1
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
2
|
Martinelli S, Lamminpää I, Dübüş EN, Sarıkaya D, Niccolai E. Synergistic Strategies for Gastrointestinal Cancer Care: Unveiling the Benefits of Immunonutrition and Microbiota Modulation. Nutrients 2023; 15:4408. [PMID: 37892482 PMCID: PMC10610426 DOI: 10.3390/nu15204408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients that are able to modulate the immune system and the modification/regulation of the gut microbiota composition have gained attention as a possible strategy to improve the conditions of these patients. The complex interaction between nutrients and microbiota might contribute to maintaining the homeostasis of each individual's immune system; therefore, concurrent use of specific nutrients in combination with traditional cancer treatments may synergistically improve the overall care of GI cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota modulation in improving nutritional status, postoperative recovery, and response to therapies in patients with GI cancer.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Eda Nur Dübüş
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Dilara Sarıkaya
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| |
Collapse
|
3
|
Pourali G, Kazemi D, Pourali R, Rahmani N, Razzaghi E, Maftooh M, Fiuji H, Ghorbani E, Khazaei M, Ferns GA, Hassanian SM, Avan A. Bioactive Peptides: Potential Impact on the Treatment of Gastrointestinal Cancers. Curr Pharm Des 2023; 29:2450-2460. [PMID: 37877510 DOI: 10.2174/0113816128261378231019201709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
We have reviewed the potential use of bioactive peptides in the treatment of gastrointestinal (GI) malignancies, which are a significant cause of morbidity and mortality globally. Conventional therapies, such as surgery, chemotherapy, and radiotherapy, are associated with numerous side effects that may lead to longterm complications. Bioactive peptides are short-chain amino acids that can be extracted from natural sources or synthesized, and they have various potential health benefits, including anti-inflammatory, anti-hypertensive, antioxidant, antimicrobial, and anti-cancer properties. Bioactive peptides can be acquired from animal or plant sources, and can be classified based on their function, such as ACE-inhibiting, antimicrobial, and electrolyte- regulating peptides. Recent studies have demonstrated the promising role of bioactive peptides in tumor suppression, especially when combined with conventional therapies. In this study, we have reviewed the beneficial properties of bioactive peptides and their role in suppressing tumor activity. The mechanisms of bioactive peptides in tumor suppression are discussed. We have further reviewed the findings of preclinical and clinical studies that have investigated the application of bioactive peptides in the treatment of GI cancers. This review highlights the potential use of bioactive peptides as a promising treatment method for GI malignancies to increase the quality of life of GI cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafise Rahmani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Razzaghi
- School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Lavelle A, Nancey S, Reimund JM, Laharie D, Marteau P, Treton X, Allez M, Roblin X, Malamut G, Oeuvray C, Rolhion N, Dray X, Rainteau D, Lamaziere A, Gauliard E, Kirchgesner J, Beaugerie L, Seksik P, Peyrin-Biroulet L, Sokol H. Fecal microbiota and bile acids in IBD patients undergoing screening for colorectal cancer. Gut Microbes 2022; 14:2078620. [PMID: 35638103 PMCID: PMC9176255 DOI: 10.1080/19490976.2022.2078620] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Due to the potential role of the gut microbiota and bile acids in the pathogenesis of both inflammatory bowel disease (IBD) and sporadic colorectal cancer, we aimed to determine whether these factors were associated with colorectal cancer in IBD patients. 215 IBD patients and 51 non-IBD control subjects were enrolled from 10 French IBD centers between September 2011 and July 2018. Fecal samples were processed for bacterial 16S rRNA gene sequencing and bile acid profiling. Demographic, clinical, endoscopic, and histological outcomes were recorded. Characteristics of IBD patients included: median age: 41.6 (IQR 22); disease duration 13.2 (13.1); 47% female; 21.9% primary sclerosing cholangitis; 109 patients with Crohn's disease (CD); 106 patients with ulcerative colitis (UC). The prevalence of cancer was 2.8% (6/215: 1 CD; 5 UC), high-grade dysplasia 3.7% (8/215) and low-grade dysplasia 7.9% (17/215). Lachnospira was decreased in IBD patients with cancer, while Agathobacter was decreased and Escherichia-Shigella increased in UC patients with any neoplasia. Bile acids were not associated with cancer or neoplasia. Unsupervised clustering identified three gut microbiota clusters in IBD patients associated with bile acid composition and clinical features, including a higher risk of neoplasia in UC in two clusters when compared to the third (relative risk (RR) 4.07 (95% CI 1.6-10.3, P < .01) and 3.56 (95% CI 1.4-9.2, P < .01)). In this multicentre observational study, a limited number of taxa were associated with neoplasia and exploratory microbiota clusters co-associated with clinical features, including neoplasia risk in UC. Given the very small number of cancers, the robustness of these findings will require assessment and validation in future studies.
Collapse
Affiliation(s)
- Aonghus Lavelle
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Stéphane Nancey
- Gastroenterology Department University Claude Bernard Lyon 1Hospices Civils de Lyon, CHU Lyon-Sud, Lyon, France
| | - Jean-Marie Reimund
- Hôpital de Hautpierre, CHU de Strasbourg, Service d’Hépato-gastroentérologie et Assistance Nutritive, Strasbourg, France
| | - David Laharie
- CHU de Bordeaux, Hôpital Haut-Lévêque, Service d’Hépato-gastroentérologie et oncologie digestive – Université de Bordeaux, Bordeaux, France
| | - Philippe Marteau
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Tenon Hospital, Paris, France
| | - Xavier Treton
- Gastroentérologie, MICI et Assistance Nutritive, DMU DIGEST, hôpital Beaujon, 100 bd du général Leclerc, Clichy, France
| | - Matthieu Allez
- Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Xavier Roblin
- Gastroenterology Department, CHU de Saint-Étienne - Hôpital Bellevue, St Etienne, France
| | - Georgia Malamut
- Gastroenterology Department, Hôpital Européen Georges-Pompidou, Paris, France
| | - Cyriane Oeuvray
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Xavier Dray
- Sorbonne University, Endoscopy Unit, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Dominique Rainteau
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Antonin Lamaziere
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Emilie Gauliard
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Julien Kirchgesner
- Paris Centre for Microbiome Medicine FHU, Paris, France,Department of Gastroenterology, Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Laurent Beaugerie
- Paris Centre for Microbiome Medicine FHU, Paris, France,Department of Gastroenterology, Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Philippe Seksik
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Nancy, France,Inserm NGERE, Université de Lorraine, Vandœuvre-Lès-Nancy, France,FHU Cure, Nancy, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France,INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France,CONTACT Harry Sokol Gastroenterology Department, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571Paris CEDEX 12, France
| |
Collapse
|
5
|
Dar SH, Rahim M, Hosseini DK, Sarfraz K. Impact of liver cirrhosis on ST-elevation myocardial infarction related shock and interventional management, a nationwide analysis. World J Hepatol 2022; 14:766-777. [PMID: 35646267 PMCID: PMC9099112 DOI: 10.4254/wjh.v14.i4.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Critical care is rapidly evolving with significant innovations to decrease hospital stays and costs. To our knowledge, there is limited data on factors that affect the length of stay and hospital charges in cirrhotic patients who present with ST-elevation myocardial infarction-related cardiogenic shock (SRCS). AIM To identify the factors that increase inpatient mortality, length of stay, and total hospital charges in patients with liver cirrhosis (LC) compared to those without LC. METHODS This study includes all adults over 18 from the National Inpatient Sample 2017 database. The study consists of two groups of patients, including SRCS with LC and without LC. Inpatient mortality, length of stay, and total hospital charges are the primary outcomes between the two groups. We used STATA 16 to perform statistical analysis. The Pearson's chi-square test compares the categorical variables. Propensity-matched scoring with univariate and multivariate logistic regression generated the odds ratios for inpatient mortality, length of stay, and resource utilization. RESULTS This study includes a total of 35798453 weighted hospitalized patients from the 2017 National Inpatient Sample. The two groups are SRCS without LC (n = 758809) and SRCS with LC (n = 11920). The majority of patients were Caucasian in both groups (67% vs 72%). The mean number of patients insured with Medicare was lower in the LC group (60% vs 56%) compared to the other group, and those who had at least three or more comorbidities (53% vs 90%) were significantly higher in the LC group compared to the non-LC group. Inpatient mortality was also considerably higher in the LC group (28.7% vs 10.63%). Length of Stay (LOS) is longer in the LC group compared to the non-LC group (9 vs 5.6). Similarly, total hospital charges are higher in patients with LC ($147407.80 vs $113069.10, P ≤ 0.05). Inpatient mortality is lower in the early percutaneous coronary intervention (PCI) group (OR: 0.79 < 0.11), however, it is not statistically significant. Both early Impella (OR: 1.73 < 0.05) and early extracorporeal membrane oxygenation (ECMO) (OR: 3.10 P < 0.05) in the LC group were associated with increased mortality. Early PCI (-2.57 P < 0.05) and Impella (-3.25 P < 0.05) were also both associated with shorter LOS compared to those who did not. Early ECMO does not impact the LOS; however, it does increase total hospital charge (addition of $24717.85, P < 0.05). CONCLUSION LC is associated with a significantly increased inpatient mortality, length of stay, and total hospital charges in patients who develop SRCS. Rural and Non-teaching hospitals have significantly increased odds of extended hospital stays and higher adjusted total hospital charges. The Association of LC with worse outcomes outlines the essential need to monitor these patients closely and treat them early on with higher acuity care. Patients with early PCI had both shorter LOS and reduced inpatient mortality, while early Impella was associated with increased mortality and shorter LOS. Early ECMO is associated with increased mortality and higher total hospital charges. This finding should affect the decision to follow through with interventional management in this cohort of patients as it is associated with poor outcomes and immense resource utilization.
Collapse
Affiliation(s)
- Sophia Haroon Dar
- Internal Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, United States.
| | - Mehek Rahim
- Internal Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| | - Davood K Hosseini
- Internal Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| | - Khurram Sarfraz
- Internal Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| |
Collapse
|
6
|
Lin Y, Kong DX, Zhang YN. Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy? Front Oncol 2022; 12:852194. [PMID: 35463305 PMCID: PMC9023803 DOI: 10.3389/fonc.2022.852194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common malignancy globally, and many people with CRC suffer the fate of death. Due to the importance of CRC and its negative impact on communities, treatment strategies to control it or increase patient survival are being studied. Traditional therapies, including surgery and chemotherapy, have treated CRC patients. However, with the advancement of science, we are witnessing the emergence of novel therapeutic approaches such as immunotherapy for CRC treatment, which have had relatively satisfactory clinical outcomes. Evidence shows that gastrointestinal (GI) microbiota, including various bacterial species, viruses, and fungi, can affect various biological events, regulate the immune system, and even treat diseases like human malignancies. CRC has recently shown that the gut microorganism pattern can alter both antitumor and pro-tumor responses, as well as cancer immunotherapy. Of course, this is also true of traditional therapies because it has been revealed that gut microbiota can also reduce the side effects of chemotherapy. Therefore, this review summarized the effects of gut microbiota on CRC immunotherapy.
Collapse
Affiliation(s)
- Yan Lin
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| | - De-Xia Kong
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| |
Collapse
|
7
|
Wu Z, Chen Y, Zhu D, Zheng Y, Ali KB, Hou K. Advancement of Traditional Chinese Medicine in Regulation of Intestinal Flora: Mechanism-based Role in Disease Management. Recent Pat Anticancer Drug Discov 2022; 17:136-144. [PMID: 34587887 DOI: 10.2174/1574892816666210929164930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Intestinal microecology is the largest and most complex human microecology. The intestinal microflora plays an important role in human health. Imbalance of intestinal microflora contributes to the occurrence and development of many diseases. Recently, the treatment of human diseases by regulating intestinal microflora has become a research topic of interest. Traditional Chinese medicine considers the whole human body as the central concept in disease treatment strategies. It advocates maintaining the coordination and balance of the functions of various organs and systems of the human body, including the intestinal microflora. Traditional Chinese medicine improves the metabolism and immune function of the human body by regulating the intestinal microflora. The intestinal microflora could trigger pharmacological activity or reduce toxicity of drugs through regulating metabolism, which enables traditional Chinese medicine formulations to exert their best therapeutic effects. This review summarized the relationship between the intestinal microflora and digestive system, tumors, and other diseases. Furthermore, the role of traditional Chinese medicine in the treatment of tumors, and other diseases is discussed. The relationship among traditional Chinese medicine and the common intestinal microflora, pathogenesis of human diseases, and effective intervention methods were elaborated. In addition, we explored the research progress of traditional Chinese medicine in the treatment of various human diseases by regulating intestinal microflora to provide new treatment concepts. There is a close relationship between traditional Chinese medicine and the intestinal microflora. Traditional Chinese medicine formulations contribute to maintain the natural balance of the intestinal tract and the intestinal microflora to achieve treatment effects. This paper summarizes the mechanism of action of traditional Chinese medicine formulations in regulating the intestinal microflora in the prevention and treatment of various diseases. Furthermore, it summarizes information on the application of the interaction between traditional Chinese medicine preparations and the regulation of intestinal microflora in the treatment of common human diseases. Intestinal microflora plays a key role in traditional Chinese medicine in maintaining the natural balance of physiology and metabolism of human body. It will provide a theoretical basis for the traditional Chinese medicine preparations in the prevention and treatment of common human diseases, and simulate future research on this aspect.
Collapse
Affiliation(s)
- Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
- Graduate School, Shantou University Medical College, Shantou City, Guangdong, 515000, China
| | - Yongru Chen
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
| | - Yingmiao Zheng
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
| | - Khan Barkat Ali
- Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, Pakistan
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
- Graduate School, Shantou University Medical College, Shantou City, Guangdong, 515000, China
| |
Collapse
|
8
|
Zhou Y, Chen S, Gu W, Sun X, Wang L, Tang L. Sinomenine hydrochloride ameliorates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota composition whilst suppressing the activation of the NLRP3 inflammasome. Exp Ther Med 2021; 22:1287. [PMID: 34630642 PMCID: PMC8461516 DOI: 10.3892/etm.2021.10722] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Sinomenine is a pure alkaloid that can be isolated from the root of Sinomenium acutum and has been found to exert anti-inflammatory and immunosuppressive effects. The present study investigated the effects of sinomenine hydrochloride (SIN) on inflammation and the gut microbiota composition in the colon of mouse models of dextran sulfate sodium (DSS)-induced colitis. DSS-induced mice colitis was established by treating the mice with drinking water containing 3% (w/v) DSS for 7 days. The disease activity index of each mouse was calculated on a daily basis. All mice were sacrificed on day 11, then the weight of their spleen and length of their colons were measured. The histological analysis was measured by hematoxylin-eosin staining. Oral administration of SIN (100 mg/kg/day) attenuated the DSS-induced increases in the disease activity indices and spleen indices, DSS-induced shortening of the colon length and histological damage. In addition, reverse transcription-quantitative PCR data showed that SIN treatment effectively regulated the expression of inflammatory mediators, specifically by suppressing the expression of proinflammatory gene (TNF-α, IL-6 and inducible nitric oxide synthase) whilst increasing those associated with inhibiting inflammation (IL-10 and arginine 1). Gut microbiota analysis was conducted using 16S ribosomal DNA sequencing. The results revealed that SIN improved bacterial community homeostasis and diversity, which were damaged by DSS. Furthermore, western blotting showed that the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome was markedly suppressed by SIN treatment. In conclusion, these results indicated that SIN may ameliorate experimental colitis by modulating the gut microbiota composition and suppressing the activation of the NLRP3 inflammasome in mice. Overall, these findings suggested a broad protective effect of SIN in treating inflammatory gut diseases, including ulcerative colitis.
Collapse
Affiliation(s)
- Yan Zhou
- Central Laboratory, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Shuai Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Wenxian Gu
- Department of Pathology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Xiao Sun
- Central Laboratory, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Linxiao Wang
- Central Laboratory, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
9
|
Liu J, Hao W, He Z, Kwek E, Zhu H, Ma N, Ma KY, Chen ZY. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur J Nutr 2021; 60:2735-2746. [PMID: 33392758 DOI: 10.1007/s00394-020-02446-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Blueberry and cranberry are rich in anthocyanins. The present study was to investigate the effects of anthocyanin extracts from blueberry and cranberry on body weight and gut microbiota. METHODS C57BL/6 J Mice were divided into six groups (n = 9 each) fed one of six diets namely low-fat diet (LFD), high-fat diet (HFD), HFD with the addition of 1% blueberry extract (BL), 2% blueberry extract (BH), 1% cranberry extract (CL), and 2% cranberry extract (CH), respectively. RESULTS Feeding BL and BH diets significantly decreased body weight gain by 20-23%, total adipose tissue weight by 18-20%, and total liver lipids by 16-18% compared with feeding HFD. Feeding CH diet but not CL diet reduced the body weight by 27%, accompanied by a significant reduction of total plasma cholesterol by 25% and tumor necrosis factor alpha (TNF-α) by 38%. The metagenomic analysis showed that the supplementation of blueberry and cranberry anthocyanin extracts reduced plasma lipopolysaccharide concentration, accompanied by a reduction in the relative abundance of Rikenella and Rikenellaceae. Dietary supplementation of berry anthocyanin extracts promoted the growth of Lachnoclostridium, Roseburia, and Clostridium_innocuum_group in genus level, leading to a greater production of fecal short-chain fatty acids (SCFA). CONCLUSIONS It was concluded that both berry anthocyanins could manage the body weight and favorably modulate the gut microbiota at least in mice.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| |
Collapse
|
10
|
Local Immune Changes in Early Stages of Inflammation and Carcinogenesis Correlate with the Collagen Scaffold Changes of the Colon Mucosa. Cancers (Basel) 2021; 13:cancers13102463. [PMID: 34070183 PMCID: PMC8158480 DOI: 10.3390/cancers13102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Chronic colitis and colon cancer develop for alteration of the mucosa homeostatic regulation, also involving TGF-β1. Dextran sulphate sodium (DSS)-induced colitis and azoxymethane (AOM)-induced colorectal carcinogenesis animal models allow for the investigation of the pathological evolution steps. Since chronic inflammation is a common factor, we aimed to explore in rat models the colon mucosa immunological and structural conditions at one month after the end of the inductions, a transition period between acute effects and established lesions. We found, in comparison to healthy controls, downregulation of inflammatory cytokines (except IL-6) and of TGF-β1. At the same time, the collagen scaffold was significantly remodelled in both groups. We conclude that the pro-inflammatory cytokines, in front of a downregulated TGF-β1, sustained a smouldering inflammation with structural changes preparing the niche of both pathologies (ulcerative colitis with fibrosis; tumour). The collagen scaffold changes pointing to an unnoticed inflammation may be suggested as a possible pre-neoplastic condition marker. Abstract Continuous activation of the immune system inside a tissue can lead to remodelling of the tissue structure and creation of a specific microenvironment, such as during the tumour development. Chronic inflammation is a central player in stimulating changes that alter the tissue stroma and can lead to fibrotic evolution. In the colon mucosa, regulatory mechanisms, including TGF-β1, avoid damaging inflammation in front of the continuous challenge by the intestinal microbiome. Inducing either DSS colitis or AOM colorectal carcinogenesis in AVN-Wistar rats, we evaluated at one month after the end of each treatment whether immunological changes and remodelling of the collagen scaffold were already in development. At this time point, we found in both models a general downregulation of pro-inflammatory cytokines and even of TGF-β1, but not of IL-6. Moreover, we demonstrated by multi-photon microscopy the simultaneously presence of pro-fibrotic remodelling of the collagen scaffold, with measurable changes in comparison to the control mucosa. The scaffold was significantly modified depending on the type of induced stimulation. These results suggest that at one month after the end of the DSS or AOM inductions, a smouldering inflammation is present in both induced conditions, since the pro-inflammatory cytokines still exceed, in proportion, the local homeostatic regulation of which TGF-β1 is a part (inflammatory threshold). Such an inflammation appears sufficient to sustain remodelling of the collagen scaffold that may be taken as a possible pathological marker for revealing pre-neoplastic inflammation.
Collapse
|
11
|
Consumption of Select Dietary Emulsifiers Exacerbates the Development of Spontaneous Intestinal Adenoma. Int J Mol Sci 2021; 22:ijms22052602. [PMID: 33807577 PMCID: PMC7961571 DOI: 10.3390/ijms22052602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a well-characterized critical driver of gastrointestinal cancers. Previous findings have shown that intestinal low-grade inflammation can be promoted by the consumption of select dietary emulsifiers, ubiquitous component of processed foods which alter the composition and function of the gut microbiota. Using a model of colitis-associated cancer, we previously reported that consumption of the dietary emulsifiers carboxymethylcellulose or polysorbate-80 exacerbated colonic tumor development. Here, we investigate the impact of dietary emulsifiers consumption on cancer initiation and progression in a genetical model of intestinal adenomas. In APCmin mice, we observed that dietary emulsifiers consumption enhanced small-intestine tumor development in a way that appeared to be independent of chronic intestinal inflammation but rather associated with emulsifiers' impact on the proliferative status of the intestinal epithelium as well as on intestinal microbiota composition in both male and female mice. Overall, our findings further support the hypothesis that emulsifier consumption may be a new modifiable risk factor for colorectal cancer (CRC) and that alterations in host-microbiota interactions can favor gastrointestinal carcinogenesis in individuals with a genetical predisposition to such disorders.
Collapse
|
12
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
13
|
Cooney OD, Nagareddy PR, Murphy AJ, Lee MKS. Healthy Gut, Healthy Bones: Targeting the Gut Microbiome to Promote Bone Health. Front Endocrinol (Lausanne) 2021; 11:620466. [PMID: 33679604 PMCID: PMC7933548 DOI: 10.3389/fendo.2020.620466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, the use of probiotics to modify the gut microbiome has become a public spotlight in reducing the severity of a number of chronic diseases such as autoimmune disease, diabetes, cancer and cardiovascular disease. Recently, the gut microbiome has been shown to play an important role in regulating bone mass. Therefore, targeting the gut microbiome may be a potential alternative avenue for those with osteopenia or osteoporosis. In this mini-review, we take the opportunity to delve into how the different components of the gut work together and how the gut-related diseases impact on bone health.
Collapse
Affiliation(s)
- Olivia D. Cooney
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Prabhakar R. Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH, United States
| | - Andrew J. Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Man K. S. Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Tummala P, Rooke M, Dahlstrom JE, Takahashi S, Casarotto MG, Fernando N, Hughes MM, O'Neill LAJ, Board PG. Glutathione transferase Omega 1 confers protection against azoxymethane-induced colorectal tumour formation. Carcinogenesis 2021; 42:853-863. [PMID: 33564842 DOI: 10.1093/carcin/bgab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by multiple alterations in cytokine expression and is a risk factor for colon cancer. The Omega class glutathione transferase GSTO1-1 regulates the release of the pro-inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18) by deglutathionylating NEK7 in the NLRP3 inflammasome. When treated with azoxymethane and dextran sodium sulphate (AOM/DSS) as a model of IBD, Gsto1-/- mice were highly sensitive to colitis and showed a significant increase in the size and number of colon tumours compared with wild-type (WT) mice. Gsto1-/- mice treated with AOM/DSS had significantly lower serum IL-1β and IL-18 levels as well as significantly decreased interferon (IFN)-γ, decreased pSTAT1 and increased pSTAT3 levels in the distal colon compared with similarly treated WT mice. Histologically, AOM/DSS treated Gsto1-/- mice showed increased active chronic inflammation with macrophage infiltration, epithelial dysplasia and invasive adenocarcinoma compared with AOM/DSS treated WT mice. Thus, this study shows that GSTO1-1 regulates IL-1β and IL-18 activation and protects against colorectal cancer formation in the AOM/DSS model of IBD. The data suggest that while GSTO1-1 is a new target for the regulation of the NLRP3 inflammasome-associated cytokines IL-1β and IL-18 by small molecule inhibitors, there is a possibility that anti-inflammatory drugs targeting these cytokines may potentiate colon cancer in some situations.
Collapse
Affiliation(s)
- Padmaja Tummala
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Melissa Rooke
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Jane E Dahlstrom
- ACT Pathology, The Canberra Hospital and ANU Medical School, The College of Health and Medicine, Garran, ACT, Australia
| | - Shuhei Takahashi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marco G Casarotto
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Mark M Hughes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Philip G Board
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Choudhry H. The Microbiome and Its Implications in Cancer Immunotherapy. Molecules 2021; 26:E206. [PMID: 33401586 PMCID: PMC7795182 DOI: 10.3390/molecules26010206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is responsible for ~18 million deaths globally each year, representing a major cause of death. Several types of therapy strategies such as radiotherapy, chemotherapy and more recently immunotherapy, have been implemented in treating various types of cancer. Microbes have recently been found to be both directly and indirectly involved in cancer progression and regulation, and studies have provided novel and clear insights into the microbiome-mediated emergence of cancers. Scientists around the globe are striving hard to identify and characterize these microbes and the underlying mechanisms by which they promote or suppress various kinds of cancer. Microbes may influence immunotherapy by blocking various cell cycle checkpoints and the production of certain metabolites. Hence, there is an urgent need to better understand the role of these microbes in the promotion and suppression of cancer. The identification of microbes may help in the development of future diagnostic tools to cure cancers possibly associated with the microbiome. This review mainly focuses on various microbes and their association with different types of cancer, responses to immunotherapeutic modulation, physiological responses, and prebiotic and postbiotic effects.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
The Gut Microbiota and Inflammation: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207618. [PMID: 33086688 PMCID: PMC7589951 DOI: 10.3390/ijerph17207618] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field. Based on the current literature, it appears that as the gut microbiota composition differs between individuals and is contingent on a variety of factors like diet and genetics, some individuals may possess bacteria associated with pro-inflammatory effects whilst others may harbour those with anti-inflammatory effects. Recent technological advancements have allowed for better methods of characterising the gut microbiota. Further research to continually improve our understanding of the inflammatory pathways that interact with bacteria may elucidate reasons behind varying presentations of the same disease and varied responses to the same treatment in different individuals. Furthermore, it can inform clinical practice as anti-inflammatory microbes can be employed in probiotic therapies or used to identify suitable prebiotic therapies.
Collapse
|
17
|
Gao R, Shen Y, Shu W, Jin W, Bai F, Wang J, Zhang Y, El-Seedi H, Sun Q, Yuan L. Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food Funct 2020; 11:6987-6999. [PMID: 32701080 DOI: 10.1039/c9fo02772f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sturgeon muscle byproduct collected after caviar production is usually not fully utilized, and sometimes may be discarded, thus causing a lot of waste. Yet dietary protein hydrolysates, which may be derived from sturgeon muscle, have been reported to have versatile beneficial biological activities. Studying the biological activities of sturgeon muscle-derived hydrolysates holds much promise for adding value to sturgeon. The current study aimed to study the therapeutic anti-inflammatory effects of sturgeon muscle-derived hydrolysates and the underlying mechanisms. The administration of sturgeon hydrolysates (SH) significantly decreased the severity of DSS-induced damage, evidenced by increased body weight, colon length, and decreased disease activity index (DAI) and histological scores. SH also inhibited myeloperoxidase (MPO) activity and reduced the serum levels of IL-6, IL-1β, and TNF-α. Western blotting results revealed that SH suppressed DSS-induced activation of the NF-κB and MAPK pathways in the colon. Furthermore, SH partially restored the alteration of the gut microbiota in colitic mice. SH increased the Bacteroidetes/Firmicutes ratio and the relative abundance of Ruminococcaceae, Porphyromonadaceae, and Bacteroidetes S24-7, while decreased the abundance of potentially harmful bacteria Erysipelotrichaceae and Enterococcaceae. These results suggest that SH inhibited DSS-induced colitis by regulating the NF-κB and MAPK pathways and modulating microbiota composition.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|
19
|
Ganesan K, Jayachandran M, Xu B. Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. Int J Mol Sci 2020; 21:E3976. [PMID: 32492917 PMCID: PMC7312951 DOI: 10.3390/ijms21113976] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a fatal disease caused by the uncontrolled propagation and endurance of atypical colon cells. A person's lifestyle and eating pattern have significant impacts on the CRC in a positive and/or negative way. Diet-derived phytochemicals modulate the microbiome as well as targeting colon cancer stem cells (CSCs) that are found to offer significant protective effects against CRC, which were organized in an appropriate spot on the paper. All information on dietary phytochemicals, gut microbiome, CSCs, and their influence on CRC were accessed from the various databases and electronic search engines. The effectiveness of CRC can be reduced using various dietary phytochemicals or modulating microbiome that reduces or inverses the progression of a tumor as well as CSCs, which could be a promising and efficient way to reduce the burden of CRC. Phytochemicals with modulation of gut microbiome continue to be auspicious investigations in CRC through noticeable anti-tumorigenic effects and goals to CSCs, which provides new openings for cancer inhibition and treatment.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Muthukumaran Jayachandran
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| | - Baojun Xu
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| |
Collapse
|
20
|
The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers (Basel) 2020; 12:cancers12061406. [PMID: 32486066 PMCID: PMC7352899 DOI: 10.3390/cancers12061406] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the leading cause of cancer-related deaths. Recently, several studies have demonstrated that gut microbiota can alter CRC susceptibility and progression by modulating mechanisms such as inflammation and DNA damage, and by producing metabolites involved in tumor progression or suppression. Dysbiosis of gut microbiota has been observed in patients with CRC, with a decrease in commensal bacterial species (butyrate-producing bacteria) and an enrichment of detrimental bacterial populations (pro-inflammatory opportunistic pathogens). CRC is characterized by altered production of bacterial metabolites directly involved in cancer metabolism including short-chain fatty acids and polyamines. Emerging evidence suggests that diet has an important impact on the risk of CRC development. The intake of high-fiber diets and the supplementation of diet with polyunsaturated fatty acids, polyphenols and probiotics, which are known to regulate gut microbiota, could be not only a potential mechanism for the reduction of CRC risk in a primary prevention setting, but may also be important to enhance the response to cancer therapy when used as adjuvant to conventional treatment for CRC. Therefore, a personalized modulation of the pattern of gut microbiome by diet may be a promising approach to prevent the development and progression of CRC and to improve the efficacy of antitumoral therapy.
Collapse
|
21
|
Bartolini I, Risaliti M, Ringressi MN, Melli F, Nannini G, Amedei A, Muiesan P, Taddei A. Role of gut microbiota-immunity axis in patients undergoing surgery for colorectal cancer: Focus on short and long-term outcomes. World J Gastroenterol 2020; 26:2498-2513. [PMID: 32523307 PMCID: PMC7265137 DOI: 10.3748/wjg.v26.i20.2498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Human body is colonized by a huge amount of microorganisms mostly located in the gastrointestinal tract. These dynamic communities, the environment and their metabolites constitute the microbiota. Growing data suggests a causal role of a dysbiotic microbiota in several pathologies, such as metabolic and neurological disorders, immunity dysregulations and cancer, especially the well-studied colorectal cancer development. However, many were preclinical studies and a complete knowledge of the pathogenetic mechanisms in humans is still absent. The gut microbiota can exert direct or indirect effects in different phases of colorectal cancer genesis. For example, Fusobacterium nucleatum promotes cancer through cellular proliferation and some strains of Escherichia coli and Bacteroides fragilis produce genotoxins. However, dysbiosis may also cause a pro-inflammatory state and the stimulation of a Th17 response with IL-17 and IL-22 secretion that have a pro-oncogenic activity, as demonstrated for Fusobacterium nucleatum. Microbiota has a crucial role in several stages of postoperative course; dysbiosis in fact seems related with surgical site infections and Enterococcus faecalis (and other collagenase-producers microbes) are suggested as a cause of anastomotic leak. Consequently, unbalanced presence of some species, together with altered immune response may also have a prognostic role. Microbiota has also a substantial role in effectiveness of chemotherapy, chemoresistance and in the related side effects. In other words, a complete knowledge of the fine pathological mechanisms of gut microbiota may provide a wide range of new diagnostic tools other than therapeutic targets in the light of tailored medicine.
Collapse
Affiliation(s)
- Ilenia Bartolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Matteo Risaliti
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Maria Novella Ringressi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Filippo Melli
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Paolo Muiesan
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
22
|
Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI, Hansen AK. Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Sci Rep 2020; 10:7805. [PMID: 32385373 PMCID: PMC7211022 DOI: 10.1038/s41598-020-64703-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Transplantation of germ-free (GF) mice with microbiota from mice or humans stimulates the intestinal immune system in disparate ways. We transplanted a human microbiota into GF C57BL/6 mice and a murine C57BL/6 microbiota into GF C57BL/6 mice and Swiss-Webster (SW) mice. Mice were bred to produce an offspring generation. 56% of the Operational Taxonomic Units (OTUs) present in the human donor microbiota established in the recipient mice, whereas 81% of the C57BL/6 OTUs established in the recipient C57BL/6 and SW mice. Anti-inflammatory bacteria such as Faecalibacterium and Bifidobacterium from humans were not transferred to mice. Expression of immune-related intestinal genes was lower in human microbiota-mice and not different between parent and offspring generation. Expression of intestinal barrier-related genes was slightly higher in human microbiota-mice. Cytokines and chemokines measured in plasma were differentially present in human and mouse microbiota-mice. Minor differences in microbiota and gene expression were found between transplanted mice of different genetics. It is concluded that important immune-regulating bacteria are lost when transplanting microbiota from humans to C57BL/6 mice, and that the established human microbiota is a weak stimulator of the murine immune system. The results are important for study design considerations in microbiota transplantation studies involving immunological parameters.
Collapse
Affiliation(s)
- Randi Lundberg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark.
- Chr. Hansen, 2970, Hoersholm, Denmark.
| | - Martin F Toft
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark
- QM Diagnostics, 6534, AT Nijmegen, The Netherlands
| | - Stine B Metzdorff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martin I Bahl
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
23
|
Aceto GM, Catalano T, Curia MC. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1726309. [PMID: 32258104 PMCID: PMC7102468 DOI: 10.1155/2020/1726309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
24
|
IRAK family in inflammatory autoimmune diseases. Autoimmun Rev 2020; 19:102461. [DOI: 10.1016/j.autrev.2020.102461] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
|
25
|
Cai X, Han Y, Gu M, Song M, Wu X, Li Z, Li F, Goulette T, Xiao H. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct 2020; 10:6331-6341. [PMID: 31524900 DOI: 10.1039/c9fo01537j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased consumption of fruits may decrease the risk of chronic inflammatory diseases including inflammatory bowel disease (IBD). Gut microbiota dysbiosis plays an important etiological role in IBD. However, the mechanisms of action underlying the anti-inflammatory effects of dietary cranberry (Vaccinium macrocarpon) in the colon and its role on gut microbiota were unclear. In this study, we determined the anti-inflammatory efficacy of whole cranberry in a mouse model of dextran sodium sulfate (DSS)-induced colitis, as well as its effects on the structure of gut microbiota. The results showed that dietary cranberry significantly decreased the severity of colitis in DSS-treated mice, evidenced by increased colon length, and decreased disease activity and histologic score of colitis in DSS-treated mice compared to the positive control group (p < 0.05). Moreover, the colonic levels of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) were significantly reduced by cranberry supplementation (p < 0.05). Analysis of the relative abundance of fecal microbiota in phylum and genus levels revealed that DSS treatment significantly altered the microbial structure of fecal microbiota in mice. α diversity was significantly decreased in the DSS group, compared to the healthy control group. But, cranberry treatment significantly improved DSS-induced decline in α-diversity. Moreover, cranberry treatment partially reversed the change of gut microbiota in colitic mice by increasing the abundance of potential beneficial bacteria, for example, Lactobacillus and Bifidobacterium, and decreasing the abundance of potential harmful bacteria, such as Sutterella and Bilophila. Overall, our results for the first time demonstrated that modification of gut microbiota by dietary whole cranberry might contribute to its inhibitory effects against the development of colitis in DSS-treated mice.
Collapse
Affiliation(s)
- Xiaokun Cai
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01003, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The impact of gut microbiota manipulation with antibiotics on colon tumorigenesis in a murine model. PLoS One 2019; 14:e0226907. [PMID: 31860645 PMCID: PMC6924659 DOI: 10.1371/journal.pone.0226907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/30/2022] Open
Abstract
It has been suggested that manipulation of gut microbiota using antibiotics can inhibit colitis-associated colorectal cancer (CAC) in a mouse model. We investigated whether timing of gut microbial manipulation using antibiotics affects colon tumorigenesis in the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CAC model. CAC was induced in C57BL/6 mice by injection of 12.5 mg/kg AOM followed by three rounds of 1.7% DSS exposure. There were six groups based on timing of antibiotic administration. Colonic inflammation, proliferation, and tumorigenesis were evaluated after animal sacrifice. High-throughput sequencing of the mice feces was performed to characterize changes in gut microbiota. Full-time antibiotic treatment significantly decreased the number and size of tumors, histological scores, and expression of pro-inflammatory cytokines compared to the AOM/DSS group without antibiotic treatment. The early and late antibiotic groups, antibiotic administration from the first and second rounds of DSS to the end of the study, showed significantly lower histological scores and tumor burden. In contrast, the pretreatment antibiotic group, antibiotic administration from 3 weeks prior to AOM to the first round of DSS, did not exhibit decreased tumorigenesis. Principal coordinate analysis showed similar gut microbial community structures among the full-time, early, and late antibiotic groups, whereas other groups showed distinct gut microbial profiles. There was a positive correlation between number of tumors and number of operational taxonomic units. Colonic tumorigenesis was attenuated by antibiotic administration, except for that only prior to DSS administration, suggesting that gut microbial changes should be maintained throughout the entire period of inflammation to suppress tumorigenesis.
Collapse
|
27
|
Wan G, Xie M, Zhang X, Li M. Chang-wei-qing, a Chinese herbal formula, ameliorates colitis-associated tumour development via inhibiting NF-κB and STAT3 signalling pathway. PHARMACEUTICAL BIOLOGY 2019; 57:231-237. [PMID: 30905249 PMCID: PMC6442084 DOI: 10.1080/13880209.2019.1577465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Chang-wei-qing (CWQ) is a Chinese herbal recipe with clinical efficacy. However, the molecular mechanism underlying its recognized therapeutic benefits against colorectal cancer is still elusive. OBJECTIVE To investigate the potential beneficial effects of CWQ in drug-induced colitis-associated cancer (CAC) model and its mechanistic involvements in this disease. MATERIALS AND METHODS Colitis-associated cancer model was induced by azoxymethane (AOM) and dextran sulphate sodium (DSS). CWQ was administrated by gavage. Colon length and tumour size were determined after resection. The colitis was systematically scored. The microbiota and population of Faecalibacterium prausnitzii (F. prausnitzii) Hauduroy & Duncan was analysed by quantitative polymerase chain reaction (PCR). β-Glucuronidase, d-lactose and endotoxin were determined with commercially available kits. Pro-inflammatory cytokines were analysed in the colon tissues. Relative protein expressions were determined by Western blotting. RESULTS High concentration CWQ significantly restored the colon length, decreased tumour number and size (1.7 ± 0.6 vs. 2.8 ± 0.4 mm, p < 0.01) and reduced colitis score (11.8 ± 2.1 vs. 18.2 ± 2.3, p < 0.01). CWQ also suppressed expansion of F. prausnitzii population (0.029 ± 0.015% vs. 0.052 ± 0.019%, p < 0.01). CWQ greatly inhibited the activity of β-glucuronidase and leakage of d-lactose and endotoxin. Meanwhile, the pro-inflammatory cytokines were remarkably decreased in CAC mice in response to CWQ treatment. We further demonstrated that CWQ inhibited both NF-κB and STAT3 signalling. CONCLUSIONS We for the first time demonstrated the antitumour properties of CWQ in vivo via inhibiting NF-κB and STAT3 signalling.
Collapse
Affiliation(s)
- Guangsheng Wan
- Oncology Department of traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, Shanghai, China
| | - Manli Xie
- Oncology Department of traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, Shanghai, China
| | - Xinyan Zhang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
- CONTACT Xinyan Zhang The Obstetrics & Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai200081, China; Meiying Li Department of Ultrasound, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, No. 164 Lanxi Road, Putuo District, Shanghai200062, China
| | - Meiying Li
- Department of Ultrasound, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, Shanghai, China
- CONTACT Xinyan Zhang The Obstetrics & Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai200081, China; Meiying Li Department of Ultrasound, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, No. 164 Lanxi Road, Putuo District, Shanghai200062, China
| |
Collapse
|
28
|
Debes KP, Evdina NA, Laigaard A, Larsen JM, Zachariassen LF, Hansen CHF, Hansen AK. Betamethasone Treatment for Atopic Dermatitis in Gut Microbiota Transplanted Mice. Comp Med 2019; 70:6-15. [PMID: 31744592 DOI: 10.30802/aalas-cm-18-000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gut microbiota composition correlates strongly with essential disease parameters in the oxazolone-induced mouse model for atopic dermatitis. The phenotype of this model can be transferred to germ-free mice with a gut microbiota transplant to achieve high and low responding mice. Therefore, the production of high responding mice through gut microbiota transplantation may be seen as a tool to reduce group sizes or increase power in intervention studies by increasing effect size. We sought to determine whether high responding mice respond to a common treatment in the same way as low responding mice. We hypothesized that while high responding mice would exhibit a higher clinical score than low responding mice before treatment, the clinical parameters would be similar in both groups after betamethasone treatment. Dermatitis was induced with oxazolone in barrier bred Swiss Webster mice, and a high responding and a low responding donor was selected based upon clinical and pathologic scores, as confirmed by monitoring a range of ear tissue cytokines. Feces from these donors were transplanted to pregnant germ-free Swiss Webster dams, and subsequently to their offspring. Although the overall effect of betamethasone on the clinical dermatitis score and ear thickness was rather small, the high responding recipients had significantly higher clinical dermatitis score and ear thickness than the low responding recipients before treatment, and these differences vanished after betamethasone treatment. We conclude that high responding recipients can be treated to a clinical level comparable with the low responding recipients.
Collapse
Affiliation(s)
- Karina P Debes
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark;,
| | - Nathalie A Evdina
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ann Laigaard
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Julie M Larsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Line F Zachariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Camilla H F Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Axel K Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
29
|
Hansen AK, Nielsen DS, Krych L, Hansen CHF. Bacterial species to be considered in quality assurance of mice and rats. Lab Anim 2019; 53:281-291. [PMID: 31096877 DOI: 10.1177/0023677219834324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria are relevant in rodent quality assurance programmes if (a) the animals are at risk and (b) presence in the animals makes a difference for animal research or welfare, for example because the agent regulates clinical disease progression or impacts its host in other ways. Furthermore, zoonoses are relevant. Some bacterial species internationally recommended for the health monitoring of rats and mice, that is, Citrobacter rodentium, Corynebacterium kutscheri, Salmonella spp. and Streptococcus pneumonia, are no longer found in either laboratory or pet shop rats or mice, while there is still a real risk of impact on animal research and welfare from Filobacterium rodentium, Clostridium piliforme, Mycoplasma spp., Helicobacter spp. and Rodentibacter spp., while Streptobacillus moniliformis may be considered a serious zoonotic agent in spite of a very low risk. Modern molecular techniques have revealed that there may, depending on the research type, be equally good reasons for knowing the colony status of some commensal bacteria that are essential for the induction of specific rodent models, such as Alistipes spp., Akkermansia muciniphila, Bifidobacterium spp., Bacteroides fragilis, Bacteroides vulgatus, Faecalibacterium prausnitzii, Prevotella copri and segmented filamentous bacteria. In future, research groups should therefore consider the presence or absence of a short list of defined bacterial species relevant for their models. This list can be tested by cost-effective sequencing or even a simple multiple polymerase chain reaction approach, which is likely to be cost-neutral compared to more traditional screening methods.
Collapse
Affiliation(s)
- Axel Kornerup Hansen
- 1 Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Lukasz Krych
- 2 Department of Food Science, University of Copenhagen, Denmark
| | | |
Collapse
|
30
|
Role of Microbiome in Modulating Immune Responses in Cancer. Mediators Inflamm 2019; 2019:4107917. [PMID: 31308831 PMCID: PMC6594313 DOI: 10.1155/2019/4107917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
The complex interactions between genes and the environment play important roles in disease susceptibility and progression. One of the chronic diseases that is affected by this gene-environment interplay is cancer. However, our knowledge about these environmental factors remains limited. The microorganisms that inhabit our bodies have recently been acknowledged to play a crucial role as an environmental factor, to which we are constantly exposed. Studies have revealed significant differences in the relative abundance of certain microbes in cancer cases compared with controls. It has been reported that changes in the composition of normal gut microbiota can increase/decrease cancer susceptibility and progression by diverse mechanisms including, but not limited to, inflammation—a well-known hallmark of carcinogenesis. The microbiota can also affect the response to various treatments including immunotherapy. The microbiome-immune-cancer axis will continue to provide insight into the basic mechanisms of carcinogenesis. In this review, we provide a brief understanding of the mechanisms by which microbiota affects cancer development, progression, and treatment.
Collapse
|
31
|
Ibrahim A, Hugerth LW, Hases L, Saxena A, Seifert M, Thomas Q, Gustafsson JÅ, Engstrand L, Williams C. Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity. Int J Cancer 2019; 144:3086-3098. [PMID: 30515752 PMCID: PMC6519213 DOI: 10.1002/ijc.32037] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Chronic inflammation of the colon (colitis) is a risk factor for colorectal cancer (CRC). Hormone‐replacement therapy reduces CRC incidences, and the estrogen receptor beta (ERβ/ESR2) has been implicated in this protection. Gut microbiota is altered in both colitis and CRC and may influence the severity of both. Here we test the hypothesis that intestinal ERβ impacts the gut microbiota. Mice with and without intestine‐specific deletion of ERβ (ERβKOVil) were generated using the Cre‐LoxP system. Colitis and CRC were induced with a single intraperitoneal injection of azoxymethane (AOM) followed by administration of three cycles of dextran sulfate sodium (DSS) in drinking water. The microbiota population were characterized by high‐throughput 16S rRNA gene sequencing of DNA extracted from fecal samples (N = 39). Differences in the microbiota due to AOM/DSS and absence of ERβ were identified through bioinformatic analyses of the 16S‐Seq data, and the distribution of bacterial species was corroborated using qPCR. We demonstrate that colitis‐induced CRC reduced the gut microbiota diversity and that loss of ERβ enhanced this process. Further, the Bacteroidetes genus Prevotellaceae_UCG_001 was overrepresented in AOM/DSS mice compared to untreated controls (3.5‐fold, p = 0.004), and this was enhanced in females and in ERβKOVil mice. Overall, AOM/DSS enriched for microbiota impacting immune system diseases and metabolic functions, and lack of ERβ in combination with AOM/DSS enriched for microbiota impacting carbohydrate metabolism and cell motility, while reducing those impacting the endocrine system. Our data support that intestinal ERβ contributes to a more favorable microbiome that could attenuate CRC development. What's new? Chronic inflammation of the colon is a risk factor for colorectal cancer (CRC). Hormone‐replacement therapy reduces CRC incidence, and the estrogen receptor beta (ERβ/ESR2) has been implicated in this protection. The microbiota of the gut is altered in both colitis and CRC, but whether intestinal ERβ affects gut microbiota remains to be investigated. Here, the authors demonstrate, in a mouse model, that colitis‐induced CRC reduces the gut microbiota diversity and that loss of ERβ enhances this process. The findings could enable novel therapeutic or preventive approaches toward a more favorable microbiome in inflammatory bowel disease and/or colon cancer development.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Luisa W Hugerth
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Linnea Hases
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Ashish Saxena
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA
| | - Maike Seifert
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Quentin Thomas
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA
| | - Lars Engstrand
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
32
|
Hrncir T, Hrncirova L, Kverka M, Tlaskalova-Hogenova H. The role of gut microbiota in intestinal and liver diseases. Lab Anim 2018; 53:271-280. [PMID: 30580671 DOI: 10.1177/0023677218818605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The world-wide incidence of many immune-mediated and metabolic diseases, including those of the intestines and liver, is steadily increasing. Gut microbiota plays a central role in the pathogenesis of these diseases as it mediates environmental changes to the intestinal immune system. Various environmental factors including diet, food additives and medication also trigger the compositional and functional alterations of microbiota, that is, dysbiosis, and this dysbiosis is closely associated with many chronic inflammatory diseases. However, the causal relationship remains unclear for the majority of these diseases. In this review, we discuss essential epidemiological data, known pathogenetic factors including those of genetic and environmental nature, while mainly focusing on the role of gut microbiota in the development of selected intestinal and liver diseases. Using specific examples, we also briefly describe some of the most widely-used animal models including gnotobiotic models and their contribution to the research of pathogenetic mechanisms of the host-microbiota relationship.
Collapse
Affiliation(s)
- Tomas Hrncir
- 1 Institute of Microbiology, The Czech Academy of Sciences, Czech Republic
| | - Lucia Hrncirova
- 1 Institute of Microbiology, The Czech Academy of Sciences, Czech Republic.,2 Faculty of Medicine, Charles University, Czech Republic
| | - Miloslav Kverka
- 1 Institute of Microbiology, The Czech Academy of Sciences, Czech Republic
| | | |
Collapse
|
33
|
Raza MH, Gul K, Arshad A, Riaz N, Waheed U, Rauf A, Aldakheel F, Alduraywish S, Rehman MU, Abdullah M, Arshad M. Microbiota in cancer development and treatment. J Cancer Res Clin Oncol 2018; 145:49-63. [PMID: 30542789 DOI: 10.1007/s00432-018-2816-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Human microbiota comprises of a variety of organisms ranging from bacterial species to viruses, fungi, and protozoa which are present on the epidermal and mucosal barriers of the body. It plays a key role in health and survival of the host by regulation of the systemic functions. Its apparent functions in modulation of the host immune system, inducing carcinogenesis and regulation of the response to the cancer therapy through a variety of mechanisms such as bacterial dysbiosis, production of genotoxins, pathobionts, and disruption of the host metabolism are increasingly becoming evident. METHODS Different electronic databases such as PubMed, Google Scholar, and Web of Science were searched for relevant literature which has been reviewed in this article. RESULTS Characterization of the microbiome particularly gut microbiota, understanding of the host-microbiota interactions, and its potential for therapeutic exploitation are necessary for the development of novel anticancer therapeutic strategies with better efficacy and lowered off-target side effects. CONCLUSION In this review, the role of microbiota is explained in carcinogenesis, mechanisms of microbiota-mediated carcinogenesis, and role of gut microbiota in modulation of cancer therapy.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Kamni Gul
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveeda Riaz
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Abdul Rauf
- Department of Zoology, Azad Jammu and Kashmir University, Muzaffarabad, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maqbool Ur Rehman
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
34
|
Reverse phenotype transfer via fecal microbial transplantation in inflammatory bowel disease. Med Hypotheses 2018; 122:41-44. [PMID: 30593419 DOI: 10.1016/j.mehy.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by a disbalance in the composition of intestinal microbiota. It is not clear whether such dysbiosis is a cause or a consequence of a disease state. Fecal microbiota transplantation (FMT) from a healthy donor to a patient or diseased animal is a valuable tool for targeted modification of microbiome leading to therapeutic response. Positive effect has been shown in therapy of a number of gastrointestinal as well as non-gastrointestinal diseases. In addition, FMT has been successfully used to transfer the diseased phenotype form a donor with the disease to a healthy recipient. However, targeted modification of the microbiome before the onset of colitis has not been shown previously. Based on our preliminary results, we propose the hypothesis of so called reverse phenotype transfer in IBD. This term describes the phenomenon, in which the transplantation of gut microbiota from a donor more sensitive to IBD to a healthy recipient leads to resistance of the recipient to IBD and vice versa. Mice that received FMT from donors with severe colitis have shown improved colitis score compared with mice that received FMT from donors more resistant to development of colitis. Such reverse phenotype transfer has broad implications, especially in terms of preventive medicine. However, detailed mechanisms need to be elucidated to conclude the validity of the phenomenon.
Collapse
|
35
|
The Dynamic Changes of Gut Microbiota in Muc2 Deficient Mice. Int J Mol Sci 2018; 19:ijms19092809. [PMID: 30231491 PMCID: PMC6164417 DOI: 10.3390/ijms19092809] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022] Open
Abstract
Gut dysbiosis is associated with colitis-associated colorectal carcinogenesis, and the genetic deficiency of the Muc2 gene causes spontaneous development of colitis and colorectal cancer. Whether there are changes of gut microbiota and a linkage between the changes of microbiota and intestinal pathology in Muc2-/- mice are unclear. Muc2-/- and Muc2+/+ mice were generated by backcrossing from Muc2+/- mice, and the fecal samples were collected at different dates (48th, 98th, 118th, 138th, and 178th day). Gut microbiota were analyzed by high-throughput sequencing with the universal 16S rRNA primers (V3⁻V5 region). All mice were sacrificed at day 178 to collect colonic tissue and epithelial cells for the analysis of histopathology and inflammatory cytokines. On the 178th day, Muc2-/- mice developed colorectal chronic colitis, hyperplasia, adenomas and adenocarcinomas, and inflammatory cytokines (e.g., cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin 1 β (IL-1β), i-kappa-B-kinase β (IKKβ)) were significantly increased in colonic epithelial cells of Muc2-/- mice. In general, structural segregation of gut microbiota was observed throughout the experimental time points between the Muc2-/- and Muc2+/+ mice. Impressively, in Muc2-/- mice, Alpha diversities reflected by Shannon and Chao indexes were higher, the phylum of Firmicutes was enriched and Bacteroidetes was decreased, and Desulfovibrio, Escherichia, Akkermansia, Turicibacter, and Erysipelotrichaceae were significantly increased, but Lactobacilli and Lachnospiraceae were significantly decreased. Moreover, the abundance of Ruminococcaceae and butyrate-producing bacteria was significantly higher in the Muc2-/- mice. There were significant differences of gut microbiota between Muc2-/- and Muc2+/+ mice. The dynamic changes of microbiota might contribute to the development of colitis and colitis-associated colorectal carcinogenesis. Therefore, this study revealed specific functional bacteria in the development of colitis and colitis-associated colorectal carcinogenesis, which will benefit the development of preventive and therapeutic strategies for chronic inflammation and its malignant transformation.
Collapse
|
36
|
Andrews MC, Reuben A, Gopalakrishnan V, Wargo JA. Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Front Immunol 2018; 9:946. [PMID: 29780391 PMCID: PMC5945998 DOI: 10.3389/fimmu.2018.00946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer research has seen unprecedented advances over the past several years, with tremendous insights gained into mechanisms of response and resistance to cancer therapy. Central to this has been our understanding of crosstalk between the tumor and the microenvironment, with the recognition that complex interactions exist between tumor cells, stromal cells, overall host immunity, and the environment surrounding the host. This is perhaps best exemplified in cancer immunotherapy, where numerous studies across cancer types have illuminated our understanding of the genomic and immune factors that shape responses to therapy. In addition to their individual contributions, it is now clear that there is a complex interplay between genomic/epigenomic alterations and tumor immune responses that impact cellular plasticity and therapeutic responses. In addition to this, it is also now apparent that significant heterogeneity exists within tumors-both at the level of genomic mutations as well as tumor immune responses-thus contributing to heterogeneous clinical responses. Beyond the tumor microenvironment, overall host immunity plays a major role in mediating clinical responses. The gut microbiome plays a central role, with recent evidence revealing that the gut microbiome influences the overall immune set-point, through diverse effects on local and systemic inflammatory processes. Indeed, quantifiable differences in the gut microbiome have been associated with disease and treatment outcomes in patients and pre-clinical models, though precise mechanisms of microbiome-immune interactions are yet to be elucidated. Complexities are discussed herein, with a discussion of each of these variables as they relate to treatment response.
Collapse
Affiliation(s)
- Miles C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
37
|
Bailey MA, Holscher HD. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Adv Nutr 2018; 9:193-206. [PMID: 29767701 PMCID: PMC5952955 DOI: 10.1093/advances/nmy013] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet pattern is increasingly associated with improved metabolic health. Two mechanisms by which consuming a Mediterranean diet pattern may contribute to improved metabolic health are modulation of the gastrointestinal (GI) microbiota and reduction of metabolic endotoxemia. Metabolic endotoxemia, defined as a 2- to 3-fold increase in circulating levels of bacterial endotoxin, has been proposed as a cause of inflammation during metabolic dysfunction. As the largest source of endotoxins in the human body, the GI microbiota represents a crucial area for research on strategies for reducing endotoxemia. Diets high in saturated fat and low in fiber contribute to metabolic endotoxemia through several mechanisms, including changes in the GI microbiome and bacterial fermentation end products, intestinal physiology and barrier function, and enterohepatic circulation of bile acids. Thus, the Mediterranean diet pattern, rich in unsaturated fats and fiber, may be one dietary strategy to reduce metabolic endotoxemia. Preclinical studies have demonstrated the differential effects of dietary saturated and unsaturated fats on the microbiota and metabolic health, but human studies are lacking. The role of dietary fiber and the GI microbiome in metabolic endotoxemia is underinvestigated. Clinical research on the effects of different types of dietary fat and fiber on the GI microbiota and GI and systemic inflammation is necessary to determine efficacious dietary strategies for reducing metabolic endotoxemia, inflammation, and subsequent metabolic disease.
Collapse
Affiliation(s)
| | - Hannah D Holscher
- Division of Nutritional Sciences
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
38
|
Rahtes A, Geng S, Lee C, Li L. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation. J Leukoc Biol 2018; 104:535-541. [PMID: 29688584 DOI: 10.1002/jlb.3ma0218-070r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a host response to infection or damage and is vital for clearing pathogens and host debris. When this resolution fails to occur, chronic inflammation ensues. Chronic inflammation is typically characterized as a low-grade, persistent inflammatory process that can last for months or even years. This differs from acute inflammation, which is typically a fast, robust response to a stimulus followed by resolution with return to homeostasis. Inflammation resolution occurs through a variety of cellular processes and signaling components that act as "brakes" to keep inflammation in check. In cases of chronic inflammation, these "brakes" are often dysfunctional. Due to its prevalent association with chronic diseases, there is growing interest in characterizing these negative regulators and their cellular effects in innate leukocytes. In this review, we aim to describe key cellular and molecular homeostatic regulators of innate leukocytes, with particular attention to the emerging regulatory processes of autophagy and lysosomal fusion during inflammation resolution.
Collapse
Affiliation(s)
- Allison Rahtes
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Christina Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
39
|
Klimesova K, Jiraskova Zakostelska Z, Tlaskalova-Hogenova H. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis. Front Microbiol 2018; 9:774. [PMID: 29731748 PMCID: PMC5920026 DOI: 10.3389/fmicb.2018.00774] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
Host's physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition - dysbiosis - and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.
Collapse
Affiliation(s)
- Klara Klimesova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, Prague, Czechia
| | | | | |
Collapse
|
40
|
Llewellyn SR, Britton GJ, Contijoch EJ, Vennaro OH, Mortha A, Colombel JF, Grinspan A, Clemente JC, Merad M, Faith JJ. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology 2018; 154:1037-1046.e2. [PMID: 29174952 PMCID: PMC5847454 DOI: 10.1053/j.gastro.2017.11.030] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. METHODS C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. RESULTS Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient could be offset by changes in another. CONCLUSIONS In an analysis of the effects of different dietary components and the gut microbiota on mice with and without DSS-induced colitis, we found complex mixtures of nutrients affect intestinal permeability, gut microbial density, and development of intestinal inflammation.
Collapse
Affiliation(s)
- Sean R. Llewellyn
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Graham J. Britton
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Eduardo J. Contijoch
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Olivia H. Vennaro
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Arthur Mortha
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ari Grinspan
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jose C. Clemente
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Miriam Merad
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jeremiah J. Faith
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
41
|
Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, Qian X, Zhong G. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 2018; 7:85318-85331. [PMID: 27863401 PMCID: PMC5356739 DOI: 10.18632/oncotarget.13347] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
Imbalances in intestinal bacteria correlate with colitis-associated colorectal cancer (CAC). Traditional Chinese medicines have been used to adjust the gut microbiota, and isoliquiritigenin (ISL), a flavonoid extracted from licorice, has shown antitumor efficacy. In this study, the effects of ISL on CAC development and the gut microbiota were evaluated using an azoxymethane and dextran sulphate sodium (AOM/DSS)-induced mouse model of CAC (CACM). Histopathological analysis suggested that ISL reduced tumor incidence in vivo. Moreover, high-throughput sequencing and terminal restriction fragment length polymorphism (T-RFLP) studies of the bacterial 16S rRNA gene revealed that the structure of the gut microbial community shifted significantly following AOM/DSS treatment, and that effect was alleviated by treatment with high-dose ISL (150 mg/kg). Compared to the microbiota in the control mice (CK), the levels of Bacteroidetes decreased and the levels of Firmicutes increased during CAC development. ISL reversed the imbalance at the phylum level and altered the familial constituents of the gut microbiota. Specifically, the abundance of Helicobacteraceae increased after treatment with high-dose ISL, while the abundance of Lachnospiraceae and Rikenellaceae decreased. At the genus level, ISL reduced the abundance of opportunistic pathogens (Escherichia and Enterococcus), and increased the levels of probiotics, particularly butyrate-producing bacteria (Butyricicoccus, Clostridium, and Ruminococcus). Thus, ISL protects mice from AOM/DSS-induced CAC, and ISL and the gut microbiota may have synergistic anti-cancer effects.
Collapse
Affiliation(s)
- Minna Wu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yaqi Wu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Baoguo Deng
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinsong Li
- Department of Pathology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Haiying Cao
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Qu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinlai Qian
- Department of Pathology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Genshen Zhong
- Laboratory of Cancer Biotherapy, Institute of Neurology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
42
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018. [PMID: 29474889 DOI: 10.1016/j.gpb.2017.06.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
43
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:33-49. [PMID: 29474889 PMCID: PMC6000254 DOI: 10.1016/j.gpb.2017.06.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Pan P, Oshima K, Huang YW, Yearsley M, Zhang J, Arnold M, Yu J, Wang LS. Gut bacteria are required for the benefits of black raspberries in Apc Min/+ mice. JOURNAL OF BERRY RESEARCH 2018; 8:239-249. [PMID: 30636993 PMCID: PMC6326590 DOI: 10.3233/jbr-180337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND The gut microbiota plays a pivotal role in the development of inflammatory bowel disease and colorectal cancer. OBJECTIVE To determine whether the gut microbiota is required for the chemoprotective effects of black raspberries (BRBs) in Apc Min/+ mice. METHODS Apc Min/+ mice were given (a) a control diet for 8 weeks, or (b) the control diet for 4 weeks and then a 5% BRB diet for additional 4 weeks, or (c) the control diet and antibiotics for 4 weeks followed by the 5% BRB diet and antibiotics for the next 4 weeks. At the end of the study, all the mice were euthanized, and colonic and intestinal polyps were counted. mRNA expression levels of TLR4, NF-κB1, and COX2 were determined in colon and small intestine of these Apc Min/+ mice by quantitative real-time PCR. RESULTS 5% BRBs significantly suppressed intestinal and colonic polyp development in the Apc Min/+ mice, whereas antibiotics significantly abolished BRBs' chemoprotective effects. BRBs decreased mRNA levels of TLR4, NF-κB1, and COX2 in colon, whereas significantly enhanced mRNA levels of TLR4 and NF-κB1 were observed in small intestine of BRB-treated Apc Min/+ mice fed antibiotics. CONCLUSIONS The gut microbiota is required for BRBs' chemoprotection against polyp development in Apc Min/+ mice.
Collapse
Affiliation(s)
- Pan Pan
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Jianying Zhang
- Department of Science of Informatics, Division of Biostatistics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Mark Arnold
- Department of Surgery, The Ohio State University, OH, USA
| | - Jianhua Yu
- Hematologic Malignancies and Stem Cell Transplantation Institute, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Li-Shu Wang
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding author: Li-Shu Wang, Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, RM C4930, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA. Tel.: +1 414 955 2827; Fax: +1 414 955 6059; .
| |
Collapse
|
45
|
Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol 2017; 32:43-53. [PMID: 28982615 DOI: 10.1016/j.smim.2017.09.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is linked to the development of multiple cancers, including those of the colon. Inflammation in the gut induces carcinogenic mutagenesis and promotes colorectal cancer initiation. Additionally, myeloid and lymphoid cells infiltrate established tumors and propagate so called "tumor-elicited inflammation", which in turn favors cancer development by supporting the survival and proliferation of cancer cells. In addition to the interaction between cancer cells and tumor infiltrating immune cells, the gut also hosts trillions of bacteria and other microbes, whose roles in colorectal inflammation and cancer have only been appreciated in the past decade or so. Commensal and pathobiotic bacteria promote colorectal cancer development by exploiting tumor surface barrier defects following cancer initiation, by invading normal colonic tissue and inducing local inflammation, and by generating genotoxicity against colonic epithelial cells to accelerate their oncogenic transformation. On the other hand, a balanced population of microbiota is important for the prevention of colorectal cancer due to their roles in providing certain bacterial metabolites and inhibiting intestinal inflammation. In this review we summarize our current knowledge regarding the link between microbiota, inflammation, and colorectal cancer, and aim to delineate the mechanisms by which gut microbiome and inflammatory cytokines regulate colorectal tumorigenesis.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States
| | - Elise Pitmon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States.
| |
Collapse
|
46
|
Probiotic species in the modulation of the anticancer immune response. Semin Cancer Biol 2017; 46:182-190. [PMID: 28844794 DOI: 10.1016/j.semcancer.2017.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/29/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Mounting evidences are supporting a key role of distinct gut bacteria in the occurrence and progression of intestinal and extra-intestinal tumors. More importantly, it has been recently demonstrated that some gut bacteria strains synergize with largely-used anticancer drugs as alkylating or immune checkpoint blockade agents thus optimizing the immune response against multiple solid cancers. However, the exact role played by each gut bacterium in cancer occurrence and response to therapy is still in its infancy; and the current knowledge, although exciting, still needs to be transferred from mice models to human beings. Here, the advances in the understanding of how gut microbes and immune response shape each other in a cancer context are reviewed together with the implications of these finding for future antitumor therapy. Herein, the most important bacteria strains, able to boost the immune response triggered by anticancer drugs, together with their mechanism of action, whenever known, have been surveyed. It is reasonable to think that cocktails of beneficial bacteria together with an ad hoc diet or food supplements may be used as novel anticancer adjuvant agents in future therapeutic regimens.
Collapse
|
47
|
Xu D, Zhang H, Wang X, Chen Y. Expression of IRAK‑3 is associated with colitis‑associated tumorigenesis in mice. Mol Med Rep 2017; 16:3415-3420. [PMID: 28713897 DOI: 10.3892/mmr.2017.6958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Interleukin‑1 receptor‑associated kinase‑3 (IRAK‑3) is a negative regulator in Toll‑like receptor (TLR) pathways. The present study investigated the importance of IRAK‑3 in a mouse model of chemically‑induced colitis‑associated tumorigenesis. The colitis‑associated tumorigenesis was induced in ICR mice by the administration of 1,2‑dimethyl hydrazine (DMH) and dextran sodium sulfate (DSS), termed the DMH + DSS group. In the DSS group, mice were administered with DSS; in the DMH group, mice were injected with DMH; in the control group, mice were injected with physiological saline. The clinical signs were examined for 20 weeks; tissue samples were analyzed at week 4, 9, 13 and 20. At week 20, the levels of IRAK‑3 were analyzed using immunohistochemistry, western blot analysis, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis, and methylation‑specific PCR. At week 20, the DMH + DSS group mice exhibited a decrease in total body weight and had developed canalicular adenoma or adenocarcinoma. The mice in the DSS group and DMH group presented with significant colitis at week 20. The mice with colitis‑associated tumorigenesis were found to have decreased levels of IRAK‑3, compared with the mice in the other groups, as evidenced by the results of the immunohistochemistry (P=0.002), RT‑qPCR analysis (P<0.001) and western blot analysis (P<0.001). IRAK‑3 methylation was observed in all experimental groups. Taken together, DMH + DSS induction in colitis led to increased inflammation and risk of tumorigenesis. IRAK‑3 methylation may be a predictive factor in the transition from colitis to cancer.
Collapse
Affiliation(s)
- Dingting Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Hanyun Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoying Wang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Chen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
48
|
Seidel DV, Azcárate-Peril MA, Chapkin RS, Turner ND. Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol 2017; 46:191-204. [PMID: 28676459 DOI: 10.1016/j.semcancer.2017.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022]
Abstract
Colon cancer is a multifactorial disease associated with a variety of lifestyle factors. Alterations in the gut microbiota and the intestinal metabolome are noted during colon carcinogenesis, implicating them as critical contributors or results of the disease process. Diet is a known determinant of health, and as a modifier of the gut microbiota and its metabolism, a critical element in maintenance of intestinal health. This review summarizes recent evidence demonstrating the role and responses of the intestinal microbiota during colon tumorigenesis and the ability of dietary bioactive compounds and probiotics to impact colon health from the intestinal lumen to the epithelium and systemically. We first describe changes to the intestinal microbiome, metabolome, and epithelium associated with colon carcinogenesis. This is followed by a discussion of recent evidence indicating how specific classes of dietary bioactives, prebiotics, or probiotics affect colon carcinogenesis. Lastly, we briefly address the prospects of using multiple 'omics' techniques to integrate the effects of diet, host, and microbiota on colon tumorigenesis with the goal of more fully appreciating the interconnectedness of these systems and thus, how these approaches can be used to advance personalized nutrition strategies and nutrition research.
Collapse
Affiliation(s)
- Derek V Seidel
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| | - M Andrea Azcárate-Peril
- Department of Medicine GI Division, University of North Carolina, Chapel Hill, NC 27599-7555, USA.
| | - Robert S Chapkin
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| | - Nancy D Turner
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| |
Collapse
|
49
|
Borges-Canha M, Portela-Cidade JP, Dinis-Ribeiro M, Leite-Moreira AF, Pimentel-Nunes P. Role of colonic microbiota in colorectal carcinogenesis: a systematic review. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 107:659-71. [PMID: 26541655 DOI: 10.17235/reed.2015.3830/2015] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM The human colonic mucosa is populated by a wide range of microorganisms, usually in a symbiotic relation with the host. Sometimes this balance is lost and a state of dysbiosis arises, exposing the colon to different metabolic and inflammatory stimuli (according to the microbiota's changing profile). Recent findings lead to hypothesize that this unbalance may create a subclinical pro-inflammatory state that increases DNA mutations and, therefore, colorectal carcinogenesis. In this article we aim to systematically review the scientific evidence regarding colonic microbiota and its role in colorectal carcinogenesis. METHODS Systematic review of PubMed searching results for original articles studying microbiota and colorectal cancer until November 2014. RESULTS Thirty-one original articles studied the role of colon microbiota in colorectal carcinoma including both human and animal studies. Different and heterogeneous methods were used and different bacteria were considered. Nevertheless, some bacteria are consistently augmented (such as Fusobacteria, Alistipes, Porphyromonadaceae, Coriobacteridae, Staphylococcaceae, Akkermansia spp. and Methanobacteriales), while other are constantly diminished in colorectal cancer (such as Bifidobacterium, Lactobacillus, Ruminococcus, Faecalibacterium spp., Roseburia, and Treponema). Moreover, bacteria metabolites amino acids are increased and butyrate is decreased throughout colonic carcinogenesis. CONCLUSION Conclusive evidence shows that colorectal carcinogenesis is associated with microbial dysbiosis. This information may be used to create new prophylactic, diagnostic and therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Marta Borges-Canha
- Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | | | | | | |
Collapse
|
50
|
Rothschild DE, Zhang Y, Diao N, Lee CK, Chen K, Caswell CC, Slade DJ, Helm RF, LeRoith T, Li L, Allen IC. Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-M. EBioMedicine 2016; 15:36-47. [PMID: 27939424 PMCID: PMC5233813 DOI: 10.1016/j.ebiom.2016.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022] Open
Abstract
Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD) and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m-/- mice to elucidate the role of IRAK-M in the modulation of gastrointestinal immune system homeostasis. In human patients, IRAK-M expression is up-regulated during IBD and colorectal cancer. Further functional studies in mice revealed that Irak-m-/- animals are protected against colitis and colitis associated tumorigenesis. Mechanistically, our data revealed that the gastrointestinal immune system of Irak-m-/- mice is highly efficient at eliminating microbial translocation following epithelial barrier damage. This attenuation of pathogenesis is associated with expanded areas of gastrointestinal associated lymphoid tissue (GALT), increased neutrophil migration, and enhanced T-cell recruitment. Further evaluation of Irak-m-/- mice revealed a splice variant that robustly activates NF-κB signaling. Together, these data identify IRAK-M as a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- Daniel E Rothschild
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Na Diao
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Christina K Lee
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Keqiang Chen
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States.
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States.
| |
Collapse
|