1
|
Ju S, McBride BA, Oleschuk M, Bost KK. Biopsychosocial pathways model of early childhood appetite self-regulation: Temperament as a key to modulation of interactions among systems. Soc Sci Med 2024; 360:117338. [PMID: 39299152 DOI: 10.1016/j.socscimed.2024.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The widespread discrimination against individuals with obesity often stems from a simplistic perception of obesity as a mere consequence of personal choices of overeating and insufficient physical activity. This reductionist perception fails to acknowledge the complexity of the epidemic of obesity, which extends beyond diet and exercise decisions. The concept of appetite self-regulation (ASR) has been explored as a crucial element in identifying obesogenic behavioral approaches to food. Although an extensive understanding of ASR in children is essential as an early precursor and modifiable factor influencing obesity, the prevailing view of self-regulation of eating solely as a matter of cognitive and behavioral processing tends to overlook interacting systems of influences. This narrow approach attributes obesity to the lack of voluntary self-control in food consumption while neglecting to account for the biological, psychological, and social influences implicated in the developmental processes of ASR, which may further contribute to the stigmatization of obesity. The current critical analysis provides a comprehensive developmental framework that could guide future studies with testable hypotheses, outlining pathways of interactions among biopsychosocial systems, all of which contribute to the development of ASR in early childhood. Adopting developmental perspectives allows a holistic approach to investigating ASR, which accounts for intricate interactions between biological (B), psychological (P), and social (S) factors influential in the early manifestation of ASR.
Collapse
Affiliation(s)
- Sehyun Ju
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA.
| | - Brent A McBride
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA; Child Development Laboratory, University of Illinois, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.
| | - Merin Oleschuk
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA.
| | - Kelly K Bost
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA; Family Resiliency Center, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
2
|
Kore MS, Mamsa R, Patil D, Bhatt LK. Ghrelin in Depression: A Promising Therapeutic Target. Mol Neurobiol 2024:10.1007/s12035-024-04554-1. [PMID: 39424690 DOI: 10.1007/s12035-024-04554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Depression is a widespread disease affecting over 300 million individuals of various ethnicities and socioeconomic backgrounds globally. It frequently strikes early in life and becomes a chronic or recurring lifelong illness. Out of the various hypotheses for the pathophysiology of depression, the gut-brain axis and stress hypothesis are the ones that need to be researched, as psychological stress impairs one or more pathways of the brain-gut axis and is likely to cause brain-gut axis dysfunction and depression. A dysfunctional reciprocal gut-brain relationship may contribute to many diseases, including inflammatory disorders, abnormal stress responses, impaired behavior, and metabolic changes. The hormone ghrelin is a topic of interest concerning the gut-brain axis as it interacts with the gut-brain axis indirectly via the central nervous system or via crossing the blood-brain barrier. Ghrelin release is also affected by the gut microbes, which has also been discussed in the review. This review elaborates on Ghrelin's role in depression and its effect on various aspects like neurogenesis, HPA axis, and neuroinflammation. Furthermore, this review focuses on ghrelin as a potential target for alleviation of depressive symptoms.
Collapse
Affiliation(s)
- Mikhil Santosh Kore
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
3
|
Yang K, He H, Dong W. Gut Microbiota and Neonatal Acute Kidney Injury. Am J Perinatol 2024; 41:1887-1894. [PMID: 38301724 DOI: 10.1055/a-2259-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To characterize the relationship between gut microbiota and neonatal acute kidney injury biomarkers based on the gut-kidney axis. STUDY DESIGN The Pubmed database was primarily searched to include relevant literature on gut microbiota and neonatal acute kidney injury biomarkers, which was subsequently organized and analyzed and a manuscript was written. RESULTS Gut microbiota was associated with neonatal acute kidney injury biomarkers. These biomarkers included TIMP-2, IGFBP-7, VEGF, calbindin, GST, B2MG, ghrelin, and clusterin. CONCLUSION The gut microbiota is strongly associated with neonatal acute kidney injury biomarkers, and controlling the gut microbiota may be a potential target for ameliorating neonatal acute kidney injury. KEY POINTS · There is a bidirectional association between gut microbiota and AKI.. · Gut microbiota is closely associated with biomarkers of nAKI.. · Manipulation of gut microbiota may improve nAKI..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Hongxia He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
4
|
Zhang M, Sun X, Zhu X, Zheng L, Bi Y, Li Q, Sun L, Di F, Xu Y, Zhu D, Gao Y, Bao Y, Wang Y, He L, Fan C, Gao X, Gao J, Xia M, Bian H. Association between fast eating speed and metabolic dysfunction-associated steatotic liver disease: a multicenter cross-sectional study and meta-analysis. Nutr Diabetes 2024; 14:61. [PMID: 39143072 PMCID: PMC11324733 DOI: 10.1038/s41387-024-00326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND With the fast pace of modern life, people have less time for meals, but few studies have examined the association between the habit of fast eating and metabolic diseases. OBJECTIVE Combining the results of the current study and the prior ones, we aimed to investigate the possible relationship between fast eating and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS This is a sub-analysis of a multicenter cross-sectional study of 1965 participants investigated the association between fast eating and MASLD in Chinese. Fast eating was defined as meal time less than five minutes and participants were divided into three categories based on their self-reported frequency of fast eating: ≤1 time/month, ≤1 time/week and ≥2 times/week. We further conducted a literature search for available studies published before November, 2023 as well as a meta-analysis to investigate the association between fast eating and MASLD. RESULTS The proportion of MASLD was 59.3%, 50.5%, and 46.2% in participants with fast eating ≥2 times/week, ≤1 time/week and ≤1 time/month, respectively (P for trend <0.001). The frequency of fast eating was independently associated with risk of MASLD after multiple adjustment for sex, age, demographics, smoking and drinking status, BMI and clinical metabolic parameters (OR, 1.29; 95%CI, 1.09-1.53). Participants who ate fast frequently (≥2 times/week) had 81% higher risk of MASLD (P = 0.011). A meta-analysis of five eligible studies confirmed that frequent fast eating was associated with increased risk of MASLD (pooled OR, 1.22; 95%CI, 1.07-1.39). CONCLUSIONS Frequent fast eating was associated with an increased risk of MASLD.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Lili Zheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufang Bi
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine Tumors of Ministry of Shanghai, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, China
| | - Lirong Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fusheng Di
- Department of Endocrinology and Metabolism, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yushan Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dalong Zhu
- Department of Endocrinology and Metabolism, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yanyan Gao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yuqian Bao
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yao Wang
- Department of Endocrinology and Metabolism, Zhongda Hospital Affiliated to Southeast University Medical School, Nanjing, China
| | - Lanjie He
- Endocrine Testing Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Endocrinology, Qilu Hospital of Shandong University, Qingdao, China
| | - Chenmin Fan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Clinical Nutrition, Zhongshan Hospital, Center of Clinical Epidemiology, EBM of Fudan University, Fudan University, Shanghai, China.
- Center of Clinical Epidemiology and Evidence-Based Medicine, Fudan University, Shanghai, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China.
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Wang Z, Liu C, Hu K, Zuo M, Tian Z, Wei Y, Zhou Q, Li Q. Postoperative delayed gastric emptying: may gut microbiota play a role? Front Cell Infect Microbiol 2024; 14:1449530. [PMID: 39193506 PMCID: PMC11347441 DOI: 10.3389/fcimb.2024.1449530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Postoperative delayed gastric emptying is a prevalent complication following surgical procedures, imposing heavy physical and financial burdens on patients. However, current treatment options remain suboptimal. In recent years, an increasing number of studies have highlighted that the gut microbiota and its metabolites are closely associated with postoperative complications. Various factors can disrupt the gut microbiome after surgery. This review discusses the potential mechanisms by which the gut microbiota and their metabolites may contribute to the pathogenesis of postoperative delayed gastric emptying. However, the current knowledge base is limited in terms of fully understanding the exact mechanisms involved. It is therefore evident that further research is required to fully elucidate the role of the gut microbiome in postoperative delayed gastric emptying, with the aim of uncovering new possibilities for preventive measures and therapeutic treatments.
Collapse
Affiliation(s)
- Zhiyi Wang
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanbo Liu
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Kaiwen Hu
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Minghuan Zuo
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Zhen Tian
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Yue Wei
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Qin Zhou
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Quanwang Li
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Soliz-Rueda JR, Cuesta-Marti C, O'Mahony SM, Clarke G, Schellekens H, Muguerza B. Gut microbiota and eating behaviour in circadian syndrome. Trends Endocrinol Metab 2024:S1043-2760(24)00189-9. [PMID: 39095231 DOI: 10.1016/j.tem.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| |
Collapse
|
7
|
Corsello A, Trovato CM, Dipasquale V, Proverbio E, Milani GP, Diamanti A, Agostoni C, Romano C. Malnutrition management in children with chronic kidney disease. Pediatr Nephrol 2024:10.1007/s00467-024-06436-z. [PMID: 38954039 DOI: 10.1007/s00467-024-06436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Chronic kidney disease (CKD) encompasses diverse conditions such as congenital anomalies, glomerulonephritis, and hereditary nephropathies, necessitating individualized nutritional interventions. Early detection is pivotal due to the heightened risk of adverse outcomes, including compromised growth and increased healthcare costs. The nutritional assessment in pediatric CKD employs a comprehensive, multidisciplinary approach, considering disease-specific factors, growth metrics, and dietary habits. The prevalence of malnutrition, as identified through diverse tools and guidelines, underscores the necessity for regular and vigilant monitoring. Nutritional management strategies seek equilibrium in calorie intake, protein requirements, and electrolyte considerations. Maintaining a well-balanced nutritional intake is crucial for preventing systemic complications and preserving the remaining kidney function. The nuanced landscape of enteral nutrition, inclusive of gastrostomy placement, warrants consideration in scenarios requiring prolonged support, with an emphasis on minimizing risks for optimized outcomes. In conclusion, the ongoing challenge of managing nutrition in pediatric CKD necessitates continuous assessment and adaptation. This review underscores the significance of tailored dietary approaches, not only to foster growth and prevent complications but also to enhance the overall quality of life for children grappling with CKD.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - Valeria Dipasquale
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Emanuele Proverbio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
8
|
Wang Y, Ding S. Extracellular vesicles in cancer cachexia: deciphering pathogenic roles and exploring therapeutic horizons. J Transl Med 2024; 22:506. [PMID: 38802952 PMCID: PMC11129506 DOI: 10.1186/s12967-024-05266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China
- School of Medicine, Nantong University, Nantong, 226001, P.R. China
| | - Shengguang Ding
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China.
| |
Collapse
|
9
|
Aljeradat B, Kumar D, Abdulmuizz S, Kundu M, Almealawy YF, Batarseh DR, Atallah O, Ennabe M, Alsarafandi M, Alan A, Weinand M. Neuromodulation and the Gut-Brain Axis: Therapeutic Mechanisms and Implications for Gastrointestinal and Neurological Disorders. PATHOPHYSIOLOGY 2024; 31:244-268. [PMID: 38804299 PMCID: PMC11130832 DOI: 10.3390/pathophysiology31020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The gut-brain axis (GBA) represents a complex, bidirectional communication network that intricately connects the gastrointestinal tract with the central nervous system (CNS). Understanding and intervening in this axis opens a pathway for therapeutic advancements for neurological and gastrointestinal diseases where the GBA has been proposed to play a role in the pathophysiology. In light of this, the current review assesses the effectiveness of neuromodulation techniques in treating neurological and gastrointestinal disorders by modulating the GBA, involving key elements such as gut microbiota, neurotrophic factors, and proinflammatory cytokines. Through a comprehensive literature review encompassing PubMed, Google Scholar, Web of Science, and the Cochrane Library, this research highlights the role played by the GBA in neurological and gastrointestinal diseases, in addition to the impact of neuromodulation on the management of these conditions which include both gastrointestinal (irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gastroesophageal reflux disease (GERD)) and neurological disorders (Parkinson's disease (PD), Alzheimer's disease (AD), autism spectrum disorder (ASD), and neuropsychiatric disorders). Despite existing challenges, the ability of neuromodulation to adjust disrupted neural pathways, alleviate pain, and mitigate inflammation is significant in improving the quality of life for patients, thereby offering exciting prospects for future advancements in patient care.
Collapse
Affiliation(s)
- Baha’ Aljeradat
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Danisha Kumar
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Dow Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Sulaiman Abdulmuizz
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara, Nigeria
| | - Mrinmoy Kundu
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar 751029, India
| | - Yasser F. Almealawy
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Faculty of Medicine, University of Kufa, Kufa P.O. Box 21, Iraq
| | - Dima Ratib Batarseh
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Oday Atallah
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Michelle Ennabe
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Muath Alsarafandi
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, Islamic University of Gaza, Rafa Refugee Camp, Rafa P.O. Box 108, Palestine
- Faculty of Medicine, Islamic University of Gaza, Gaza P.O. Box 108, Palestine
| | - Albert Alan
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| |
Collapse
|
10
|
Shennon I, Wilson BC, Behling AH, Portlock T, Haque R, Forrester T, Nelson CA, O'Sullivan JM. The infant gut microbiome and cognitive development in malnutrition. Clin Nutr 2024; 43:1181-1189. [PMID: 38608404 DOI: 10.1016/j.clnu.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Malnutrition affects 195 million children under the age of five worldwide with long term effects that include impaired cognitive development. Brain development occurs rapidly over the first 36 months of life. Whilst seemingly independent, changes to the brain and gut microbiome are linked by metabolites, hormones, and neurotransmitters as part of the gut-brain axis. In the context of severe malnutrition, the composition of the gut microbiome and the repertoire of biochemicals exchanged via the gut-brain axis vary when compared to healthy individuals. These effects are primarily due to the recognized interacting determinants, macro- and micronutrient deficiencies, infection, infestations and toxins related to poor sanitation, and a dearth of psycho-social stimulation. The standard of care for the treatment of severe acute malnutrition is focused on nutritional repletion and weight restoration through the provision of macro- and micronutrients, the latter usually in excess of recommended dietary allowances (RDA). However, existing formulations and supplements have not been designed to specifically address key recovery requirements for brain and gut microbiome development. Animal model studies indicate that treatments targeting the gut microbiome could improve brain development. Despite this, research on humans targeting the gut microbiome with the aim of restoring brain functionality are scarce. We conclude that there is a need for assessment of cognition and the use of various tools that permit visualization of the brain anatomy and function (e.g., Magnetic resonance imaging (MRI), functional near-infrared spectroscopy (fNIRS), electroencephalogram (EEG)) to understand how interventions targeting the gut microbiome impact brain development.
Collapse
Affiliation(s)
- Inoli Shennon
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Brooke C Wilson
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Anna H Behling
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Theo Portlock
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Rashidul Haque
- Infectious Disease Division, International Centre for Diarrheal Disease Research, Bangladesh
| | - Terrence Forrester
- UWI Solutions for Developing Countries, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Charles A Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Harvard Graduate School of Education, Cambridge, MA, USA
| | - Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Auckland 1010, New Zealand; MRC Lifecourse Epidemiology Unit, University of Southampton, University Road, Southampton SO17 1BJ, UK; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.
| |
Collapse
|
11
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
12
|
Wu KC, McCauley KE, Lynch SV, Nayak RR, King NJ, Patel S, Kim TY, Condra K, Fadrosh D, Nguyen D, Lin DL, Lynch K, Rogers SJ, Carter JT, Posselt AM, Stewart L, Schafer AL. Alteration in the gut microbiome is associated with changes in bone metabolism after laparoscopic sleeve gastrectomy. J Bone Miner Res 2024; 39:95-105. [PMID: 38477719 PMCID: PMC11240164 DOI: 10.1093/jbmr/zjad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 03/14/2024]
Abstract
Laparoscopic sleeve gastrectomy (LSG), the most common bariatric surgical procedure, leads to durable weight loss and improves obesity-related comorbidities. However, it induces abnormalities in bone metabolism. One unexplored potential contributor is the gut microbiome, which influences bone metabolism and is altered after surgery. We characterized the relationship between the gut microbiome and skeletal health in severe obesity and after LSG. In a prospective cohort study, 23 adults with severe obesity underwent skeletal health assessment and stool collection preoperatively and 6 mo after LSG. Gut microbial diversity and composition were characterized using 16S rRNA gene sequencing, and fecal concentrations of short-chain fatty acids (SCFA) were measured with LC-MS/MS. Spearman's correlations and PERMANOVA analyses were applied to assess relationships between the gut microbiome and bone health measures including serum bone turnover markers (C-terminal telopeptide of type 1 collagen [CTx] and procollagen type 1 N-terminal propeptide [P1NP]), areal BMD, intestinal calcium absorption, and calciotropic hormones. Six months after LSG, CTx and P1NP increased (by median 188% and 61%, P < .01) and femoral neck BMD decreased (mean -3.3%, P < .01). Concurrently, there was a decrease in relative abundance of the phylum Firmicutes. Although there were no change in overall microbial diversity or fecal SCFA concentrations after LSG, those with greater within-subject change in gut community microbial composition (β-diversity) postoperatively had greater increases in P1NP level (ρ = 0.48, P = .02) and greater bone loss at the femoral neck (ρ = -0.43, P = .04). In addition, within-participant shifts in microbial richness/evenness (α-diversity) were associated with changes in IGF-1 levels (ρ = 0.56, P < .01). The lower the postoperative fecal butyrate concentration, the lower the IGF-1 level (ρ = 0.43, P = .04). Meanwhile, the larger the decrease in butyrate concentration, the higher the postoperative CTx (ρ = -0.43, P = .04). These findings suggest that LSG-induced gut microbiome alteration may influence skeletal outcomes postoperatively, and microbial influences on butyrate formation and IGF-1 are possible mechanisms.
Collapse
Affiliation(s)
- Karin C Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Kathryn E McCauley
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Renuka R Nayak
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Nicole J King
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Sheena Patel
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, United States
| | - Tiffany Y Kim
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Katherine Condra
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Doug Fadrosh
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Dat Nguyen
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Din L Lin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Kole Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Stanley J Rogers
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Jonathan T Carter
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Andrew M Posselt
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Lygia Stewart
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
- Surgical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Anne L Schafer
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
13
|
Zhang Y, Liu J, Liu X, Zhou Y, Geng J, Shi Z, Ma L. Fecal Microbiota Transplantation-Mediated Ghrelin Restoration Improves Neurological Functions After Traumatic Brain Injury: Evidence from 16S rRNA Sequencing and In Vivo Studies. Mol Neurobiol 2024; 61:919-934. [PMID: 37668964 DOI: 10.1007/s12035-023-03595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
This study aimed to investigate how gut microbiota dysbiosis impacts the repair of the blood-brain barrier and neurological deficits following traumatic brain injury (TBI). Through 16S rRNA sequencing analysis, we compared the gut microbiota of TBI rats and normal controls, discovering significant differences in abundance, species composition, and ecological function, potentially linked to Ghrelin-mediated brain-gut axis functionality. Further, in vivo experiments showed that fecal microbiota transplantation or Ghrelin injection could block the intracerebral TNF signaling pathway, enhance GLP-1 expression, significantly reduce brain edema post-TBI, promote the repair of the blood-brain barrier, and improve neurological deficits. However, the TNF signaling pathway activation could reverse these beneficial effects. In summary, our research suggests that by restoring the balance of gut microbiota, the levels of Ghrelin can be elevated, leading to the blockade of intracerebral TNF signaling pathway and enhanced GLP-1 expression, thereby mitigating post-TBI blood-brain barrier disruption and neurological injuries.
Collapse
Affiliation(s)
- Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China.
| | - Junying Liu
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Xinyu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Jia Geng
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, 610082, People's Republic of China
| | - Zheng Shi
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, No. 76, Huacai Road, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.
| |
Collapse
|
14
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
15
|
Candeias E, Pereira-Santos AR, Empadinhas N, Cardoso SM, Esteves ARF. The Gut-Brain Axis in Alzheimer's and Parkinson's Diseases: The Catalytic Role of Mitochondria. J Alzheimers Dis 2024; 100:413-429. [PMID: 38875045 DOI: 10.3233/jad-240524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis. Herein we comprehensively address the important role of mitochondria as a cellular hub in infection and inflammation and as a link between inflammation and neurodegeneration in the gut-brain axis. The role of mitochondria in gut homeostasis and as well the crosstalk between mitochondria and gut microbiota is discussed. Significantly, we also review studies highlighting how gut microbiota can ultimately affect the central nervous system. Overall, this review summarizes novel findings regarding this cross-talk where the mitochondria has a main role in the pathophysiology of both Alzheimer's and Parkinson's disease strengthen by cellular, animal and clinical studies.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Fernandes Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
17
|
Islam MM, Islam MM, Rahman MA, Ripon MAR, Hossain MS. Gut microbiota in obesity and related complications: Unveiling the complex interplay. Life Sci 2023; 334:122211. [PMID: 38084672 DOI: 10.1016/j.lfs.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
In recent years, the obesity epidemic has escalated into a serious public health catastrophe that is only getting worse. However, research into the pathophysiological pathways behind the obesity development and the illnesses that it is associated with is ongoing. In the last decades, it is now clear that the gut microbiota plays a significant role in the genesis and progression of obesity and obesity-related illnesses, particularly changes in its metabolites and composition as obesity progresses. Here, we provide a summary of the processes by which variations in gut metabolite levels and the composition of gut microbiota affect obesity and associated disorders. The bacteria residing in the gut release several chemicals that influence the appetite control, metabolism, and other systems. Since it can either encourage or restrict the deposition of fat in several different ways, the gut microbiota's role in obesity is debatable. Additionally, we go over potential therapeutic approaches that could be utilized to alter gut microbiota composition and focus on the important metabolic pathways associated with obesity and metabolic disorders linked to obesity.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
18
|
Saravanan D, Khatoon B S, Winner G J. Unraveling the Interplay: Exploring the Links Between Gut Microbiota, Obesity, and Psychological Outcomes. Cureus 2023; 15:e49271. [PMID: 38143611 PMCID: PMC10746887 DOI: 10.7759/cureus.49271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This narrative review delves into the complex and intricate mechanisms of the gut-brain axis. Gut microbiota has gained immense importance in the treatment of various diseases. The therapeutic potential of gut-microbial modulation is slowly coming to light. With good preclinical evidence, some human studies shed light on the translation potential of gut-microbial modulation. The concept of gut-microbial modulation has been studied for over a few decades. The relationship between gut microbiota and various homeostatic mechanisms is fascinating. Over the years, we have started understanding the immense role of gut microbiota in various homeostatic mechanisms. There are a good number of clinical studies that have shown the therapeutic potential of gut-microbial modulation in obesity and psychological diseases, especially depression and anxiety. The gut-microbial modulation can be achieved by dietary factors or supplementation. In this review, we explore the mechanisms by which prebiotics, probiotics, and synbiotics alter the gut-brain axis. The review limits its discussion to the most recent clinical studies that have shown promise as therapeutic strategies.
Collapse
Affiliation(s)
- Divya Saravanan
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Suhana Khatoon B
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Jefry Winner G
- Pharmacology and Therapeutics, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| |
Collapse
|
19
|
Tseng YT, Schaefke B, Wei P, Wang L. Defensive responses: behaviour, the brain and the body. Nat Rev Neurosci 2023; 24:655-671. [PMID: 37730910 DOI: 10.1038/s41583-023-00736-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Most animals live under constant threat from predators, and predation has been a major selective force in shaping animal behaviour. Nevertheless, defence responses against predatory threats need to be balanced against other adaptive behaviours such as foraging, mating and recovering from infection. This behavioural balance in ethologically relevant contexts requires adequate integration of internal and external signals in a complex interplay between the brain and the body. Despite this complexity, research has often considered defensive behaviour as entirely mediated by the brain processing threat-related information obtained via perception of the external environment. However, accumulating evidence suggests that the endocrine, immune, gastrointestinal and reproductive systems have important roles in modulating behavioural responses to threat. In this Review, we focus on how predatory threat defence responses are shaped by threat imminence and review the circuitry between subcortical brain regions involved in mediating defensive behaviours. Then, we discuss the intersection of peripheral systems involved in internal states related to infection, hunger and mating with the neurocircuits that underlie defence responses against predatory threat. Through this process, we aim to elucidate the interconnections between the brain and body as an integrated network that facilitates appropriate defensive responses to threat and to discuss the implications for future behavioural research.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
20
|
Schellekens H, Ribeiro G, Cuesta-Marti C, Cryan JF. The microbiome-gut-brain axis in nutritional neuroscience. Nutr Neurosci 2023; 26:1159-1171. [PMID: 36222323 DOI: 10.1080/1028415x.2022.2128007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Emerging evidence is highlighting the microbiome as a key regulator of the effect of nutrition on gut-brain axis signaling. Nevertheless, it is not yet clear whether the impact of nutrition is moderating the microbiota-gut-brain interaction or if diet has a mediating role on microbiota composition and function to influence central nervous system function, brain phenotypes and behavior. Mechanistic evidence from cell-based in vitro studies, animal models and preclinical intervention studies are linking the gut microbiota to the effects of diet on brain function, but they have had limited translation to human intervention studies. While increasing evidence demonstrates the triangulating relationship between diet, microbiota, and brain function across the lifespan, future mechanistic and translational studies in the field of microbiota and nutritional neuroscience are warranted to inform potential strategies for prevention and management of several neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders. This brief primer provides an overview of the most recent advances in the nutritional neuroscience - microbiome field, highlighting significant opportunities for future research.
Collapse
Affiliation(s)
- Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Cristina Cuesta-Marti
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Gajewska A, Strzelecki D, Gawlik-Kotelnicka O. Ghrelin as a Biomarker of "Immunometabolic Depression" and Its Connection with Dysbiosis. Nutrients 2023; 15:3960. [PMID: 37764744 PMCID: PMC10537261 DOI: 10.3390/nu15183960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin, a gastrointestinal peptide, is an endogenous ligand of growth hormone secretagogue receptor 1a (GHSR1a), which is mainly produced by X/A-like cells in the intestinal mucosa. Beyond its initial description as a growth hormone (GH) secretagogue stimulator of appetite, ghrelin has been revealed to have a wide range of physiological effects, for example, the modulation of inflammation; the improvement of cardiac performance; the modulation of stress, anxiety, taste sensation, and reward-seeking behavior; and the regulation of glucose metabolism and thermogenesis. Ghrelin secretion is altered in depressive disorders and metabolic syndrome, which frequently co-occur, but it is still unknown how these modifications relate to the physiopathology of these disorders. This review highlights the increasing amount of research establishing the close relationship between ghrelin, nutrition, microbiota, and disorders such as depression and metabolic syndrome, and it evaluates the ghrelinergic system as a potential target for the development of effective pharmacotherapies.
Collapse
Affiliation(s)
- Agata Gajewska
- Faculty of Medicine, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
22
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
23
|
John HS, Doucet É, Power KA. Dietary pulses as a means to improve the gut microbiome, inflammation, and appetite control in obesity. Obes Rev 2023; 24:e13598. [PMID: 37395146 DOI: 10.1111/obr.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
A dysbiotic intestinal microbiome has been linked to chronic diseases such as obesity, which may suggest that interventions that target the microbiome may be useful in treating obesity and its complications. Appetite dysregulation and chronic systemic low-grade inflammation, such as that observed in obesity, are possibly linked with the intestinal microbiome and are potential therapeutic targets for the treatment of obesity via the microbiome. Dietary pulses (e.g., common beans) are composed of nutrients and compounds that possess the potential to modulate the gut microbiota composition and function which can in turn improve appetite regulation and chronic inflammation in obesity. This narrative review summarizes the current state of knowledge regarding the connection between the gut microbiome and obesity, appetite regulation, and systemic and adipose tissue inflammation. More specifically, it highlights the efficacy of interventions employing dietary common beans as a means to improve gut microbiota composition and/or function, appetite regulation, and inflammation in both rodent obesity and in humans. Collectively, results presented and discussed herein provide insight on the gaps in knowledge necessary for a comprehensive understanding of the potential of beans as a treatment for obesity while highlighting what further research is required to gain this understanding.
Collapse
Affiliation(s)
- Hannah St John
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- The Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
25
|
Bi M, Liu C, Wang Y, Liu SJ. Therapeutic Prospect of New Probiotics in Neurodegenerative Diseases. Microorganisms 2023; 11:1527. [PMID: 37375029 DOI: 10.3390/microorganisms11061527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing clinical and preclinical evidence implicates gut microbiome (GM) dysbiosis as a key susceptibility factor for neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). In recent years, neurodegenerative diseases have been viewed as being driven not solely by defects in the brain, and the role of GM in modulating central nervous system function via the gut-brain axis has attracted considerable interest. Encouraged by current GM research, the development of new probiotics may lead to tangible impacts on the treatment of neurodegenerative disorders. This review summarizes current understandings of GM composition and characteristics associated with neurodegenerative diseases and research demonstrations of key molecules from the GM that affect neurodegeneration. Furthermore, applications of new probiotics, such as Clostridium butyricum, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Bacteroides fragilis, for the remediation of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Mingxia Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Chang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Refisch A, Sen ZD, Klassert TE, Busch A, Besteher B, Danyeli LV, Helbing D, Schulze-Späte U, Stallmach A, Bauer M, Panagiotou G, Jacobsen ID, Slevogt H, Opel N, Walter M. Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology 2023; 235:109568. [PMID: 37182790 DOI: 10.1016/j.neuropharm.2023.109568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tilman E Klassert
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Dario Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany, and Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany; Department of Pulmonary Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
27
|
Grant CV, Jordan K, Seng MM, Pyter LM. Antibiotic treatment inhibits paclitaxel chemotherapy-induced activity deficits in female mice. PLoS One 2023; 18:e0284365. [PMID: 37167214 PMCID: PMC10174578 DOI: 10.1371/journal.pone.0284365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Chemotherapy, a mainstay in the treatment of cancer, is associated with severe and debilitating side effects. Side effects can be physical (e.g., gastrointestinal distress, anemia, and hair loss) or mental (e.g., fatigue, cognitive dysfunction). Chemotherapy is known to alter the gut microbiota; thus, communication through the gut-brain axis may influence behavioral side effects. Here, we used a clinically-relevant paclitaxel chemotherapy regimen in combination with antibiotics to test the hypothesis that gut microbes contribute to chemotherapy-associated fatigue-like behaviors in female mice. Data presented suggest that chemotherapy-altered gut microbes contribute to fatigue-like behaviors in mice by disrupting energy homeostasis.
Collapse
Affiliation(s)
- Corena V. Grant
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio, United States of America
| | - Kelley Jordan
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio, United States of America
| | - Melina M. Seng
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio, United States of America
| | - Leah M. Pyter
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio, United States of America
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
28
|
Micic D, Polovina S, Micic D, Macut D. OBESITY AND GUT-BRAIN AXIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:234-240. [PMID: 37908875 PMCID: PMC10614596 DOI: 10.4183/aeb.2023.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Epidemic of obesity is ongoing and did not slow down. Causes of obesity are numerous and very complex. Among them, the concept of bidirectional signaling within the brain-gut-microbiome axis was recently proposed as possible pathophysiological mechanism and become a hot topic in the explanations for the control of food intake. Discoveries of new anti-obesity drugs that are analogs for the receptors for some hormones derived from gastrointestinal tract contribute to the investigations in this area. The human gut microbiota plays a fundamental role in human health and disease and it is considered that it represent an endocrine organ that participate in energy homeostasis and host immunity. Role of gut microbiome has been investigated in metabolic diseases such as obesity, type 2 diabetes and non-alcoholic fatty liver disease. Gut microbiome participate in regulation of various mechanisms inside the gastrointestinal tract due to its production of different bacterial metabolites. In our manuscript we present current knowledge about microbiota in the gut; the relation between gut microbiota and brain; neuroendocrine system and gut-brain axis; immune system and gut-brain axis; endocrine system and gut-brain axis; the role of gut microbiota in obesity development and possible use of gut microbiota for the treatment of obesity.
Collapse
Affiliation(s)
- Dr. Micic
- Serbian Academy of Sciences and Arts - Department of Medical Sciences, Belgrade
| | - S. Polovina
- University Business Academy, Faculty of Pharmacy, Novi Sad
- University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Du. Micic
- University of Belgrade, Faculty of Medicine - University Clinical Centre of Serbia, Clinic for Emergency Surgery, Emergency Centre
| | - D. Macut
- University of Belgrade, Faculty of Medicine - University Clinical Centre of Serbia, Clinic for Emergency Surgery, Emergency Centre
| |
Collapse
|
29
|
The Crosstalk between Microbiome and Mitochondrial Homeostasis in Neurodegeneration. Cells 2023; 12:cells12030429. [PMID: 36766772 PMCID: PMC9913973 DOI: 10.3390/cells12030429] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are highly dynamic organelles that serve as the primary cellular energy-generating system. Apart from ATP production, they are essential for many biological processes, including calcium homeostasis, lipid biogenesis, ROS regulation and programmed cell death, which collectively render them invaluable for neuronal integrity and function. Emerging evidence indicates that mitochondrial dysfunction and altered mitochondrial dynamics are crucial hallmarks of a wide variety of neurodevelopmental and neurodegenerative conditions. At the same time, the gut microbiome has been implicated in the pathogenesis of several neurodegenerative disorders due to the bidirectional communication between the gut and the central nervous system, known as the gut-brain axis. Here we summarize new insights into the complex interplay between mitochondria, gut microbiota and neurodegeneration, and we refer to animal models that could elucidate the underlying mechanisms, as well as novel interventions to tackle age-related neurodegenerative conditions, based on this intricate network.
Collapse
|
30
|
Guzzetta KE, Cryan JF, O’Leary OF. Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis. Brain Plast 2022; 8:97-119. [PMID: 36448039 PMCID: PMC9661352 DOI: 10.3233/bpl-220141] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
The birth, maturation, and integration of new neurons in the adult hippocampus regulates specific learning and memory processes, responses to stress, and antidepressant treatment efficacy. This process of adult hippocampal neurogenesis is sensitive to environmental stimuli, including peripheral signals from certain cytokines, hormones, and metabolites, which can promote or hinder the production and survival of new hippocampal neurons. The trillions of microorganisms resident to the gastrointestinal tract, collectively known as the gut microbiota, also demonstrate the ability to modulate adult hippocampal neurogenesis. In doing so, the microbiota-gut-brain axis can influence brain functions regulated by adult hippocampal neurogenesis. Unlike the hippocampus, the gut microbiota is highly accessible to direct interventions, such as prebiotics, probiotics, and antibiotics, and can be manipulated by lifestyle choices including diet. Therefore, understanding the pathways by which the gut microbiota shapes hippocampal neurogenesis may reveal novel targets for non-invasive therapeutics to treat disorders in which alterations in hippocampal neurogenesis have been implicated. This review first outlines the factors which influence both the gut microbiome and adult hippocampal neurogenesis, with cognizance that these effects might happen either independently or due to microbiota-driven mechanisms. We then highlight approaches for investigating the regulation of adult hippocampal neurogenesis by the microbiota-gut-brain axis. Finally, we summarize the current evidence demonstrating the gut microbiota's ability to influence adult hippocampal neurogenesis, including mechanisms driven through immune pathways, microbial metabolites, endocrine signalling, and the nervous system, and postulate implications for these effects in disease onset and treatment.
Collapse
Affiliation(s)
- Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F. O’Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Gut Microbiota Restores Central Neuropeptide Deficits in Germ-Free Mice. Int J Mol Sci 2022; 23:ijms231911756. [PMID: 36233056 PMCID: PMC9570469 DOI: 10.3390/ijms231911756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Recent work has demonstrated the ability of the gut microbiota (GM) to alter the expression and release of gut peptides that control appetite and regulate energy homeostasis. However, little is known about the neuronal response of these hormones in germ-free (GF) animals, especially leptin, which is strikingly low in these animals. Therefore, we aimed to determine the response to exogenous leptin in GF mice as compared to conventionally raised (CONV-R) mice. Specifically, we injected and measured serum leptin in both GF and CONV-R mice and measured expression of orexigenic and anorexigenic peptides NPY, AgRP, POMC, and CART in the hypothalamus and hindbrain to examine whether the GM has an impact on central nervous system regulation of energy homeostasis. We found that GF mice had a significant increase in hypothalamic NPY and AgRP mRNA expression and a decrease in hindbrain NPY and AgRP mRNA, while mRNA expression of POMC and CART remained unchanged. Administration of leptin normalized circulating levels of leptin, GLP-1, PYY, and ghrelin, all of which were significantly decreased in GF mice. Finally, brief conventionalization of GF mice for 10 days restored the deficits in hypothalamic and hindbrain neuropeptides present in GF animals. Taken together, these results show that the GM regulates hypothalamic and hindbrain orexigenic/anorexigenic neuropeptide expression. This is in line with the role of gut microbiota in lipid metabolism and fat deposition that may contribute to excess fat in conventionalized animals under high feeding condition.
Collapse
|
32
|
César H, Nascimento Sertorio M, Santamarina A, Alves de Souza E, Valles Mennitti L, Jamar G, Jucá A, Picin Casagrande B, Estadela D, Pellegrini Pisani L. The influence of parental high-fat high-sugar diet on the gut-brain axis in male offspring. Food Res Int 2022; 160:111706. [DOI: 10.1016/j.foodres.2022.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
33
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
34
|
Bukhari SNA. An insight into the multifunctional role of ghrelin and structure activity relationship studies of ghrelin receptor ligands with clinical trials. Eur J Med Chem 2022; 235:114308. [PMID: 35344905 DOI: 10.1016/j.ejmech.2022.114308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Ghrelin is a multifunctional gastrointestinal acylated peptide, primarily synthesized in the stomach and regulates the secretion of growth hormone and energy homeostasis. It plays a central role in modulating the diverse biological, physiological and pathological functions in vertebrates. The synthesis of ghrelin receptor ligands after the finding of growth hormone secretagogue developed from Met-enkephalin led to reveal the endogenous ligand ghrelin and the receptors. Subsequently, many peptides, small molecules and peptidomimetics focusing on the ghrelin receptor, GHS-R1a, were derived. In this review, the key features of ghrelin's structure, forms, its bio-physiological functions, pathological roles and therapeutic potential have been highlighted. A few peptidomimetics and pseudo peptide synthetic perspectives have also been discussed to make ghrelin receptor ligands, clinical trials and their success.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 2014, Saudi Arabia.
| |
Collapse
|
35
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2022; 57:101427. [PMID: 34973469 PMCID: PMC8829807 DOI: 10.1016/j.molmet.2021.101427] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.
Collapse
Affiliation(s)
- Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy Lipuma
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
36
|
Wang Z, Hou C, Chen L, Zhang M, Luo W. Potential roles of the gut microbiota in the manifestations of drug use disorders. Front Psychiatry 2022; 13:1046804. [PMID: 36590616 PMCID: PMC9795867 DOI: 10.3389/fpsyt.2022.1046804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Drug use disorders (DUDs) not only cause serious harm to users but also cause huge economic, security, and public health burdens to families and society. Recently, several studies have shown that gut microbiota (GM) can affect the central nervous system and brain functions. In this review, we focus on the potential role of the GM in the different stages of DUDs. First, the GM may induce individuals to seek novel substances. Second, the gut microbiota is involved in the decomposition and absorption of drugs. Symptoms of individuals who suffer from DUDs are also related to intestinal microorganisms. Third, the effects of the GM and its metabolites on drug relapse are mainly reflected in the reward effect and drug memory. In conclusion, recent studies have preliminarily explored the relationship between GM and DUDs. This review deepens our understanding of the mechanisms of DUDs and provides important information for the future development of clinical treatment for DUDs.
Collapse
Affiliation(s)
- Zhiyan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Chengqian Hou
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Lei Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Mingming Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| |
Collapse
|
37
|
Shen M, Manca C, Suriano F, Nallabelli N, Pechereau F, Allam-Ndoul B, Iannotti FA, Flamand N, Veilleux A, Cani PD, Silvestri C, Di Marzo V. Three of a Kind: Control of the Expression of Liver-Expressed Antimicrobial Peptide 2 (LEAP2) by the Endocannabinoidome and the Gut Microbiome. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010001. [PMID: 35011234 PMCID: PMC8746324 DOI: 10.3390/molecules27010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
The endocannabinoidome (expanded endocannabinoid system, eCBome)-gut microbiome (mBIome) axis plays a fundamental role in the control of energy intake and processing. The liver-expressed antimicrobial peptide 2 (LEAP2) is a recently identified molecule acting as an antagonist of the ghrelin receptor and hence a potential effector of energy metabolism, also at the level of the gastrointestinal system. Here we investigated the role of the eCBome-gut mBIome axis in the control of the expression of LEAP2 in the liver and, particularly, the intestine. We confirm that the small intestine is a strong contributor to the circulating levels of LEAP2 in mice, and show that: (1) intestinal Leap2 expression is profoundly altered in the liver and small intestine of 13 week-old germ-free (GF) male mice, which also exhibit strong alterations in eCBome signaling; fecal microbiota transfer (FMT) from conventionally raised to GF mice completely restored normal Leap2 expression after 7 days from this procedure; in 13 week-old female GF mice no significant change was observed; (2) Leap2 expression in organoids prepared from the mouse duodenum is elevated by the endocannabinoid noladin ether, whereas in human Caco-2/15 epithelial intestinal cells it is elevated by PPARγ activation by rosiglitazone; (3) Leap2 expression is elevated in the ileum of mice with either high-fat diet—or genetic leptin signaling deficiency—(i.e., ob/ob and db/db mice) induced obesity. Based on these results, we propose that LEAP2 originating from the small intestine may represent a player in eCBome- and/or gut mBIome-mediated effects on food intake and energy metabolism.
Collapse
Affiliation(s)
- Mélissa Shen
- Quebec Heart and Lung Institute Research Centre, Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (M.S.); (C.M.); (N.N.); (N.F.)
| | - Claudia Manca
- Quebec Heart and Lung Institute Research Centre, Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (M.S.); (C.M.); (N.N.); (N.F.)
- Unité Mixte Internationale en Recherche Chimique et Biomoléculaire du Microbiome et son Impact sur la Santé Métabolique et la Nutrition, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.S.); (P.D.C.)
| | - Nayudu Nallabelli
- Quebec Heart and Lung Institute Research Centre, Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (M.S.); (C.M.); (N.N.); (N.F.)
| | - Florent Pechereau
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), École de Nutrition (FSAA), Université Laval, Quebec City, QC G1V 0A6, Canada; (F.P.); (B.A.-N.); (A.V.)
| | - Bénédicte Allam-Ndoul
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), École de Nutrition (FSAA), Université Laval, Quebec City, QC G1V 0A6, Canada; (F.P.); (B.A.-N.); (A.V.)
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy;
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (M.S.); (C.M.); (N.N.); (N.F.)
| | - Alain Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), École de Nutrition (FSAA), Université Laval, Quebec City, QC G1V 0A6, Canada; (F.P.); (B.A.-N.); (A.V.)
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.S.); (P.D.C.)
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (M.S.); (C.M.); (N.N.); (N.F.)
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), École de Nutrition (FSAA), Université Laval, Quebec City, QC G1V 0A6, Canada; (F.P.); (B.A.-N.); (A.V.)
- Correspondence: (C.S.); (V.D.); Tel.: +1-418-656-8711 (ext. 7229) (C.S.); +1-418-656-8711 (ext. 7263) (V.D.)
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (M.S.); (C.M.); (N.N.); (N.F.)
- Unité Mixte Internationale en Recherche Chimique et Biomoléculaire du Microbiome et son Impact sur la Santé Métabolique et la Nutrition, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), École de Nutrition (FSAA), Université Laval, Quebec City, QC G1V 0A6, Canada; (F.P.); (B.A.-N.); (A.V.)
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy;
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: (C.S.); (V.D.); Tel.: +1-418-656-8711 (ext. 7229) (C.S.); +1-418-656-8711 (ext. 7263) (V.D.)
| |
Collapse
|
38
|
Kärkkäinen O, Farokhnia M, Klåvus A, Auriola S, Lehtonen M, Deschaine SL, Piacentino D, Abshire KM, Jackson SN, Leggio L. Effect of intravenous ghrelin administration, combined with alcohol, on circulating metabolome in heavy drinking individuals with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:2207-2216. [PMID: 34590334 PMCID: PMC8642277 DOI: 10.1111/acer.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ghrelin may influence several alcohol-related behaviors in animals and humans by modulating central and/or peripheral biological pathways. The aim of this exploratory analysis was to investigate associations between ghrelin administration and the human circulating metabolome during alcohol exposure in nontreatment seeking, heavy drinking individuals with alcohol use disorder (AUD). METHODS We used serum samples from a randomized, crossover, double-blind, placebo-controlled human laboratory study with intravenous (IV) ghrelin or placebo infusion in two experiments. During each session, participants received a loading dose (3 µg/kg) followed by continuous infusion (16.9 ng/kg/min) of acyl ghrelin or placebo. The first experiment included an IV alcohol self-administration (IV-ASA) session and the second experiment included an IV alcohol clamp (IV-AC) session, both with the counterbalanced infusion of ghrelin or placebo. Serum metabolite profiles were analyzed from repeated blood samples collected during each session. RESULTS In both experiments, ghrelin infusion was associated with an altered serum metabolite profile, including significantly increased levels of cortisol (IV-ASA q-value = 0.0003 and IV-AC q < 0.0001), corticosterone (IV-ASA q = 0.0202 and IV-AC q < 0.0001), and glycochenodeoxycholic acid (IV-ASA q = 0.0375 and IV-AC q = 0.0013). In the IV-ASA experiment, ghrelin infusion increased levels of cortisone (q = 0.0352) and fatty acids 18:1 (q = 0.0406) and 18:3 (q = 0.0320). Moreover, in the IV-AC experiment, ghrelin infusion significantly increased levels of glycocholic acid (q < 0.0001) and phenylalanine (q = 0.0458). CONCLUSION IV ghrelin infusion, combined with IV alcohol administration, was associated with increases in the circulating metabolite levels of corticosteroids and glycine-conjugated bile acids, among other changes. Further research is needed to understand the role that metabolomic changes play in the complex interaction between ghrelin and alcohol.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Daria Piacentino
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M. Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Shelley N. Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
39
|
Dietert RR. Microbiome First Approaches to Rescue Public Health and Reduce Human Suffering. Biomedicines 2021; 9:biomedicines9111581. [PMID: 34829809 PMCID: PMC8615664 DOI: 10.3390/biomedicines9111581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
The is a sequential article to an initial review suggesting that Microbiome First medical approaches to human health and wellness could both aid the fight against noncommunicable diseases and conditions (NCDs) and help to usher in sustainable healthcare. This current review article specifically focuses on public health programs and initiatives and what has been termed by medical journals as a catastrophic record of recent failures. Included in the review is a discussion of the four priority behavioral modifications (food choices, cessation of two drugs of abuse, and exercise) advocated by the World Health Organization as the way to stop the ongoing NCD epidemic. The lack of public health focus on the majority of cells and genes in the human superorganism, the microbiome, is highlighted as is the "regulatory gap" failure to protect humans, particularly the young, from a series of mass population toxic exposures (e.g., asbestos, trichloroethylene, dioxin, polychlorinated biphenyls, triclosan, bisphenol A and other plasticizers, polyfluorinated compounds, herbicides, food emulsifiers, high fructose corn syrup, certain nanoparticles, endocrine disruptors, and obesogens). The combination of early life toxicity for the microbiome and connected human physiological systems (e.g., immune, neurological), plus a lack of attention to the importance of microbial rebiosis has facilitated rather than suppressed, the NCD epidemic. This review article concludes with a call to place the microbiome first and foremost in public health initiatives as a way to both rescue public health effectiveness and reduce the human suffering connected to comorbid NCDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Woźniak D, Cichy W, Przysławski J, Drzymała-Czyż S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci 2021; 66:284-292. [PMID: 34098509 DOI: 10.1016/j.advms.2021.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
The microbiota is a heterogeneous ecosystem consisting of diverse microorganisms unique to an individual, playing a crucial role in maintaining human body homeostasis. The microbiota, as a suggested endocrine organ, is also capable of producing and regulating hormones, playing an important role in food processing, synthesis of vitamins, pathogen displacement, and influencing functions of distant systems and organs. The efficient connections between the brain and intestines and microbiota ensure the maintenance of the digestive tract homeostasis, with the bidirectional brain and gut axis playing an important role in the regulation of digestion. Enteroendocrine cells (EECs) are a fascinating example of highly specified cells scattered throughout the gastrointestinal (GI) tract. They produce and release signaling molecules (hormones), thus modulate homeostatic functions. EECs are believed to be crucial sensors of gut microbiota or/and microbial metabolites, secreting peptide hormones and cytokines in response to them. The diet, microbiota, and EECs are inevitably dependent on one another, thus together (nutrients, microbiota, enterohormones) affect metabolism. This manuscript reviews the role of various components of the brain-gut axis in digestive and absorption processes, as well as the maintenance of digestive tract homeostasis and the consequences of disturbances in the individual components of this axis.
Collapse
Affiliation(s)
- Dagmara Woźniak
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wojciech Cichy
- Department of Cosmetology, Faculty of Health Sciences, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Kalisz, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | | |
Collapse
|
41
|
Baranowski T, Motil KJ. Simple Energy Balance or Microbiome for Childhood Obesity Prevention? Nutrients 2021; 13:nu13082730. [PMID: 34444890 PMCID: PMC8398395 DOI: 10.3390/nu13082730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity prevention interventions generally have either not worked or had effects inadequate to mitigate the problem. They have been predicated on the simple energy balance model, which has been severely questioned by biological scientists. Numerous other etiological mechanisms have been proposed, including the intestinal microbiome, which has been related to childhood obesity in numerous ways. Public health research is needed in regard to diet and the microbiome, which hopefully will lead to effective child obesity prevention.
Collapse
|