1
|
De Pascalis A, Tomassetti A, Vetrano D, Tringali E, Di Lullo L, Napoli M, La Manna G, Cianciolo G. Hypertension in Cardiovascular and Kidney Disease: Recent Trends - Treating Two Diseases as One. Cardiorenal Med 2024; 14:581-587. [PMID: 39374593 DOI: 10.1159/000541876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Hypertension and chronic kidney disease (CKD) are closely interlinked pathophysiologic states, such that high blood pressure (BP) is an independent risk factor for disease progression in both adult and pediatric patients with kidney disorders and progressive decline in kidney function can conversely lead to worsening BP control. SUMMARY Hypertension in CKD is not only associated with GFR loss, but increases cardiovascular risk, which is the leading source of mortality and morbidity in this population. Given this complex relationship between hypertension, CKD, and CVD, an optimal management of BP in CKD is mandatory to break an established vicious pathophysiological cycle that leads to adverse outcomes. KEY MESSAGES New promising molecules for the treatment of CKD, with interesting mechanisms, particularly regarding their pathophysiological interactions with arterial hypertension, are available or under development and in the very next future they may change the way we treat high BP in CKD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcello Napoli
- Nephrology, Dialysis Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Gaetano La Manna
- Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Nephrology, Dialysis, Hypertension Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis, Hypertension Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Nascimento MM, Bernardo DRD, de Bragança AC, Massola Shimizu MH, Seguro AC, Volpini RA, Canale D. Treatment with β-blocker nebivolol ameliorates oxidative stress and endothelial dysfunction in tenofovir-induced nephrotoxicity in rats. Front Med (Lausanne) 2022; 9:953749. [PMID: 35991671 PMCID: PMC9386005 DOI: 10.3389/fmed.2022.953749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tenofovir disoproxil fumarate (TDF), a widely prescribed component in antiretroviral regimens, has been associated with nephrotoxicity. Nebivolol is a third generation selective β-1 adrenergic receptor blocker and may protect renal structure and function through the suppression of oxidative stress and enhancement of nitric oxide (NO) synthesis. We aimed to investigate whether nebivolol could be an effective therapeutic strategy to mitigate tenofovir-induced nephrotoxicity. Methods We allocated Wistar rats to four groups: control (C), received a standard diet for 30 days; NBV, received a standard diet for 30 days added with nebivolol (100 mg/kg food) in the last 15 days; TDF, received a standard diet added with tenofovir (300 mg/kg food) for 30 days; and TDF+NBV, received a standard diet added with tenofovir for 30 days and nebivolol in the last 15 days. Results Long-term exposure to tenofovir led to impaired renal function, induced hypertension, endothelial dysfunction and oxidative stress. Nebivolol treatment partially recovered glomerular filtration rate, improved renal injury, normalized blood pressure and attenuated renal vasoconstriction. Administration of nebivolol contributed to reductions in asymmetric dimethylarginine (ADMA) levels as well as increases in endothelial nitric oxide sintase (eNOS) accompanied by renin-angiotensin-aldosterone system downregulation and decreases in macrophage and T-cells infiltrate. Furthermore, nebivolol was responsible for the maintenance of the adequate balance of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels and it was associated with reductions in NADPH oxidase (NOX) subunits. Conclusion Nebivolol holds multifaceted actions that promote an advantageous option to slow the progression of kidney injury in tenofovir-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mariana Moura Nascimento
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Carolina de Bragança
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Antonio Carlos Seguro
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rildo Aparecido Volpini
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele Canale
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Daniele Canale
| |
Collapse
|
3
|
Pereira BP, do Vale GT, Ceron CS. The role of nitric oxide in renovascular hypertension: from the pathophysiology to the treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:121-131. [PMID: 34994823 DOI: 10.1007/s00210-021-02186-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Renovascular hypertension is one of the most relevant causes of secondary hypertension, mostly caused by atherosclerotic renovascular stenosis or fibromuscular dysplasia. The increase in angiotensin II production, oxidative stress, and formation of peroxynitrite promotes the decrease in nitric oxide (NO) availability and the development of hypertension, renal and endothelial dysfunction, and cardiac and vascular remodeling. The NO produced by nitric oxide synthases (NOS) acts as a vasodilator; however, endothelial NOS uncoupling (eNOS) also contributes to NO reduced availability in renovascular hypertension. NO donors and NO-derived metabolites have been investigated in experimental renovascular hypertension and have shown promissory effects in attenuating blood pressure and organ damage in this condition. Therefore, understanding the role of decreased NO in the pathophysiology of renovascular hypertension promotes the study and development of NO donors and molecules that can be converted into NO (such as nitrate and nitrite), contributing for the treatment of this condition in the future.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Departamento de Alimentos E Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Gabriel Tavares do Vale
- Departamento de Ciências Biomédicas E da Saúde, Universidade Do Estado de Minas Gerais (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brasil.
| |
Collapse
|
4
|
Wennysia IC, Zhao L, Schomber T, Braun D, Golz S, Summer H, Benardeau A, Lai EY, Lichtenberger FB, Schubert R, Persson PB, Xu MZ, Patzak A. Role of soluble guanylyl cyclase in renal afferent and efferent arterioles. Am J Physiol Renal Physiol 2020; 320:F193-F202. [PMID: 33356952 DOI: 10.1152/ajprenal.00272.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renal arteriolar tone depends considerably on the dilatory action of nitric oxide (NO) via activation of soluble guanylyl cyclase (sGC) and cGMP action. NO deficiency and hypoxia/reoxygenation are important pathophysiological factors in the development of acute kidney injury. It was hypothesized that the NO-sGC-cGMP system functions differently in renal afferent arterioles (AA) compared with efferent arterioles (EA) and that the sGC activator cinaciguat differentially dilates these arterioles. Experiments were performed in isolated, perfused mouse glomerular arterioles. Hypoxia (0.1% oxygen) was achieved by using a hypoxia chamber. Phosphodiesterase 5 (PDE5) and sGC subunits were considerably expressed on the mRNA level in AA. PDE5 inhibition with sildenafil, which blocks cGMP degradation, diminished the responses to ANG II bolus application in AA, but not significantly in EA. Vasodilation induced by sildenafil in ANG II-preconstricted vessels was stronger in EA than AA. Cinaciguat, an NO- and heme-independent sGC activator, dilated EA more strongly than AA after NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) treatment and preconstriction with ANG II. Cinaciguat-induced dilatation of l-NAME-pretreated and ANG II-preconstricted arterioles was similar to controls without l-NAME treatment. Cinaciguat also induced dilatation in iodinated contrast medium treated AA. Furthermore, it dilated EA, but not AA, after hypoxia/reoxygenation. The results reveal an important role of the NO-sGC-cGMP system for renal dilatation and that EA have a more potent sGC activated dilatory system. Furthermore, AA seem to be more sensitive to hypoxia/reoxygenation than EA under these experimental conditions.
Collapse
Affiliation(s)
- I C Wennysia
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - L Zhao
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Physiology, School Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - T Schomber
- Research & Development, Bayer AG, Wuppertal, Germany
| | - D Braun
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Golz
- Research & Development, Bayer AG, Wuppertal, Germany
| | - H Summer
- Research & Development, Bayer AG, Wuppertal, Germany
| | - A Benardeau
- Research & Development, Bayer AG, Wuppertal, Germany
| | - E Y Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - F-B Lichtenberger
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - R Schubert
- Physiology, Medical Faculty, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany
| | - P B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Z Xu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Jiang S, Wang X, Wei J, Zhang G, Zhang J, Xie P, Xu L, Wang L, Zhao L, Li L, Wilcox CS, Chen J, Lai EY, Liu R. NaHCO 3 Dilates Mouse Afferent Arteriole Via Na +/HCO 3- Cotransporters NBCs. Hypertension 2019; 74:1104-1112. [PMID: 31522618 DOI: 10.1161/hypertensionaha.119.13235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sodium bicarbonate has long been used to treat chronic kidney disease. It has been demonstrated to slow the decline in glomerular filtration rate in chronic kidney disease patient; however, the mechanisms are not completely understood. We hypothesized that NaHCO3 dilates afferent arterioles (Af-Art) by stimulating nitric oxide (NO) release mediated by the Na+/HCO3- cotransporter (NBC) contributing to the elevation in glomerular filtration rate. Isolated microperfused mouse renal Af-Art, preconstricted with norepinephrine (1 µmol/L), dilated 45±2% (n=6, P<0.05) in response to NaHCO3 (44 mmol/L). Whereas, NaCl solution containing the same Na+ concentration was not effective. The mRNA for NBCn1 and NBCe1 were detected in microdissected Af-Art using reverse transcription-polymerase chain reaction and quantitative polymerase chain reaction. The Af-Art intracellular pH measured with 2',7'-bis-(2-carboxyethyl)-5-(and-6) carboxyfluorescein, acetoxymethyl ester increased significantly by 0.29±0.02 (n=6; P<0.05) in the presence of NaHCO3, which was blunted by N-cyanosulphonamide compound (S0859) that is an inhibitor of the NBC family. After clamping the intracellular pH with 10 μM nigericin, changing the bath solution pH from 7.4 to 7.8 still dilates the Af-Art by 53±4% (n=7; P<0.005) and increases NO generation by 22±3% (n=7; P<0.005). Both pH-induced NO generation and vasodilation were blocked by L-NG-Nitroarginine Methyl Ester. NaHCO3 increased NO generation in Af-Art by 19±4% (n=5; P<0.005) and elevated glomerular filtration rate in conscious mice by 36% (233 versus 318 ul/min; n=9-10; P<0.0001). S0859 and L-NG-nitroarginine methyl ester blocked NaHCO3-induced increases in NO generation and vasodilation. We conclude that NBCn1 and NBCe1 are expressed in Af-Art and that NaHCO3 dilates Af-Art via NBCs mediated by NO that increases the glomerular filtration rate.
Collapse
Affiliation(s)
- Shan Jiang
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.).,Shandong Provincial Hospital, Affiliated Hospital of Shandong University, Jinan, China (X.W.)
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Gensheng Zhang
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Peng Xie
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.)
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa (L.X.)
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Liang Zhao
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, China (L.Z., E.Y.L.).,Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Germany (L.Z., E.Y.L.)
| | - Lingli Li
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, DC (L.L., C.S.W.)
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, DC (L.L., C.S.W.)
| | - Jianghua Chen
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.)
| | - En Yin Lai
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, China (L.Z., E.Y.L.).,Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Germany (L.Z., E.Y.L.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| |
Collapse
|
6
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res 2018; 42:6-18. [DOI: 10.1038/s41440-018-0122-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
7
|
The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. Int J Mol Sci 2018; 19:ijms19061712. [PMID: 29890734 PMCID: PMC6032334 DOI: 10.3390/ijms19061712] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators.
Collapse
|
8
|
Huang L, Wang A, Hao Y, Li W, Liu C, Yang Z, Zheng F, Zhou MS. Macrophage Depletion Lowered Blood Pressure and Attenuated Hypertensive Renal Injury and Fibrosis. Front Physiol 2018; 9:473. [PMID: 29867533 PMCID: PMC5949360 DOI: 10.3389/fphys.2018.00473] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023] Open
Abstract
Monocyte/macrophage recruitment is closely associated with the degree of hypertensive renal injury. We investigated the direct role of macrophages using liposome-encapsulated clodronate (LEC) to deplete monocytes/macrophages in hypertensive renal injury. C57BL/6 mice were treated with a pressor dose of angiotensin (Ang, 1.4 mg/kg/day) II plus LEC or the PBS-liposome for 2 weeks. Ang II mice developed hypertension, albuminuria, glomerulosclerosis, and renal fibrosis. LEC treatment reduced systolic blood pressure (SBP), albuminuria, and protected against renal structural injury in Ang II mice. Ang II significantly increased renal macrophage infiltration (MOMA2+ cells) and the expression of renal tumor necrosis factor α and interleukin β1, which were significantly reduced in Ang II/LEC mice. Ang II increased renal oxidative stress and the expression of profibrotic factors transforming growth factor (TGF) β1 and fibronectin. Ang II also inhibited the phosphorylation of endothelial nitric oxide synthase [phospho-endothelial nitric oxide synthesis (eNOS), ser1177]. LEC treatment reduced renal oxidative stress and TGFβ1 and fibronectin expressions, and increased phospho-eNOS expression in the Ang II mice. In Dahl rats of salt-sensitive hypertension, LEC treatment for 4 weeks significantly attenuated the elevation of SBP induced by high salt intake and protected against renal injury and fibrosis. Our results demonstrate that renal macrophages play a critical role in the development of hypertension and hypertensive renal injury and fibrosis; the underlying mechanisms may be involved in the reduction in macrophage-driven renal inflammation and restoration of the balance between renal oxidative stress and eNOS. Therefore, macrophages should be considered as a potential therapeutic target to reduce the adverse consequences of hypertensive renal diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Yun Hao
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhihang Yang
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Feng Zheng
- Department of Nephrology, Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Braun D, Zollbrecht C, Dietze S, Schubert R, Golz S, Summer H, Persson PB, Carlström M, Ludwig M, Patzak A. Hypoxia/Reoxygenation of Rat Renal Arteries Impairs Vasorelaxation via Modulation of Endothelium-Independent sGC/cGMP/PKG Signaling. Front Physiol 2018; 9:480. [PMID: 29773995 PMCID: PMC5943512 DOI: 10.3389/fphys.2018.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Ischemia/reperfusion injury holds a key position in many pathological conditions such as acute kidney injury and in the transition to chronic stages of renal damage. We hypothesized that besides a reported disproportional activation of vasoconstrictor response, hypoxia/reoxygenation (H/R) adversely affects endothelial dilatory systems and impairs relaxation in renal arteries. Rat renal interlobar arteries were studied under isometric conditions. Hypoxia was induced by application of 95% N2, 5% CO2 for 60 min to the bath solution, followed by a 10 min period of reoxygenation (95% O2, 5% CO2). The effect of H/R on relaxation was assessed using various inhibitors of endothelial dilatory systems. mRNA expression of phosphodiesterase 5 (PDE5), NADPH oxidases (NOX), and nitric oxide synthase (NOS) isoforms were determined using qRT-PCR; cGMP was assayed with direct cGMP ELISA. Acetylcholine induced relaxation was impaired after H/R. Inhibition of the NOS isoforms with L-NAME, and cyclooxygenases (COXs) by indomethacin did not abolish the H/R effect. Moreover, blocking the calcium activated potassium channels KCa3.1 and KCa2.1, the main mediators of the endothelium-derived hyperpolarizing factor, with TRAM34 and UCL1684, respectively, showed similar effects in H/R and control. Arterial stiffness did not differ comparing H/R with controls, indicating no impact of H/R on passive vessel properties. Moreover, superoxide was not responsible for the observed H/R effect. Remarkably, H/R attenuated the endothelium-independent relaxation by sodium nitroprusside, suggesting endothelium-independent mechanisms of H/R action. Investigating the signaling downstream of NO revealed significantly decreased cGMP and impaired relaxation during PDE5 inhibition with sildenafil after H/R. Inhibition of PKG, the target of cGMP, did not normalize SNP-induced relaxation following H/R. However, the soluble guanylyl cyclase (sGC) inhibitor ODQ abolished the H/R effect on relaxation. The mRNA expressions of the endothelial and the inducible NOS were reduced. NOX and PDE5 mRNA were similarly expressed in H/R and control. Our results provide new evidence that impaired renal artery relaxation after H/R is due to a dysregulation of sGC leading to decreased cGMP levels. The presented mechanism might contribute to an insufficient renal reperfusion after ischemia and should be considered in its pathophysiology.
Collapse
Affiliation(s)
- Diana Braun
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Dietze
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim, Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Pontus B Persson
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marion Ludwig
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Patzak
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Vinturache AE, Smith FG. Glomerular and tubular effects of nitric oxide (NO) are regulated by angiotensin II (Ang II) in an age-dependent manner through activation of both angiotensin receptors (AT1Rs and AT2Rs) in conscious lambs. Pflugers Arch 2017; 470:249-261. [PMID: 28861607 DOI: 10.1007/s00424-017-2053-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/23/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023]
Abstract
Renin-angiotensin (RAS) and nitric oxide (NO) systems and the balance and interaction between them are considered of primary importance in maintaining fluid and electrolyte homeostasis. It has been suggested that the effects of NO may be modulated at least in part by the angiotensin (Ang) II, yet the roles of angiotensin receptor type 1 (AT1R) and type 2 (AT2R) are not well understood. Even though both Ang II and NO are elevated at birth and during the newborn period, their contribution to the adaptation of the newborn to life after birth as well as their physiological roles during development are poorly understood. The aim of this study was to determine if NO regulation of renal function during postnatal maturation is modulated by Ang II through activation of AT1R or AT2R or both receptors. Glomerular and tubular effects of either AT1R selective antagonist ZD 7155, AT2R selective antagonist PD 123319, and both antagonists ZD 7155 plus PD 123319, were measured in 1- (N = 9) and 6-week-old (N = 13) conscious, chronically instrumented lambs before and after removal of endogenous NO with L-arginine analogue, L-NAME. Two-way analysis of variance (ANOVA) procedures for repeated measures over time with factors age and treatment were used to compare the effects of the treatments on several glomerular and tubular variables in both groups. This study showed that L-NAME infusion after pre-treatment with ATR antagonists did not alter glomerular function in 1- or 6-week-old lambs. NO effects on electrolytes handling along the nephron during postnatal development were modulated by Ang II through AT1R and AT2R in an age-dependent manner. Selective inhibition of AT1R and AT2R increased excretion of Na+, K+, and Cl- in 6- but not in 1-week-old lambs. In 6-week-old lambs, urinary flow rate increased by 200%, free water clearance increased by 50%, and urine osmolality decreased by 40% after L-NAME was added to the pre-treatment with ZD 7155 plus PD 123319. When L-NAME was added either to ZD 7155 or PD 123319, the same trend in the alterations of these variables was observed, albeit to a lower degree. In conclusion, in conscious animals, during postnatal maturation, Ang II modulates the effects of NO on glomerular function, fluid, and electrolyte homeostasis through AT1Rs and AT2Rs in an age-dependent manner. Under physiological conditions, AT2Rs may potentiate the effects of AT1R, providing evidence of a crosstalk between ATRs in modulating NO effects on fluid and electrolyte homeostasis during postnatal maturation. This study provides new insights on the regulation of renal function during early postnatal development showing that, compared with later in life, newborns have impaired capacity to regulate glomerular function, water, and electrolyte balance.
Collapse
Affiliation(s)
- Angela E Vinturache
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Francine G Smith
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Huang Q, Wang Q, Zhang S, Jiang S, Zhao L, Yu L, Hultström M, Patzak A, Li L, Wilcox CS, Lai EY. Increased hydrogen peroxide impairs angiotensin II contractions of afferent arterioles in mice after renal ischaemia-reperfusion injury. Acta Physiol (Oxf) 2016; 218:136-45. [PMID: 27362287 DOI: 10.1111/apha.12745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
AIM Renal ischaemia-reperfusion injury (IRI) increases angiotensin II (Ang II) and reactive oxygen species (ROS) that are potent modulators of vascular function. However, the roles of individual ROS and their interaction with Ang II are not clear. Here we tested the hypothesis that IRI modulates renal afferent arteriolar responses to Ang II via increasing superoxide (O2-) or hydrogen peroxide (H2 O2 ). METHODS Renal afferent arterioles were isolated and perfused from C57BL/6 mice 24 h after IRI or sham surgery. Responses to Ang II or noradrenaline were assessed by measuring arteriolar diameter. Production of H2 O2 and O2- was assessed in afferent arterioles and renal cortex. Activity of SOD and catalase, and mRNA expressions of Ang II receptors were assessed in pre-glomerular arterioles and renal cortex. RESULTS Afferent arterioles from mice after IRI had a reduced maximal contraction to Ang II (-27±2 vs. -42±1%, P < 0.001), but retained a normal contraction to noradrenaline. Arterioles after IRI had a 38% increase in H2 O2 (P < 0.001) and a 45% decrease in catalase activity (P < 0.01). Contractions were reduced in normal arterioles after incubation with H2 O2 (-22±2 vs. -42±1%, P < 0.05) similar to the effects of IRI. However, the impaired contractions were normalized by incubation with PEG catalase despite a reduced AT1 R expression. CONCLUSIONS Renal IRI in mice selectively impairs afferent arteriolar responses to Ang II because of H2 O2 accumulation that is caused by a reduced catalase activity. This could serve to buffer the effect of Ang II after IRI and may be a protective mechanism.
Collapse
Affiliation(s)
- Q. Huang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - Q. Wang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Zhang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Jiang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Zhao
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Yu
- College of Life Sciences; Zhejiang University; Hangzhou China
| | - M. Hultström
- Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
- Anesthesia and Intensive Care Medicine; Department of Surgical Sciences; Uppsala University; Uppsala Sweden
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - L. Li
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - C. S. Wilcox
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
12
|
McNally B, Griffin JL, Roberts LD. Dietary inorganic nitrate: From villain to hero in metabolic disease? Mol Nutr Food Res 2015; 60:67-78. [PMID: 26227946 PMCID: PMC4863140 DOI: 10.1002/mnfr.201500153] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
Historically, inorganic nitrate was believed to be an inert by‐product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re‐examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate‐nitrite‐NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti‐obesity and anti‐diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re‐evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Ben McNally
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian L Griffin
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Lee D Roberts
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Kaufmann J, Martinka P, Moede O, Sendeski M, Steege A, Fähling M, Hultström M, Gaestel M, Moraes-Silva IC, Nikitina T, Liu ZZ, Zavaritskaya O, Patzak A. Noradrenaline enhances angiotensin II responses via p38 MAPK activation after hypoxia/re-oxygenation in renal interlobar arteries. Acta Physiol (Oxf) 2015; 213:920-32. [PMID: 25594617 DOI: 10.1111/apha.12457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/14/2014] [Accepted: 01/11/2015] [Indexed: 11/29/2022]
Abstract
AIM Hypoxia and sympathetic activation are main factors in the pathogenesis of acute kidney injury (AKI). We tested the hypothesis that noradrenaline (NE) in combination with hypoxia aggravates the vasoreactivity of renal arteries after hypoxia/re-oxygenation (H/R). We tested the role of adrenergic receptors and p38 MAPK using an in vitro H/R protocol. METHODS Mouse interlobar arteries (ILA) and afferent arterioles (AA) were investigated under isometric and isotonic conditions respectively. The in vitro protocol consisted of 60-min hypoxia and control condition, respectively, 10-min re-oxygenation followed by concentration-response curves for Ang II or endothelin. RESULTS Hypoxia reduced the response to Ang II. Hypoxia and NE (10(-9) mol L(-1) ) together increased it in ILA and AA. In ILA, NE alone influenced neither Ang II responses under control conditions nor endothelin responses after hypoxia. Prazosin or yohimbine treatment did not significantly influence the NE+hypoxia effect. The combination of prazosin and yohimbine or propranolol alone inhibited the effect of NE+hypoxia. BRL37344 (β3 receptor agonist) mimicked the NE effect. In contrast, the incubation with β3 receptor blocker did not influence the mentioned effect. Phosphorylation of p38 MAPK and MLC(20) was increased after H/R with NE and Ang II treatment. The selective p38 MAPK inhibitor SB202190 blocked the NE+hypoxia effect on the Ang II response. CONCLUSION The results suggest an interaction of NE and hypoxia in enhancing vasoreactivity, which may be important for the pathogenesis of AKI. The effect of NE+hypoxia in ILA is mediated by several adrenergic receptors and requires the p38 MAPK activation.
Collapse
Affiliation(s)
- J. Kaufmann
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - P. Martinka
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - O. Moede
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - M. Sendeski
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - A. Steege
- Department of Internal Medicine II; University Medical Center Regensburg; Regensburg Germany
| | - M. Fähling
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - M. Hultström
- Institute of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - M. Gaestel
- Institute of Biochemistry; Hannover Medical School; Hannover Germany
| | - I. C. Moraes-Silva
- Heart Institute; University of São Paulo; School of Medicine; São Paulo Brazil
| | - T. Nikitina
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Z. Z. Liu
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - O. Zavaritskaya
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
- Cardiovascular Physiology; Centre for Biomedicine and Medical Technology Mannheim; Ruprecht-Karls-University Heidelberg; Mannheim Germany
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
14
|
Persson AEG, Carlström M. Renal purinergic signalling in health and disease. Acta Physiol (Oxf) 2015; 213:805-7. [PMID: 25613023 DOI: 10.1111/apha.12459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. E. G. Persson
- Department of Medical Cellbiology; Uppsala University; Uppsala Sweden
| | - M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
15
|
Gao X, Yang T, Liu M, Peleli M, Zollbrecht C, Weitzberg E, Lundberg JO, Persson AEG, Carlström M. NADPH Oxidase in the Renal Microvasculature Is a Primary Target for Blood Pressure–Lowering Effects by Inorganic Nitrate and Nitrite. Hypertension 2015; 65:161-70. [DOI: 10.1161/hypertensionaha.114.04222] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal oxidative stress and nitric oxide (NO) deficiency are key events in hypertension. Stimulation of a nitrate–nitrite–NO pathway with dietary nitrate reduces blood pressure, but the mechanisms or target organ are not clear. We investigated the hypothesis that inorganic nitrate and nitrite attenuate reactivity of renal microcirculation and blood pressure responses to angiotensin II (ANG II) by modulating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NO bioavailability. Nitrite in the physiological range (10
−7
–10
−5
mol/L) dilated isolated perfused renal afferent arterioles, which were associated with increased NO. Contractions to ANG II (34%) and simultaneous NO synthase inhibition (56%) were attenuated by nitrite (18% and 26%). In a model of oxidative stress (superoxide dismutase-1 knockouts), abnormal ANG II–mediated arteriolar contractions (90%) were normalized by nitrite (44%). Mechanistically, effects of nitrite were abolished by NO scavenger and xanthine oxidase inhibitor, but only partially attenuated by inhibiting soluble guanylyl cyclase. Inhibition of NADPH oxidase with apocynin attenuated ANG II–induced contractility (35%) similar to that of nitrite. In the presence of nitrite, no further effect of apocynin was observed, suggesting NADPH oxidase as a possible target. In preglomerular vascular smooth muscle cells and kidney cortex, nitrite reduced both basal and ANG II–induced NADPH oxidase activity. These effects of nitrite were also abolished by xanthine oxidase inhibition. Moreover, supplementation with dietary nitrate (10
−2
mol/L) reduced renal NADPH oxidase activity and attenuated ANG II–mediated arteriolar contractions and hypertension (99±2–146±2 mm Hg) compared with placebo (100±3–168±3 mm Hg). In conclusion, these novel findings position NADPH oxidase in the renal microvasculature as a prime target for blood pressure–lowering effects of inorganic nitrate and nitrite.
Collapse
Affiliation(s)
- Xiang Gao
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ting Yang
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ming Liu
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Maria Peleli
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Christa Zollbrecht
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Eddie Weitzberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Jon O. Lundberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - A. Erik G. Persson
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Mattias Carlström
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| |
Collapse
|
16
|
Vinturache AE, Smith FG. Angiotensin type 1 and type 2 receptors during ontogeny: cardiovascular and renal effects. Vascul Pharmacol 2014; 63:145-54. [DOI: 10.1016/j.vph.2014.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 01/24/2023]
|
17
|
Moodley K, Naidoo Y, Mackraj I. Effects of Tulbaghia violacea Harv. (Alliaceae) rhizome methanolic extract on kidney function and morphology in Dahl salt-sensitive rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1194-1203. [PMID: 25017374 DOI: 10.1016/j.jep.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/12/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tulbaghia violacea has been used traditionally for the treatment of several ailments, including hypertension. The herb has been shown to have antihypertensive properties which have been attributed to its angiotensin-converting enzymeinhibitory (ACEI) activity. It could, therefore, prove beneficial in ameliorating renal pathology associated with hypertension. To evaluate the effects of long-term administration of Tulbaghia violacea on renal function and morphology in the Dahl salt-sensitive (DSS) rat model. MATERIALS AND METHODS Male DSS rats were treated intra-peritoneally (i.p.) as follows: methanolic extract of Tulbaghia violacea: (TVL) (50 mg/kg/b.w.), captopril: (CAP) (25 mg/kg/b.w.), or distilled water, control: (CON) (3 ml/kg/b.w.). Blood pressure (BP) was measured bi-weekly, whilst 24-h urine volumes and electrolyte concentrations were assessed weekly. Animals were sacrificed on day 49 by halothane overdose. Blood was removed for determination of plasma and serum electrolytes. Left kidney tissues were harvested for the determination of nuclear factor-kappaβ (NF-kβ) and transforming growth factor-β (TGF-β) gene expressions. RESULTS TVL significantly reduced mean arterial pressure (MAP) and diastolic blood pressure (DBP). TVL showed reduced blood urea nitrogen, serum creatinine, total protein in urine as well as increased serum total protein. TVL decreased thiobarbituric acid reactive substances (TBARS) and increased glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity and nitric oxide significantly. NF-kβ and TGF-β) gene expressions were significantly reduced in TVL and CAP treated rats. Moreover, renal morphology improved significantly in TVL and CAP treated animals. CONCLUSION TVL and CAP demonstrated marked improvement in renal function and morphology.
Collapse
Affiliation(s)
- Kogi Moodley
- Department of Human Physiology, School of Basic Medical Sciences, Faculty of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yougasphree Naidoo
- Department of Biology, School of Biological and Conservation Sciences, Faculty of Science and Agriculture, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Irene Mackraj
- Department of Human Physiology, School of Basic Medical Sciences, Faculty of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
18
|
Canale D, de Bragança AC, Gonçalves JG, Shimizu MHM, Sanches TR, Andrade L, Volpini RA, Seguro AC. Vitamin D deficiency aggravates nephrotoxicity, hypertension and dyslipidemia caused by tenofovir: role of oxidative stress and renin-angiotensin system. PLoS One 2014; 9:e103055. [PMID: 25048368 PMCID: PMC4105615 DOI: 10.1371/journal.pone.0103055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023] Open
Abstract
Vitamin D deficiency (VDD) is prevalent among HIV-infected individuals. Vitamin D has been associated with renal and cardiovascular diseases because of its effects on oxidative stress, lipid metabolism and renin-angiotensin-aldosterone system (RAAS). Tenofovir disoproxil fumarate (TDF), a widely used component of antiretroviral regimens for HIV treatment, can induce renal injury. The aim of this study was to investigate the effects of VDD on TDF-induced nephrotoxicity. Wistar rats were divided into four groups: control, receiving a standard diet for 60 days; VDD, receiving a vitamin D-free diet for 60 days; TDF, receiving a standard diet for 60 days with the addition of TDF (50 mg/kg food) for the last 30 days; and VDD+TDF receiving a vitamin D-free diet for 60 days with the addition of TDF for the last 30 days. TDF led to impaired renal function, hyperphosphaturia, hypophosphatemia, hypertension and increased renal vascular resistance due to downregulation of the sodium-phosphorus cotransporter and upregulation of angiotensin II and AT1 receptor. TDF also increased oxidative stress, as evidenced by higher TBARS and lower GSH levels, and induced dyslipidemia. Association of TDF and VDD aggravated renovascular effects and TDF-induced nephrotoxicity due to changes in the redox state and involvement of RAAS.
Collapse
Affiliation(s)
- Daniele Canale
- Nephrology Department, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | - Talita Rojas Sanches
- Nephrology Department, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lúcia Andrade
- Nephrology Department, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Antonio Carlos Seguro
- Nephrology Department, University of São Paulo School of Medicine, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Ergin B, Kapucu A, Demirci-Tansel C, Ince C. The renal microcirculation in sepsis. Nephrol Dial Transplant 2014; 30:169-77. [PMID: 24848133 DOI: 10.1093/ndt/gfu105] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite identification of several cellular mechanisms being thought to underlie the development of septic acute kidney injury (AKI), the pathophysiology of the occurrence of AKI is still poorly understood. It is clear, however, that instead of a single mechanism being responsible for its aetiology, an orchestra of cellular mechanisms failing is associated with AKI. The integrative physiological compartment where these mechanisms come together and exert their integrative deleterious action is the renal microcirculation (MC). This is why it is opportune to review the response of the renal MC to sepsis and discuss the determinants of its (dys)function and how it contributes to the pathogenesis of renal failure. A main determinant of adequate organ function is the adequate supply and utilization of oxygen at the microcirculatory and cellular level to perform organ function. The highly complex architecture of the renal microvasculature, the need to meet a high energy demand and the fact that the kidney is borderline ischaemic makes the kidney a highly vulnerable organ to hypoxaemic injury. Under normal, steady-state conditions, oxygen (O2) supply to the renal tissues is well regulated; however, under septic conditions the delicate balance of oxygen supply versus demand is disturbed due to renal microvasculature dysfunction. This dysfunction is largely due to the interaction of renal oxygen handling, nitric oxide metabolism and radical formation. Renal tissue oxygenation is highly heterogeneous not only between the cortex and medulla but also within these renal compartments. Integrative evaluation of the different determinants of tissue oxygen in sepsis models has identified the deterioration of microcirculatory oxygenation as a key component in the development AKI. It is becoming clear that resuscitation of the failing kidney needs to integratively correct the homeostasis between oxygen, and reactive oxygen and nitrogen species. Several experimental therapeutic modalities have been found to be effective in restoring microcirculatory oxygenation in parallel to improving renal function following septic AKI. However, these have to be verified in clinical studies. The development of clinical physiological biomarkers of AKI specifically aimed at the MC should form a valuable contribution to monitoring such new therapeutic modalities.
Collapse
Affiliation(s)
- Bulent Ergin
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aysegul Kapucu
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands Department of Biology and Zoology Division, University of Istanbul, Istanbul, Turkey
| | - Cihan Demirci-Tansel
- Department of Biology and Zoology Division, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Dautzenberg M, Just A. Temporal characteristics of nitric oxide-, prostaglandin-, and EDHF-mediated components of endothelium-dependent vasodilation in the kidney. Am J Physiol Regul Integr Comp Physiol 2013; 305:R987-98. [DOI: 10.1152/ajpregu.00526.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-dependent vasodilation is mediated by nitric oxide (NO), prostaglandins (PG), and endothelium-derived hyperpolarizing factor (EDHF). We studied the contributions and temporal characteristics of these components in the renal vasodilator responses to acetylcholine (ACh) and bradykinin (BK) and in the buffering of vasoconstrictor responses to norepinephrine (NE) and angiotensin II (ANG II). Renal blood flow (RBF) and vascular conductance (RVC) were studied in anesthetized rats in response to renal arterial bolus injections before and after inhibition of NO-synthase ( NG-nitro-l-arginine methyl ester, l-NAME), cyclooxygenase (indomethacin, INDO), or both. ACh increased RVC peaking at maximal time ( tmax) = 29 s. l-NAME ( n = 8) diminished the integrated response and made it substantially faster ( tmax = 18 s). The point-by-point difference caused by l-NAME (= NO component) integrated to 74% of control and was much slower ( tmax = 38 s). INDO ( n = 9) reduced the response without affecting tmax (36 vs. 30 s). The difference (= PG) reached 21% of the control with tmax = 25 s. l-NAME+INDO ( n = 17) reduced the response to 18% and markedly accelerated tmax to 16s (= EDHF). Results were similar for BK with slightly more PG and less NO contribution than for ACh. Constrictor responses to NE and ANG II were augmented and decelerated by l-NAME and l-NAME+INDO. The calculated difference (= buffering by NO or NO+PG) was slower than the constriction. It is concluded that NO, PG, and EDHF contribute >50%, 20–40%, and <20% to the renal vasodilator effect of ACh and BK, respectively. EDHF acts substantially faster and less sustained ( tmax = 16 s) than NO and PG ( tmax = 30 s). Constrictor buffering by NO and PG is not constant over time, but renders the constriction less sustained.
Collapse
Affiliation(s)
- Marcel Dautzenberg
- Physiologisches Institut der Universität Freiburg, Germany; and
- Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Germany
| | - Armin Just
- Physiologisches Institut der Universität Freiburg, Germany; and
- Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Germany
| |
Collapse
|
21
|
Angiotensin II type 2 receptor mediates sex differences in mice renal interlobar arteries response to angiotensin II. J Hypertens 2012; 30:1791-8. [PMID: 22895020 DOI: 10.1097/hjh.0b013e32835731dd] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Functional sex differences are described in several vascular beds. In the case of renal vessels, sex differences could influence processes like regulation of blood pressure and ion balance. Angiotensin II and nitric oxide are important regulators of renal vascular tone. Females have higher nitric oxide synthase expression, nitric oxide bioavailability and ratio of angiotensin II type 2/type 1 receptors. Thus, our objective was to examine whether renal interlobar arteries present sex differences in their response to angiotensin II, and whether angiotensin II type 2 receptors play a role in such differences. METHODS We investigated the isometric contraction and relaxation of interlobar arteries from female and male mice under blockade of nitric oxide synthases and angiotensin II type 2 receptors. We also investigated the expression of angiotensin II receptors (type 1 and 2) and endothelial nitric oxide synthase. RESULTS Significantly less intense contraction to angiotensin II were seen in arteries from females in comparison to male mice. Inhibition of nitric oxide synthases and endothelial removal abolished this difference. Angiotensin II type 2 receptors blockade enhanced contraction to angiotensin II in females, but not in males. Endothelial-dependent vasodilation was more dependent on nitric oxide in females than in males. Expression of angiotensin II type 1 and type 2 receptors was similar between sexes. Expression of endothelial nitric oxide synthase was higher in females. CONCLUSION A sex-specific, nitric oxide-mediated effect via angiotensin II type 2 receptors underlies the sex differences in the response of interlobar arteries to angiotensin II. Our findings may help understanding sex differences in renal hemodynamics and blood pressure control.
Collapse
|
22
|
Belcik JT, Qi Y, Kaufmann BA, Xie A, Bullens S, Morgan TK, Bagby SP, Kolumam G, Kowalski J, Oyer JA, Bunting S, Lindner JR. Cardiovascular and systemic microvascular effects of anti-vascular endothelial growth factor therapy for cancer. J Am Coll Cardiol 2012; 60:618-25. [PMID: 22703929 DOI: 10.1016/j.jacc.2012.02.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. BACKGROUND Hypertension is a common side effect of VEGF inhibitors used in cancer medicine. METHODS Mice were treated for 5 weeks with an anti-murine VEGF-A monoclonal antibody, antibody plus ramipril, or sham treatment. Microvascular blood flow (MBF) and blood volume (MBV) were quantified by contrast-enhanced ultrasound in skeletal muscle, left ventricle (LV), and kidney. Echocardiography and invasive hemodynamics were used to assess ventricular function, dimensions and vascular mechanical properties. RESULTS Ambulatory blood pressure increased gradually over the first 3 weeks of anti-VEGF therapy. Compared with controls, anti-VEGF-treated mice had similar aortic elastic modulus and histological appearance, but a marked increase in arterial elastance, indicating increased afterload, and elevated plasma angiotensin II. Increased afterload in treated mice led to concentric LV remodeling and reduced stroke volume without impaired LV contractility determined by LV peak change in pressure over time (dp/dt) and the end-systolic dimension-pressure relation. Anti-VEGF therapy did not alter MBF or MBV in skeletal muscle, myocardium, or kidney; but did produce cortical mesangial glomerulosclerosis. Ramipril therapy almost entirely prevented the adverse hemodynamic effects, increased afterload, and LV remodeling in anti-VEGF-treated mice. CONCLUSIONS Neither reduced functional microvascular density nor major alterations in arterial mechanical properties are primary causes of hypertension during anti-VEGF therapy. Inhibition of VEGF leads to an afterload mismatch state, increased angiotensin II, and LV remodeling, which are all ameliorated by angiotensin-converting enzyme inhibition.
Collapse
Affiliation(s)
- J Todd Belcik
- Division of Cardiovascular Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This study investigated the beneficial effects of D-α-tocopherol supplementation in protecting against the renal morphological and functional changes caused by hypertension. Spontaneously hypertensive (SHR) and normotensive control (WKY) rats received D-α-tocopherol (80 mg/kg by gavage) or vehicle (mineral oil) every other day for 60 days, from the age of 2 months. After this treatment period, all animals were assessed for renal morphological and functional parameters. The glomerular hypertrophy, increased interlobular wall thickness and enlarged renal vascular resistance found in SHR were reduced by D-α-tocopherol treatment. Sodium and volume retention observed in SHR were also decreased by D-α-tocopherol treatment. Moreover, D-α-tocopherol supplementation significantly reduced arterial pressure in SHR but not in WKY. D-α-tocopherol also reduced the excretion of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, in SHR. These results suggest that D-α-tocopherol supplementation can reduce kidney damage induced by hypertension.
Collapse
|
24
|
Fukushima K, Javadi MS, Higuchi T, Bravo PE, Chien D, Lautamäki R, Merrill J, Nekolla SG, Bengel FM. Impaired global myocardial flow dynamics despite normal left ventricular function and regional perfusion in chronic kidney disease: a quantitative analysis of clinical 82Rb PET/CT studies. J Nucl Med 2012; 53:887-93. [PMID: 22562499 DOI: 10.2967/jnumed.111.099325] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Impaired global myocardial flow reserve (MFR) may be associated with increased risk for cardiac events and coronary artery disease progression. Chronic kidney disease (CKD) is also considered a risk factor for cardiovascular disease. We sought to investigate the effect of CKD on the myocardial microcirculation in patients referred for clinical (82)Rb PET/CT, who had normal left ventricular (LV) function and no flow-limiting coronary artery disease. METHODS Estimated glomerular filtration rate (eGFR) was available for 230 patients who had undergone rest and pharmacologic stress (82)Rb PET/CT for suspected coronary artery disease. CKD was defined as an eGFR less than 60 mL/min/1.73 m(2). After patients with hemodialysis, a renal transplant, abnormal regional perfusion (summed stress score > 4), or reduced LV function (LV ejection fraction < 45%) were excluded, 40 CKD patients remained. Those were compared with a control group without CKD, which was matched for age, sex, coronary risk factors, and systemic hemodynamics (n = 42). List-mode acquisition of PET enabled quantification of myocardial blood flow (MBF) and MFR using a previously validated retention model with correction for (82)Rb extraction. Rest MBF was normalized to rate-pressure product. RESULTS Mean eGFR in the CKD group was reduced (44 ± 14 vs. 99 ± 28 mL/min/1.73 m(2); P < 0.0001), and creatinine was significantly elevated, compared with controls (1.9 ± 1.1 vs. 0.8 ± 0.2 mg/dL; P < 0.0001). MFR was significantly reduced in CKD (2.2 ± 1.0 vs. 3.0 ± 1.2 for controls; P = 0.027). This reduction was mainly due to increased rest MBF (1.1 ± 0.4 in CKD vs. 0.8 ± 0.2 mL/min/g in controls; P = 0.007). Stress myocardial flow was comparable between both groups (2.3 ± 0.9 vs. 2.3 ± 0.8 mL/min/g; P = 0.08). Overall, MFR was significantly correlated with eGFR (r = 0.41; P = 0.0005). Stress MBF did not correlate with eGFR (r = 0.002; P = 0.45), but rest MBF showed an inverse correlation (r = -0.49; P < 0.0001). Rest MBF was also inversely correlated with hemoglobin (r = -0.28; P = 0.014), but only eGFR was an independent correlate at multivariate analysis. CONCLUSION MFR is impaired in patients with renal insufficiency with normal regional perfusion and LV function, mostly because of elevated rest flow. Absolute quantification of flow may be useful to identify microvascular dysfunction as a precursor of clinically overt coronary disease in this specific risk group.
Collapse
Affiliation(s)
- Kenji Fukushima
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Rajapakse NW, Mattson DL. Role of L-arginine uptake mechanisms in renal blood flow responses to angiotensin II in rats. Acta Physiol (Oxf) 2011; 203:391-400. [PMID: 21649863 DOI: 10.1111/j.1748-1716.2011.02330.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM To examine whether reduced renal arginine transport increases the responsiveness of the renal circulation to angiotensin II in salt sensitivity, renal perfusion responses to angiotensin II were examined in the presence of L-arginine transport inhibitor, L-lysine and subsequent L-arginine in Sprague Dawley (SD) and Dahl salt-sensitive (Dahl S) rats. METHODS Laser Doppler probes and a transonic flow probe were used to measure regional renal perfusion and total renal perfusion respectively. Renal perfusion responses to intravenous (i.v.) angiotensin II were sequentially examined under control conditions and during i.v. infusion of L-lysine, L-arginine or nitric oxide synthase inhibitor, N(G)-nitro-L-arginine. RESULTS Angiotensin II (10 and 100 ng kg(-1) min(-1) , i.v.) reduced total renal (-10 ± 3 and -36 ± 5%) and cortical (-10 ± 2 and -28 ± 4%) but not medullary perfusion in SD rats. In these rats L-lysine enhanced the renal perfusion response (P = 0.003), whereas subsequent L-arginine reversed this effect (P = 0.04). Angiotensin II reduced total renal, cortical and medullary perfusion in Dahl S rats. In Dahl S rats fed high salt, L-lysine did not affect renal perfusion responses to angiotensin II, but subsequent L-arginine blunted the renal blood flow response (P = 0.01) and increased the medullary perfusion during angiotensin II infusion (P = 0.006). CONCLUSION Intact renal L-arginine transport attenuates the vasoconstrictor effects of circulating angiotensin II in the renal cortex in SD rats. L-arginine also plays an important role in protecting the renal medullary circulation from the ischemic effects of angiotensin II in Dahl S rats.
Collapse
Affiliation(s)
- N W Rajapakse
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.
| | | |
Collapse
|
27
|
Verlander JW, Hong S, Pech V, Bailey JL, Agazatian D, Matthews SW, Coffman TM, Le T, Inagami T, Whitehill FM, Weiner ID, Farley DB, Kim YH, Wall SM. Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin. Am J Physiol Renal Physiol 2011; 301:F1314-25. [PMID: 21921024 DOI: 10.1152/ajprenal.00114.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendrin is an anion exchanger expressed in the apical regions of B and non-A, non-B intercalated cells. Since angiotensin II increases pendrin-mediated Cl(-) absorption in vitro, we asked whether angiotensin II increases pendrin expression in vivo and whether angiotensin-induced hypertension is pendrin dependent. While blood pressure was similar in pendrin null and wild-type mice under basal conditions, following 2 wk of angiotensin II administration blood pressure was 31 mmHg lower in pendrin null than in wild-type mice. Thus pendrin null mice have a blunted pressor response to angiotensin II. Further experiments explored the effect of angiotensin on pendrin expression. Angiotensin II administration shifted pendrin label from the subapical space to the apical plasma membrane, independent of aldosterone. To explore the role of the angiotensin receptors in this response, pendrin abundance and subcellular distribution were examined in wild-type, angiotensin type 1a (Agtr1a) and type 2 receptor (Agtr2) null mice given 7 days of a NaCl-restricted diet (< 0.02% NaCl). Some mice received an Agtr1 inhibitor (candesartan) or vehicle. Both Agtr1a gene ablation and Agtr1 inhibitors shifted pendrin label from the apical plasma membrane to the subapical space, independent of the Agtr2 or nitric oxide (NO). However, Agtr1 ablation reduced pendrin protein abundance through the Agtr2 and NO. Thus angiotensin II-induced hypertension is pendrin dependent. Angiotensin II acts through the Agtr1a to shift pendrin from the subapical space to the apical plasma membrane. This Agtr1 action may be blunted by the Agtr2, which acts through NO to reduce pendrin protein abundance.
Collapse
Affiliation(s)
- Jill W Verlander
- Renal Division, Emory University School of Medicine, 1639 Pierce Dr. NE, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Carlström M, Lai EY, Ma Z, Steege A, Patzak A, Eriksson UJ, Lundberg JO, Wilcox CS, Persson AEG. Superoxide dismutase 1 limits renal microvascular remodeling and attenuates arteriole and blood pressure responses to angiotensin II via modulation of nitric oxide bioavailability. Hypertension 2010; 56:907-13. [PMID: 20876452 DOI: 10.1161/hypertensionaha.110.159301] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress is associated with vascular remodeling and increased preglomerular resistance that are both implicated in the pathogenesis of renal and cardiovascular disease. Angiotensin II induces superoxide production, which is metabolized by superoxide dismutase (SOD) or scavenged by NO. We investigated the hypothesis that SOD1 regulates renal microvascular remodeling, blood pressure, and arteriolar responsiveness and sensitivity to angiotensin II using SOD1-transgenic (SOD1-tg) and SOD1-knockout (SOD1-ko) mice. Blood pressure, measured telemetrically, rose more abruptly during prolonged angiotensin II infusion in SOD1-ko mice. The afferent arteriole media:lumen ratios were reduced in SOD1-tg and increased in SOD1-ko mice. Afferent arterioles from nontreated wild types had graded contraction to angiotensin II (sensitivity: 10(-9) mol/L; responsiveness: 40%). Angiotensin II contractions were less sensitive (10(-8) mol/L) and responsive (14%) in SOD1-tg but more sensitive (10(-13) mol/L) and responsive (89%) in SOD1-ko mice. Arterioles from SOD1-ko had 4-fold increased superoxide formation with angiotensin II at 10(-9) mol/L. N(G)-nitro-l-arginine methyl ester reduced arteriole diameter of SOD1-tg and enhanced angiotensin II sensitivity and responsiveness of wild-type and SOD1-tg mice to the level of SOD1-ko mice. SOD mimetic treatment with Tempol increased arteriole diameter and normalized the enhanced sensitivity and responsiveness to angiotensin II of SOD1-ko mice but did not affect wild-type or SOD1-tg mice. Neither SOD1 deficiency nor overexpression was associated with changes in nitrate/nitrite excretion or renal mRNA expression of NO synthase, NADPH oxidase, or SOD2/SOD3 isoforms and angiotensin II receptors. In conclusion, SOD1 limits afferent arteriole remodeling and reduces sensitivity and responsiveness to angiotensin II by reducing superoxide and maintaining NO bioavailability. This may prevent an early and exaggerated blood pressure response to angiotensin II.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Carlström M. Causal link between neonatal hydronephrosis and later development of hypertension. Clin Exp Pharmacol Physiol 2010; 37:e14-23. [DOI: 10.1111/j.1440-1681.2009.05267.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Carlström M, Brown RD, Sällström J, Larsson E, Zilmer M, Zabihi S, Eriksson UJ, Persson AEG. SOD1 deficiency causes salt sensitivity and aggravates hypertension in hydronephrosis. Am J Physiol Regul Integr Comp Physiol 2009; 297:R82-92. [PMID: 19403858 DOI: 10.1152/ajpregu.90843.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydronephrosis causes renal dysfunction and salt-sensitive hypertension, which is associated with nitric oxide deficiency and abnormal tubuloglomerular feedback (TGF) response. We investigated the role of oxidative stress for salt sensitivity and for hypertension in hydronephrosis. Hydronephrosis was induced in superoxide dismutase 1-transgenic (SOD1-tg), SOD1-deficient (SOD1-ko), and wild-type mice and in rats. In mice, telemetric measurements were performed during normal (0.7% NaCl) and high-sodium (4% NaCl) diets and with chronic tempol supplementation. The 8-iso-prostaglandin-F(2alpha) (F2-IsoPs) and protein excretion profiles and renal histology were investigated. The acute effects of tempol on blood pressure and TGF were studied in rats. In hydronephrosis, wild-type mice developed salt-sensitive hypertension (114 +/- 1 to 120 +/- 2 mmHg), which was augmented in SOD1-ko (125 +/- 3 to 135 +/- 4 mmHg) but abolished in SOD1-tg (109 +/- 3 to 108 +/- 3 mmHg). SOD1-ko controls displayed salt-sensitive blood pressure (108 +/- 1 to 115 +/- 2 mmHg), which was not found in wild types or SOD1-tg. Chronic tempol treatment reduced blood pressure in SOD1-ko controls (-7 mmHg) and in hydronephrotic wild-type (-8 mmHg) and SOD1-ko mice (-16 mmHg), but had no effect on blood pressure in wild-type or SOD1-tg controls. SOD1-ko controls and hydronephrotic wild-type and SOD1-ko mice exhibited increased fluid excretion associated with increased F2-IsoPs and protein excretion. The renal histopathological changes found in hydronephrotic wild-type were augmented in SOD1-ko and diminished in SOD-tg mice. Tempol attenuated blood pressure and normalized TGF response in hydronephrosis [DeltaP(SF): 15.2 +/- 1.2 to 9.1 +/- 0.6 mmHg, turning point: 14.3 +/- 0.8 to 19.7 +/- 1.4 nl/min]. Oxidative stress due to SOD1 deficiency causes salt sensitivity and plays a pivotal role for the development of hypertension in hydronephrosis. Increased superoxide formation may enhance TGF response and thereby contribute to hypertension.
Collapse
|
31
|
Gwathmey TM, Shaltout HA, Pendergrass KD, Pirro NT, Figueroa JP, Rose JC, Diz DI, Chappell MC. Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol 2009; 296:F1484-93. [PMID: 19244399 DOI: 10.1152/ajprenal.90766.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Expression of nuclear angiotensin II type 1 (AT(1)) receptors in rat kidney provides further support for the concept of an intracellular renin-angiotensin system. Thus we examined the cellular distribution of renal ANG II receptors in sheep to determine the existence and functional roles of intracellular ANG receptors in higher order species. Receptor binding was performed using the nonselective ANG II antagonist (125)I-[Sar(1),Thr(8)]-ANG II ((125)I-sarthran) with the AT(1) antagonist losartan (LOS) or the AT(2) antagonist PD123319 (PD) in isolated nuclei (NUC) and plasma membrane (PM) fractions obtained by differential centrifugation or density gradient separation. In both fetal and adult sheep kidney, PD competed for the majority of cortical NUC (> or =70%) and PM (> or =80%) sites while LOS competition predominated in medullary NUC (> or =75%) and PM (> or =70%). Immunodetection with an AT(2) antibody revealed a single approximately 42-kDa band in both NUC and PM extracts, suggesting a mature molecular form of the NUC receptor. Autoradiography for receptor subtypes localized AT(2) in the tubulointerstitium, AT(1) in the medulla and vasa recta, and both AT(1) and AT(2) in glomeruli. Loading of NUC with the fluorescent nitric oxide (NO) detector DAF showed increased NO production with ANG II (1 nM), which was abolished by PD and N-nitro-l-arginine methyl ester, but not LOS. Our studies demonstrate ANG II receptor subtypes are differentially expressed in ovine kidney, while nuclear AT(2) receptors are functionally linked to NO production. These findings provide further evidence of a functional intracellular renin-angiotensin system within the kidney, which may represent a therapeutic target for the regulation of blood pressure.
Collapse
Affiliation(s)
- Tanya M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Elevations in serum creatinine with RAAS blockade: why isn't it a sign of kidney injury? Curr Opin Nephrol Hypertens 2009; 17:443-9. [PMID: 18695383 DOI: 10.1097/mnh.0b013e32830a9606] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to review the pertinent physiology and pathophysiology of the renin-angiotensin-aldosterone system (RAAS), summarize the proven beneficial cardiovascular and renal effects of RAAS blockade, examine clinical situations in which RAAS blockade may induce reductions in glomerular filtration rate, and explore why increases in serum creatinine in the setting of angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) therapy do not necessarily signify the presence of clinically relevant kidney failure. RECENT FINDINGS RAAS inhibition appears to reduce the likelihood of atrial fibrillation. RAAS inhibition leads to improved insulin sensitivity and glycemic control, but does not appear to prevent diabetes. The beneficial effects of ACEi/ARB therapy extend to those with significant renal disease. Combination ACEi/ARB is safe, and reduces proteinuria more than either agent alone in patients with macroalbuminuric nephropathy. Acute deteriorations in renal function that result from RAAS inhibition are usually reversible. SUMMARY RAAS blockade exerts potent hemodynamic, antihypertensive, and antiinflammatory effects, and slows progression of kidney disease beyond that due to lowering of blood pressure. The benefit extends to those with advanced disease. In spite of established benefit, ACEi and ARB therapy remains underutilized, in part due to concerns about acute deteriorations in renal function that result from interruption of the RAAS.
Collapse
|
33
|
Endothelial nitric oxide synthase gene polymorphisms and the renal hemodynamic response to L-arginine. Kidney Int 2008; 75:327-32. [PMID: 19037250 DOI: 10.1038/ki.2008.574] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide is generated from L-arginine by nitric oxide synthase (NOS), an enzyme that exists in several isoforms. Some studies found that a polymorphism (G894T) in the endothelial NOS gene was associated with decreased nitric oxide bioactivity and vascular complications. However, it is not known whether the enzyme had a reduced activity. Here we measured the effect of an infusion of L-arginine on renal hemodynamic function in subjects segregated by the presence or absence of the T allele. If this polymorphism represented a functional variant, subjects with the GT/TT form should exhibit a blunted renal hemodynamic response to L-arginine compared to those with a GG allele. All subjects were given a diet controlled for sodium and protein intake. GG subjects had lower mean arterial pressure and an augmented glomerular filtration rate at baseline. In response to a graded L-arginine infusion, this group had significant changes in effective renal plasma flow, glomerular filtration rate, filtration fraction, renal vascular resistance, and renal blood flow. The renal response to L-arginine in GT/TT subjects was blunted. Circulating cGMP levels and endothelial NOS mRNA expression, measured in skin biopsies by real-time PCR, did not differ between the groups. Our study shows that the G894T allele of endothelial NOS is associated with a blunted response to L-arginine, suggesting this polymorphism may be a functional variant in humans.
Collapse
|
34
|
Rajapakse NW, De Miguel C, Das S, Mattson DL. Exogenous L-arginine ameliorates angiotensin II-induced hypertension and renal damage in rats. Hypertension 2008; 52:1084-90. [PMID: 18981330 DOI: 10.1161/hypertensionaha.108.114298] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experiments were performed to determine whether exogenous L-arginine could ameliorate angiotensin II-induced hypertension and renal damage. Rats were instrumented with chronic indwelling femoral venous and arterial catheters for infusions of drugs and measurement of conscious arterial pressure. Arterial blood pressure significantly increased from 124+/-1 to 199+/-4 mm Hg, after 9 days of continuous infusion of angiotensin II (20 ng/kg per minute; IV; n=6 to 9). In contrast, the increase in arterial pressure after 9 days of angiotensin II infusion was significantly blunted by 45% (P=0.0003) in rats coadministered L-arginine (300 microg/kg per minute; IV; n=7 to 9). The glomerular injury index was significantly greater in rats administered angiotensin II in comparison with rats administered saline vehicle (P<0.001). Coinfusion of L-arginine significantly increased plasma nitrate/nitrite concentrations (P<0.001) and completely prevented angiotensin II-induced glomerular damage (P<0.001). Angiotensin II infusion alone and combined angiotensin II plus L-arginine infusion significantly increased urinary albumin excretion. Albuminuria in rats administered angiotensin II plus L-arginine is likely to be because of increased intraglomerular pressure. Our experiments demonstrate that L-arginine can blunt angiotensin II-induced hypertension and associated renal damage. This latter observation is most exciting because it indicates that increasing NO bioavailability, in addition to lowering arterial pressure, can greatly reduce hypertension-induced renal damage.
Collapse
|
35
|
Nobe K, Nezu Y, Tsumita N, Hashimoto T, Honda K. Intra- and extrarenal arteries exhibit different profiles of contractile responses in high glucose conditions. Br J Pharmacol 2008; 155:1204-13. [PMID: 18806819 DOI: 10.1038/bjp.2008.365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The renal artery (RA) has been extensively investigated for the assessment of renal vascular function/dysfunction; however, few studies have focused on the intrarenal vasculature. EXPERIMENTAL APPROACH We devised a microvascular force measurement system, which allowed us to measure contractions of interlobar arteries (ILA), isolated from within the mouse kidney and prepared without endothelium. KEY RESULTS KCl (50 mM) induced similar force development in the aorta and RA but responses in the ILA were about 50% lower. Treatment of RA with 10 microM phenylephrine (PE), 10 nM U46619 (thromboxane A(2) analogue) or 10 microM prostaglandin F(2 alpha) elicited a response greater than 150% of that induced by KCl. In ILA, 10 nM U46619 elicited a response that was 130% of the KCl-induced response; however, other agonists induced levels similar to that induced by KCl. High glucose conditions (22.2 mM glucose) significantly enhanced responses in RA and ILA to PE or U46619 stimulation. This enhancement was suppressed by rottlerin, a calcium-independent PKC inhibitor, indicating that glucose-dependent, enhanced small vessel contractility in the kidney was linked to the activation of calcium-independent PKC. CONCLUSION AND IMPLICATIONS Extra- and intrarenal arteries exhibit different profiles of agonist-induced contractions. In ILA, only U46619 enhanced small vessel contractility in the kidney, which might lead to renal dysfunction and nephropathy through reduced intrarenal blood flow rate. A model has been established, which will allow the assessment of contractile responses of intrarenal arteries from murine models of renal disease, including type 2 diabetes.
Collapse
Affiliation(s)
- K Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, SHOWA University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Nitric oxide (NO) has multiple protective effects for regulating the cardiovascular and renal systems. The major functions include endothelium-dependent relaxation, anti-inflammatory effects, as well as antihypertrophic and antithrombotic activities. Many of the activities mediated by NO are systematically antagonized by angiotensin-II (Ang II), a vasconstrictor peptide. Studies described in the review below have demonstrated that the balance between NO and Ang II activities rather than the absolute concentration of each molecule determines their effects on the physiology and pathophysiology of the cardiovascular and renal systems. NO donors have been used for years as therapeutic agents for a range of cardiovascular conditions including angina, myocardial infarction and for the reduction of arterial stiffness. An understanding of the mechanisms underlying the effects of these medications will enable the development of novel therapies to balance the effects of NO in the cardiovascular system.
Collapse
Affiliation(s)
- Leopoldo Raij
- Nephrology/Hypertension Division, University of Miami, Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
37
|
Guidi E, Cozzi M, Milani S, Spada E. Nephrectomy modifies renal angiotensin II effects in kidney donors. Am J Hypertens 2008; 21:592-8. [PMID: 18437153 DOI: 10.1038/ajh.2008.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Age, gender, menopausal status, a family history of hypertension, and renal vascular response to angiotensin II are involved in the progression of renal failure from its very beginning. METHODS In order to investigate their importance on this progression, we measured effective renal plasma flow (ERPF) and glomerular filtration rate (GFR), and calculated glomerular pressure (Pglo) and afferent and efferent arteriole resistances (by means of Gomez formulae) in 26 normotensive kidney donors before and after nephrectomy. RESULTS Renal reactivity to angiotensin was the only variable that affected changes in renal and glomerular hemodynamics after the loss of renal tissue: in subjects with greater angiotensin reactivity, higher afferent resistances (Ra) and lower glomerular filtration and pressure before nephrectomy change to higher efferent resistances (Re) and higher Pglo and filtration after nephrectomy. CONCLUSIONS In normotensive donors with a normal compensatory response to nephrectomy, baseline renal reactivity to angiotensin II can influence renal and glomerular hemodynamics 1 year after nephrectomy.
Collapse
|
38
|
Carlström M, Lai EY, Steege A, Sendeski M, Ma Z, Zabihi S, Eriksson UJ, Patzak A, Persson AEG. Nitric Oxide Deficiency and Increased Adenosine Response of Afferent Arterioles in Hydronephrotic Mice With Hypertension. Hypertension 2008; 51:1386-92. [DOI: 10.1161/hypertensionaha.108.111070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contractions in isolated perfused arterioles and mRNA expression of NO synthase isoforms, adenosine, and angiotensin II receptors were measured. In wild-type mice,
N
G
-nitro-
l
-arginine methyl ester (
l
-NAME) did not change the basal arteriolar diameter of hydronephrotic kidneys (−6%) but reduced it in control (−12%) and contralateral arterioles (−43%). Angiotensin II mediated a weaker maximum contraction of hydronephrotic arterioles (−18%) than in control (−42%) and contralateral arterioles (−49%). The maximum adenosine-induced constriction was stronger in hydronephrotic (−19%) compared with control (−8%) and contralateral kidneys (±0%). The response to angiotensin II became stronger in the presence of adenosine in hydronephrotic kidneys and attenuated in contralateral arterioles.
l
-NAME increased angiotensin II responses of all of the groups but less in hydronephrotic kidneys. The mRNA expression of endothelial NO synthase and inducible NO synthase was upregulated in the hydronephrotic arterioles. No differences were found for adenosine or angiotensin II receptors. In superoxide dismutase-1 transgenic mice, strong but similar
l
-NAME response (−40%) was observed for all of the groups. This response was totally abolished in arterioles of hydronephrotic superoxide dismutase-1 knockout mice. In conclusion, hydronephrosis is associated with changes in the arteriolar reactivity of both hydronephrotic and contralateral kidneys. Increased oxidative stress, reduced NO availability, and stronger reactivity to adenosine of the hydronephrotic kidney may contribute to the enhanced tubuloglomerular feedback responsiveness in hydronephrosis and be involved in the development of hypertension.
Collapse
Affiliation(s)
- Mattias Carlström
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - En Yin Lai
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Andreas Steege
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mauricio Sendeski
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zufu Ma
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Sheller Zabihi
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ulf J. Eriksson
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Andreas Patzak
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - A. Erik G. Persson
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
39
|
Wright JW, Yamamoto BJ, Harding JW. Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog Neurobiol 2008; 84:157-81. [PMID: 18160199 PMCID: PMC2276843 DOI: 10.1016/j.pneurobio.2007.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/17/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
The renin-angiotensin system (RAS) mediates several classic physiologies including body water and electrolyte homeostasis, blood pressure, cyclicity of reproductive hormones and sexual behaviors, and the regulation of pituitary gland hormones. These functions appear to be mediated by the angiotensin II (AngII)/AT(1) receptor subtype system. More recently, the angiotensin IV (AngIV)/AT(4) receptor subtype system has been implicated in cognitive processing, cerebroprotection, local blood flow, stress, anxiety and depression. There is accumulating evidence to suggest an inhibitory influence by AngII acting at the AT(1) subtype, and a facilitory role by AngIV acting at the AT(4) subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning, and memory. This review initially describes the biochemical pathways that permit synthesis and degradation of active angiotensin peptides and three receptor subtypes (AT(1), AT(2) and AT(4)) thus far characterized. There is vigorous debate concerning the identity of the most recently discovered receptor subtype, AT(4). Descriptions of classic and novel physiologies and behaviors controlled by the RAS are presented. This review concludes with a consideration of the emerging therapeutic applications suggested by these newly discovered functions of the RAS.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Stegbauer J, Kuczka Y, Vonend O, Quack I, Sellin L, Patzak A, Steege A, Langnaese K, Rump LC. Endothelial nitric oxide synthase is predominantly involved in angiotensin II modulation of renal vascular resistance and norepinephrine release. Am J Physiol Regul Integr Comp Physiol 2007; 294:R421-8. [PMID: 18046021 DOI: 10.1152/ajpregu.00481.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Klinik für Nephrologie der Universitätsklinik Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gobe GC, Johnson DW. Distal tubular epithelial cells of the kidney: Potential support for proximal tubular cell survival after renal injury. Int J Biochem Cell Biol 2007; 39:1551-61. [PMID: 17590379 DOI: 10.1016/j.biocel.2007.04.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 12/20/2022]
Abstract
The tubular epithelium of the kidney is susceptible to injury from many causes, such as ischemia-reperfusion and the associated oxidative stress, nephrotoxins, inflammatory and immune disorders and many others. The outcome is often acute kidney injury, which may progress to chronic kidney disease and fibrosis. Acute kidney injury involves not only direct injury to the distal tubular (DT) and proximal tubular (PT) epithelium during and immediately following the injurious event, but the closely-associated and sometimes dysfunctional renal vascular endothelium also plays an important part in modulating the tubular epithelial injury. In comparison with the PT, the DT epithelium is less sensitive to cell death, especially after ischemic injury. It is more prone to apoptosis than necrosis when it dies, and has key paracrine and autocrine functions in secreting an array of inflammatory, reparative, and survival cytokines that include chemotactic cytokines, polypeptide growth factors, and vasoactive peptides. In a neighborly way, the cytokines and growth factors secreted by the DT epithelium may then act positively on the ischemia-sensitive PT that has receptors to many of these proteins, but may not be able to synthesize them. A more complete understanding of these cellular events will allow protection against nephron destruction, regeneration leading to re-epithelialization of the injured tubules, or prevention of progression to chronic kidney disease. This review looks at these functions in the DT epithelial cells, specifically the cells in the medullary thick ascending limb of the loop of Henle, in contrast with those of the straight segment of the PT.
Collapse
Affiliation(s)
- Glenda C Gobe
- Molecular and Cellular Pathology, School of Medicine, University of Queensland, Herston 4006, Australia.
| | | |
Collapse
|