1
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
2
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Mallela VR, Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:24-32. [PMID: 38075204 PMCID: PMC10700120 DOI: 10.1016/j.ncrna.2023.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 12/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is primary liver cancer, frequently diagnosed at advanced stages with limited therapeutic options. MicroRNAs (miRNAs) regulate target gene expression and through inhibitory competitive binding of miRNA influence cellular processes including carcinogenesis. Extensive evidence proved that certain miRNA's are specifically expressed in neoplastic tissues of HCC patients and are confirmed as important factors that can participate in the regulation of key signalling pathways in cancer cells. As such, miRNAs have a great potential in the clinical diagnosis and treatment of HCC and can improve the limitations of standard diagnosis and treatment. Long non-coding RNAs (lncRNAs) have a critical role in the development and progression of HCC. HCC-related lncRNAs have been demonstrated to exhibit abnormal expression and contribute to transformation process (such as proliferation, apoptosis, accelerated vascular formation, and gain of invasive potential) through their interaction with DNA, RNA, or proteins. LncRNAs can bind mRNAs to release their target mRNA and enable its translation. These lncRNA-miRNA networks regulate cancer cell expression and so its proliferation, apoptosis, invasion, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and autophagy. In this narrative review, we focus on miRNA and lncRNA in HCC tumor tissue and their interaction as current tools, and biomarkers and therapeutic targets unravelled in recent years.
Collapse
Affiliation(s)
- Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
4
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
5
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
6
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Female-to-male differential transcription patterns of miRNA-mRNA networks in the livers of dioxin-exposed mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2310-2331. [PMID: 37318321 DOI: 10.1002/tox.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
7
|
You J, Xia H, Huang Z, He R, Zhao X, Chen J, Liu S, Xu Y, Cui Y. Research progress of circulating non-coding RNA in diagnosis and treatment of hepatocellular carcinoma. Front Oncol 2023; 13:1204715. [PMID: 37546394 PMCID: PMC10400719 DOI: 10.3389/fonc.2023.1204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor that carries a significant risk of morbidity and mortality. This type of cancer is prevalent in Asia due to the widespread presence of risk factors. Unfortunately, HCC often goes undetected until it has reached an advanced stage, making early detection and treatment critical for better outcomes. Alpha-fetoprotein (AFP) is commonly used in clinical practice for diagnosing HCC, but its sensitivity and specificity are limited. While surgery and liver transplantation are the main radical treatments, drug therapy and local interventions are better options for patients with advanced HCC. Accurately assessing treatment efficacy and adjusting plans in a timely manner can significantly improve the prognosis of HCC. Non-coding RNA gene transcription products cannot participate in protein production, but they can regulate gene expression and protein function through the regulation of transcription and translation processes. These non-coding RNAs have been found to be associated with tumor development in various types of tumors. Noncoding RNA released by tumor or blood cells can circulate in the blood and serve as a biomarker for diagnosis, prognosis, and efficacy assessment. This article explores the unique role of circulating noncoding RNA in HCC from various perspectives.
Collapse
Affiliation(s)
- Junqi You
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiali Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sidi Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zhang L, Jiang X, Wang G, Kanda T, Yokosuka O, Zhai C, Zhang L, Liu P, Zhao Z, Li Z. Effects of Let-7c on the processing of hepatitis B virus associated liver diseases. Infect Agent Cancer 2022; 17:46. [PMID: 36057607 PMCID: PMC9440497 DOI: 10.1186/s13027-022-00458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background The most common type of cancer of the digestive system is hepatocellular carcinoma. In China, many patients harbour HBV. The lin28B/Let-7c/MYC axis is associated with the occurrence of many cancers. Therefore, we aimed to illuminate the function of the lin28B/Let-7c/MYC axis in hepatocellular carcinoma. We aimed to evaluate the critical involvement of lin28B and Let-7c in the carcinogenesis of human hepatocellular carcinoma (B-HCC). Methods Data from the GEO database were used to analyse differentially expressed genes and IRGs. A protein − protein interaction (PPI) network and Venn diagram were generated to analyse relationships. Real-time RT-PCR, Western blotting, and cell counting kit-8 assays were used to examine the association of lin28B, Let-7c, and MYC with cell proliferation. Results A total of 2552 functionally annotated differentially expressed RNAs were analysed in HBV patients from the GSE135860 database. In addition, 46 let-7c target genes were screened in HBV patients, and the interactions were analysed through PPI network analysis. The results confirmed that Let-7c and its target genes play a key role in HBV-related diseases. Next, we discovered a gradual decrease in Let-7c expression during the progression from HBV-associated chronic hepatitis (B-CH) and HBV-associated liver cirrhosis (B-LC) to B-HCC. We found evidence for a negative association between lin28B expression and Let-7c expression. The expression of MYC was obviously upregulated when Let-7c was inhibited. Conclusion Our results highlight that Let-7c and lin28B participate in the carcinogenesis of HBV-associated diseases through the lin28B/Let-7c/MYC axis. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-022-00458-8.
Collapse
Affiliation(s)
- Like Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Guiqi Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.,Division of Gastroenterology and Hepatology Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Congjie Zhai
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Lei Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Peng Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Zhongxin Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| |
Collapse
|
9
|
Hussein RM, Youssef AM, Magharbeh MK, Al-Dalaen SM, Al-Jawabri NA, Al-Nawaiseh TN, Al-Jwanieh A, Al-Ani FS. Protective Effect of Portulaca oleracea Extract Against Lipopolysaccharide-Induced Neuroinflammation, Memory Decline, and Oxidative Stress in Mice: Potential Role of miR-146a and miR-let 7. J Med Food 2022; 25:807-817. [PMID: 35235435 DOI: 10.1089/jmf.2021.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is an adaptive immune response to the central nervous system (CNS) injury induced by infection or toxins. MicroRNAs (miRs) showed critical roles in neuroinflammation as either proinflammatory or anti-inflammatory molecules. Interestingly, Portulaca oleracea (purslane) is an edible plant capable of ameliorating several diseases, including headache, burns, and diabetes; however, its effect on the neuroinflammation-associated miRs was not previously investigated. This study aimed to investigate the effect of aqueous purslane extract on the neuroinflammation induced by lipopolysaccharide (LPS) in mice and to identify its effect on animal cognition, oxidative stress, and expressions of miR-146a and miR-let 7. Adult mice were divided into the following groups: Normal group, LPS group, and Purslane+LPS group. Novel target recognition test, brain histopathology, and measurement of oxidative stress and inflammatory markers were performed. The results showed that LPS group exhibited significant decline in the cognitive memory, brain histopathological injury and a decrease in the number of intact neurons compared to the normal group. Furthermore, the LPS group showed a significant increase in malondialdehyde concentration, whereas superoxide dismutase and catalase activities were decreased. The LPS group also showed an increase in the inflammatory markers tumor necrosis factor-α and nuclear factor kappa B and downregulation of miR-146a and miR-let 7 expressions in the brain cells compared to the normal group, P value <.05. Interestingly, all these changes were reversed by administration of the aqueous purslane extract. In conclusion, the aqueous purslane extract protected from LPS-induced neuroinflammation and memory decline in mice through antioxidant and anti-inflammatory effect where upregulation of miR-146a and miR-1et 7 expressions was involved.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mousa K Magharbeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Saed M Al-Dalaen
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Nariman A Al-Jawabri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Taymaa N Al-Nawaiseh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Abdullah Al-Jwanieh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Fakhir S Al-Ani
- Department of Physiology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
10
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Canale M, Foschi FG, Andreone P, Ercolani G, Marisi G, Conti F, Vukotic R, Guarneri V, Burgio V, Ratti F, Aldrighetti L, De Cobelli F, Cascinu S, Ulivi P, Casadei-Gardini A. Role of circulating microRNAs to predict hepatocellular carcinoma recurrence in patients treated with radiofrequency ablation or surgery. HPB (Oxford) 2022; 24:244-254. [PMID: 34366240 DOI: 10.1016/j.hpb.2021.06.421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Loco-regional treatments have improved the survival of patients with early hepatocellular carcinoma (HCC), but tumor relapse is a frequent event and survival rates remain low. Moreover, conflicting evidences address early HCC patients to surgery or radiofrequency ablation (RFA), with the clinical need to find predictive non-invasive biomarkers able to guide treatment choice and define patients survival. METHODS Two independent case series of treatment-naïve HCC patients treated with local RFA, and a cohort of 30 HCC patients treated with liver surgery were enrolled. On the basis of literature evidence, we customized a panel of 21 miRNAs correlated with relapse and prognosis after local curative treatment of HCC. RESULTS Expression levels of let-7c predict tumor relapse after RFA; we also investigated the same panel in a small cohort of HCC patients undergoing surgery, finding no statistically significance in predicting tumor relapse or survival. Moreover, interaction test indicated that let-7c expression levels are predictive for identifying a subset of patients that should be addressed to surgery. CONCLUSION Results from this study could predict prognosis of early HCC patients, helping to address early HCC patients to surgery or RFA treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Meldola, Italy
| | | | - Pietro Andreone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche Materno Infantili e dell'Adulto (SMECHIMAI), University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Giorgia Marisi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Meldola, Italy
| | - Fabio Conti
- Department of Internal Medicine, Ospedale per gli Infermi of Faenza, Faenza, Italy
| | - Ranka Vukotic
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valeria Guarneri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Burgio
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy; Department of Radiology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Meldola, Italy
| | - Andrea Casadei-Gardini
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
12
|
Salah RA, Nasr MA, El-Derby AM, Abd Elkodous M, Mohamed RH, El-Ekiaby N, Osama A, Elshenawy SE, Hamad MHM, Magdeldin S, Gabr MM, Abdelaziz AI, El-Badri NS. Hepatocellular carcinoma cell line-microenvironment induced cancer-associated phenotype, genotype and functionality in mesenchymal stem cells. Life Sci 2022; 288:120168. [PMID: 34826437 DOI: 10.1016/j.lfs.2021.120168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in liver cancer treatment. However, when MSCs are recruited to hepatic site of injury, they acquire cancerous promoting phenotype. AIMS To assess the influence of Hepatocellular carcinoma (HCC) microenvironment on human adipose MSCs (hA-MSCs) and predict hA-MSCs intracellular miRNAs role. MATERIALS AND METHODS After indirect co-culturing with Huh-7 cells, hA-MSCs were characterized via cell cycle profile, proliferation and migration potentials by MTT and scratch assays respectively. Functional enrichment analysis of deregulated proteins and miRNA targets was also analyzed. KEY FINDINGS Co-cultured hA-MSCs could acquire a cancer-associated phenotype as shown by upregulation of CAF, cancer markers, and downregulation of differentiation markers. Migration of these cancer-associated cells was increased concomitantly with upregulation of adhesion molecules, but not epithelial to mesenchymal transition markers. Co-cultured cells showed increased proliferation confirmed by downregulation in cell percentage in G0/G1, G2/M and upregulation in S phases of cell cycle. Upregulation of miR-17-5p and 615-5p in co-cultured hA-MSCs was also observed. Functional enrichment analysis of dysregulated proteins in co-cultured hA-MSCs, including our selected miRNAs targets, showed their involvement in development of cancer-associated characteristics. SIGNIFICANCE This study suggests an interaction between tumor cells and surrounding stromal components to generate cancer associated phenotype of some CAF-like characteristics, known to favor cancer progression. This sheds the light on the use of hA-MSCs in HCC therapy. hA-MSCs modulation may be partially achieved via dysregulation of intracellular miR17-5P and 615-5p expression, suggesting an important role for miRNAs in HCC pathogenesis, and as a possible therapeutic candidate.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nada El-Ekiaby
- School of Medicine NewGiza University (NGU), Cairo, Egypt
| | - Aya Osama
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | | | - Sameh Magdeldin
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Nagwa S El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
13
|
Chirshev E, Suzuki T, Wang H, Nguyen A, Hojo N, Sanderman L, Mirshahidi S, Ioffe YJ, Unternaehrer JJ. Let-7i Reduces Aggressive Phenotype and Induces BRCAness in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:cancers13184617. [PMID: 34572843 PMCID: PMC8468164 DOI: 10.3390/cancers13184617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
High-grade serous carcinoma of the ovary is a deadly gynecological cancer with poor long-term survival. Dysregulation of microRNAs has been shown to contribute to the formation of cancer stem cells (CSCs), an important part of oncogenesis and tumor progression. The let-7 family of microRNAs has previously been shown to regulate stemness and has tumor suppressive actions in a variety of cancers, including ovarian. Here, we demonstrate tumor suppressor actions of let-7i: repression of cancer cell stemness, inhibition of migration and invasion, and promotion of apoptosis, features important for cancer progression, relapse, and metastasis. Let-7i over-expression results in increased sensitivity to the PARP inhibitor olaparib in samples without BRCA mutations, consistent with induction of BRCAness phenotype. We also show that let-7i inhibits the expression of several factors involved in the homologous recombination repair (HRR) pathway, providing potential mechanisms by which the BRCAness phenotype could be induced. These actions of let-7i add to the rationale for use of this miRNA as a treatment for ovarian cancer patients, including those without mutations in the HRR pathway.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA; (E.C.); (T.S.); (H.W.); (A.N.); (N.H.); (L.S.)
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Tise Suzuki
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA; (E.C.); (T.S.); (H.W.); (A.N.); (N.H.); (L.S.)
| | - Hanmin Wang
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA; (E.C.); (T.S.); (H.W.); (A.N.); (N.H.); (L.S.)
| | - Anthony Nguyen
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA; (E.C.); (T.S.); (H.W.); (A.N.); (N.H.); (L.S.)
| | - Nozomi Hojo
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA; (E.C.); (T.S.); (H.W.); (A.N.); (N.H.); (L.S.)
| | - Linda Sanderman
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA; (E.C.); (T.S.); (H.W.); (A.N.); (N.H.); (L.S.)
- Biology Department, California State University San Bernardino, San Bernardino, CA 92407, USA
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Basic Sciences, Division of Microbiology & Molecular Genetics, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Yevgeniya J. Ioffe
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA;
| | - Juli J. Unternaehrer
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA; (E.C.); (T.S.); (H.W.); (A.N.); (N.H.); (L.S.)
- Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence:
| |
Collapse
|
14
|
Liu J, Sauer MA, Hussein SG, Yang J, Tenen DG, Chai L. SALL4 and microRNA: The Role of Let-7. Genes (Basel) 2021; 12:1301. [PMID: 34573282 PMCID: PMC8467721 DOI: 10.3390/genes12091301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
SALL4 is a zinc finger transcription factor that belongs to the spalt-like (SALL) gene family. It plays important roles in the maintenance of self-renewal and pluripotency of embryonic stem cells, and its expression is repressed in most adult organs. SALL4 re-expression has been observed in different types of human cancers, and dysregulation of SALL4 contributes to the pathogenesis, metastasis, and even drug resistance of multiple cancer types. Surprisingly, little is known regarding how SALL4 expression is controlled, but recently microRNAs (miRNAs) have emerged as important regulators of SALL4. Due to the ability of regulating targets differentially in specific tissues, and recent advances in systemic and organ specific miRNA delivery mechanisms, miRNAs have emerged as promising therapeutic targets for cancer treatment. In this review, we summarize current knowledge of the interaction between SALL4 and miRNAs in mammalian development and cancer, paying particular attention to the emerging roles of the Let-7/Lin28 axis. In addition, we discuss the therapeutic prospects of targeting SALL4 using miRNA-based strategies, with a focus on the Let-7/LIN28 axis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Madeline A. Sauer
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | | | - Junyu Yang
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Daniel G. Tenen
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| |
Collapse
|
15
|
Wang A, Ji Z, Xuan R, Zhao X, Hou L, Li Q, Chu Y, Chao T, Wang J. Differentially Expressed MiRNAs of Goat Submandibular Glands Among Three Developmental Stages Are Involved in Immune Functions. Front Genet 2021; 12:678194. [PMID: 34211501 PMCID: PMC8239366 DOI: 10.3389/fgene.2021.678194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Submandibular glands (SMGs) are one of the primary components of salivary glands in goats. The proteins and biologically active substances secreted by the SMGs change with growth and development. Our previous studies showed that most of the differentially expressed genes in the SMGs of goats at different developmental stages are involved in immune-related signaling pathways, but the miRNA expression patterns in the same tissues are unknown. The aim of this study was to reveal the expression profile of miRNAs at three different developmental stages, detect differentially expressed miRNAs (DE miRNAs) and predict disease-related DE miRNAs. SMG tissue samples were collected from groups of 1-month-old kids, 12-month-old maiden goats and 24-month-old adult goats (three samples from each group), and high-throughout transcriptome sequencing was conducted. A total of 178, 241 and 7 DE miRNAs were discovered between 1-month-old kids and 12-month-old maiden goats, between 1-month-old kids and 24-month-old adult goats, and between 12-month-old maiden goats and 24-month-old adult goats, respectively. Among these DE miRNAs, 88 DE miRNAs with medium or high expression levels (TPM ≥50) were classified into five expression pattern clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that some of the predicted target genes of the DE miRNAs in the five clusters were enriched in disease-related GO terms and pathways. MiRNA target genes in significant pathways were significantly enriched in Hepatitis B (FDR = 9.03E-10) and Pathways in cancer (FDR = 4.2E-10). Further analysis was performed with a PPI network, and 10 miRNAs were predicted to play an important role in the occurrence and prevention of diseases during the growth and development of goats.
Collapse
Affiliation(s)
- Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yunpeng Chu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
16
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Identification of miRNAs as diagnostic and prognostic markers in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:6115-6133. [PMID: 33617479 PMCID: PMC7950227 DOI: 10.18632/aging.202606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
The development of high-throughput technologies has yielded a large amount of data from molecular and epigenetic analysis that could be useful for identifying novel biomarkers of cancers. We analyzed Gene Expression Omnibus (GEO) DataSet micro–ribonucleic acid (miRNA) profiling datasets to identify miRNAs that could have value as diagnostic and prognostic biomarkers in hepatocellular carcinoma (HCC). We adopted several computing methods to identify the functional roles of these miRNAs. Ultimately, via integrated analysis of three GEO DataSets, three differential miRNAs were identified as valuable markers in HCC. Combining the results of receiver operating characteristic (ROC) analyses and Kaplan–Meier Plotter (KM) survival analyses, we identified hsa-let-7e as a novel potential biomarker for HCC diagnosis and prognosis. Then, we found via quantitative reverse-transcription polymerase chain reaction (RT-qPCR) that let-7e was upregulated in HCC tissues and that such upregulation was significantly associated with poor prognosis in HCC. The results of functional analysis indicated that upregulated let-7e promoted tumor cell growth and proliferation. Additionally, via mechanistic analysis, we found that let-7e could regulate mitochondrial apoptosis and autophagy to adjust and control cancer cell proliferation. Therefore, the integrated results of our bioinformatics analyses of both clinical and experimental data showed that let-7e was a novel biomarker for HCC diagnosis and prognosis and might be a new treatment target.
Collapse
|
18
|
Krupa R, Malecki W, Czarny P, Strycharz J, Jablkowski M, Kordek R, Szemraj J, Sliwinski T. MicroRNA profile and iron-related gene expression in hepatitis C-related hepatocellular carcinoma: a preliminary study. Arch Med Sci 2021; 17:1175-1183. [PMID: 34522246 PMCID: PMC8425257 DOI: 10.5114/aoms.2019.86613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is very difficult to diagnose, especially in its early stages. Non-invasive diagnostic and prognostic factors for this cancer are urgently needed. The purpose of our study was to investigate whether the microRNAs (miRNAs) regulating genes involved in iron homeostasis, whose disruption is a hallmark of HCC, offer potential as diagnostic or prognostic factors of HCV-related hepatocellular carcinoma. MATERIAL AND METHODS Serum and tumor samples, and adjacent liver specimens, were obtained from 65 HCC patients. Additionally, serum samples were obtained from 65 healthy controls. In total, 28 circulating and eight tissue microRNA expression profiles were estimated by TaqMan qPCR. RESULTS The expression profiles of all tested miRNAs were altered in the hepatocellular carcinoma patients. Iron level was negatively related to serum miR-96 level in healthy controls. Although the expression of iron metabolism proteins correlated with the level of serum miRNA in the controls, this was not observed in cancer patients. In the group of cancer patients, Let-7a, miR-29b, and miR-133a were positively related to ferroportin, transferrin and ferritin levels, while miR-31, miR-221 and miR-532 were negatively related to ferroportin, transferrin receptor 1 and ferritin levels. According to ROC curve analyses, 15 miRNAs are able to discriminate with 100% sensitivity and specificity between hepatocellular carcinoma patients and healthy subjects, which is more efficient than α-fetoprotein. CONCLUSIONS Circulating miRNAs that regulate the expression of iron metabolism proteins should be evaluated as promising candidates for HCV-related HCC diagnostic agents.
Collapse
Affiliation(s)
- Renata Krupa
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wojciech Malecki
- Department of Infectious and Liver Disease, Medical University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Maciej Jablkowski
- Department of Infectious and Liver Disease, Medical University of Lodz, Lodz, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Fachim HA, Loureiro CM, Siddals K, Dalton CF, Reynolds GP, Gibson JM, Chen ZB, Heald AH. Circulating microRNA changes in patients with impaired glucose regulation. Adipocyte 2020; 9:443-453. [PMID: 32752917 PMCID: PMC7469475 DOI: 10.1080/21623945.2020.1798632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We analysed if levels of four miRNAs would change after a lifestyle intervention involving dietary and exercises in prediabetes. MiRNAs previously shown to be associated with diabetes (Let-7a, Let-7e, miR-144 and miR-92a) were extracted from serum pre- and post-intervention. mRNA was extracted from fat-tissue for gene expression analyses. The intervention resulted in increased Let-7a and miR-92a. We found correlations between miRNAs and clinical variables (triglycerides, cholesterol, insulin, weight and BMI). We also found correlations between miRNAs and target genes, revealing a link between miR-92a and IGF system. A lifestyle intervention resulted in marked changes in miRNAs. The association of miRNAs with insulin and the IGF system (both receptors and binding proteins) may represent a mechanism of regulating IGFs metabolic actions.
Collapse
Affiliation(s)
- Helene A. Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Camila M. Loureiro
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kirk Siddals
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - J. Martin Gibson
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adrian H. Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| |
Collapse
|
20
|
Bai Z, Li H, Li C, Sheng C, Zhao X. Integrated analysis identifies a long non-coding RNAs-messenger RNAs signature for prediction of prognosis in hepatitis B virus-hepatocellular carcinoma patients. Medicine (Baltimore) 2020; 99:e21503. [PMID: 33019382 PMCID: PMC7535691 DOI: 10.1097/md.0000000000021503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC), but HBV-HCC related prognosis signature remains rarely investigated. This study was to identify an integrated long non-coding RNAs-messenger RNAs (lncRNA-mRNA) signature for prediction of overall survival (OS) and explore their underlying functions.One RNA-sequencing dataset (training set, n = 95) and one microarray dataset E-TABM-36 (validation set, n = 44) were collected. Least absolute shrinkage and selection operator analysis was performed to identify an lncRNA-mRNA prognosis signature. The OS difference of patients in the high-risk and low-risk risk groups was evaluated by Kaplan-Meier curve. Area under the receiver operating characteristic curve (AUC), Harrell concordance index (C-index) calculation, and multivariate analyses with clinical characteristics were used to determine the prognostic ability. Furthermore, a coexpression network was constructed to interpret the functions.Nine signature genes (3 lncRNAs and 6 mRNAs) were selected to generate the risk score model. Patients belonging to the high-risk group showed a significantly shorter survival than those of the low-risk group. The prediction accuracy of the risk score for 5-year OS was 0.936 and 0.905 for the training set and validation set, respectively. Also, this risk score was independent of various clinical variables for the prognosis prediction. Incorporation of the risk score remarkably increased the predictive power of the routine clinical prognostic factors (vascular invasion status, tumor recurrence status) (AUC = 0.942 vs 0.628; C-index = 0.7997 vs 0.6908). Furthermore, LncRNA insulin-like growth factor 2 antisense RNA (IGF2-AS) and long intergenic non-protein coding RNA 342 (LINC00342) were predicted to exert tumor suppression effects by regulating homeobox D1 (HOXD1) and secreted frizzled related protein 5 (SFRP5), respectively; while lncRNA rhophilin Rho GTPase binding protein 1 antisense RNA 1 (RHPN1-AS1) may possess carcinogenic potential by promoting the transcription of chromobox 2 (CBX2), cell division cycle 20 (CDC20), matrix metallopeptidase 12 (MMP12), stratifin (SFN), tripartite motif containing 16 (TRIM16), and uroplakin 3A (UPK3A). These mRNAs may be associated with cell proliferation or apoptosis related pathways.This study may provide a novel, effective prognostic biomarker, and some therapeutic targets for HBV-HCC patients.
Collapse
|
21
|
Krause C, Geißler C, Tackenberg H, El Gammal AT, Wolter S, Spranger J, Mann O, Lehnert H, Kirchner H. Multi-layered epigenetic regulation of IRS2 expression in the liver of obese individuals with type 2 diabetes. Diabetologia 2020; 63:2182-2193. [PMID: 32710190 PMCID: PMC7476982 DOI: 10.1007/s00125-020-05212-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS IRS2 is an important molecular switch that mediates insulin signalling in the liver. IRS2 dysregulation is responsible for the phenomenon of selective insulin resistance that is observed in type 2 diabetes. We hypothesise that epigenetic mechanisms are involved in the regulation of IRS2 in the liver of obese and type 2 diabetic individuals. METHODS DNA methylation of seven CpG sites was studied by bisulphite pyrosequencing and mRNA and microRNA (miRNA) expression was assessed by quantitative real-time PCR in liver biopsies of 50 obese non-diabetic and 31 obese type 2 diabetic participants, in a cross-sectional setting. Methylation-sensitive luciferase assays and electrophoretic mobility shift assays were performed. Furthermore, HepG2 cells were treated with insulin and high glucose concentrations to induce miRNA expression and IRS2 downregulation. RESULTS We found a significant downregulation of IRS2 expression in the liver of obese individuals with type 2 diabetes (0.84 ± 0.08-fold change; p = 0.0833; adjusted p value [pa] = 0.0417; n = 31) in comparison with non-diabetic obese participants (n = 50). This downregulation correlated with hepatic IRS2 DNA methylation at CpG5. Additionally, CpG6, which is located in intron 1 of IRS2, was hypomethylated in type 2 diabetes; this site spans the sterol regulatory element binding transcription factor 1 (SREBF1) recognition motif, which likely acts as transcriptional repressor. The adjacent polymorphism rs4547213 (G>A) was significantly associated with DNA methylation at a specificity-protein-1 (SP1) binding site (CpG3). Moreover, DNA methylation of cg25924746, a CpG site located in the shore region of the IRS2 promoter-associated CpG island, was increased in the liver of individuals with type 2 diabetes, as compared with those without diabetes. A second epigenetic mechanism, upregulation of hepatic miRNA hsa-let-7e-5p (let-7e-5p) in obese individuals with type 2 diabetes (n = 29) vs non-diabetic obese individuals (n = 49) (1.2 ± 0.08-fold change; p = 0.0332; pa = 0.0450), is likely to act synergistically with altered IRS2 DNA methylation to decrease IRS2 expression. Mechanistic in vitro experiments demonstrated an acute upregulation of let-7e-5p expression and simultaneous IRS2 downregulation in a liver (HepG2) cell line upon hyperinsulinaemic and hyperglycaemic conditions. CONCLUSIONS/INTERPRETATION Our study highlights a new multi-layered epigenetic network that could be involved in subtle dysregulation of IRS2 in the liver of individuals with type 2 diabetes. This might lead to fine-tuning of IRS2 expression and is likely to be supplementary to the already known factors regulating IRS2 expression. Thereby, our findings could support the discovery of new diagnostic and therapeutic strategies for type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Christin Krause
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Cathleen Geißler
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Heidi Tackenberg
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alexander T El Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Lehnert
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Henriette Kirchner
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
22
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Goldani F, Parizadeh SMR, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Avan A. MicroRNAs as Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Curr Drug Targets 2020; 20:1129-1140. [PMID: 30848198 DOI: 10.2174/1389450120666190307095720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer, and the second most common cause of cancer-associated death globally. One of the major reasons for this high rate of mortality is a failure to make an early diagnosis. The average survival in untreated HCC patients is estimated to be approximately three months. The 5-year overall survival rate after radical resection is about 15-40% and within two years, more than two third of patients experience a relapse. To date, the most common biomarker which has been used for the diagnosis of HCC is serum alpha-fetoprotein (AFP). However, there is a lack of sensitive and specific tumor biomarkers for the early diagnosis of HCC. MicroRNAs are a class of short endogenous RNA with crucial role in many biological activities and cellular pathways and can be found in various tissues and body fluids. The aim of this review was to summarize the results of recent studies investigating miRNAs as novel biomarkers for the early diagnosis and prognostic risk stratification of patients with this type of liver cancer.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Iran
| | - Fatemeh Goldani
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Pratedrat P, Chuaypen N, Nimsamer P, Payungporn S, Pinjaroen N, Sirichindakul B, Tangkijvanich P. Diagnostic and prognostic roles of circulating miRNA-223-3p in hepatitis B virus-related hepatocellular carcinoma. PLoS One 2020; 15:e0232211. [PMID: 32330203 PMCID: PMC7182200 DOI: 10.1371/journal.pone.0232211] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circulating microRNAs (miRNAs) have been shown to dysregulate in many cancer types including hepatocellular carcinoma (HCC). The purpose of this study was to examine the potential diagnostic or prognostic roles of circulating miRNAs in patients with hepatitis B virus (HBV)-related HCC. Methods Paired cancerous and adjacent non-cancerous liver tissue specimens of patients with HBV-related HCC were used as a discovery set for screening 800 miRNAs by a Nanostring quantitative assay. Differentially expressed miRNAs were then examined by SYBR green quantitative RT-PCR in a validation cohort of serum samples obtained from 70 patients with HBV-related HCC, 70 HBV patients without HCC and 50 healthy controls. Results The discovery set identified miR-223-3p, miR-199a-5p and miR-451a significantly lower expressed in cancerous tissues compared with non-cancerous tissues. In the validated cohort, circulating miR-223-3p levels were significantly lower in the HCC group compared with the other groups. The combined use of serum alpha-fetoprotein and miR-223-3p displayed high sensitivity for detecting early HCC (85%) and intermediate/advanced stage HCC (100%). Additionally, serum miR-223-3p had a negative correlation with tumor size and BCLC stage. On multivariate analysis, serum miR-223-3p was identified as an independent prognostic factor of overall survival in patients with HCC. In contrast, circulating miRNA-199a-5p and miR-451a did not show any clinical benefit for the diagnosis and prognostic prediction of HCC. Conclusions Our results demonstrated that miR-223-3p was differentially expressed in cancerous compared with paired adjacent non-cancerous tissues. In addition, circulating miRNA-223-3p could represent a novel diagnostic and prognostic marker for patients with HBV-related HCC.
Collapse
Affiliation(s)
- Pornpitra Pratedrat
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
24
|
Aly DM, Gohar NAH, Abd El-Hady AA, Khairy M, Abdullatif MM. Serum microRNA let-7a-1/let-7d/let-7f and miRNA 143/145 Gene Expression Profiles as Potential Biomarkers in HCV Induced Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2020; 21:555-562. [PMID: 32102538 PMCID: PMC7332122 DOI: 10.31557/apjcp.2020.21.2.555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. Which make liver cirrhosis and hepatocellular carcinoma (HCC) major health concerns in Egypt. Circulating microRNAs (miRNAs) have been investigated as biomarkers for malignancies. We investigated miRNA gene expression of Lethal-7 (let-7) cluster: let7-a-1, let-7d-1, let-7f-1 and miRNA (miR)143/145 cluster in sera of HCC patients and chronic HCV patients. Methods: The study included 40 post HCV-Hepatocellular carcinoma patients, 40 chronic HCV patients divided into 2 subgroups, 20 cirrhotic patients and 20 non-cirrhotic patients, and 40 apparently healthy subjects as a control group. Gene expression analysis for studied miRNAs was done using quantitative SYBR Green reverse-transcription Real-Time polymerase chain reaction (PCR). Results: We found that Let-7a-1 gene expression was significantly downregulated in the serum of HCV-HCC patients than in HCV non HCC cirrhotic group and was significantly upregulated in the serum of liver cirrhosis patients than HCV non-cirrhotic group. miR-143 and miR-145 expressions were significantly downregulated in the serum of HCC patients than in control group and miR-143 was significantly downregulated in the serum of non-cirrhotic HCV patients than in control group. Conclusion: The downregulation of serum let-7-a1, miR-143, and miR-145 gene expression may exhibit significant influence on the development of HCC in chronic HCV Egyptian patients and can be used as biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Doaa Mamdouh Aly
- Clinical and Chemical Pathology Department, Theodor Bilharz Research Institute, Egypt
| | | | | | - Marwa Khairy
- Endemic Medicine and Hepatology Unit, Faculty of Medicine, Cairo University, Egypt
| | - Mona Mohsen Abdullatif
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
25
|
Codolo G, Toffoletto M, Chemello F, Coletta S, Soler Teixidor G, Battaggia G, Munari G, Fassan M, Cagnin S, de Bernard M. Helicobacter pylori Dampens HLA-II Expression on Macrophages via the Up-Regulation of miRNAs Targeting CIITA. Front Immunol 2020; 10:2923. [PMID: 31969878 PMCID: PMC6960189 DOI: 10.3389/fimmu.2019.02923] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages have a major role in infectious and inflammatory diseases, and the available data suggest that Helicobacter pylori persistence can be explained in part by the failure of the bacterium to be killed by professional phagocytes. Macrophages are cells ready to kill the engulfed pathogen, through oxygen-dependent and -independent mechanisms; however, their killing potential can be further augmented by the intervention of T helper (Th) cells upon the specific recognition of human leukocyte antigen (HLA)-II-peptide complexes on the surface of the phagocytic cells. As it pertains to H. pylori, the bacterium is engulfed by macrophages, but it interferes with the phagosome maturation process leading to phagosomes with an altered degradative capacity, and to megasomes, wherein H. pylori resists killing. We recently showed that macrophages infected with H. pylori strongly reduce the expression of HLA-II molecules on the plasma membrane and this compromises the bacterial antigen presentation to Th lymphocytes. In this work, we demonstrate that H. pylori hampers HLA-II expression in macrophages, activated or non-activated by IFN-γ, by down-regulating the expression of the class II major histocompatibility complex transactivator (CIITA), the "master control factor" for the expression of HLA class II genes. We provided evidence that this effect relies on the up-regulation of let-7f-5p, let-7i-5p, miR-146b-5p, and -185-5p targeting CIITA. MiRNA expression analysis performed on biopsies from H. pylori-infected patients confirmed the up-regulation of let-7i-5p, miR-146b-5p, and -185-5p in gastritis, in pre-invasive lesions, and in gastric cancer. Taken together, our results suggest that specific miRNAs may be directly involved in the H. pylori infection persistence and may contribute to confer the risk of developing gastric neoplasia in infected patients.
Collapse
Affiliation(s)
- Gaia Codolo
- Department of Biology, University of Padua, Padua, Italy
| | | | - Francesco Chemello
- Department of Biology, University of Padua, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - Sara Coletta
- Department of Biology, University of Padua, Padua, Italy
| | | | | | - Giada Munari
- Istituto Oncologico Veneto (IRCCS), Padua, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, Padua, Italy
- CIR-Myo Myology Center, University of Padua, Padua, Italy
| | | |
Collapse
|
26
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
27
|
Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated MicroRNA Fingerprints and Methylation Patterns in Hepatocellular Carcinoma, Cancer Stem Cells, and Mesenchymal Stem Cells. Front Cell Dev Biol 2019; 7:229. [PMID: 31681762 PMCID: PMC6811506 DOI: 10.3389/fcell.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| |
Collapse
|
28
|
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 2019; 8:24. [PMID: 31468250 PMCID: PMC6715759 DOI: 10.1186/s40169-019-0240-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors. Let-7 targets include genes regulating the cell cycle, cell signaling, and maintenance of differentiation. It is categorized as a tumor suppressor because it reduces cancer aggressiveness, chemoresistance, and radioresistance. However, in rare situations let-7 acts as an oncogene, increasing cancer migration, invasion, chemoresistance, and expression of genes associated with progression and metastasis. Here, we review let-7 function as tumor suppressor and oncogene, considering let-7 as a potential diagnostic and prognostic marker, and a therapeutic target for cancer treatment. We explain the complex regulation and function of different let-7 family members, pointing to abnormal processes involved in carcinogenesis. Let-7 is a promising option to complement conventional cancer therapy, but requires a tumor specific delivery method to avoid toxicity. While let-7 therapy is not yet established, we make the case that assessing its tumor presence is crucial when choosing therapy. Clinical data demonstrate that let-7 can be used as a biomarker for rational precision medicine decisions, resulting in improved patient survival.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Anatomy, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Kerby C Oberg
- Division of Anatomy and Pediatric Pathology, Loma Linda University, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Gynecology and Obstetrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, 11085 Campus Street, Mortensen Hall 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
29
|
Zhao Z, Wen J, Peng L, Liu H. Upregulation of Insulin-Like Growth Factor-1 Receptor (IGF-1R) Reverses the Inhibitory Effect of Let-7g-5p on Migration and Invasion of Nasopharyngeal Carcinoma. Med Sci Monit 2019; 25:5747-5756. [PMID: 31374070 PMCID: PMC6689202 DOI: 10.12659/msm.914555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Let-7 microRNAs (miRNAs) have the effects of inhibiting tumor growth and metastasis, however, the research in nasopharyngeal carcinoma (NPC) is limited. This study focused on the effects of Let-7 on NPC migration and invasion and the mechanism of action. Material/Methods Plasmid transfection was used to upregulate the expression levels of Let-7g-5p and insulin-like growth factor-1 receptor (IGF-1R). Cell counting kit-8 (CCK-8) assay was applied to test the cell viability. Scratch assay and Transwell assay were performed to detect the migration and invasion abilities. Bioinformatics prediction and luciferase reporter assay were used to determine and verify the downstream target genes for Let-7g-5p. Protein and mRNA were detected by western blot and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. Results Let-7g-5p was under-expressed in human NPC cells. Overexpression of Let-7g-5p could inhibit cell viability and inhibit the migration and invasion of SUNE1 cells. The dual-luciferase reporter assay showed that IGF-1R was a direct target gene of Let-7g-5p, which was directly regulated IGF-1R expression by 3′UTR. Let-7g-5p overexpression could inhibit the expression of IGF-1R gene, and upregulation of IGF-1R gene expression reversed the inhibitory effect of Let-7g-5p on cell viability and epithelial-mesenchymal transition processes. Conclusions Let-7g-5p is lowly expressed in NPC and it was the first to discover that IGF-1R was a target gene of let-7g-5p in NPC. Upregulation of IGF-1R reversed the inhibitory effect of Let-7g-5p on epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhecheng Zhao
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| | - Jianxue Wen
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| | - Lihua Peng
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| | - Hanbo Liu
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China (mainland)
| |
Collapse
|
30
|
Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res 2019; 46:D360-D370. [PMID: 29194489 PMCID: PMC5753284 DOI: 10.1093/nar/gkx1144] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are important regulators of gene expression, achieved by binding to the gene to be regulated. Even with modern high-throughput technologies, it is laborious and expensive to detect all possible microRNA targets. For this reason, several computational microRNA-target prediction tools have been developed, each with its own strengths and limitations. Integration of different tools has been a successful approach to minimize the shortcomings of individual databases. Here, we present mirDIP v4.1, providing nearly 152 million human microRNA-target predictions, which were collected across 30 different resources. We also introduce an integrative score, which was statistically inferred from the obtained predictions, and was assigned to each unique microRNA-target interaction to provide a unified measure of confidence. We demonstrate that integrating predictions across multiple resources does not cumulate prediction bias toward biological processes or pathways. mirDIP v4.1 is freely available at http://ophid.utoronto.ca/mirDIP/.
Collapse
Affiliation(s)
- Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Andrea E M Rossos
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Mark Abovsky
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | | | - Mike Tsay
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Richard Lu
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia
| |
Collapse
|
31
|
Jin Y, Wong YS, Goh BKP, Chan CY, Cheow PC, Chow PKH, Lim TKH, Goh GBB, Krishnamoorthy TL, Kumar R, Ng TP, Chong SS, Tan HH, Chung AYF, Ooi LLPJ, Chang JPE, Tan CK, Lee CGL. Circulating microRNAs as Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Sci Rep 2019; 9:10464. [PMID: 31320713 PMCID: PMC6639394 DOI: 10.1038/s41598-019-46872-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer with high mortality, due to late diagnosis and limited treatment options. Blood miRNAs, which circulate in a highly stable, cell-free form, show promise as novel potential biomarkers for early detection of HCC. Whole miRNome profiling was performed to identify deregulated miRNAs between HCC and normal healthy (NH) volunteers. These deregulated miRNAs were validated in an independent cohort of HCC, NH and chronic Hepatitis B (CHB) volunteers and finally in a 3rd cohort comprising NH, CHB, cirrhotic and HCC volunteers to evaluate miRNA changes during disease progression. The associations between circulating miRNAs and liver-damage markers, clinicopathological characteristics and survival outcomes were analysed to identify prognostic markers. Twelve miRNAs are differentially expressed between HCC and NH individuals in all three cohorts. Five upregulated miRNAs (miR-122-5p, miR-125b-5p, miR-885-5p, miR-100-5p and miR-148a-3p) in CHB, cirrhosis and HCC patients are potential biomarkers for CHB infection, while miR-34a-5p can be a biomarker for cirrhosis. Notably, four miRNAs (miR-1972, miR-193a-5p, miR-214-3p and miR-365a-3p) can distinguish HCC from other non-HCC individuals. Six miRNAs are potential prognostic markers for overall survival.
Collapse
Affiliation(s)
- Yu Jin
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Ye Shen Wong
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Brian K P Goh
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Pierce K H Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tony K H Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - George B B Goh
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
| | | | - Rajneesh Kumar
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Samuel S Chong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Hwee Huang Tan
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Alexander Y F Chung
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - London Lucien P J Ooi
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jason P E Chang
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chee Kiat Tan
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore.
| | - Caroline G L Lee
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
32
|
COL1A2 is a TBX3 target that mediates its impact on fibrosarcoma and chondrosarcoma cell migration. Cancer Lett 2019; 459:227-239. [PMID: 31202624 DOI: 10.1016/j.canlet.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
Abstract
The developmentally important T-box transcription factor TBX3, is overexpressed in several cancers and contributes to tumorigenesis as either a tumour promoter or tumour suppressor. For example, TBX3 promotes cell proliferation, migration and invasion of chondrosarcoma cells but inhibits these processes in fibrosarcoma cells. This suggests that the cellular context influences TBX3 oncogenic functions, but the mechanism(s) involved has not been elucidated. COL1A2 encodes type I collagen and, like TBX3, plays important roles during embryogenesis and can act as either oncogene or tumour suppressor. Here we explore the possibility that COL1A2 may be a TBX3 target gene responsible for mediating its opposing oncogenic roles in chondrosarcoma and fibrosarcoma cells. Results from qRT-PCR, western blotting, luciferase reporter and chromatin immunoprecipitation assays show that TBX3 binds and activates the COL1A2 promoter. Furthermore, we show that TBX3 levels are regulated by AKT1 and that pseudo-phosphorylation of TBX3 at an AKT consensus serine site, enhances its ability to activate COL1A2. Importantly, we demonstrate that COL1A2 mediates the pro- and anti-migratory effects of TBX3 in chondrosarcoma and fibrosarcoma cells respectively. Our data reveal that the AKT1/TBX3/COL1A2 axis plays an important role in sarcomagenesis.
Collapse
|
33
|
Chen WC, Wei CK, Lee JC. MicroRNA-let-7c suppresses hepatitis C virus replication by targeting Bach1 for induction of haem oxygenase-1 expression. J Viral Hepat 2019; 26:655-665. [PMID: 30706605 DOI: 10.1111/jvh.13072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs are small noncoding RNAs that are central factors between hepatitis C virus (HCV) and host cellular factors for viral replication and liver disease progression, including liver fibrosis, cirrhosis and hepatocellular carcinoma. In the present study, we found that overexpressing miR-let-7c markedly reduced HCV replication because it induced haem oxygenase-1 (HO-1) expression by targeting HO-1 transcriptional repressor Bach1, ultimately leading to stimulating an antiviral interferon response and blockade of HCV viral protease activity. In contrast, the antiviral actions of miR-let-7c were attenuated by miR-let-7c inhibitor treatment, exogenously expressing Bach1 or suppressing HO-1 activity and expression. A proposed model indicates a key role for miR-let-7c targeting Bach1 to transactivate HO-1-mediated antiviral actions against HCV. miR-let-7c may serve as an attractive target for antiviral development.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ku Wei
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
35
|
Wang S, Jin S, Liu MD, Pang P, Wu H, Qi ZZ, Liu FY, Sun CF. Hsa-let-7e-5p Inhibits the Proliferation and Metastasis of Head and Neck Squamous Cell Carcinoma Cells by Targeting Chemokine Receptor 7. J Cancer 2019; 10:1941-1948. [PMID: 31205553 PMCID: PMC6547991 DOI: 10.7150/jca.29536] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
This study aimed at determining the role of hsa-let-7e-5p in the progression of head and neck squamous cell carcinoma (HNSCC). The relative levels of hsa-let-7e-5p transcripts in 15 paired of HNSCC and adjacent non-tumor tissues and cells were examined by quantitative real-time PCR (qRT-PCR). The potential targets of hsa-let-7e-5p were predicted and validated by luciferase assay. The impact of altered hsa-let-7e-5p expression on HNSCC cell proliferation and metastasis was determined by CCK-8, wound healing, transwell migration and invasion assays. The effect of hsa-let-7e-5p over-expression on the growth of HNSCC was examined in vivo. Hsa-let-7e-5p expression was significantly down-regulated in HNSCC tissues and highly metastatic PCI-37B cells. Bioinformatic analysis predicted that hsa-let-7e-5p bound to the 3'untranslated region (3'UTR) of chemokine receptor 7(CCR7), which was validated by luciferase assay. While transfection with hsa-let-7e-5p mimic significantly decreased CCR7 protein expression, transfection with hsa-let-7e-5p inhibitor increased CCR7 protein expression in HNSCC cells. Similarly, hsa-let-7e-5p over-expression inhibited PCI-37B cell proliferation, wound healing, migration and invasion, while inhibition of endogenous hsa-let-7e-5p had opposite effects in PCI-37A cells. Hsa-let-7e-5p over-expression inhibited PCI-37B tumor growth in vivo. Therefore, hsa-let-7e-5p acts as a tumor suppressor to inhibit the progression of HNSCC by targeting CCR7 expression. Hsa-let-7e-5p and CCR7 may be therapeutic targets of HNSCC.
Collapse
Affiliation(s)
- Song Wang
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002.,Department of Stomatology, the 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110034, P.R.China
| | - Shan Jin
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002
| | - Min-Da Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002
| | - Pai Pang
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002
| | - Hong Wu
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002
| | - Zhong-Zheng Qi
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002
| | - Fa-Yu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002
| | - Chang-Fu Sun
- Department of Oromaxillofacial-Head and Neck Surgery, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002
| |
Collapse
|
36
|
Liu X, Wang J, Zhang G. miR‐4458 regulates cell proliferation and apoptosis through targeting SOCS1 in triple‐negative breast cancer. J Cell Biochem 2019; 120:12943-12948. [PMID: 30873664 DOI: 10.1002/jcb.28565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaomeng Liu
- Department of Thyroid and Breast Surgery Jining No.1 People's Hospital Jining Shandong China
| | - Jianling Wang
- Department of Thyroid and Breast Surgery Jining No.1 People's Hospital Jining Shandong China
| | - Guochao Zhang
- Department of Thyroid and Breast Surgery Jining No.1 People's Hospital Jining Shandong China
| |
Collapse
|
37
|
Waly AA, El-Ekiaby N, Assal RA, Abdelrahman MM, Hosny KA, El Tayebi HM, Esmat G, Breuhahn K, Abdelaziz AI. Methylation in MIRLET7A3 Gene Induces the Expression of IGF-II and Its mRNA Binding Proteins IGF2BP-2 and 3 in Hepatocellular Carcinoma. Front Physiol 2019; 9:1918. [PMID: 30733684 PMCID: PMC6353855 DOI: 10.3389/fphys.2018.01918] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
miR-let-7a is a tumor suppressor miRNA with reduced expression in most cancers. Methylation of MIRLET7A3 gene was reported to be the cause of this suppression in several cancers; however, it was not explicitly investigated in hepatocellular carcinoma (HCC). We aimed at investigating miR-let-7a expression and molecular mode in HCC, identifying drug-targetable networks, which might be affected by its abundance. Our results illustrated a significant repression of miR-let-7a, which correlated with hypermethylation of its gene of origin MIRLRT7A3. This was further supported by the induction of miR-let-7a expression upon treatment of HCC cells with a DNA-methyltransferase inhibitor. Using a computational approach, insulin-like growth factor (IGF)-II and IGF-2 mRNA binding proteins (IGF2BP)-2/-3 were identified as potential targets for miR-let-7a that was further confirmed experimentally. Indeed, miR-let-7a mimics diminished IGF-II as well as IGF2BP-2/-3 expression. Direct binding of miR-let-7a to each respective transcript was confirmed using a luciferase reporter assay. In conclusion, this study suggests that DNA hypermethylation leads to epigenetic repression of miR-let-7a in HCC cells, which induces the oncogenic IGF-signaling pathway.
Collapse
Affiliation(s)
- Amr A. Waly
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | | | - Reem A. Assal
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | | | - Karim A. Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend M. El Tayebi
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Kai Breuhahn
- Molecular Hepatopathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ahmed I. Abdelaziz
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
- School of Medicine, Newgiza University, Cairo, Egypt
| |
Collapse
|
38
|
Seshachalam VP, Sekar K, Hui KM. Insights into the etiology-associated gene regulatory networks in hepatocellular carcinoma from The Cancer Genome Atlas. J Gastroenterol Hepatol 2018; 33:2037-2047. [PMID: 29672926 DOI: 10.1111/jgh.14262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Hepatitis B virus (HBV), hepatitis C virus, alcohol consumption, and non-alcoholic fatty liver disease are the major known risk factors for hepatocellular carcinoma (HCC). There have been very few studies comparing the underlying biological mechanisms associated with the different etiologies of HCC. In this study, we hypothesized the existence of different regulatory networks associated with different liver disease etiologies involved in hepatocarcinogenesis. METHODS Using upstream regulatory analysis tool in ingenuity pathway analysis software, upstream regulators (URs) were predicted using differential expressed genes for HCC to facilitate the interrogation of global gene regulation. RESULTS Analysis of regulatory networks for HBV HCC revealed E2F1 as activated UR, regulating genes involved in cell cycle and DNA replication, and HNF4A and HNF1A as inhibited UR. In hepatitis C virus HCC, interferon-γ, involved in cellular movement and signaling, was activated, while IL1RN, mitogen-activated protein kinase 1 involved in interleukin 22 signaling and immune response, was inhibited. In alcohol consumption HCC, ERBB2 involved in inflammatory response and cellular movement was activated, whereas HNF4A and NUPR1 were inhibited. For HCC derived from non-alcoholic fatty liver disease, miR-1249-5p was activated, and NUPR1 involved in cell cycle and apoptosis was inhibited. The prognostic value of representative genes identified in the regulatory networks for HBV HCC can be further validated by an independent HBV HCC dataset established in our laboratory with survival data. CONCLUSIONS Our study identified functionally distinct candidate URs for HCC developed from different etiologic risk factors. Further functional validation studies of these regulatory networks could facilitate the management of HCC towards personalized medicine.
Collapse
Affiliation(s)
| | - Karthik Sekar
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Center Singapore, Singapore
| | - Kam M Hui
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Center Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
39
|
García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol 2018; 24:3695-3708. [PMID: 30197476 PMCID: PMC6127652 DOI: 10.3748/wjg.v24.i33.3695] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition receptor (c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microRNAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.
Collapse
Affiliation(s)
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, Málaga 29071, Spain
- Unidad 741 de CIBER “de Enfermedades Raras” (CIBERER), Málaga 29071, Spain
- Institute of Biomedical Research in Málaga, Málaga 29071, Spain
| |
Collapse
|
40
|
Yu Y, Liu D, Liu Z, Li S, Ge Y, Sun W, Liu B. The inhibitory effects of COL1A2 on colorectal cancer cell proliferation, migration, and invasion. J Cancer 2018; 9:2953-2962. [PMID: 30123364 PMCID: PMC6096367 DOI: 10.7150/jca.25542] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/23/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose: Collagen type I alpha 2 chain (COL1A2) has been shown to participate in the development of various human malignancies. However, the role of COL1A2 in human colorectal cancer (CRC) remains unknown. This study investigated the expression pattern of COL1A2 in primary CRC tissues as well as the correlation of COL1A2 expression with clinicopathological features and prognosis of CRC. The function of COL1A2 in CRC cell proliferation, migration, and invasion as well as the possible mechanisms were also examined. Methods: Real-time PCR and immunohistochemical analysis were performed to determine the expression of COL1A2 in primary cancer tissues and adjacent normal tissues from CRC patients. A COL1A2-expressing lentiviral vector was transfected into CRC cells, and cell counting kit-8 and Transwell assays were used to explore the effects of COL1A2 on CRC cell proliferation, migration, and invasion. Microarray-based mRNA expression profile screening was performed to reveal the possible signaling pathways involved in COL1A2-regulated cell behaviors. Results: COL1A2 was significantly downregulated in primary CRC tissues. The mRNA levels of COL1A2 in CRC tissues were correlated with tumor differentiation, invasion, and lymph node metastasis. Overexpression of COL1A2 inhibited proliferation, migration, and invasion of CRC cell lines (SW480 and SW620). The microarray analysis showed that COL1A2 overexpression regulated numerous oncogenes and cancer-related signaling pathways. Among them, altered expression of ten representative cancer-related genes in these pathways were further confirmed by western blotting. Conclusions: Our study identified COL1A2 as a novel tumor suppressor in CRC and provided a potential therapeutic approach to treat CRC.
Collapse
Affiliation(s)
- Yifan Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongliang Liu
- Department of Ear-nose-throat department, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenghao Liu
- Department of Graduate School, China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Ge
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baolin Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Zhou XG, Huang XL, Liang SY, Tang SM, Wu SK, Huang TT, Mo ZN, Wang QY. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis. Onco Targets Ther 2018; 11:2815-2830. [PMID: 29844680 PMCID: PMC5961473 DOI: 10.2147/ott.s163891] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is the fourth most common cause of cancer-related mortality worldwide. The tumor, node, metastasis (TNM) stage remains the standard for CRC prognostication. Identification of meaningful microRNA (miRNA) and gene modules or representative biomarkers related to the pathological stage of colon cancer helps to predict prognosis and reveal the mechanisms behind cancer progression. Materials and methods We applied a systems biology approach by combining differential expression analysis and weighted gene co-expression network analysis (WGCNA) to detect the pathological stage-related miRNA and gene modules and construct a miRNA–gene network. The Cancer Genome Atlas (TCGA) colon adenocarcinoma (CAC) RNA-sequencing data and miRNA-sequencing data were subjected to WGCNA analysis, and the GSE29623, GSE35602 and GSE39396 were utilized to validate and characterize the results of WGCNA. Results Two gene modules (Gmagenta and Ggreen) and one miRNA module were associated with the pathological stage. Six hub genes (COL1A2, THBS2, BGN, COL1A1, TAGLN and DACT3) were related to prognosis and validated to be associated with the pathological stage. Five hub miRNAs were identified to be related to prognosis (hsa-miR-125b-5p, hsa-miR-145-5p, hsa-let-7c-5p, hsa-miR-218-5p and hsa-miR-125b-2-3p). A total of 18 hub genes and seven hub miRNAs were predominantly expressed in tumor stroma. Proteoglycans in cancer, focal adhesion, extracellular matrix (ECM)–receptor interaction and so on were common pathways of the three modules. Hsa-let-7c-5p was located at the core of miRNA–gene network. Conclusion These findings help to advance the understanding of tumor stroma in the progression of CAC and provide prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Xian-Guo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Liang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Si-Yuan Liang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Colorectal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shao-Mei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Si-Kao Wu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tong-Tong Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zeng-Nan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi, Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiu-Yan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|