1
|
Lyu J, Gu Z, Zhang Y, Vu HS, Lechauve C, Cai F, Cao H, Keith J, Brancaleoni V, Granata F, Motta I, Cappellini MD, Huang LJS, DeBerardinis RJ, Weiss MJ, Ni M, Xu J. A glutamine metabolic switch supports erythropoiesis. Science 2024; 386:eadh9215. [PMID: 39541460 DOI: 10.1126/science.adh9215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/18/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Metabolic requirements vary during development, and our understanding of how metabolic activity influences cell specialization is incomplete. Here, we describe a switch from glutamine catabolism to synthesis required for erythroid cell maturation. Glutamine synthetase (GS), one of the oldest functioning genes in evolution, is activated during erythroid maturation to detoxify ammonium generated from heme biosynthesis, which is up-regulated to support hemoglobin production. Loss of GS in mouse erythroid precursors caused ammonium accumulation and oxidative stress, impairing erythroid maturation and recovery from anemia. In β-thalassemia, GS activity is inhibited by protein oxidation, leading to glutamate and ammonium accumulation, whereas enhancing GS activity alleviates the metabolic and pathological defects. Our findings identify an evolutionarily conserved metabolic adaptation that could potentially be leveraged to treat common red blood cell disorders.
Collapse
Affiliation(s)
- Junhua Lyu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hieu S Vu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Cai
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Cao
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Julia Keith
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Valentina Brancaleoni
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Granata
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Motta
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Ni
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jian Xu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Jan-ngam V, Boontha S, Tubsuwan A, Wongpalee SP, Fanhchaksai K, Tantiworawit A, Charoenkwan P, Khamphikham P. Genetic modifications of EGLN1 reactivate HbF production in β 0-thalassemia/HbE. Heliyon 2024; 10:e38020. [PMID: 39381253 PMCID: PMC11459010 DOI: 10.1016/j.heliyon.2024.e38020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Reactivation of fetal hemoglobin (HbF, α2γ2) potentially alleviates clinical presentation in β-thalassemia. Prolyl hydroxylase domain enzymes (PHDs) play roles in the canonical oxygen-sensing pathway and maintain the stability of cellular hypoxia-inducible factor α (HIF-α) in response to low oxygen levels or hypoxia. Pharmacological inhibition of PHDs has been shown to increase HbF production in erythroid progenitors derived from healthy donors. Here, we demonstrated the relationship between PHD2, the main PHD isoform, and clinical phenotypes in β0-thalassemia/HbE disease. Although the targeted sequencing annotated several common variants within EGLN1, the gene encoding PHD2, none of these variants were located in the functional domains of PHD2 and were irrelevant to the clinical phenotypes. CRISPR-mediated EGLN1 modifications at the functional regions; however, led to significantly reduce PHD2 expression and increase HbF expression levels in severe β-thalassemia erythroblasts. Moreover, these beneficial phenotypes were independent to the two well-known HbF regulators including BCL11A and GATA1. Our findings introduce an additional mechanism for HbF regulation in β-thalassemia and propose that targeting the canonical oxygen-sensing pathway, particularly PHD2 functional domains, might offer a promising therapeutic strategy to β-thalassemia diseases.
Collapse
Affiliation(s)
- Varit Jan-ngam
- Master of Science Program in Medical Technology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Siriraj Boontha
- Bachelor of Science Program in Medical Technology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanda Fanhchaksai
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimlak Charoenkwan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pinyaphat Khamphikham
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Nazarov K, Perik-Zavodskii R, Perik-Zavodskaia O, Alrhmoun S, Volynets M, Shevchenko J, Sennikov S. Acute blood loss in mice forces differentiation of both CD45-positive and CD45-negative erythroid cells and leads to a decreased CCL3 chemokine production by bone marrow erythroid cells. PLoS One 2024; 19:e0309455. [PMID: 39231178 PMCID: PMC11373861 DOI: 10.1371/journal.pone.0309455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024] Open
Abstract
Hemorrhage, a condition that accompanies most physical trauma cases, remains an important field of study, a field that has been extensively studied in the immunological context for myeloid and lymphoid cells, but not as much for erythroid cells. In this study, we studied the immunological response of murine erythroid cells to acute blood loss using flow cytometry, NanoString immune transcriptome profiling, and BioPlex cytokine secretome profiling. We observed that acute blood loss forces the differentiation of murine erythroid cells in both bone marrow and spleen and that there was an up-regulation of several immune response genes, in particular pathogen-associated molecular pattern sensing gene Clec5a in post-acute blood loss murine bone marrow erythroid cells. We believe that the up-regulation of the Clec5a gene in bone marrow erythroid cells could help bone marrow erythroid cells detect and eliminate pathogens with the help of reactive oxygen species and antimicrobial proteins calprotectin and cathelicidin, the genes of which (S100a8, S100a9, and Camp) dominate the expression in bone marrow erythroid cells of mice.
Collapse
Affiliation(s)
- Kirill Nazarov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Roman Perik-Zavodskii
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Olga Perik-Zavodskaia
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Saleh Alrhmoun
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Marina Volynets
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Department of Immunology, Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Lu SY, Ortoleva J, Colon K, Mueller A, Laflam A, Shelton K, Dalia AA. Red blood cell distribution width predicts mortality of adult patients receiving veno-arterial extracorporeal membrane oxygenation. Perfusion 2024; 39:935-942. [PMID: 37341618 DOI: 10.1177/02676591231169850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
BACKGROUND Red blood cell distribution width (RDW) is a numerical measure of the variation in the size of circulating red blood cells. Recently, there is increasing interest in the role of RDW as a biomarker for inflammatory states and as a prognostication tool for a wide range of clinical manifestations. The predictive power of RDW on mortality among patients receiving mechanical circulatory support remains largely unknown. METHODS A retrospective analysis of 281 VA-ECMO patients at a tertiary referral academic hospital from 2009 to 2019 was performed. RDW was dichotomized with RDW-Low <14.5% and RDW-High ≥14.5%. The primary outcome was all-cause mortality at 30 days and 1 year. Cox proportional hazards models were used to examine the association between RDW and the clinical outcomes after adjusting for additional confounders. RESULTS 281 patients were included in the analysis. There were 121 patients (43%) in the RDW-Low group and 160 patients (57%) in the RDW-High group. Survival to ECMO decannulation [RDW-H: 58% versus RDW-L: 67%, p = 0.07] were similar between the two groups. Patients in RDW-H group had higher 30-days mortality (RDW-H: 67.5% vs RDW-L: 39.7%, p < 0.001) and 1 year mortality (RDW-H: 79.4% vs RDW-L: 52.9%, p < 0.001) compared to patients in the RDW-L group. After adjusting for confounders, Cox proportional hazards model demonstrated that patients with high RDW had increased odds of mortality at 30 days (hazard ratio 1.9, 95% CI 1.2-3.0, p < 0.01) and 1 year (hazard ratio 1.9, 95% CI 1.3-2.8, p < 0.01) compared to patients with low RDW. CONCLUSIONS Among patients receiving mechanical circulatory support with VA-ECMO, a higher RDW was independently associated with increased 30-days and 1-year mortality. RDW may serve as a simple biomarker that can be quickly obtained to help provide risk stratification and predict survival for patients receiving VA-ECMO.
Collapse
Affiliation(s)
- Shu Y Lu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamel Ortoleva
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, MA, USA
| | - Katia Colon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ariel Mueller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Laflam
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth Shelton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam A Dalia
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Lyu J, Ni M, Weiss MJ, Xu J. Metabolic regulation of erythrocyte development and disorders. Exp Hematol 2024; 131:104153. [PMID: 38237718 PMCID: PMC10939827 DOI: 10.1016/j.exphem.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
The formation of new red blood cells (RBC) (erythropoiesis) has served as a paradigm for understanding cellular differentiation and developmental control of gene expression. The metabolic regulation of this complex, coordinated process remains poorly understood. Each step of erythropoiesis, including lineage specification of hematopoietic stem cells, proliferation, differentiation, and terminal maturation into highly specialized oxygen-carrying cells, has unique metabolic requirements. Developing erythrocytes in mammals are also characterized by unique metabolic events such as loss of mitochondria with switch to glycolysis, ejection of nucleus and organelles, high-level heme and hemoglobin synthesis, and antioxidant requirement to protect hemoglobin molecules. Genetic defects in metabolic enzymes, including pyruvate kinase and glucose-6-phosphate dehydrogenase, cause common erythrocyte disorders, whereas other inherited disorders such as sickle cell disease and β-thalassemia display metabolic abnormalities associated with disease pathophysiology. Here we describe recent discoveries on the metabolic control of RBC formation and function, highlight emerging concepts in understanding the erythroid metabolome, and discuss potential therapeutic benefits of targeting metabolism for RBC disorders.
Collapse
Affiliation(s)
- Junhua Lyu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Min Ni
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jian Xu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
6
|
Nazarov K, Perik-Zavodskii R, Perik-Zavodskaia O, Alrhmoun S, Volynets M, Shevchenko J, Sennikov S. Phenotypic Alterations in Erythroid Nucleated Cells of Spleen and Bone Marrow in Acute Hypoxia. Cells 2023; 12:2810. [PMID: 38132130 PMCID: PMC10741844 DOI: 10.3390/cells12242810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxia leads to metabolic changes at the cellular, tissue, and organismal levels. The molecular mechanisms for controlling physiological changes during hypoxia have not yet been fully studied. Erythroid cells are essential for adjusting the rate of erythropoiesis and can influence the development and differentiation of immune cells under normal and pathological conditions. We simulated high-altitude hypoxia conditions for mice and assessed the content of erythroid nucleated cells in the spleen and bone marrow under the existing microenvironment. For a pure population of CD71+ erythroid cells, we assessed the production of cytokines and the expression of genes that regulate the immune response. Our findings show changes in the cellular composition of the bone marrow and spleen during hypoxia, as well as changes in the composition of the erythroid cell subpopulations during acute hypoxic exposure in the form of a decrease in orthochromatophilic erythroid cells that are ready for rapid enucleation and the accumulation of their precursors. Cytokine production normally differs only between organs; this effect persists during hypoxia. In the bone marrow, during hypoxia, genes of the C-lectin pathway are activated. Thus, hypoxia triggers the activation of various adaptive and compensatory mechanisms in order to limit inflammatory processes and modify metabolism.
Collapse
Affiliation(s)
- Kirill Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Roman Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Olga Perik-Zavodskaia
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Saleh Alrhmoun
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina Volynets
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| |
Collapse
|
7
|
Zhou Y, Dogiparthi VR, Ray S, Schaefer MA, Harris HL, Rowley MJ, Hewitt KJ. Defining a cohort of anemia-activated cis elements reveals a mechanism promoting erythroid precursor function. Blood Adv 2023; 7:6325-6338. [PMID: 36809789 PMCID: PMC10587717 DOI: 10.1182/bloodadvances.2022009163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Acute anemia elicits broad transcriptional changes in erythroid progenitors and precursors. We previously discovered a cis-regulatory transcriptional enhancer at the sterile alpha motif domain-14 enhancer locus (S14E), defined by a CANNTG-spacer-AGATAA composite motif and occupied by GATA1 and TAL1 transcription factors, is required for survival in severe anemia. However, S14E is only 1 of dozens of anemia-activated genes containing similar motifs. In a mouse model of acute anemia, we identified populations of expanding erythroid precursors, which increased expression of genes that contain S14E-like cis elements. We reveal that several S14E-like cis elements provide important transcriptional control of newly identified anemia-inducing genes, including the Ssx-2 interacting protein (Ssx2ip). Ssx2ip expression was determined to play an important role in erythroid progenitor/precursor cell activities, cell cycle regulation, and cell proliferation. Over a weeklong course of acute anemia recovery, we observed that erythroid gene activation mediated by S14E-like cis elements occurs during a phase coincident with low hematocrit and high progenitor activities, with distinct transcriptional programs activated at earlier and later time points. Our results define a genome-wide mechanism in which S14E-like enhancers control transcriptional responses during erythroid regeneration. These findings provide a framework to understand anemia-specific transcriptional mechanisms, ineffective erythropoiesis, anemia recovery, and phenotypic variability within human populations.
Collapse
Affiliation(s)
- Yichao Zhou
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | | | - Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Meg A. Schaefer
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Hannah L. Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - M. Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Kyle J. Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
8
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
9
|
Emery JM, Chicana B, Taglinao H, Ponce C, Donham C, Padmore H, Sebastian A, Trasti SL, Manilay JO. Vhl deletion in Dmp1 -expressing cells alters MEP metabolism and promotes stress erythropoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550559. [PMID: 37546957 PMCID: PMC10402046 DOI: 10.1101/2023.07.25.550559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In recent years, general hypoxia-inducible factor (HIF)-prolyl hydroxylase (PHD) enzyme inhibitors have been developed for the treatment of anemia due to renal disease and osteoporosis. However, it remains a challenge to target the HIF signaling pathway without dysregulating the skeletal and hematopoietic system. Here, we examined the effects of Vhl deletion in bone by performing longitudinal analyses of Vhl cKO mice at 3, 6, 10, and 24 weeks of age, where at 10 and 24 weeks of age, high bone mass and splenomegaly are present. Using flow cytometry, we observed increased frequency (%) of CD71 lo TER119 hi FSC lo orthochromatophilic erythroblasts and reticulocytes in 10- and 24-week-old Vhl cKO bone marrow (BM), which correlated with elevated erythropoietin levels in the BM and increased number of red blood cells in circulation. The absolute numbers of myeloerythroid progenitors (MEPs) in the BM were significantly reduced at 24 weeks. Bulk RNA-Seq of the MEPs showed upregulation of Epas1 ( Hif1a) and Efnb2 ( Hif2a) in Vhl cKO MEPs, consistent with a response to hypoxia, and genes involved in erythrocyte development, actin filament organization, and response to glucose. Additionally, histological analysis of Vhl cKO spleens revealed red pulp hyperplasia and the presence of megakaryocytes, both of which are features of extramedullary hematopoiesis (EMH). EMH in the spleen was correlated with the presence of mature stress erythroid progenitors, suggesting that stress erythropoiesis is occurring to compensate for the BM microenvironmental irregularities. Our studies implicate that HIF-driven alterations in skeletal homeostasis can accelerate erythropoiesis. Key Points • Dysregulation of HIF signaling in Dmp1+ bone cells induces stress erythropoiesis.• Skeletal homeostasis modulates erythropoiesis.
Collapse
|
10
|
Medina S, Zhang H, Santos-Medina LV, Yee ZA, Martin KJ, Wan G, Bolt AM, Zhou X, Stýblo M, Liu KJ. Arsenite Methyltransferase Is an Important Mediator of Hematotoxicity Induced by Arsenic in Drinking Water. WATER 2023; 15:448. [PMID: 36936034 PMCID: PMC10019457 DOI: 10.3390/w15030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chronic arsenic exposures via the consumption of contaminated drinking water are clearly associated with many deleterious health outcomes, including anemia. Following exposure, trivalent inorganic arsenic (AsIII) is methylated through a series of arsenic (+III oxidation state) methyltransferase (As3MT)-dependent reactions, resulting in the production of several intermediates with greater toxicity than the parent inorganic arsenicals. The extent to which inorganic vs. methylated arsenicals contribute to AsIII-induced hematotoxicity remains unknown. In this study, the contribution of As3MT-dependent biotransformation to the development of anemia was evaluated in male As3mt-knockout (KO) and wild-type, C57BL/6J, mice following 60-day drinking water exposures to 1 mg/L (ppm) AsIII. The evaluation of hematological indicators of anemia revealed significant reductions in red blood cell counts, hemoglobin levels, and hematocrit in AsIII-exposed wild-type mice as compared to unexposed controls. No such changes in the blood of As3mt-KO mice were detected. Compared with unexposed controls, the percentages of mature RBCs in the bone marrow and spleen (measured by flow cytometry) were significantly reduced in the bone marrow of AsIII-exposed wild-type, but not As3mt-KO mice. This was accompanied by increased levels of mature RBCS in the spleen and elevated levels of circulating erythropoietin in the serum of AsIII-exposed wild-type, but not As3mt-KO mice. Taken together, the findings from the present study suggest that As3MT-dependent biotransformation has an essential role in mediating the hematotoxicity of AsIII following drinking water exposures.
Collapse
Affiliation(s)
- Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | | | - Zachary A. Yee
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Kaitlin J. Martin
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Bouthelier A, Fernández-Arroyo L, Mesa-Ciller C, Cibrian D, Martín-Cófreces NB, Castillo-González R, Calero M, Herráez-Aguilar D, Guajardo-Grence A, Pacheco AM, Marcos-Jiménez A, Quiroga B, Morado M, Monroy F, Muñoz-Calleja C, Sánchez-Madrid F, Urrutia AA, Aragonés J. Erythroid SLC7A5/SLC3A2 amino acid carrier controls red blood cell size and maturation. iScience 2022; 26:105739. [PMID: 36582828 PMCID: PMC9792907 DOI: 10.1016/j.isci.2022.105739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the heterodimeric amino acid carrier SLC7A5/SLC3A2 (LAT1/CD98) has been widely studied in tumor biology but its role in physiological conditions remains largely unknown. Here we show that the SLC7A5/SLC3A2 heterodimer is constitutively present at different stages of erythroid differentiation but absent in mature erythrocytes. Administration of erythropoietin (EPO) further induces SLC7A5/SLC3A2 expression in circulating reticulocytes, as it also occurs in anemic conditions. Although Slc7a5 gene inactivation in the erythrocyte lineage does not compromise the total number of circulating red blood cells (RBCs), their size and hemoglobin content are significantly reduced accompanied by a diminished erythroblast mTORC1 activity. Furthermore circulating Slc7a5-deficient reticulocytes are characterized by lower transferrin receptor (CD71) expression as well as mitochondrial activity, suggesting a premature transition to mature RBCs. These data reveal that SLC7A5/SLC3A2 ensures adequate maturation of reticulocytes as well as the proper size and hemoglobin content of circulating RBCs.
Collapse
Affiliation(s)
- Antonio Bouthelier
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Lucía Fernández-Arroyo
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Claudia Mesa-Ciller
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Danay Cibrian
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Castillo-González
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain,Pathology Anatomy Department, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Macarena Calero
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid, Spain,Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (Imas12), Madrid, Spain
| | - Diego Herráez-Aguilar
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Andrea Guajardo-Grence
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Ana María Pacheco
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Borja Quiroga
- Nephrology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Morado
- Hematology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid, Spain,Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (Imas12), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Nephrology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Andrés A. Urrutia
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain,Corresponding author
| |
Collapse
|
12
|
Hsieh HH, Yao H, Ma Y, Zhang Y, Xiao X, Stephens H, Wajahat N, Chung SS, Xu L, Xu J, Rampal RK, Huang LJS. Epo-IGF1R cross talk expands stress-specific progenitors in regenerative erythropoiesis and myeloproliferative neoplasm. Blood 2022; 140:2371-2384. [PMID: 36054916 PMCID: PMC9837451 DOI: 10.1182/blood.2022016741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.
Collapse
Affiliation(s)
- Hsi-Hsien Hsieh
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Huiyu Yao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Yue Ma
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Yuannyu Zhang
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX
| | - Xue Xiao
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Helen Stephens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Naureen Wajahat
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Stephen S. Chung
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Jian Xu
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Raajit K. Rampal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
13
|
Modepalli S, Martinez-Morilla S, Venkatesan S, Fasano J, Paulsen K, Görlich D, Hattangadi S, Kupfer GM. An In Vivo Model for Elucidating the Role of an Erythroid-Specific Isoform of Nuclear Export Protein Exportin 7 (Xpo7) in Murine Erythropoiesis. Exp Hematol 2022; 114:22-32. [PMID: 35973480 PMCID: PMC10165728 DOI: 10.1016/j.exphem.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
Abstract
Erythroid nuclear condensation is a complex process in which compaction to one-tenth its original size occurs in an active nucleus simultaneously undergoing transcription and cell division. We previously found that the nuclear exportin Exportin7 (Xpo7), which is erythroid- specific and highly induced during terminal erythropoiesis, facilitates nuclear condensation. We also identified a previously unannotated, erythroid-specific isoform of Xpo7 (Xpo7B) containing a novel first exon Xpo7-1b expressed only in late Ter119+ erythroblasts. To better understand the functional difference between the erythroid Xpo7B isoform and the ubiquitous isoform (Xpo7A) containing the original first exon Xpo7-1a, we created gene-targeted mouse models lacking either exon Xpo7-1a or Xpo7-1b, or both exons 4 and 5, which are completely null for Xpo7 expression. We found that deficiency in Xpo7A does not affect steady-state nor stress erythropoiesis. In contrast, mice lacking the erythroid isoform, Xpo7B, exhibit a mild anemia as well as altered stress erythropoiesis. Complete Xpo7 deficiency resulted in partially penetrant embryonic lethality at the stage when definitive erythropoiesis is prominent in the fetal liver. Inducible complete knockdown of Xpo7 confirms that both steady-state erythropoiesis and stress erythropoiesis are affected. We also observe that Xpo7 deficiency downregulates the expression of important stress response factors, such as Gdf15 and Smad3. We conclude that the erythroid-specific isoform of Xpo7 is important for both steady-state and stress erythropoiesis in mice.
Collapse
Affiliation(s)
- Susree Modepalli
- Department of Molecular Oncology, Georgetown University, Washington DC
| | | | - Srividhya Venkatesan
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - James Fasano
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - Katerina Paulsen
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Shilpa Hattangadi
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, Bethesda, MD.
| | - Gary M Kupfer
- Department of Molecular Oncology, Georgetown University, Washington DC.
| |
Collapse
|
14
|
Ray S, Chee L, Zhou Y, Schaefer MA, Naldrett MJ, Alvarez S, Woods NT, Hewitt K. Functional requirements for a Samd14-capping protein complex in stress erythropoiesis. eLife 2022; 11:76497. [PMID: 35713400 PMCID: PMC9282853 DOI: 10.7554/elife.76497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals—involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs—are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β-heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP β subunit increased erythroid maturation in murine ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/Kit signaling in CD71med spleen erythroid precursors. Given the roles of Kit signaling in hematopoiesis and Samd14 in Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia. Anemia is a condition in which the body has a shortage of healthy red blood cells to carry enough oxygen to support its organs. A range of factors are known to cause anemia, including traumatic blood loss, toxins or nutritional deficiency. An estimated one-third of all women of reproductive age are anemic, which can cause tiredness, weakness and shortness of breath. Severe anemia drives the release of hormones and growth factors, leading to a rapid regeneration of precursor red blood cells to replenish the supply in the blood. To understand how red blood cell regeneration is controlled, Ray et al. studied proteins involved in regenerating blood using mice in which anemia had been induced with chemicals. Previous research had shown that the protein Samd14 is produced at higher quantities in individuals with anemia, and is involved with the recovery of lost red blood cells. However, it is not known how the Samd14 protein plays a role in regenerating blood cells, or whether Samd14 interacts with other proteins required for red blood cell production. To shed light on these questions, mouse cells exposed to anemia conditions were used to see what proteins Samd14 binds to. Purifying Samd14 revealed that it interacts with the actin capping protein. This interaction relies on a specific region of Samd14 that is similar to regions in other proteins that bind capping proteins. Ray et al. found that the interaction between Samd14 and the actin capping protein increased the signals needed for the development and survival of new red blood cells. These results identify a signaling mechanism that, if disrupted, could cause anemia to develop. They lead to a better understanding of how our bodies recover from anemia, and potential avenues to treat this condition.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Linda Chee
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Yichao Zhou
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Meg A Schaefer
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, University of Nebraska-Lincoln, Lincoln, United States
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, University of Nebraska-Lincoln, Lincoln, United States
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
| | - Kyle Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| |
Collapse
|
15
|
Dircio-Maldonado R, Castro-Oropeza R, Flores-Guzman P, Cedro-Tanda A, Beltran-Anaya FO, Hidalgo-Miranda A, Mayani H. Gene expression profiles and cytokine environments determine the in vitro proliferation and expansion capacities of human hematopoietic stem and progenitor cells. Hematology 2022; 27:476-487. [PMID: 35413231 DOI: 10.1080/16078454.2022.2061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The interplay between intrinsic and extrinsic elements involved in the physiology of hematopoietic cells is not completely understood. In the present study, we analyzed the transcriptional profiles of human cord blood-derived hematopoietic stem cells (HSCs), as well as myeloid (MPCs) and erythroid (EPCs) progenitors, and assessed their proliferation and expansion kinetics in vitro. METHODS All cell populations were obtained by cell-sorting, and were cultured in liquid cultures supplemented with different cytokine combinations. Their gene expression profiles were determined by RNA microarrays right after cell-sorting, before culture. RESULTS HSCs showed the highest proliferation and expansion capacities in culture, and were found to be more closely related, in transcriptional terms, to MPCs than to EPCs. This correlated with the fact that after 30 days, only cultures initiated with HSCs and MPCs were sustained. Expression of cell cycle and cell division-related genes was enriched in EPCs. Such cells showed significantly higher proliferation than MPCs, however, their expansion potential was reduced, so that cultures initiated with EPCs declined after 15 days and became exhausted by day 30. Proliferation and expansion of HSCs and EPCs were higher in the presence of a cytokine combination that favors erythropoiesis, whereas the growth of MPCs was higher under a cytokine combination that favors myelopoiesis. CONCLUSION This study shows a correlation between the transcriptional profiles of HSCs, MPCs, and EPCs, and their respective in vitro growth under particular culture conditions. These results may be relevant in the development of ex vivo systems for the expansion of hematopoietic cells for clinical application.
Collapse
Affiliation(s)
- Roberto Dircio-Maldonado
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Rosario Castro-Oropeza
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Patricia Flores-Guzman
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- National Institute of Genomic Medicine, National Ministry of Health, Mexico City, Mexico
| | | | | | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| |
Collapse
|
16
|
Role of Nuclear Receptors in Controlling Erythropoiesis. Int J Mol Sci 2022; 23:ijms23052800. [PMID: 35269942 PMCID: PMC8911257 DOI: 10.3390/ijms23052800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear receptors (NRs), are a wide family of ligand-regulated transcription factors sharing a common modular structure composed by an N-terminal domain and a ligand-binding domain connected by a short hinge linker to a DNA-binding domain. NRs are involved in many physiological processes, including metabolism, reproduction and development. Most of them respond to small lipophilic ligands, such as steroids, retinoids, and phospholipids, which act as conformational switches. Some NRs are still "orphan" and the search for their ligands is still ongoing. Upon DNA binding, NRs can act both as transcriptional activators or repressors of their target genes. Theoretically, the possibility to modulate NRs activity with small molecules makes them ideal therapeutic targets, although the complexity of their signaling makes drug design challenging. In this review, we discuss the role of NRs in erythropoiesis, in both homeostatic and stress conditions. This knowledge is important in view of modulating red blood cells production in disease conditions, such as anemias, and for the expansion of erythroid cells in culture for research purposes and for reaching the long-term goal of cultured blood for transfusion.
Collapse
|
17
|
Chen DP, Chang SW, Wen YH, Wang WT. Association between diminished miRNA expression and the disease status of AML patients: comparing to healthy control. Biomed J 2022; 46:100518. [PMID: 35307582 DOI: 10.1016/j.bj.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Changes in ABO blood type caused by a gradual decrease in antigen expression have been found in patients with acute myeloid leukemia (AML). Studies have indicated that alteration of ABO gene methylation accounts for 50% of acquired weak ABO antigen expression in patients with leukemia. However, the molecular mechanisms contributing to the remaining 50% of cases are unknown. We hypothesize that deregulation of miRNA is correlated with weak ABO antigen expression in patients with AML. METHODS Blood samples of 19 patients with AML and 12 healthy controls were collected, in which the blood type was not changed in these AML patients. Flow cytometric analysis was applied to measure the ABO antigen expression titer among AML patients and controls. A total of 18 leukemia-related miRNAs were analyzed via quantitative real-time polymerase chain reactions. RESULTS We found that miRNA profiles were correlated with the AML patients, especially in those who had constant or weakened ABO antigen expressions. Compared with healthy controls, the miR-16 and miR-451 expression were significantly lower in either AML cases with weak ABO antigen expressions (p = 0.003, p = 0.028, respectively) or AML cases with constant ABO antigen expressions (p = 0.043, p = 0.040, respectively). Although not statistically significant, decreasing trends in the miR-451 and miR-16 expressions in the AML patients with weakened ABO were observed compared to those with constant ABO antigens. The weak ABO antigen expression might correlate with miRNAs, especially miR-16 and miR-451. CONCLUSION This study indicated that decreasing in miR-16 and miR-451 was associated with AML and AML with weakened ABO expression. In the future, we will continue to include more cases and exclude the others factor influencing ABO antigen expression, promoter methylation and oxidative stress, to replicate the results of this study and investigate the underlying mechanism of decreasing miR-16 and miR-451 in AML patients with varied ABO antigen expression levels.
Collapse
|
18
|
Grzywa TM, Nowis D, Golab J. The role of CD71 + erythroid cells in the regulation of the immune response. Pharmacol Ther 2021; 228:107927. [PMID: 34171326 DOI: 10.1016/j.pharmthera.2021.107927] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Complex regulation of the immune response is necessary to support effective defense of an organism against hostile invaders and to maintain tolerance to harmless microorganisms and autoantigens. Recent studies revealed previously unappreciated roles of CD71+ erythroid cells (CECs) in regulation of the immune response. CECs physiologically reside in the bone marrow where erythropoiesis takes place. Under stress conditions, CECs are enriched in some organs outside of the bone marrow as a result of extramedullary erythropoiesis. However, the role of CECs goes well beyond the production of erythrocytes. In neonates, increased numbers of CECs contribute to their vulnerability to infectious diseases. On the other side, neonatal CECs suppress activation of immune cells in response to abrupt colonization with commensal microorganisms after delivery. CECs are also enriched in the peripheral blood of pregnant women as well as in the placenta and are responsible for the regulation of feto-maternal tolerance. In patients with cancer, anemia leads to increased frequency of CECs in the peripheral blood contributing to diminished antiviral and antibacterial immunity, as well as to accelerated cancer progression. Moreover, recent studies revealed the role of CECs in HIV and SARS-CoV-2 infections. CECs use a full arsenal of mechanisms to regulate immune response. These cells suppress proinflammatory responses of myeloid cells and T-cell proliferation by the depletion of ʟ-arginine by arginase. Moreover, CECs produce reactive oxygen species to decrease T-cell proliferation. CECs also secrete cytokines, including transforming growth factor β (TGF-β), which promotes T-cell differentiation into regulatory T-cells. Here, we comprehensively describe the role of CECs in orchestrating immune response and indicate some therapeutic approaches that might be used to regulate their effector functions in the treatment of human conditions.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Doctoral School, Medical University of Warsaw, Zwirki and Wigury 61 Street, 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Centre of Preclinical Research, Medical University of Warsaw, Banacha 1b Street, 02-097 Warsaw, Poland.
| |
Collapse
|
19
|
Wang H, Liu D, Song P, Jiang F, Chi X, Zhang T. Exposure to hypoxia causes stress erythropoiesis and downregulates immune response genes in spleen of mice. BMC Genomics 2021; 22:413. [PMID: 34090336 PMCID: PMC8178839 DOI: 10.1186/s12864-021-07731-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The spleen is the largest secondary lymphoid organ and the main site where stress erythropoiesis occurs. It is known that hypoxia triggers the expansion of erythroid progenitors; however, its effects on splenic gene expression are still unclear. Here, we examined splenic global gene expression patterns by time-series RNA-seq after exposing mice to hypoxia for 0, 1, 3, 5, 7 and 13 days. RESULTS Morphological analysis showed that on the 3rd day there was a significant increase in the spleen index and in the proliferation of erythroid progenitors. RNA-sequencing analysis revealed that the overall expression of genes decreased with increased hypoxic exposure. Compared with the control group, 1380, 3430, 4396, 3026, and 1636 genes were differentially expressed on days 1, 3, 5, 7 and 13, respectively. Clustering analysis of the intersection of differentially expressed genes pointed to 739 genes, 628 of which were upregulated, and GO analysis revealed a significant enrichment for cell proliferation. Enriched GO terms of downregulated genes were associated with immune cell activation. Expression of Gata1, Tal1 and Klf1 was significantly altered during stress erythropoiesis. Furthermore, expression of genes involved in the immune response was inhibited, and NK cells decreased. CONCLUSIONS The spleen of mice conquer hypoxia exposure in two ways. Stress erythropoiesis regulated by three transcription factors and genes in immune response were downregulated. These findings expand our knowledge of splenic transcriptional changes during hypoxia.
Collapse
Affiliation(s)
- Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Medical College of Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangwen Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China.
| |
Collapse
|
20
|
Sánchez Á, Orizaola MC, Rodríguez-Muñoz D, Aranda A, Castrillo A, Alemany S. Stress erythropoiesis in atherogenic mice. Sci Rep 2020; 10:18469. [PMID: 33116141 PMCID: PMC7595174 DOI: 10.1038/s41598-020-74665-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Bone marrow erythropoiesis is mainly homeostatic and a demand of oxygen in tissues activates stress erythropoiesis in the spleen. Here, we show an increase in the number of circulating erythrocytes in apolipoprotein E-/- mice fed a Western high-fat diet, with similar number of circulating leukocytes and CD41+ events (platelets). Atherogenic conditions increase spleen erythropoiesis with no variations of this cell lineage in the bone marrow. Spleens from atherogenic mice show augmented number of late-stage erythroblasts and biased differentiation of progenitor cells towards the erythroid cell lineage, with an increase of CD71+CD41CD34-CD117+Sca1-Lin- cells (erythroid-primed megakaryocyte-erythroid progenitors), which is consistent with the way in which atherogenesis modifies the expression of pro-erythroid and pro-megakaryocytic genes in megakaryocyte-erythroid progenitors. These data explain the transiently improved response to an acute severe hemolytic anemia insult found in atherogenic mice in comparison to control mice, as well as the higher burst-forming unit-erythroid and colony forming unit-erythroid capacity of splenocytes from atherogenic mice. In conclusion, our work demonstrates that, along with the well stablished enhancement of monocytosis during atherogenesis, stress erythropoiesis in apolipoprotein E-/- mice fed a Western high fat diet results in increased numbers of circulating red blood cells.
Collapse
Affiliation(s)
- Ángela Sánchez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Marta C Orizaola
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Diego Rodríguez-Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
21
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
22
|
Papadopoulos P, Kafasi A, De Cuyper IM, Barroca V, Lewandowski D, Kadri Z, Veldthuis M, Berghuis J, Gillemans N, Benavente Cuesta CM, Grosveld FG, van Zwieten R, Philipsen S, Vernet M, Gutiérrez L, Patrinos GP. Mild dyserythropoiesis and β-like globin gene expression imbalance due to the loss of histone chaperone ASF1B. Hum Genomics 2020; 14:39. [PMID: 33066815 PMCID: PMC7566067 DOI: 10.1186/s40246-020-00283-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023] Open
Abstract
The expression of the human β-like globin genes follows a well-orchestrated developmental pattern, undergoing two essential switches, the first one during the first weeks of gestation (ε to γ), and the second one during the perinatal period (γ to β). The γ- to β-globin gene switching mechanism includes suppression of fetal (γ-globin, HbF) and activation of adult (β-globin, HbA) globin gene transcription. In hereditary persistence of fetal hemoglobin (HPFH), the γ-globin suppression mechanism is impaired leaving these individuals with unusual elevated levels of fetal hemoglobin (HbF) in adulthood. Recently, the transcription factors KLF1 and BCL11A have been established as master regulators of the γ- to β-globin switch. Previously, a genomic variant in the KLF1 gene, identified by linkage analysis performed on twenty-seven members of a Maltese family, was found to be associated with HPFH. However, variation in the levels of HbF among family members, and those from other reported families carrying genetic variants in KLF1, suggests additional contributors to globin switching. ASF1B was downregulated in the family members with HPFH. Here, we investigate the role of ASF1B in γ- to β-globin switching and erythropoiesis in vivo. Mouse-human interspecies ASF1B protein identity is 91.6%. By means of knockdown functional assays in human primary erythroid cultures and analysis of the erythroid lineage in Asf1b knockout mice, we provide evidence that ASF1B is a novel contributor to steady-state erythroid differentiation, and while its loss affects the balance of globin expression, it has no major role in hemoglobin switching.
Collapse
Affiliation(s)
- Petros Papadopoulos
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - Athanassia Kafasi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
| | - Vilma Barroca
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
- U1274, Inserm, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Daniel Lewandowski
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
- U1274, Inserm, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR1184, Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Martijn Veldthuis
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Jeffrey Berghuis
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Celina María Benavente Cuesta
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Rob van Zwieten
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Muriel Vernet
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Laura Gutiérrez
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
- Platelet Research Lab -Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)-, Department of Medicine -University of Oviedo-, Oviedo, Spain
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences and Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
23
|
Sales RR, Belisário AR, Faria G, Mendes F, Luizon MR, Viana MB. Functional polymorphisms of BCL11A and HBS1L-MYB genes affect both fetal hemoglobin level and clinical outcomes in a cohort of children with sickle cell anemia. Ann Hematol 2020; 99:1453-1463. [PMID: 32447424 DOI: 10.1007/s00277-020-04079-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/04/2020] [Indexed: 01/28/2023]
Abstract
Fetal hemoglobin (HbF) ameliorates clinical severity of sickle cell anemia (SCA). The major loci regulating HbF levels are HBB cluster, BCL11A, and HMIP-2 (HBS1L-MYB). However, the impact of noncoding single-nucleotide polymorphisms (SNPs) in these loci on clinical outcomes and their functional role on regulating HbF levels should be better elucidated. Therefore, we performed comprehensive association analyses of 14 noncoding SNPs in five loci with HbF levels and with clinical outcomes in a cohort of 250 children with SCA from Southeastern Brazil, and further performed functional annotation of these SNPs. We found SNPs independently associated with HbF levels: rs4671393 in BCL11A (β-coefficient = 0.28), rs9399137 in HMIP-2A (β-coefficient = 0.16), and rs4895441 in HMIP-2B (β-coefficient = 0.15). Patients carrying minor (HbF-boosting) alleles for rs1427407, rs93979137, rs4895441, rs9402686, and rs9494145 showed reduced count of reticulocytes (p < 0.01), while those carrying the T allele of rs9494145 showed lower white blood cell count (p = 0.002). Carriers of the minor allele for rs9402686 showed higher peripheral saturation of oxygen (p = 0.002). Patients carrying minor alleles in BCL11A showed lower risk of transfusion incidence rate ratio (IRR ≥ 1.3; p < 0.0001). This effect was independent of HbF effect (p = 0.005). Carriers of minor alleles for rs9399137 and rs9402686 showed lower risk of acute chest syndrome (IRR > 1.3; p ≤ 0.01). Carriers of the reference allele for rs4671393 showed lower risk of infections (IRR = 1.16; p = 0.01). In conclusion, patients carrying HbF-boosting alleles of BCL11A and HMIP-2 were associated with milder clinical phenotypes. Higher HbF concentration may underlie this effect.
Collapse
Affiliation(s)
- Rahyssa Rodrigues Sales
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil. .,Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil. .,Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - André Rolim Belisário
- Centro de Tecidos Biológicos de Minas Gerais, Fundação Hemominas, Lagoa Santa, Minas Gerais, 33400-000, Brazil
| | - Gabriela Faria
- Serviço de Pesquisa, Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiola Mendes
- Serviço de Pesquisa, Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Borato Viana
- Faculdade de Medicina/NUPAD, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
24
|
Shim YA, Campbell T, Weliwitigoda A, Dosanjh M, Johnson P. Regulation of CD71 +TER119 + erythroid progenitor cells by CD45. Exp Hematol 2020; 86:53-66.e1. [PMID: 32450207 DOI: 10.1016/j.exphem.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022]
Abstract
Red blood cells are generated daily to replenish dying cells and maintain erythrocyte homeostasis. Erythropoiesis is driven by erythropoietin and supported by specialized red pulp macrophages that facilitate enucleation. Here we show that the leukocyte-specific tyrosine phosphatase CD45 is downregulated in late erythroid development, yet it regulates the CD71+TER119+ progenitor pool, which includes the Pro E, Ery A, and Ery B populations. The CD71+TER119+ progenitors are a major splenic population in neonates required for extramedullary erythropoiesis, to meet the high demand for red blood cells during growth. This population decreases as the mice mature, but this was not the case in CD45-deficient mice, which maintained a high level of these progenitors in the spleen into adulthood. Despite these increased erythroid progenitors, CD45-deficient mice had normal numbers of mature red blood cells. This was attributed to the increased proliferation of the Pro E and Ery A populations and the increased apoptosis of the CD71+TER119+ population, as well as an increased turnover of circulating red blood cells. The expansion of the CD71+TER119+ population in the absence of CD45 was attributed to increased numbers of red pulp macrophages producing erythropoietin in the spleen. Thus, CD45 regulates extramedullary erythropoiesis in the spleen.
Collapse
Affiliation(s)
- Yaein A Shim
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Campbell
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Asanga Weliwitigoda
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Nitric oxide-dependent expansion of erythroid progenitors in a murine model of chronic psychological stress. Histochem Cell Biol 2020; 153:457-468. [PMID: 32144481 DOI: 10.1007/s00418-020-01856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Anaemia occurs frequently in patients with heart failure and its current treatment lacks clear targets. Emerging evidence suggests that erythroid progenitor cell expansion is an integral part of physiological response to anaemia associated with chronic stress. Understanding the underlying mechanism may provide a novel approach to anaemia management. In this study, we aimed to examine a role for nitric oxide (NO) in the regulation of bone marrow erythroid progenitor response to chronic stress. For this purpose, adult male mice were subjected to 2 h daily restraint stress for 7 or 14 consecutive days. The role of NO was assessed by subcutaneous injection with NG-nitro-L-arginine methyl ester, 30 min prior to each restraint. Chronic exposure to stress resulted in significantly increased number of bone marrow erythroid progenitors, and blockade of NO biosynthesis prior to daily stress completely prevented stress-induced erythroid progenitor cell expansion. Furthermore, chronic stress exposure led to altered expression of neural, endothelial and inducible nitric oxide synthases (NOS) in the bone marrow, both on mRNA and protein level. Decreased expression of neural and endothelial NOS, as well as reduced expression of NF-kappaB/p65 in bone marrow nuclear cell fraction, was accompanied by elevated bone marrow expression of inducible NOS in chronically stressed animals. This is the first study to demonstrate a role for NO in adaptive response of erythroid progenitors to chronic stress. Targeting NO production may be beneficial to improve bone marrow dysfunction and reduced erythroid progenitor cell expansion in chronic heart failure patients.
Collapse
|
26
|
Pek RH, Yuan X, Rietzschel N, Zhang J, Jackson L, Nishibori E, Ribeiro A, Simmons W, Jagadeesh J, Sugimoto H, Alam MZ, Garrett L, Haldar M, Ralle M, Phillips JD, Bodine DM, Hamza I. Hemozoin produced by mammals confers heme tolerance. eLife 2019; 8:e49503. [PMID: 31571584 PMCID: PMC6773446 DOI: 10.7554/elife.49503] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Free heme is cytotoxic as exemplified by hemolytic diseases and genetic deficiencies in heme recycling and detoxifying pathways. Thus, intracellular accumulation of heme has not been observed in mammalian cells to date. Here we show that mice deficient for the heme transporter SLC48A1 (also known as HRG1) accumulate over ten-fold excess heme in reticuloendothelial macrophage lysosomes that are 10 to 100 times larger than normal. Macrophages tolerate these high concentrations of heme by crystallizing them into hemozoin, which heretofore has only been found in blood-feeding organisms. SLC48A1 deficiency results in impaired erythroid maturation and an inability to systemically respond to iron deficiency. Complete heme tolerance requires a fully-operational heme degradation pathway as haplo insufficiency of HMOX1 combined with SLC48A1 inactivation causes perinatal lethality demonstrating synthetic lethal interactions between heme transport and degradation. Our studies establish the formation of hemozoin by mammals as a previously unsuspected heme tolerance pathway.
Collapse
Affiliation(s)
- Rini H Pek
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Xiaojing Yuan
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Nicole Rietzschel
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Jianbing Zhang
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Laurie Jackson
- Department of MedicineUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Eiji Nishibori
- Faculty of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
- Tsukuba Research Center for Energy Materials ScienceUniversity of TsukabaTsukabaJapan
| | - Ana Ribeiro
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - William Simmons
- Genetics and Molecular Biology BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Jaya Jagadeesh
- Genetics and Molecular Biology BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | | | - Md Zahidul Alam
- Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Lisa Garrett
- NHGRI Embryonic Stem Cell and Transgenic Mouse CoreNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Malay Haldar
- Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Martina Ralle
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandUnited States
| | - John D Phillips
- Department of MedicineUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - David M Bodine
- Genetics and Molecular Biology BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Iqbal Hamza
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| |
Collapse
|
27
|
Activation of the vitamin D receptor transcription factor stimulates the growth of definitive erythroid progenitors. Blood Adv 2019; 2:1207-1219. [PMID: 29844206 DOI: 10.1182/bloodadvances.2018017533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/15/2018] [Indexed: 12/30/2022] Open
Abstract
The pathways that regulate the growth of erythroid progenitors are incompletely understood. In a computational analysis of gene expression changes during erythroid ontogeny, the vitamin D receptor (Vdr) nuclear hormone receptor transcription factor gene was identified in fetal and adult stages, but not at the embryonic stage of development. Vdr was expressed in definitive erythroid (EryD) progenitors and was downregulated during their maturation. Activation of Vdr signaling by the vitamin D3 agonist calcitriol increased the outgrowth of EryD colonies from fetal liver and adult bone marrow, maintained progenitor potential, and delayed erythroid maturation, as revealed by clonogenic assays, suspension culture, cell surface phenotype, and gene expression analyses. The early (cKit+CD71lo/neg), but not the late (cKit+CD71hi), EryD progenitor subset of LinnegcKit+ cells was responsive to calcitriol. Culture of cKit+CD71lo/neg progenitors in the presence of both vitamin D3 and glucocorticoid receptor ligands resulted in an increase in proliferation that was at least additive compared with either ligand alone. Lentivirus shRNA-mediated knockdown of Vdr expression abrogated the stimulation of early erythroid progenitor growth by calcitriol. These findings suggest that Vdr has a cell-intrinsic function in early erythroid progenitors. Targeting of downstream components of the Vdr signaling pathway may lead to new approaches for the expansion of erythroid progenitors ex vivo.
Collapse
|
28
|
Ghanem LR, Kromer A, Silverman IM, Ji X, Gazzara M, Nguyen N, Aguilar G, Martinelli M, Barash Y, Liebhaber SA. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol 2018; 38:e00175-18. [PMID: 29866654 PMCID: PMC6066754 DOI: 10.1128/mcb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/10/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022] Open
Abstract
Formation of the mammalian hematopoietic system is under a complex set of developmental controls. Here, we report that mouse embryos lacking the KH domain poly(C) binding protein, Pcbp2, are selectively deficient in the definitive erythroid lineage. Compared to wild-type controls, transcript splicing analysis of the Pcbp2-/- embryonic liver reveals accentuated exclusion of an exon (exon 6) that encodes a highly conserved transcriptional control segment of the hematopoietic master regulator, Runx1. Embryos rendered homozygous for a Runx1 locus lacking this cassette exon (Runx1ΔE6) effectively phenocopy the loss of the definitive erythroid lineage in Pcbp2-/- embryos. These data support a model in which enhancement of Runx1 cassette exon 6 inclusion by Pcbp2 serves a critical role in development of hematopoietic progenitors and constitutes a critical step in the developmental pathway of the definitive erythropoietic lineage.
Collapse
Affiliation(s)
- Louis R Ghanem
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Kromer
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Gazzara
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nhu Nguyen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabrielle Aguilar
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Massimo Martinelli
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Different effects of granulocyte colony-stimulating factor and erythropoietin on erythropoiesis. Stem Cell Res Ther 2018; 9:119. [PMID: 29720275 PMCID: PMC5930863 DOI: 10.1186/s13287-018-0877-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 11/24/2022] Open
Abstract
Background Red blood cells are the most abundant cells in the blood that deliver oxygen to the whole body. Erythropoietin (EPO), a positive regulator of erythropoiesis, is currently the major treatment for chronic anemia. Granulocyte colony-stimulating factor (G-CSF) is a multifunctional cytokine and a well-known regulator of hematopoietic stem cell proliferation, differentiation, and mobilization. The use of EPO in combination with G-CSF has been reported to synergistically improve erythroid responses in a group of patients with myelodysplastic syndromes who did not respond to EPO treatment alone; however, the mechanism remains unclear. Methods C57BL/6 J mice injected with G-CSF or EPO were used to compare the erythropoiesis status and the efficiency of erythroid mobilization by flow cytometry. Results In this study, we found that G-CSF induced more orthochromatophilic erythroblast production than did EPO in the bone marrow and spleen. In addition, in contrast to EPO treatments, G-CSF treatments enhanced the efficiency of the mobilization of newly synthesized reticulocytes into peripheral blood. Our results demonstrated that the effects of G-CSF on erythropoiesis and erythrocytic mobilization were independent of EPO secretion and, in contrast to EPO, G-CSF promoted progression of erythropoiesis through transition of early stage R2 (basophilic erythroblasts) to late stage R4 (orthochromatophilic erythroblasts). Conclusions We demonstrate for the first time that G-CSF treatments induce a faster erythropoiesis-enhancing response than that of EPO. These findings suggest an alternative approach to treating acute anemia, especially when patients are experiencing a clinical emergency in remote areas without proper blood bank supplies.
Collapse
|
30
|
Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Front Immunol 2018; 9:218. [PMID: 29497418 PMCID: PMC5818406 DOI: 10.3389/fimmu.2018.00218] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
31
|
Chapin J, Giardina PJ. Thalassemia Syndromes. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
32
|
Fang X, Shen F, Lechauve C, Xu P, Zhao G, Itkow J, Wu F, Hou Y, Wu X, Yu L, Xiu H, Wang M, Zhang R, Wang F, Zhang Y, Wang D, Weiss MJ, Yu D. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica 2017; 103:406-416. [PMID: 29269522 PMCID: PMC5830375 DOI: 10.3324/haematol.2017.177394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
The microRNAs miR-144 and -451 are encoded by a bicistronic gene that is strongly induced during red blood cell formation (erythropoiesis). Ablation of the miR-144/451 gene in mice causes mild anemia under baseline conditions. Here we show that miR-144/451−/− erythroblasts exhibit increased apoptosis during recovery from acute anemia. Mechanistically, miR-144/451 depletion increases the expression of the miR-451 target mRNA Cab39, which encodes a co-factor for the serine-threonine kinase LKB1. During erythropoietic stress, miR-144/451−/− erythroblasts exhibit abnormally increased Cab39 protein, which activates LKB1 and its downstream AMPK/mTOR effector pathway. Suppression of this pathway via drugs or shRNAs enhances survival of the mutant erythroblasts. Thus, miR-144/451 facilitates recovery from acute anemia by repressing Cab39/AMPK/mTOR. Our findings suggest that miR-144/451 is a key protector of erythroblasts during pathological states associated with dramatically increased erythropoietic demand, including acute blood loss and hemolytic anemia.
Collapse
Affiliation(s)
- Xiao Fang
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Feiyang Shen
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peng Xu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guowei Zhao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacobi Itkow
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Fan Wu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Yaying Hou
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Xiaohui Wu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China.,Department of Pediatrics, Jingjiang People's Hospital, Yangzhou University, Jingjiang, China
| | - Lingling Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China.,Department of Pediatrics, Jingjiang People's Hospital, Yangzhou University, Jingjiang, China
| | - Huiqing Xiu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Mengli Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Ruiling Zhang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Fangfang Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Yanqing Zhang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Daxin Wang
- Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China .,Institute of Comparative Medicine, Yangzhou University, China.,Institute of Translational Medicine, Yangzhou University School of Medicine, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| |
Collapse
|
33
|
Mayer B, Németh K, Krepuska M, Myneni VD, Maric D, Tisdale JF, Hsieh MM, Uchida N, Lee HJ, Nemeth MJ, Holmbeck K, Noguchi CT, Rogers H, Dey S, Hansen A, Hong J, Chow I, Key S, Szalayova I, Pagani J, Markó K, McClain-Caldwell I, Vitale-Cross L, Young WS, Brownstein MJ, Mezey É. Vasopressin stimulates the proliferation and differentiation of red blood cell precursors and improves recovery from anemia. Sci Transl Med 2017; 9:eaao1632. [PMID: 29187641 PMCID: PMC6309406 DOI: 10.1126/scitranslmed.aao1632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 06/21/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022]
Abstract
Arginine vasopressin (AVP) made by hypothalamic neurons is released into the circulation to stimulate water resorption by the kidneys and restore water balance after blood loss. Patients who lack this antidiuretic hormone suffer from central diabetes insipidus. We observed that many of these patients were anemic and asked whether AVP might play a role in red blood cell (RBC) production. We found that all three AVP receptors are expressed in human and mouse hematopoietic stem and progenitor cells. The AVPR1B appears to play the most important role in regulating erythropoiesis in both human and mouse cells. AVP increases phosphorylation of signal transducer and activator of transcription 5, as erythropoietin (EPO) does. After sublethal irradiation, AVP-deficient Brattleboro rats showed delayed recovery of RBC numbers compared to control rats. In mouse models of anemia (induced by bleeding, irradiation, or increased destruction of circulating RBCs), AVP increased the number of circulating RBCs independently of EPO. In these models, AVP appears to jump-start peripheral blood cell replenishment until EPO can take over. We suggest that specific AVPR1B agonists might be used to induce fast RBC production after bleeding, drug toxicity, or chemotherapy.
Collapse
Affiliation(s)
- Balázs Mayer
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krisztián Németh
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Miklós Krepuska
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vamsee D Myneni
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew M Hsieh
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Heon-Jin Lee
- Section on Neural Gene Expression, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kenn Holmbeck
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Heather Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Arne Hansen
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jeffrey Hong
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ian Chow
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sharon Key
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ildikó Szalayova
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jerome Pagani
- Section on Neural Gene Expression, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Károly Markó
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ian McClain-Caldwell
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lynn Vitale-Cross
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | | - Éva Mezey
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Sala MA, Chen C, Zhang Q, Do-Umehara HC, Wu W, Misharin AV, Waypa GB, Fang D, Budinger GRS, Liu S, Chandel NS, Schumacker PT, Sznajder JI, Liu J. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. J Biol Chem 2017; 293:271-284. [PMID: 29118187 DOI: 10.1074/jbc.ra117.000440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
The hypoxic response is a stress response triggered by low oxygen tension. Hypoxia-inducible factors (HIFs) play a prominent role in the pathobiology of hypoxia-associated conditions, including pulmonary hypertension (PH) and polycythemia. The c-Jun N-terminal protein kinase (JNK), a stress-activated protein kinase that consists of two ubiquitously expressed isoforms, JNK1 and JNK2, and a tissue-specific isoform, JNK3, has been shown to be activated by hypoxia. However, the physiological role of JNK1 and JNK2 in the hypoxic response remains elusive. Here, using genetic knockout cells and/or mice, we show that JNK2, but not JNK1, up-regulates the expression of HIF-1α and HIF-2α and contributes to hypoxia-induced PH and polycythemia. Knockout or silencing of JNK2, but not JNK1, prevented the accumulation of HIF-1α in hypoxia-treated cells. Loss of JNK2 resulted in a decrease in HIF-1α and HIF-2α mRNA levels under resting conditions and in response to hypoxia. Consequently, hypoxia-treated Jnk2-/- mice had reduced erythropoiesis and were less prone to polycythemia because of decreased expression of the HIF target gene erythropoietin (Epo). Jnk2-/- mice were also protected from hypoxia-induced PH, as indicated by lower right ventricular systolic pressure, a process that depends on HIF. Taken together, our results suggest that JNK2 is a positive regulator of HIFs and therefore may contribute to HIF-dependent pathologies.
Collapse
Affiliation(s)
- Marc A Sala
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Cong Chen
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Qiao Zhang
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanh Chi Do-Umehara
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Wenjiao Wu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gregory B Waypa
- Department of Pediatrics, Northwestern University, Chicago, Illinois 60611
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Paul T Schumacker
- Department of Pediatrics, Northwestern University, Chicago, Illinois 60611
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jing Liu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
35
|
E2F-2 Promotes Nuclear Condensation and Enucleation of Terminally Differentiated Erythroblasts. Mol Cell Biol 2016; 37:MCB.00274-16. [PMID: 27795297 PMCID: PMC5192079 DOI: 10.1128/mcb.00274-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
E2F-2 is a retinoblastoma (Rb)-regulated transcription factor induced during terminal erythroid maturation. Cyclin E-mediated Rb hyperphosphorylation induces E2F transcriptional activator functions. We previously reported that deregulated cyclin E activity causes defective terminal maturation of nucleated erythroblasts in vivo Here, we found that these defects are normalized by E2F-2 deletion; however, anemia in mice with deregulated cyclin E is not improved by E2F-2-loss, which itself causes reduced peripheral red blood cell (RBC) counts without altering relative abundances of erythroblast subpopulations. To determine how E2F-2 regulates RBC production, we comprehensively studied erythropoiesis using knockout mice and hematopoietic progenitors. We found that efficient stress erythropoiesis in vivo requires E2F-2, and we also identified an unappreciated role for E2F-2 in erythroblast enucleation. In particular, E2F-2 deletion impairs nuclear condensation, a morphological feature of maturing erythroblasts. Transcriptome profiling of E2F-2-null, mature erythroblasts demonstrated widespread changes in gene expression. Notably, we identified citron Rho-interacting kinase (CRIK), which has known functions in mitosis and cytokinesis, as induced in erythroblasts in an E2F-2-dependent manner, and we found that CRIK activity promotes efficient erythroblast enucleation and nuclear condensation. Together, our data reveal novel, lineage-specific functions for E2F-2 and suggest that some mitotic kinases have specialized roles supporting enucleation of maturing erythroblasts.
Collapse
|
36
|
Jenkins GR, Lee T, Moland CL, Vijay V, Herman EH, Lewis SM, Davis KJ, Muskhelishvili L, Kerr S, Fuscoe JC, Desai VG. Sex-related differential susceptibility to doxorubicin-induced cardiotoxicity in B6C3F 1 mice. Toxicol Appl Pharmacol 2016; 310:159-174. [PMID: 27644598 DOI: 10.1016/j.taap.2016.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023]
Abstract
Sex is a risk factor for development of cardiotoxicity, induced by the anti-cancer drug, doxorubicin (DOX), in humans. To explore potential mechanisms underlying differential susceptibility to DOX between sexes, 8-week old male and female B6C3F1 mice were dosed with 3mg/kg body weight DOX or an equivalent volume of saline via tail vein once a week for 6, 7, 8, and 9 consecutive weeks, resulting in 18, 21, 24, and 27mg/kg cumulative DOX doses, respectively. At necropsy, one week after each consecutive final dose, the extent of myocardial injury was greater in male mice compared to females as indicated by higher plasma concentrations of cardiac troponin T at all cumulative DOX doses with statistically significant differences between sexes at the 21 and 24mg/kg cumulative doses. A greater susceptibility to DOX in male mice was further confirmed by the presence of cytoplasmic vacuolization in cardiomyocytes, with left atrium being more vulnerable to DOX cardiotoxicity. The number of TUNEL-positive cardiomyocytes was mostly higher in DOX-treated male mice compared to female counterparts, showing a statistically significant sex-related difference only in left atrium at 21mg/kg cumulative dose. DOX-treated male mice also had an increased number of γ-H2A.X-positive (measure of DNA double-strand breaks) cardiomyocytes compared to female counterparts with a significant sex effect in the ventricle at 27mg/kg cumulative dose and right atrium at 21 and 27mg/kg cumulative doses. This newly established mouse model provides a means to identify biomarkers and access potential mechanisms underlying sex-related differences in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- G Ronald Jenkins
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Taewon Lee
- Department of Mathematics, Korea University, Sejong, Republic of Korea
| | - Carrie L Moland
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Vikrant Vijay
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Eugene H Herman
- Toxicology and Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, The National Cancer Institute, Rockville, MD 20850-9734, United States
| | - Sherry M Lewis
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Kelly J Davis
- Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Levan Muskhelishvili
- Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Susan Kerr
- Arkansas Heart Hospital, Little Rock, AR 72211, United States
| | - James C Fuscoe
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Varsha G Desai
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| |
Collapse
|
37
|
Abstract
Terminal erythroid differentiation occurs in the bone marrow, within specialized niches termed erythroblastic islands. These functional units consist of a macrophage surrounded by differentiating erythroblasts and have been described more than five decades ago, but their function in the pathophysiology of erythropoiesis has remained unclear until recently. Here we propose that the central macrophage in the erythroblastic island contributes to the pathophysiology of anemia of inflammation. After introducing erythropoiesis and the interactions between the erythroblasts and the central macrophage within the erythroblastic islands, we will discuss the immunophenotypic characterization of this specific subpopulation of macrophages. We will then integrate these concepts into the currently known pathophysiological drivers of anemia of inflammation and address the role of the central macrophage in this disorder. Finally, as a means of furthering our understanding of the various concepts, we will discuss the differences between murine and rat models with regard to developmental and stress erythropoiesis in an attempt to define a model system representative of human pathophysiology.
Collapse
|
38
|
Rishi G, Secondes ES, Wallace DF, Subramaniam VN. Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during iron-deficient anemia. Am J Hematol 2016; 91:812-8. [PMID: 27169626 DOI: 10.1002/ajh.24417] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/29/2022]
Abstract
Iron metabolism and erythropoiesis are inherently interlinked physiological processes. Regulation of iron metabolism is mediated by the iron-regulatory hormone hepcidin. Hepcidin limits the amount of iron released into the blood by binding to and causing the internalization of the iron exporter, ferroportin. A number of molecules and physiological stimuli, including erythropoiesis, are known to regulate hepcidin. An increase in erythropoietic demand decreases hepcidin, resulting in increased bioavailable iron in the blood. Transferrin receptor 2 (TFR2) is involved in the systemic regulation of iron metabolism. Patients and mice with mutations in TFR2 develop hemochromatosis due to inappropriate hepcidin levels relative to body iron. Recent studies from our laboratory and others have suggested an additional role for TFR2 in response to iron-restricted erythropoiesis. These studies used mouse models with perturbed systemic iron metabolism: anemic mice lacking matriptase-2 and Tfr2, or bone marrow transplants from iron-loaded Tfr2 null mice. We developed a novel transgenic mouse model which lacks Tfr2 in the hematopoietic compartment, enabling the delineation of the role of Tfr2 in erythroid development without interfering with its role in systemic iron metabolism. We show that in the absence of hematopoietic Tfr2 immature polychromatic erythroblasts accumulate with a concordant reduction in the percentage of mature erythroid cells in the spleen and bone marrow of anemic mice. These results demonstrate that erythroid Tfr2 is essential for an appropriate erythropoietic response in iron-deficient anemia. These findings may be of relevance in clinical situations in which an immediate and efficient erythropoietic response is required. Am. J. Hematol. 91:812-818, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gautam Rishi
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland 4006 Australia
- School of Medicine; the University of Queensland; Brisbane Queensland 4006 Australia
| | - Eriza S. Secondes
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland 4006 Australia
| | - Daniel F. Wallace
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland 4006 Australia
| | - V. Nathan Subramaniam
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland 4006 Australia
- School of Medicine; the University of Queensland; Brisbane Queensland 4006 Australia
| |
Collapse
|
39
|
Otero TMN, Yeh DD, Bajwa EK, Azocar RJ, Tsai AL, Belcher DM, Quraishi SA. Elevated Red Cell Distribution Width Is Associated With Decreased Ventilator-Free Days in Critically Ill Patients. J Intensive Care Med 2016; 33:241-247. [PMID: 27251107 DOI: 10.1177/0885066616652612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Elevated red cell distribution width (RDW) is associated with mortality in a variety of respiratory conditions. Recent data also suggest that RDW is associated with mortality in intensive care unit (ICU) patients. Although respiratory failure is common in the ICU, the relationship between RDW and pulmonary outcomes in the ICU has not been previously explored. Therefore, our goal was to investigate the association of admission RDW with 30-day ventilator-free days (VFDs) in ICU patients. METHODS We performed a retrospective analysis from an ongoing prospective, observational study. Patients were recruited from medical and surgical ICUs of a large teaching hospital in Boston, Massachusetts. The RDW was assessed within 1 hour of ICU admission. Poisson regression analysis was used to investigate the association of RDW (normal: 11.5%-14.5% vs elevated: >14.5%) with 30-day VFD, while controlling for age, sex, race, body mass index, Nutrition Risk in the Critically Ill score, the presence of chronic lung disease, Pao2/Fio2 ratio, and admission levels of hemoglobin, mean corpuscular volume, phosphate, albumin, C-reactive protein, and creatinine. RESULTS A total of 637 patients comprised the analytic cohort. Mean RDW was 15 (standard deviation 4%), with 53% of patients in the normal range and 47% with elevated levels. Median VFD was 16 (interquartile range: 6-25) days. Poisson regression analysis demonstrated that ICU patients with elevated admission RDW were likely to have 32% lower 30-day VFDs compared to their counterparts with RDW in the normal range (incidence rate ratio: 0.68; 95% confidence interval: 0.55-0.83: P < .001). CONCLUSIONS We observed an inverse association of RDW and 30-day VFD, despite controlling for demographics, nutritional factors, and severity of illness. This supports the need for future studies to validate our findings, understand the physiologic processes that lead to elevated RDW in patients with respiratory failure, and determine whether changes in RDW may be used to support clinical decision-making.
Collapse
Affiliation(s)
- Tiffany M N Otero
- 1 Tufts University School of Medicine, Boston, MA, USA.,2 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - D Dante Yeh
- 3 Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,4 Harvard Medical School, Boston, MA, USA
| | - Ednan K Bajwa
- 4 Harvard Medical School, Boston, MA, USA.,5 Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ruben J Azocar
- 6 Department of Anesthesiology, Tufts Medical Center, Boston, MA, USA
| | - Andrea L Tsai
- 6 Department of Anesthesiology, Tufts Medical Center, Boston, MA, USA
| | - Donna M Belcher
- 7 Department of Nutrition and Food Services, Massachusetts General Hospital, Boston, MA
| | - Sadeq A Quraishi
- 2 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.,4 Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Macrophage migration inhibitory factor is an endogenous regulator of stress-induced extramedullary erythropoiesis. Histochem Cell Biol 2016; 146:311-24. [DOI: 10.1007/s00418-016-1442-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/25/2022]
|
41
|
Otero TMN, Canales C, Yeh DD, Hou PC, Belcher DM, Quraishi SA. Elevated red cell distribution width at initiation of critical care is associated with mortality in surgical intensive care unit patients. J Crit Care 2016; 34:7-11. [PMID: 27288601 DOI: 10.1016/j.jcrc.2016.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 11/18/2022]
Abstract
PURPOSE Recent evidence suggests that red cell distribution width (RDW) is associated with mortality in mixed cohorts of critically ill patients. Our goal was to investigate whether elevated RDW at initiation of critical care in the intensive care unit (ICU) is associated with 90-day mortality in surgical patients. METHODS We performed a retrospective, single-center cohort study. Normal RDW was defined as 11.5%-14.5%. To investigate the association of admission RDW with 90-day mortality, we performed a logistic regression analysis, controlling for age, sex, race, body mass index, Nutrition Risk Screening 2002 score, Acute Physiology and Chronic Health Evaluation II score, hospital length of stay, as well as levels of creatinine, albumin, and mean corpuscular volume. RESULTS 500 patients comprised the analytic cohort; 47% patients had elevated RDW and overall 90-day mortality was 28%. Logistic regression analysis demonstrated that patients with elevated RDW had a greater than two-fold increased odds of mortality (OR 2.28: 95%CI 1.20-4.33) compared to patients with normal RDW. CONCLUSIONS Elevated RDW at initiation of care is associated with increased odds of 90-day mortality in surgical ICU patients. These data support the need for prospective studies to determine whether RDW can improve risk stratification in surgical ICU patients.
Collapse
Affiliation(s)
- Tiffany M N Otero
- Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114.
| | - Cecilia Canales
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114; University of California, 252 Irvine Hall, Irvine, CA, 92697.
| | - D Dante Yeh
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114; Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115.
| | - Peter C Hou
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115; Department of Emergency Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115.
| | - Donna M Belcher
- Department of Nutrition and Food Services, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114.
| | - Sadeq A Quraishi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114; Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115.
| |
Collapse
|
42
|
Kim TS, Hanak M, Trampont PC, Braciale TJ. Stress-associated erythropoiesis initiation is regulated by type 1 conventional dendritic cells. J Clin Invest 2015; 125:3965-80. [PMID: 26389678 DOI: 10.1172/jci81919] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022] Open
Abstract
Erythropoiesis is an important response to certain types of stress, including hypoxia, hemorrhage, bone marrow suppression, and anemia, that result in inadequate tissue oxygenation. This stress-induced erythropoiesis is distinct from basal red blood cell generation; however, neither the cellular nor the molecular factors that regulate this process are fully understood. Here, we report that type 1 conventional dendritic cells (cDC1s), which are defined by expression of CD8α in the mouse and XCR1 and CLEC9 in humans, are critical for induction of erythropoiesis in response to stress. Specifically, using murine models, we determined that engagement of a stress sensor, CD24, on cDC1s upregulates expression of the Kit ligand stem cell factor on these cells. The increased expression of stem cell factor resulted in Kit-mediated proliferative expansion of early erythroid progenitors and, ultimately, transient reticulocytosis in the circulation. Moreover, this stress response was triggered in part by alarmin recognition and was blunted in CD24 sensor- and CD8α+ DC-deficient animals. The contribution of the cDC1 subset to the initiation of stress erythropoiesis was distinct from the well-recognized role of macrophages in supporting late erythroid maturation. Together, these findings offer insight into the mechanism of stress erythropoiesis and into disorders of erythrocyte generation associated with stress.
Collapse
|
43
|
Chen CY, Hou CW, Bernard JR, Chen CC, Hung TC, Cheng LL, Liao YH, Kuo CH. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt Med Biol 2015; 15:371-9. [PMID: 25251930 DOI: 10.1089/ham.2013.1114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High altitude training is a widely used strategy for improving aerobic exercise performance. Both Rhodiola crenulata (R) and Cordyceps sinensis (C) supplements have been reported to improve exercise performance. However, it is not clear whether the provision of R and C during high altitude training could further enhance aerobic endurance capacity. In this study, we examined the effect of R and C based supplementation on aerobic exercise capacity following 2-week high altitude training. Alterations to autonomic nervous system activity, circulatory hormonal, and hematological profiles were investigated. Eighteen male subjects were divided into two groups: Placebo (n=9) and R/C supplementation (RC, n=9). Both groups received either RC (R: 1400 mg+C: 600 mg per day) or the placebo during a 2-week training period at an altitude of 2200 m. After 2 weeks of altitude training, compared with Placebo group, the exhaustive run time was markedly longer (Placebo: +2.2% vs. RC: +5.7%; p<0.05) and the decline of parasympathetic (PNS) activity was significantly prevented in RC group (Placebo: -51% vs. RC: -41%; p<0.05). Red blood cell, hematocrit, and hemoglobin levels were elevated in both groups to a comparable extent after high altitude training (p<0.05), whereas the erythropoietin (EPO) level remained higher in the Placebo group (∼48% above RC values; p<0.05). The provision of an RC supplement during altitude training provides greater training benefits in improving aerobic performance. This beneficial effect of RC treatment may result from better maintenance of PNS activity and accelerated physiological adaptations during high altitude training.
Collapse
Affiliation(s)
- Chung-Yu Chen
- 1 Department of Exercise and Health Sciences, University of Taipei , Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Making Blood: The Haematopoietic Niche throughout Ontogeny. Stem Cells Int 2015; 2015:571893. [PMID: 26113865 PMCID: PMC4465740 DOI: 10.1155/2015/571893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/10/2015] [Indexed: 01/06/2023] Open
Abstract
Approximately one-quarter of all cells in the adult human body are blood cells. The haematopoietic system is therefore massive in scale and requires exquisite regulation to be maintained under homeostatic conditions. It must also be able to respond when needed, such as during infection or following blood loss, to produce more blood cells. Supporting cells serve to maintain haematopoietic stem and progenitor cells during homeostatic and pathological conditions. This coalition of supportive cell types, organised in specific tissues, is termed the haematopoietic niche. Haematopoietic stem and progenitor cells are generated in a number of distinct locations during mammalian embryogenesis. These stem and progenitor cells migrate to a variety of anatomical locations through the conceptus until finally homing to the bone marrow shortly before birth. Under stress, extramedullary haematopoiesis can take place in regions that are typically lacking in blood-producing activity. Our aim in this review is to examine blood production throughout the embryo and adult, under normal and pathological conditions, to identify commonalities and distinctions between each niche. A clearer understanding of the mechanism underlying each haematopoietic niche can be applied to improving ex vivo cultures of haematopoietic stem cells and potentially lead to new directions for transplantation medicine.
Collapse
|
45
|
Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4. Stem Cells Int 2015; 2015:389628. [PMID: 25755671 PMCID: PMC4337757 DOI: 10.1155/2015/389628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
Shortage of red blood cells (RBCs, erythrocytes) can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs), but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs) by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.
Collapse
|
46
|
Kim W, Klarmann KD, Keller JR. Gfi-1 regulates the erythroid transcription factor network through Id2 repression in murine hematopoietic progenitor cells. Blood 2014; 124:1586-96. [PMID: 25051963 PMCID: PMC4155270 DOI: 10.1182/blood-2014-02-556522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022] Open
Abstract
Growth factor independence 1 (Gfi-1) is a part of the transcriptional network that regulates the development of adult hematopoietic stem and progenitor cells. Gfi-1-null (Gfi-1(-/-)) mice have reduced numbers of hematopoietic stem cells (HSCs), impaired radioprotective function of hematopoietic progenitor cells (HPCs), and myeloid and erythroid hyperplasia. We found that the development of HPCs and erythropoiesis, but not HSC function, was rescued by reducing the expression of inhibitor of DNA-binding protein 2 (Id2) in Gfi-1(-/-) mice. Analysis of Gfi-1(-/-);Id2(+/-) mice revealed that short-term HSCs, common myeloid progenitors (CMPs), erythroid burst-forming units, colony-forming units in spleen, and more differentiated red cells were partially restored by reducing Id2 levels in Gfi-1(-/-) mice. Moreover, short-term reconstituting cells, and, to a greater extent, CMP and megakaryocyte-erythroid progenitor development, and red blood cell production (anemia) were rescued in mice transplanted with Gfi-1(-/-);Id2(+/-) bone marrow cells (BMCs) in comparison with Gfi-1(-/-) BMCs. Reduction of Id2 expression in Gfi-1(-/-) mice increased the expression of Gata1, Eklf, and EpoR, which are required for proper erythropoiesis. Reducing the levels of other Id family members (Id1 and Id3) in Gfi-1(-/-) mice did not rescue impaired HPC function or erythropoiesis. These data provide new evidence that Gfi-1 is linked to the erythroid gene regulatory network by repressing Id2 expression.
Collapse
Affiliation(s)
- Wonil Kim
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kimberly D Klarmann
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jonathan R Keller
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
47
|
Hyrien O, Peslak SA, Yanev NM, Palis J. Stochastic modeling of stress erythropoiesis using a two-type age-dependent branching process with immigration. J Math Biol 2014; 70:1485-521. [PMID: 24989701 DOI: 10.1007/s00285-014-0803-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/28/2014] [Indexed: 11/30/2022]
Abstract
The erythroid lineage is a particularly sensitive target of radiation injury. We model the dynamics of immature (BFU-E) and mature (CFU-E) erythroid progenitors, which have markedly different kinetics of recovery, following sublethal total body irradiation using a two-type reducible age-dependent branching process with immigration. Properties of the expectation and variance of the frequencies of both types of progenitors are presented. Their explicit expressions are derived when the process is Markovian, and their asymptotic behavior is identified in the age-dependent (non-Markovian) case. Analysis of experimental data on the kinetics of BFU-E and CFU-E reveals that the probability of self-renewal increases transiently for both cell types following sublethal irradiation. In addition, the probability of self-renewal increased more for CFU-E than for BFU-E. The strategy adopted by the erythroid lineage ensures replenishment of the BFU-E compartment while optimizing the rate of CFU-E recovery. Finally, our analysis also indicates that radiation exposure causes a delay in BFU-E recovery consistent with injury to the hematopoietic stem/progenitor cell compartment that give rise to BFU-E. Erythroid progenitor self-renewal is thus an integral component of the recovery of the erythron in response to stress.
Collapse
Affiliation(s)
- O Hyrien
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14642, USA,
| | | | | | | |
Collapse
|
48
|
Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet 2014; 46:678-84. [PMID: 24880340 PMCID: PMC4104984 DOI: 10.1038/ng.2996] [Citation(s) in RCA: 783] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/07/2014] [Indexed: 02/06/2023]
Abstract
Recovery from blood loss requires a greatly enhanced supply of iron to support expanded erythropoiesis. After hemorrhage, suppression of the iron-regulatory hormone hepcidin allows increased iron absorption and mobilization from stores. We identified a new hormone, erythroferrone (ERFE), that mediates hepcidin suppression during stress erythropoiesis. ERFE is produced by erythroblasts in response to erythropoietin. ERFE-deficient mice fail to suppress hepcidin rapidly after hemorrhage and exhibit a delay in recovery from blood loss. ERFE expression is greatly increased in Hbb(th3/+) mice with thalassemia intermedia, where it contributes to the suppression of hepcidin and the systemic iron overload characteristic of this disease.
Collapse
Affiliation(s)
- Léon Kautz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Erika V. Valore
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College, New York, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, USA
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
49
|
Bhardwaj N, Saxena RK. Elimination of young erythrocytes from blood circulation and altered erythropoietic patterns during paraquat induced anemic phase in mice. PLoS One 2014; 9:e99364. [PMID: 24945144 PMCID: PMC4063733 DOI: 10.1371/journal.pone.0099364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/30/2014] [Indexed: 11/19/2022] Open
Abstract
Paraquat a widely used herbicide causes a variety of toxic effects on humans and animals. The present study is focused on the interaction of paraquat with the mouse erythroid system. Administration of paraquat (10 mg/kg body weight i.p. on alternate days in C57Bl/6 mice) induced a significant fall in blood erythrocyte count on 7, 14, and 21 day time points but the erythrocyte count reverted back to normal by 28th day indicating the emergence of refractoriness to paraquat. A marked surge in the blood reticulocyte count was observed in paraquat treated mice that also subsided by 28th day. Young erythrocytes in circulation were randomly eliminated from blood circulation in paraquat treated mice and a significant elevation in the level of reactive oxygen species (ROS) was also observed maximally the erythrocytes of this age group. Cells representing various stages of erythroid differentiation in bone marrow and spleen were identified and enumerated flow cytometrically based on their expression of Ter119 and transferrin (CD71) receptor. Proliferative activity of erythroid cells, their relative proportion as well as their absolute numbers fell significantly in bone marrow of paraquat treated mice but all these parameters were significantly elevated in spleens of paraquat treated mice. These changes were essentially restricted to the cells belonging to the two earliest stages of erythroid differentiation. Taken together our results indicate that paraquat treatment causes a transient anemia in mice resulting from random elimination of young circulating erythrocytes as well as depressed erythropoietic activity in bone marrow. Spleen erythropoietic activity however was elevated in paraquat treated mice.
Collapse
Affiliation(s)
- Nitin Bhardwaj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajiv K. Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
- * E-mail:
| |
Collapse
|
50
|
Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J, Grapton D, Paubelle E, Payen E, Beuzard Y, Leboulch P, Ribeil JA, Arlet JB, Coté F, Courtois G, Ginzburg YZ, Daniel TO, Chopra R, Sung V, Hermine O, Moura IC. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med 2014; 20:398-407. [PMID: 24658077 PMCID: PMC7730561 DOI: 10.1038/nm.3468] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
Abstract
The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas-Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.
Collapse
Affiliation(s)
- Michael Dussiot
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] INSERM U1149, Center for Research on Inflammation, Paris, France. [6]
| | - Thiago T Maciel
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] INSERM U1149, Center for Research on Inflammation, Paris, France. [6]
| | - Aurélie Fricot
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] INSERM U1149, Center for Research on Inflammation, Paris, France
| | - Céline Chartier
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] INSERM U1149, Center for Research on Inflammation, Paris, France
| | - Olivier Negre
- 1] Commissariat à l'Energie Atomique (CEA)-Institut des Maladies Emergentes et des Thérapies Innovantes (iMETI), Fontenay-aux-Roses, France. [2] UMR 962 (Inserm-CEA-University of Paris-Sud), Fontenay-aux-Roses, France
| | - Joel Veiga
- Laboratory of Excellence GR-Ex, Paris, France
| | - Damien Grapton
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] INSERM U1149, Center for Research on Inflammation, Paris, France
| | - Etienne Paubelle
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] INSERM U1149, Center for Research on Inflammation, Paris, France
| | - Emmanuel Payen
- 1] Commissariat à l'Energie Atomique (CEA)-Institut des Maladies Emergentes et des Thérapies Innovantes (iMETI), Fontenay-aux-Roses, France. [2] UMR 962 (Inserm-CEA-University of Paris-Sud), Fontenay-aux-Roses, France
| | - Yves Beuzard
- 1] Commissariat à l'Energie Atomique (CEA)-Institut des Maladies Emergentes et des Thérapies Innovantes (iMETI), Fontenay-aux-Roses, France. [2] UMR 962 (Inserm-CEA-University of Paris-Sud), Fontenay-aux-Roses, France
| | - Philippe Leboulch
- 1] Commissariat à l'Energie Atomique (CEA)-Institut des Maladies Emergentes et des Thérapies Innovantes (iMETI), Fontenay-aux-Roses, France. [2] UMR 962 (Inserm-CEA-University of Paris-Sud), Fontenay-aux-Roses, France
| | - Jean-Antoine Ribeil
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] Département de Biothérapie, Hôpital Necker-Enfants Malades, Paris, France
| | - Jean-Benoit Arlet
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France
| | - Francine Coté
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France
| | - Geneviève Courtois
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France
| | - Yelena Z Ginzburg
- Erythropoiesis Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | | | | | | - Olivier Hermine
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Ivan C Moura
- 1] INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. [3] CNRS ERL 8254, Paris, France. [4] Laboratory of Excellence GR-Ex, Paris, France. [5] INSERM U1149, Center for Research on Inflammation, Paris, France
| |
Collapse
|