0.005), and the CD36 AG genotype (OR=3.81, 95% CI: 1.08-13.4, p=0.037) were positively associated with the HTGW phenotype, while performing exercise played a protective role (OR=0.23, 95% CI: 0.08-0.62, p=0.004). Overall, the model predicted the HTGW phenotype in 47% (R2=0.47, p≤0.001). Conclusion: The CD36 AG genotype, daily consumption of sugary drinks and sedentarism are risk factors for the HTGW phenotype in Mexicans.
Collapse
Affiliation(s)
- Dayanara Navarro-Rios
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Jalisco, Mexico
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| |
Collapse
|
6
|
Abstract
Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, New York (A.A.B.)
| | - José Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, MA (J.O.)
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain (J.O.)
- Consortium CIBERObn, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.O.)
| |
Collapse
|
7
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
8
|
Autophagy, a relevant process for metabolic health and type-2 diabetes. NUTR HOSP 2023; 40:457-464. [PMID: 36927007 DOI: 10.20960/nh.04555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Autophagy is a very active process that plays an important role in cell and organ differentiation and remodelling, being a crucial system to guarantee health. This physiological process is activated in starvation and inhibited in the presence of nutrients. This short review comments on the three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy, as well as different aspects that control autophagy and its relationship with health and degenerative diseases. As autophagy is highly dependent on functional autophagy (ATG) proteins integrating the phagophore, the role of some key ATG genes and epigenes are briefly commented on. The manuscript deepens discussing some central aspects of type-2 diabetes mellitus and their relationship with the cell cleaning process and mitochondria homeostasis maintenance, as well as the mechanisms through which antidiabetic drugs affect autophagy. Well-designed studies are needed to elucidate whether autophagy plays a casual or causal role in T2DM.
Collapse
|
9
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Reprint of: Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Ramos-Lopez O, Martinez-Urbistondo D, Vargas-Nuñez JA, Martinez JA. The Role of Nutrition on Meta-inflammation: Insights and Potential Targets in Communicable and Chronic Disease Management. Curr Obes Rep 2022; 11:305-335. [PMID: 36258149 PMCID: PMC9579631 DOI: 10.1007/s13679-022-00490-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Chronic low-grade inflammation may contribute to the onset and progression of communicable and chronic diseases. This review examined the effects and eventual mediation roles of different nutritional factors on inflammation. RECENT FINDINGS Potential nutritional compounds influencing inflammation processes include macro and micronutrients, bioactive molecules (polyphenols), specific food components, and culinary ingredients as well as standardized dietary patterns, eating habits, and chrononutrition features. Therefore, research in this field is still required, taking into account critical aspects of heterogeneity including type of population, minimum and maximum intakes and adverse effects, cooking methods, physiopathological status, and times of intervention. Moreover, the integrative analysis of traditional variables (age, sex, metabolic profile, clinical history, body phenotype, habitual dietary intake, physical activity levels, and lifestyle) together with individualized issues (genetic background, epigenetic signatures, microbiota composition, gene expression profiles, and metabolomic fingerprints) may contribute to the knowledge and prescription of more personalized treatments aimed to improving the precision medical management of inflammation as well as the design of anti-inflammatory diets in chronic and communicable diseases.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, 22390, Tijuana, Baja California, Mexico.
| | | | - Juan A Vargas-Nuñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - J Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain
- Department of Nutrition, Food Science, Physiology and Toxicology, Centre for Nutrition Research, University of Navarra, 31009, Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), 28029, Madrid, Spain
| |
Collapse
|
11
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022; 128:253-264. [DOI: https:/doi.org/10.1016/j.tifs.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
|
12
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Ramos-Lopez O, Martinez JA, Milagro FI. Holistic Integration of Omics Tools for Precision Nutrition in Health and Disease. Nutrients 2022; 14:nu14194074. [PMID: 36235725 PMCID: PMC9572439 DOI: 10.3390/nu14194074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The combination of multiple omics approaches has emerged as an innovative holistic scope to provide a more comprehensive view of the molecular and physiological events underlying human diseases (including obesity, dyslipidemias, fatty liver, insulin resistance, and inflammation), as well as for elucidating unique and specific metabolic phenotypes. These omics technologies include genomics (polymorphisms and other structural genetic variants), epigenomics (DNA methylation, histone modifications, long non-coding RNA, telomere length), metagenomics (gut microbiota composition, enterotypes), transcriptomics (RNA expression patterns), proteomics (protein quantities), and metabolomics (metabolite profiles), as well as interactions with dietary/nutritional factors. Although more evidence is still necessary, it is expected that the incorporation of integrative omics could be useful not only for risk prediction and early diagnosis but also for guiding tailored dietary treatments and prognosis schemes. Some challenges include ethical and regulatory issues, the lack of robust and reproducible results due to methodological aspects, the high cost of omics methodologies, and high-dimensional data analyses and interpretation. In this review, we provide examples of system biology studies using multi-omics methodologies to unravel novel insights into the mechanisms and pathways connecting the genotype to clinically relevant traits and therapy outcomes for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
- Correspondence:
| | - J. Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
14
|
Mattes RD, Rowe SB, Ohlhorst SD, Brown AW, Hoffman DJ, Liska DJ, Feskens EJM, Dhillon J, Tucker KL, Epstein LH, Neufeld LM, Kelley M, Fukagawa NK, Sunde RA, Zeisel SH, Basile AJ, Borth LE, Jackson E. Valuing the Diversity of Research Methods to Advance Nutrition Science. Adv Nutr 2022; 13:1324-1393. [PMID: 35802522 PMCID: PMC9340992 DOI: 10.1093/advances/nmac043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
The ASN Board of Directors appointed the Nutrition Research Task Force to develop a report on scientific methods used in nutrition science to advance discovery, interpretation, and application of knowledge in the field. The genesis of this report was growing concern about the tone of discourse among nutrition professionals and the implications of acrimony on the productive study and translation of nutrition science. Too often, honest differences of opinion are cast as conflicts instead of areas of needed collaboration. Recognition of the value (and limitations) of contributions from well-executed nutrition science derived from the various approaches used in the discipline, as well as appreciation of how their layering will yield the strongest evidence base, will provide a basis for greater productivity and impact. Greater collaborative efforts within the field of nutrition science will require an understanding that each method or approach has a place and function that should be valued and used together to create the nutrition evidence base. Precision nutrition was identified as an important emerging nutrition topic by the preponderance of task force members, and this theme was adopted for the report because it lent itself to integration of many approaches in nutrition science. Although the primary audience for this report is nutrition researchers and other nutrition professionals, a secondary aim is to develop a document useful for the various audiences that translate nutrition research, including journalists, clinicians, and policymakers. The intent is to promote accurate, transparent, verifiable evidence-based communication about nutrition science. This will facilitate reasoned interpretation and application of emerging findings and, thereby, improve understanding and trust in nutrition science and appropriate characterization, development, and adoption of recommendations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Leonard H Epstein
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | | | - Michael Kelley
- Michael Kelley Nutrition Science Consulting, Wauwatosa, WI, USA
| | - Naomi K Fukagawa
- USDA Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | | | - Steven H Zeisel
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
15
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI. Genetic and epigenetic nutritional interactions influencing obesity risk and adiposity outcomes. Curr Opin Clin Nutr Metab Care 2022; 25:235-240. [PMID: 35703954 DOI: 10.1097/mco.0000000000000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article aims to critically overview the current interplay of genetic/epigenetic factors and several nutritional aspects influencing obesity susceptibility and adiposity outcomes for obesity management and weight status monitoring. RECENT FINDINGS Single nucleotide polymorphisms located in or near genes participating in energy homeostasis, fatty acid metabolism, appetite control, brain regulation, and thermogenesis have been associated with body composition measures (body weight, body mass index, waist circumference, body fat percentage, and visceral adipose tissue) depending on nutrient intakes, dietary patterns, and eating behaviors. Moreover, studies analyzing interactions between the epigenome and dietary intakes in relation to adiposity outcomes are reported. The main epigenetic mechanisms include methylation levels of promoter sequences, telomere length, and micro-ribonucleic acid expression profiles, whereas covalent histone modifications remain less studied. SUMMARY Exploring potential interactions between the genetic/epigenetic background and nutritional features is improving the current understanding of the obesity physiopathogenesis and the usefulness of translating this precision information in the clinical setting for weight gain prediction, the design of personalized nutrition therapies as well as individual responsiveness estimation to dietary advice. The analysis of further relationships between the genotype, the epigenotype and other precision markers including the gut microbiota and the metabolome is warranted.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Jose Ignacio Riezu-Boj
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona
- Navarra Institute for Health Research (IdiSNA), Pamplona
| | - Fermin I Milagro
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona
- Navarra Institute for Health Research (IdiSNA), Pamplona
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Association of the APOA-5 Genetic Variant rs662799 with Metabolic Changes after an Intervention for 9 Months with a Low-Calorie Diet with a Mediterranean Profile. Nutrients 2022; 14:nu14122427. [PMID: 35745158 PMCID: PMC9231022 DOI: 10.3390/nu14122427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
In cross-sectional studies, the genetic variant rs662799 of the APOA5 gene is associated with high serum triglyceride concentrations, and in some studies, the effect of short-term dietary interventions has been evaluated. The aim of the present investigation was to evaluate the role of this genetic variant in metabolic changes after the consumption of a low-calorie diet with a Mediterranean pattern for 9 months. A population of 269 Caucasian obese patients was recruited. Adiposity and biochemical parameters were measured at the beginning (basal level) and after 3 and 9 months of the dietary intervention. The rs662799 genotype was assessed with a dominant analysis (TT vs. CT + CC). The APOA5 variant distribution was: 88.1% (n = 237) (TT), 11.5% (n = 31) (TC) and 0.4% (n = 1) (CC). There were significant differences only in triglyceride levels at all times of the study between the genotype groups. After 3 and 9 months of dietary intervention, the following parameters improved in both genotype groups: adiposity parameters, systolic pressure, total cholesterol, LDL cholesterol, leptin, adiponectin and the leptin/adiponectin ratio. The intervention significantly decreased insulin levels, HOMA-IR and triglyceride levels in non-C allele carriers (Delta 9 months TT vs. TC + CC). i.e., insulin levels (delta: −3.8 + 0.3 UI/L vs. −1.2 + 0.2 UI/L; p = 0.02), HOMA-IR levels (delta: −1.2 + 0.2 units vs. −0.3 + 0.1 units; p = 0.02), triglyceride levels (delta: −19.3 + 4.2 mg/dL vs. −4.2 + 3.0 mg/dL; p = 0.02). In conclusion, non-C allele carriers of rs662799 of the APOA5 gene showed a decrease of triglyceride, insulin and HOMA-IR levels after consuming a low-calorie diet with a Mediterranean pattern; we did not observe this effect in C allele carriers, despite a significant weight loss.
Collapse
|
17
|
San-Cristobal R, Martín-Hernández R, Ramos-Lopez O, Martinez-Urbistondo D, Micó V, Colmenarejo G, Villares Fernandez P, Daimiel L, Martínez JA. Longwise Cluster Analysis for the Prediction of COVID-19 Severity within 72 h of Admission: COVID-DATA-SAVE-LIFES Cohort. J Clin Med 2022; 11:jcm11123327. [PMID: 35743398 PMCID: PMC9224935 DOI: 10.3390/jcm11123327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
The use of routine laboratory biomarkers plays a key role in decision making in the clinical practice of COVID-19, allowing the development of clinical screening tools for personalized treatments. This study performed a short-term longitudinal cluster from patients with COVID-19 based on biochemical measurements for the first 72 h after hospitalization. Clinical and biochemical variables from 1039 confirmed COVID-19 patients framed on the “COVID Data Save Lives” were grouped in 24-h blocks to perform a longitudinal k-means clustering algorithm to the trajectories. The final solution of the three clusters showed a strong association with different clinical severity outcomes (OR for death: Cluster A reference, Cluster B 12.83 CI: 6.11−30.54, and Cluster C 14.29 CI: 6.66−34.43; OR for ventilation: Cluster-B 2.22 CI: 1.64−3.01, and Cluster-C 1.71 CI: 1.08−2.76), improving the AUC of the models in terms of age, sex, oxygen concentration, and the Charlson Comorbidities Index (0.810 vs. 0.871 with p < 0.001 and 0.749 vs. 0.807 with p < 0.001, respectively). Patient diagnoses and prognoses remarkably diverged between the three clusters obtained, evidencing that data-driven technologies devised for the screening, analysis, prediction, and tracking of patients play a key role in the application of individualized management of the COVID-19 pandemics.
Collapse
Affiliation(s)
- Rodrigo San-Cristobal
- Precision Nutrition and Cardiometabolic Health Researh Program, Institute on Food and Health Sciences (Institute IMDEA Food), 28049 Madrid, Spain; (V.M.); (J.A.M.)
- Correspondence:
| | - Roberto Martín-Hernández
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM + CSIS, 28049 Madrid, Spain; (R.M.-H.); (G.C.)
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico;
| | - Diego Martinez-Urbistondo
- Internal Medicine Department, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (D.M.-U.); (P.V.F.)
| | - Víctor Micó
- Precision Nutrition and Cardiometabolic Health Researh Program, Institute on Food and Health Sciences (Institute IMDEA Food), 28049 Madrid, Spain; (V.M.); (J.A.M.)
| | - Gonzalo Colmenarejo
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM + CSIS, 28049 Madrid, Spain; (R.M.-H.); (G.C.)
| | - Paula Villares Fernandez
- Internal Medicine Department, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (D.M.-U.); (P.V.F.)
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain;
| | - Jose Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health Researh Program, Institute on Food and Health Sciences (Institute IMDEA Food), 28049 Madrid, Spain; (V.M.); (J.A.M.)
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
18
|
Visioli F, Marangoni F, Poli A, Ghiselli A, Martini D. Nutrition and health or nutrients and health? Int J Food Sci Nutr 2021; 73:141-148. [PMID: 34148498 DOI: 10.1080/09637486.2021.1937958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diet is an important contributor to human health and public health bodies are issuing guidelines aimed at favouring healthy food choices. The aim of our paper is to discuss the aspects underlying the concept of nutrient profiles, that is, defining levels of energy, some macronutrients, or salt which should not be exceeded in individual foods, according to the available evidence, to help in understanding to what extent such approach may actually be useful for improving nutrition and quality of life of European consumers. We list several pitfalls and oversimplifications of the current approaches to nutrient profiling and of the dichotomic classification of foods into "healthy" and "unhealthy" products. In view of the current "Facilitating healthier food choices - establishing nutrient profiles" EU initiative, we believe that further debate among all stakeholders is warranted and must consider all the limitations outlined in this paper.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Padova, Italy.,IMDEA-Food, Madrid, Spain
| | | | | | | | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Martínez-González MA, Kim HS, Prakash V, Ramos-Lopez O, Zotor F, Martinez JA. Personalised, population and planetary nutrition for precision health. BMJ Nutr Prev Health 2021; 4:355-358. [PMID: 34308147 PMCID: PMC8258037 DOI: 10.1136/bmjnph-2021-000235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain.,Department of Nutrition, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Hyun-Sook Kim
- Department of Food and Nutrition, Sookmyung Women's University, Yongsan-gu, Seoul, The Republic of Korea
| | - Vish Prakash
- Nutritional and Nutraceutical Research Centre, Ramaiah University of Applied Sciences, Bangalore, India
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Francis Zotor
- School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - J Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute, Madrid, Spain.,Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|