1
|
Yin Z, Zhang J, Shen Z, Qin J, Wan J, Wang M. Regulated vascular smooth muscle cell death in vascular diseases. Cell Prolif 2024; 57:e13688. [PMID: 38873710 PMCID: PMC11533065 DOI: 10.1111/cpr.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Regulated cell death (RCD) is a complex process that involves several cell types and plays a crucial role in vascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant elements of the medial layer of blood vessels, and their regulated death contributes to the pathogenesis of vascular diseases. The types of regulated VSMC death include apoptosis, necroptosis, pyroptosis, ferroptosis, parthanatos, and autophagy-dependent cell death (ADCD). In this review, we summarize the current evidence of regulated VSMC death pathways in major vascular diseases, such as atherosclerosis, vascular calcification, aortic aneurysm and dissection, hypertension, pulmonary arterial hypertension, neointimal hyperplasia, and inherited vascular diseases. All forms of RCD constitute a single, coordinated cell death system in which one pathway can compensate for another during disease progression. Pharmacologically targeting RCD pathways has potential for slowing and reversing disease progression, but challenges remain. A better understanding of the role of regulated VSMC death in vascular diseases and the underlying mechanisms may lead to novel pharmacological developments and help clinicians address the residual cardiovascular risk in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zican Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Center for Healthy Aging, Wuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
2
|
Greco F, Bertagna G, Quercioli L, Pucci A, Rocchiccioli S, Ferrari M, Recchia FA, McDonnell LA. Lipids associated with atherosclerotic plaque instability revealed by mass spectrometry imaging of human carotid arteries. Atherosclerosis 2024; 397:118555. [PMID: 39159550 DOI: 10.1016/j.atherosclerosis.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS Lipids constitute one of the main components of atherosclerosis lesions and are the mediators of many mechanisms involved in plaque progression and stability. Here we tested the hypothesis that lipids known to be involved in plaque development exhibited associations with plaque vulnerability. We used spatial lipidomics to overcome plaque heterogeneity and to compare lipids from specific regions of symptomatic and asymptomatic human carotid atherosclerotic plaques. METHODS Carotid atherosclerotic plaques were collected from symptomatic and asymptomatic patients. Plaque lipids were analyzed with the spatial lipidomics technique matrix-assisted laser desorption/ionization mass spectrometry imaging, and histology and immunofluorescence were used to segment the plaques into histomolecularly distinct regions. RESULTS Macrophage-rich regions from symptomatic lesions were found to be enriched in phosphatidylcholines (synthesized to counteract excess free cholesterol), while the same region from asymptomatic plaques were enriched in polyunsaturated cholesteryl esters and triglycerides, characteristic of functional lipid droplets. Vascular smooth muscle cells (VSMCs) of the fibrous cap of asymptomatic plaques were enriched in lysophosphatidylcholines and cholesteryl esters, know to promote VSMC proliferation and migration, crucial for the buildup of the fibrous cap stabilizing the plaque. CONCLUSIONS The investigation of the region-specific lipid composition of symptomatic and asymptomatic human atherosclerotic plaques revealed specific lipid markers of plaque outcome, which could be linked to known biological characteristics of stable plaques.
Collapse
Affiliation(s)
- Francesco Greco
- Centro Health and BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giulia Bertagna
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Laura Quercioli
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Angela Pucci
- Department of Histopathology, University Hospital, Pisa, Italy
| | | | - Mauro Ferrari
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Fabio A Recchia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Aging & Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, USA; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy.
| |
Collapse
|
3
|
Hayderi A, Kumawat AK, Shavva VS, Dreifaldt M, Sigvant B, Petri MH, Kragsterman B, Olofsson PS, Sirsjö A, Ljungberg LU. RSAD2 is abundant in atherosclerotic plaques and promotes interferon-induced CXCR3-chemokines in human smooth muscle cells. Sci Rep 2024; 14:8196. [PMID: 38589444 PMCID: PMC11001978 DOI: 10.1038/s41598-024-58592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.
Collapse
Affiliation(s)
- Assim Hayderi
- School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Ashok K Kumawat
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Vladimir S Shavva
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Center for Bioelectronic Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Dreifaldt
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Cardiothoracic Surgery and Vascular Surgery, Örebro University Hospital, Örebro, Sweden
| | - Birgitta Sigvant
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research and Education, Region Värmland, Karlstad, Sweden
| | - Marcelo H Petri
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Cardiothoracic Surgery and Vascular Surgery, Örebro University Hospital, Örebro, Sweden
| | - Björn Kragsterman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Surgery, Västmanlands Hospital Västerås, Västerås, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Center for Bioelectronic Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Allan Sirsjö
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
4
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
5
|
Wang Y, Li M, Sheng Z, Ran H, Dong J, Fang L, Zhang P. Ultrasound-mediated delivery of Pik3cb shRNA using magnetic nanoparticles for the treatment of in-stent restenosis in a rat balloon-injured model. JOURNAL OF RADIATION RESEARCH 2024; 65:47-54. [PMID: 37948449 PMCID: PMC10803161 DOI: 10.1093/jrr/rrad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/27/2023] [Indexed: 11/12/2023]
Abstract
The aim of the present work was to examine the effect of polyethylene glycol (PEG)-coated superparamagnetic iron oxide (SPIO) nanoparticles carrying Pik3cb short hairpin RNA (shRNA) in the prevention of restenosis with the aid of ultrasound and a magnetic field. SPIO is a type of contrast agent used in medical imaging to enhance the visibility of specific tissues or organs. It consists of tiny iron oxide nanoparticles that can be targeted to specific areas of interest in the body. PEG-coated SPIO nanoparticles carrying Pik3cb shRNA (SPIO-shPik3cb) were prepared, and the particle size and zeta potential of PEG-coated SPIO nanoparticles with and without Pik3cb shRNA were examined. After a right common artery balloon-injured rat model was established, the rats were randomly divided into four groups, and the injured arteries were transfected with SPIO-shPik3cb, saline, SPIO-shcontrol and naked shRNA Pik3cb. During the treatment, each group was placed under a magnetic field and was transfected with the aid of ultrasound. Rats were sacrificed, and the tissue was harvested for analysis after 14 days. The results suggested that the mean particle size and zeta potential of SPIO-shPik3cbs were 151.45 ± 11 nm and 10 mV, respectively. SPIO-shPik3cb showed higher transfection efficiency and significantly inhibited the intimal thickening compared with naked Pik3cb shRNA in vascular smooth muscle cells (VSMCs) (*P < 0.05). Moreover, SPIO-shPik3cb could also significantly downregulate the expression of pAkt protein compared with naked Pik3cb shRNA. According to the results, SPIO-shPik3cb can remarkably inhibit the intimal thickening under a combination of magnetic field exposure and ultrasound.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China
| | - Miao Li
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China
| | - Zongxiang Sheng
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China
| | - Hong Ran
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China
| | - Jing Dong
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China
| | - Lingling Fang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Oladosu O, Esobi IC, Powell RR, Bruce T, Stamatikos A. Dissecting the Impact of Vascular Smooth Muscle Cell ABCA1 versus ABCG1 Expression on Cholesterol Efflux and Macrophage-like Cell Transdifferentiation: The Role of SR-BI. J Cardiovasc Dev Dis 2023; 10:416. [PMID: 37887863 PMCID: PMC10607678 DOI: 10.3390/jcdd10100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Cholesterol-laden macrophages are recognized as a major contributor to atherosclerosis. However, recent evidence indicates that vascular smooth muscle cells (VSMC) that accumulate cholesterol and transdifferentiate into a macrophage-like cell (MLC) phenotype also play a role in atherosclerosis. Therefore, removing cholesterol from MLC may be a potential atheroprotective strategy. The two transporters which remove cholesterol from cells are ABCA1 and ABCG1, as they efflux cholesterol to apoAI and HDL, respectively. In this study, the well-characterized immortalized VSMC line MOVAS cells were edited to generate ABCA1- and ABCG1-knockout (KO) MOVAS cell lines. We cholesterol-loaded ABCA1-KO MOVAS cells, ABCG1-KO MOVAS cells, and wild-type MOVAS cells to convert cells into a MLC phenotype. When we measured apoAI- and HDL-mediated cholesterol efflux in these cells, we observed a drastic decrease in apoAI-mediated cholesterol efflux within ABCA1-KO MOVAS MLC, but HDL-mediated cholesterol efflux was only partially reduced in ABCG1-KO MOVAS cells. Since SR-BI also participates in HDL-mediated cholesterol efflux, we assessed SR-BI protein expression in ABCG1-KO MOVAS MLC and observed SR-BI upregulation, which offered a possible mechanism explaining why HDL-mediated cholesterol efflux remains maintained in ABCG1-KO MOVAS MLC. When we used lentivirus for shRNA-mediated knockdown of SR-BI in ABCG1-KO MOVAS MLC, this decreased HDL-mediated cholesterol efflux when compared to ABCG1-KO MOVAS MLC with unmanipulated SR-BI expression. Taken together, these major findings suggest that SR-BI expression in MLC of a VSMC origin plays a compensatory role in HDL-mediated cholesterol efflux when ABCG1 expression becomes impaired and provides insight on SR-BI demonstrating anti-atherogenic properties within VSMC/MLC.
Collapse
Affiliation(s)
- Olanrewaju Oladosu
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (O.O.); (I.C.E.)
| | - Ikechukwu C. Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (O.O.); (I.C.E.)
| | - Rhonda R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (O.O.); (I.C.E.)
| |
Collapse
|
7
|
Francis GA. The Greatly Under-Represented Role of Smooth Muscle Cells in Atherosclerosis. Curr Atheroscler Rep 2023; 25:741-749. [PMID: 37665492 PMCID: PMC10564813 DOI: 10.1007/s11883-023-01145-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW This article summarizes previous and recent research on the fundamental role of arterial smooth muscle cells (SMCs) as drivers of initial and, along with macrophages, later stages of human atherosclerosis. RECENT FINDINGS Studies using human tissues and SMC lineage-tracing mice have reinforced earlier observations that SMCs drive initial atherogenesis in humans and contribute a multitude of phenotypes including foam cell formation hitherto attributed primarily to macrophages in atherosclerosis. Arterial smooth muscle cells (SMCs) are the primary cell type in human pre-atherosclerotic intima and are responsible for the retention of lipoproteins that drive the development of atherosclerosis. Despite this, images of atherogenesis still depict the process as initially devoid of SMCs, primarily macrophage driven, and indicate only relatively minor roles such as fibrous cap formation to intimal SMCs. This review summarizes historical and recent observations regarding the importance of SMCs in the formation of a pre-atherosclerotic intima, initial and later foam cell formation, and the phenotypic changes that give rise to multiple different roles for SMCs in human and mouse lesions. Potential SMC-specific therapies in atherosclerosis are presented.
Collapse
Affiliation(s)
- Gordon A Francis
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Szewczyk-Roszczenko OK, Roszczenko P, Shmakova A, Finiuk N, Holota S, Lesyk R, Bielawska A, Vassetzky Y, Bielawski K. The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells 2023; 12:2312. [PMID: 37759535 PMCID: PMC10527932 DOI: 10.3390/cells12182312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.
Collapse
Affiliation(s)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Anna Shmakova
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine;
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Yegor Vassetzky
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| |
Collapse
|
9
|
Lazzarato L, Bianchi L, Andolfo A, Granata A, Lombardi M, Sinelli M, Rolando B, Carini M, Corsini A, Fruttero R, Arnaboldi L. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms. Molecules 2023; 28:5724. [PMID: 37570694 PMCID: PMC10420201 DOI: 10.3390/molecules28155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.
Collapse
Affiliation(s)
- Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy;
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Lombardi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Sinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Marina Carini
- Department of Pharmaceutical Sciences “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| |
Collapse
|
10
|
Cervantes J, Kanter JE. Monocyte and macrophage foam cells in diabetes-accelerated atherosclerosis. Front Cardiovasc Med 2023; 10:1213177. [PMID: 37378396 PMCID: PMC10291141 DOI: 10.3389/fcvm.2023.1213177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes results in an increased risk of atherosclerotic cardiovascular disease. This minireview will discuss whether monocyte and macrophage lipid loading contribute to this increased risk, as monocytes and macrophages are critically involved in the progression of atherosclerosis. Both uptake and efflux pathways have been described as being altered by diabetes or conditions associated with diabetes, which may contribute to the increased accumulation of lipids seen in macrophages in diabetes. More recently, monocytes have also been described as lipid-laden in response to elevated lipids, including triglyceride-rich lipoproteins, the class of lipids often elevated in the setting of diabetes.
Collapse
Affiliation(s)
| | - Jenny E. Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Li Z, Zhu H, Liu H, Liu D, Liu J, Jiang J, Zhang Y, Qin Z, Xu Y, Peng Y, Liu B, Long Y. Evolocumab loaded Bio-Liposomes for efficient atherosclerosis therapy. J Nanobiotechnology 2023; 21:158. [PMID: 37208681 DOI: 10.1186/s12951-023-01904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
PCSK9, which is closely related to atherosclerosis, is significantly expressed in vascular smooth muscle cells (VSMCs). Moreover, Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) mediated phenotypic transformation, abnormal proliferation, and migration of VSMCs play key roles in accelerating atherosclerosis. In this study, by utilizing the significant advantages of nano-materials, a biomimetic nanoliposome loading with Evolocumab (Evol), a PCSK9 inhibitor, was designed to alleviate atherosclerosis. In vitro results showed that (Lipo + M)@E NPs up-regulated the levels of α-SMA and Vimentin, while inhibiting the expression of OPN, which finally result in the inhibition of the phenotypic transition, excessive proliferation, and migration of VSMCs. In addition, the long circulation, excellent targeting, and accumulation performance of (Lipo + M)@E NPs significantly decreased the expression of PCSK9 in serum and VSMCs within the plaque of ApoE-/- mice.
Collapse
Affiliation(s)
- Zhenxian Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Haimei Zhu
- Department of Pain, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dayue Liu
- Department of Physiology and Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Jiazheng Jiang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Yi Zhang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Zhang Qin
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Yijia Xu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Yuan Peng
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
- Department of Physiology and Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yun Long
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China.
| |
Collapse
|
12
|
Zhang Y, Sun L, Wang X, Zhou Q. Integrative analysis of HASMCs gene expression profile revealed the role of thrombin in the pathogenesis of atherosclerosis. BMC Cardiovasc Disord 2023; 23:191. [PMID: 37046189 PMCID: PMC10091598 DOI: 10.1186/s12872-023-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
We explored the effect of thrombin on human aortic smooth muscle cells (HASMCs) and further analyzed its role in the pathogenesis of atherosclerosis (AS). Thrombin-induced differentially expressed genes (DEGs) in HASMCs were identified by analyzing expression profiles from the GEO. Subsequently, enrichment analysis, GSEA, PPI network, and gene-microRNAs networks were interrogated to identify hub genes and associated pathways. Enrichment analysis results indicated that thrombin causes HASMCs to secrete various pro-inflammatory cytokines and chemokines, exacerbating local inflammatory response in AS. Moreover, we identified 9 HUB genes in the PPI network, which are closely related to the inflammatory response and the promotion of the cell cycle. Additionally, we found that thrombin inhibits lipid metabolism and autophagy of HASMCs, potentially contributing to smooth muscle-derived foam cell formation. Our study deepens a mechanistic understanding of the effect of thrombin on HASMCs and provides new insight into treating AS.
Collapse
Affiliation(s)
- Yichen Zhang
- The Second Hospital of Shandong University, Jinan, Shandong Province, China
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lin Sun
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xingsheng Wang
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qingbo Zhou
- The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
13
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
14
|
Gareev I, Kudriashov V, Sufianov A, Begliarzade S, Ilyasova T, Liang Y, Beylerli O. The role of long non-coding RNA ANRIL in the development of atherosclerosis. Noncoding RNA Res 2022; 7:212-216. [PMID: 36157350 PMCID: PMC9467859 DOI: 10.1016/j.ncrna.2022.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is an important pathological basis of coronary heart disease, and the antisense non-coding RNA in the INK4 locus (ANRIL) is located in the genetically susceptible segment with the strongest correlation with it - the short arm 2 region 1 of chromosome 9 (Chr9p21). ANRIL can produce linear, circular and other transcripts through different transcriptional splicing methods, which can regulate the proliferation and apoptosis of related cells and closely related to the development of atherosclerotic plaques. Linear ANRIL can regulate proliferation of vascular smooth muscle cells (VSMCs) in plaques by chromatin modification, as well as affecting on proliferation and the apoptosis of macrophages at the transcriptional level; circular ANRIL can affect on proliferation and apoptosis of VSMCs by chromatin modification as well as interfering with rRNA maturation. In this review we describe the evolutionary characteristics of ANRIL, the formation and structure of transcripts, and the mechanism by which each transcript regulates the proliferation and apoptosis of vascular cells and then participates in atherosclerosis.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | | | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Republic of Bashkortostan, 450106, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Republic of Bashkortostan, Ufa, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
15
|
Macrophage-, Dendritic-, Smooth Muscle-, Endothelium-, and Stem Cells-Derived Foam Cells in Atherosclerosis. Int J Mol Sci 2022; 23:ijms232214154. [PMID: 36430636 PMCID: PMC9695208 DOI: 10.3390/ijms232214154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is an inflammatory disease depending on the buildup, called plaque, of lipoproteins, cholesterol, extracellular matrix elements, and various types of immune and non-immune cells on the artery walls. Plaque development and growth lead to the narrowing of the blood vessel lumen, blocking blood flow, and eventually may lead to plaque burst and a blood clot. The prominent cellular components of atherosclerotic plaque are the foam cells, which, by trying to remove lipoprotein and cholesterol surplus, also participate in plaque development and rupture. Although the common knowledge is that the foam cells derive from macrophages, studies of the last decade clearly showed that macrophages are not the only cells able to form foam cells in atherosclerotic plaque. These findings give a new perspective on atherosclerotic plaque formation and composition and define new targets for anti-foam cell therapies for atherosclerosis prevention. This review gives a concise description of foam cells of different pedigrees and describes the main mechanisms participating in their formation and function.
Collapse
|
16
|
Deng Q, Chen J. Potential Therapeutic Effect of All-Trans Retinoic Acid on Atherosclerosis. Biomolecules 2022; 12:869. [PMID: 35883425 PMCID: PMC9312697 DOI: 10.3390/biom12070869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a major risk factor for myocardial infarction and ischemic stroke, which are the leading cause of death worldwide. All-trans retinoic acid (ATRA) is a natural derivative of essential vitamin A. Numerous studies have shown that ATRA plays an important role in cell proliferation, cell apoptosis, cell differentiation, and embryonic development. All-trans retinoic acid (ATRA) is a ligand of retinoic acid receptors that regulates various biological processes by activating retinoic acid signals. In this paper, the metabolic processes of ATRA were reviewed, with emphasis on the effects of ATRA on inflammatory cells involved in the process of atherosclerosis.
Collapse
Affiliation(s)
| | - Jixiang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
17
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
18
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
19
|
Park SH. Regulation of Macrophage Activation and Differentiation in Atherosclerosis. J Lipid Atheroscler 2021; 10:251-267. [PMID: 34621697 PMCID: PMC8473962 DOI: 10.12997/jla.2021.10.3.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation is a hallmark of atherosclerosis and macrophages play a central role in controlling inflammation at all stages of atherosclerosis. In atherosclerosis, macrophages and monocyte-derived macrophages are continuously exposed to cholesterol, oxidized lipids, cell debris, cytokines, and chemokines. Not only do these stimuli induce a specific macrophage phenotype, but they also interact extensively, leading to macrophage heterogeneity in atherosclerotic plaques. Herein, we review the diverse phenotypes of macrophages, the mechanisms underlying macrophage activation, and the contributions of macrophages to atherosclerosis in this context. We also summarize recent studies on foamy macrophages and monocyte-derived macrophages in plaque during disease progression. We provide a comprehensive overview of transcriptional, epigenetic, and metabolic reprogramming of macrophages and discuss the emerging concepts of targeting cytokines and macrophages to modulate atherosclerosis.
Collapse
Affiliation(s)
- Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
20
|
Kappert L, Ruzicka P, Kutikhin A, De La Torre C, Fischer A, Hecker M, Arnold C, Korff T. Loss of Nfat5 promotes lipid accumulation in vascular smooth muscle cells. FASEB J 2021; 35:e21831. [PMID: 34383982 DOI: 10.1096/fj.202100682r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
The nuclear factor of activated T-cells 5 (NFAT5) is a transcriptional regulator of macrophage activation and T-cell development, which controls stabilizing responses of cells to hypertonic and biomechanical stress. In this study, we detected NFAT5 in the media layer of arteries adjacent to human arteriosclerotic plaques and analyzed its role in vascular smooth muscle cells (VSMCs) known to contribute to arteriosclerosis through the uptake of lipids and transformation into foam cells. Exposure of both human and mouse VSMCs to cholesterol stimulated the nuclear translocation of NFAT5 and increased the expression of the ATP-binding cassette transporter Abca1, required to regulate cholesterol efflux from cells. Loss of Nfat5 promoted cholesterol accumulation in these cells and inhibited the expression of genes involved in the management of oxidative stress or lipid handling, such as Sod1, Plin2, Fabp3, and Ppard. The functional relevance of these observations was subsequently investigated in mice fed a high-fat diet upon induction of a smooth muscle cell-specific genetic ablation of Nfat5 (Nfat5(SMC)-/- ). Under these conditions, Nfat5(SMC)-/- but not Nfat5fl/fl mice developed small, focal lipid-rich lesions in the aorta after 14 and 25 weeks, which were formed by intracellular lipid droplets deposited in the sub-intimal VSMCs layer. While known for being activated by external stimuli, NFAT5 was found to mediate the expression of VSMC genes associated with the handling of lipids in response to a cholesterol-rich environment. Failure of this protective function may promote the formation of lipid-laden arterial VSMCs and pro-atherogenic vascular responses.
Collapse
Affiliation(s)
- Lena Kappert
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Philipp Ruzicka
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Anton Kutikhin
- Division of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine I, Heidelberg University, Heidelberg, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
21
|
Liu Q, Yang M, Zhang L, Zhang R, Huang X, Wang X, Du W, Hou J. Metformin inhibits cholesterol‑induced adhesion molecule expression via activating the AMPK signaling pathway in vascular smooth muscle cells. Mol Med Rep 2021; 24:709. [PMID: 34396446 PMCID: PMC8383040 DOI: 10.3892/mmr.2021.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Recruitment of lymphocytes to the vascular wall contributes to the pathogenesis of atherosclerosis (AS). The expression of cellular adhesion molecules, such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, serves a critical role in mediating lymphocyte adhesion to the vascular wall. Cholesterol loading induces the expression of adhesion molecules in vascular smooth muscle cells (VSMCs), but the underlying mechanism is not completely understood. The present study aimed to investigate the mechanism underlying the effects of cholesterol on adhesion molecule expression, and whether metformin protected VSMCs against cholesterol-induced functional alterations. Human VSMCs were loaded with cholesterol and different concentrations of metformin. The expression levels of adhesion molecules were assessed via reverse transcription-quantitative PCR and western blotting. Reactive oxygen species (ROS) accumulation and levels were quantified via fluorescence assays and spectrophotometry, respectively. AMP-activated protein kinase (AMPK), p38 MAPK and NF-κB signaling pathway-related protein expression levels were evaluated via western blotting. Compared with the control group, cholesterol loading significantly upregulated adhesion molecule expression levels on VSMCs by increasing intracellular ROS levels and activating the p38 MAPK and NF-κB signaling pathways. Metformin decreased cholesterol-induced VSMC damage by activating the AMPK signaling pathway, and suppressing p38 MAPK and NF-κB signaling. The present study indicated the therapeutic potential of metformin for VSMC protection, reduction of monocyte adhesion, and ultimately, the prevention and treatment of AS.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mengyue Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingtao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenjuan Du
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
22
|
Kozawa J, Shimomura I. Ectopic Fat Accumulation in Pancreas and Heart. J Clin Med 2021; 10:1326. [PMID: 33806978 PMCID: PMC8004936 DOI: 10.3390/jcm10061326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Ectopic fat is found in liver, muscle, and kidney and is known to accumulate as visceral fat. In recent years, ectopic fat has also been observed in the pancreas, and it has been said that pancreatic fat accumulation is related to the pathophysiology of diabetes and the onset of diabetes, but the relationship has not yet been determined. In the heart, epicardium fat is another ectopic fat, which is associated with the development of coronary artery disease. Ectopic fat is also observed in the myocardium, and diabetic patients have more fat accumulation in this tissue than nondiabetic patients. Myocardium fat is reported to be related to diastolic cardiac dysfunction, which is one of the characteristics of the complications observed in diabetic patients. We recently reported that ectopic fat accumulation was observed in coronary arteries of a type 2 diabetic patient with intractable coronary artery disease, and coronary artery is attracting attention as a new tissue of ectopic fat accumulation. Here, we summarize the latest findings focusing on the relationship between ectopic fat accumulation in these organs and diabetic pathophysiology and complications, then describe the possibility of future treatments targeting these ectopic fat accumulations.
Collapse
Affiliation(s)
- Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan;
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
23
|
Zhang D, Gao JL, Zhao CY, Wang DN, Xing XS, Hou XY, Wang SS, Liu Q, Luo Y. Cyclin G2 promotes the formation of smooth muscle cells derived foam cells in atherosclerosis via PP2A/NF-κB/LOX-1 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:446. [PMID: 33850843 PMCID: PMC8039706 DOI: 10.21037/atm-20-6207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background To investigate the role and underlying mechanism of cyclin G2 (G2-type cyclin) in the formation of vascular smooth muscle cells (VSMCs) derived foam cells. Methods The levels of α-SMA (alpha-SM-actin), p-NF-κB (phosphorylation nuclear transcription factors kappa B), and LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) were measured by immunohistochemistry and western blotting. The mouse aortic root smooth muscle cell line MOVAS was transfected to over-express cyclin G2, which were then stimulated with 80 µg/mL ox-LDL (oxidized low-density lipoprotein) to induce foam cell formation. DT-061 an activator of PP2A (protein phosphatase 2A) agonist was used to verify the role of PP2A in the process. Results Knocking out the Ccng2 gene in Apoe-/- mice alleviated aortic lipid plaque, foam cell formulation, ameliorative body weight, and LDL-cholesterol. We observed that the number of α-SMA positive cells was significantly decreased in Apoe-/-Ccng2-/- mice compared to Apoe-/- mice. Also, the protein levels of p-NF-κB and LOX-1 were markedly reduced in the aortic root of Apoe-/-Ccng2-/- mice. Upon stimulation with ox-LDL, upregulated cyclin G2 increased the intracellular lipid accumulation in MOVAS cells. Also, it suppressed the activity of PP2A but up-regulated LOX-1. Additionally, the cell nuclear translocation of p-NF-κB was increased. Interestingly, DT-061 intervention, re-activating the activity of PP2A, reduced the levels of nuclear p-NF-κB and LOX-1. This led to decreased lipid endocytosis reducing the formation of VSMCs- derived foam cells. Conclusions Cyclin G2 increases the nuclear translocation of p-NF-κB by reducing the enzymatic activity of PP2A and upregulating LOX-1, thereby promotes the formation of VSMCs -derived foam cells in atherosclerosis.
Collapse
Affiliation(s)
- Di Zhang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Jin-Lan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Chen-Yang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Dan-Ning Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xue-Sha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiao-Yu Hou
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Shu-Sen Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
24
|
He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res 2021; 165:105447. [PMID: 33516832 DOI: 10.1016/j.phrs.2021.105447] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a form of programmed cell death activated by various stimuli and is characterized by inflammasome assembly, membrane pore formation, and the secretion of inflammatory cytokines (IL-1β and IL-18). Atherosclerosis-related risk factors, including oxidized low-density lipoprotein (ox-LDL) and cholesterol crystals, have been shown to promote pyroptosis through several mechanisms that involve ion flux, ROS, endoplasmic reticulum stress, mitochondrial dysfunction, lysosomal rupture, Golgi function, autophagy, noncoding RNAs, post-translational modifications, and the expression of related molecules. Pyroptosis of endothelial cells, macrophages, and smooth muscle cells in the vascular wall can induce plaque instability and accelerate atherosclerosis progression. In this review, we focus on the pathogenesis, influence, and therapy of pyroptosis in atherosclerosis and provide novel ideas for suppressing pyroptosis and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiao He
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Bing Bai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Nanjuan Lu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Shuang Zhang
- General Surgery, Harbin Changzheng Hospital, 363 Xuan Hua Street, Harbin 150001, Heilongjiang Province, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
25
|
Chattopadhyay A, Kwartler CS, Kaw K, Li Y, Kaw A, Chen J, LeMaire SA, Shen YH, Milewicz DM. Cholesterol-Induced Phenotypic Modulation of Smooth Muscle Cells to Macrophage/Fibroblast-like Cells Is Driven by an Unfolded Protein Response. Arterioscler Thromb Vasc Biol 2021; 41:302-316. [PMID: 33028096 PMCID: PMC7752246 DOI: 10.1161/atvbaha.120.315164] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cells (SMCs) dedifferentiate and initiate expression of macrophage markers with cholesterol exposure. This phenotypic switching is dependent on the transcription factor Klf4 (Krüppel-like factor 4). We investigated the molecular pathway by which cholesterol induces SMC phenotypic switching. Approach and Results: With exposure to free cholesterol, SMCs decrease expression of contractile markers, activate Klf4, and upregulate a subset of macrophage and fibroblast markers characteristic of modulated SMCs that appear with atherosclerotic plaque formation. These phenotypic changes are associated with activation of all 3 pathways of the endoplasmic reticulum unfolded protein response (UPR), Perk (protein kinase RNA-like endoplasmic reticulum kinase), Ire (inositol-requiring enzyme) 1α, and Atf (activating transcription factor) 6. Blocking the movement of cholesterol from the plasma membrane to the endoplasmic reticulum prevents free cholesterol-induced UPR, Klf4 activation, and upregulation of the majority of macrophage and fibroblast markers. Cholesterol-induced phenotypic switching is also prevented by global UPR inhibition or specific inhibition of Perk signaling. Exposure to chemical UPR inducers, tunicamycin and thapsigargin, is sufficient to induce these same phenotypic transitions. Finally, analysis of published single-cell RNA sequencing data during atherosclerotic plaque formation in hyperlipidemic mice provides preliminary in vivo evidence of a role of UPR activation in modulated SMCs. CONCLUSIONS Our data demonstrate that UPR is necessary and sufficient to drive phenotypic switching of SMCs to cells that resemble modulated SMCs found in atherosclerotic plaques. Preventing a UPR in hyperlipidemic mice diminishes atherosclerotic burden, and our data suggest that preventing SMC transition to dedifferentiated cells expressing macrophage and fibroblast markers contributes to this decreased plaque burden.
Collapse
MESH Headings
- Activating Transcription Factor 4/metabolism
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Line
- Cell Transdifferentiation/drug effects
- Cholesterol/toxicity
- Endoplasmic Reticulum Stress/drug effects
- Eukaryotic Initiation Factor-2/metabolism
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Unfolded Protein Response/drug effects
- eIF-2 Kinase/metabolism
- Mice
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX (.L., S.A.L., Y.H.S.)
| | - Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Jiyuan Chen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX (.L., S.A.L., Y.H.S.)
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX (.L., S.A.L., Y.H.S.)
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| |
Collapse
|
26
|
LeBlond ND, Ghorbani P, O'Dwyer C, Ambursley N, Nunes JRC, Smith TKT, Trzaskalski NA, Mulvihill EE, Viollet B, Foretz M, Fullerton MD. Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. J Lipid Res 2020; 61:1697-1706. [PMID: 32978273 PMCID: PMC7707174 DOI: 10.1194/jlr.ra120001040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.
Collapse
Affiliation(s)
- Nicholas D LeBlond
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Nia Ambursley
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia R C Nunes
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Tyler K T Smith
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Natasha A Trzaskalski
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Sorokin V, Vickneson K, Kofidis T, Woo CC, Lin XY, Foo R, Shanahan CM. Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Front Immunol 2020; 11:599415. [PMID: 33324416 PMCID: PMC7726011 DOI: 10.3389/fimmu.2020.599415] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
The pathobiology of atherosclerotic disease requires further elucidation to discover new approaches to address its high morbidity and mortality. To date, over 17 million cardiovascular-related deaths have been reported annually, despite a multitude of surgical and nonsurgical interventions and advances in medical therapy. Existing strategies to prevent disease progression mainly focus on management of risk factors, such as hypercholesterolemia. Even with optimum current medical therapy, recurrent cardiovascular events are not uncommon in patients with atherosclerosis, and their incidence can reach 10–15% per year. Although treatments targeting inflammation are under investigation and continue to evolve, clinical breakthroughs are possible only if we deepen our understanding of vessel wall pathobiology. Vascular smooth muscle cells (VSMCs) are one of the most abundant cells in vessel walls and have emerged as key players in disease progression. New technologies, including in situ hybridization proximity ligation assays, in vivo cell fate tracing with the CreERT2-loxP system and single-cell sequencing technology with spatial resolution, broaden our understanding of the complex biology of these intriguing cells. Our knowledge of contractile and synthetic VSMC phenotype switching has expanded to include macrophage-like and even osteoblast-like VSMC phenotypes. An increasing body of data suggests that VSMCs have remarkable plasticity and play a key role in cell-to-cell crosstalk with endothelial cells and immune cells during the complex process of inflammation. These are cells that sense, interact with and influence the behavior of other cellular components of the vessel wall. It is now more obvious that VSMC plasticity and the ability to perform nonprofessional phagocytic functions are key phenomena maintaining the inflammatory state and senescent condition and actively interacting with different immune competent cells.
Collapse
Affiliation(s)
- Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Keeran Vickneson
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao Yun Lin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, ASTAR, Singapore, Singapore
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London, London, United Kingdom
| |
Collapse
|
28
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
29
|
Shi Y, Jiang S, Zhao T, Gong Y, Liao D, Qin L. Celastrol suppresses lipid accumulation through LXRα/ABCA1 signaling pathway and autophagy in vascular smooth muscle cells. Biochem Biophys Res Commun 2020; 532:466-474. [PMID: 32892949 DOI: 10.1016/j.bbrc.2020.08.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023]
Abstract
The uptake of modified low-density lipoprotein (LDL) and the accumulation of lipid droplets induce the formation of vascular smooth muscle cells (VSMCs)-derived foam cells, thereby promoting the development and maturation of plaques and accelerating the progression of atherosclerosis. Celastrol is a quinine methide triterpenoid isolated from the root bark of traditional Chinese herb Tripterygium wilfordii. It possesses various biological properties, including anti-obesity, cardiovascular protection, anti-inflammation, etc. In the present study, we found that celastrol significantly reduced lipid accumulation induced by oxidized LDL (ox-LDL) in VSMCs. Mechanistically, celastrol up-regulated adenosine triphosphate-binding cassette transporter A1 (ABCA1) expression through activating liver X receptor α (LXRα) expression, which contributed to inhibit lipid accumulation in VSMCs. Meanwhile, celastrol decreased lipid accumulation by triggering autophagy in VSMCs. Therefore, these findings supported celastrol as a potentially effective agent for the prevention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Yaning Shi
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shuang Jiang
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tanjun Zhao
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yongzhen Gong
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duanfang Liao
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
30
|
Zhuge Y, Zhang J, Qian F, Wen Z, Niu C, Xu K, Ji H, Rong X, Chu M, Jia C. Role of smooth muscle cells in Cardiovascular Disease. Int J Biol Sci 2020; 16:2741-2751. [PMID: 33110393 PMCID: PMC7586427 DOI: 10.7150/ijbs.49871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Normally, smooth muscle cells (SMCs) are localized in the tunica media of the vasculature, where they take responsibility for vascular contraction and extracellular matrix (ECM) generation. SMCs also play a significant role in obedience and elastic rebound of the artery in response to the haemodynamic condition. However, under pathological or stressed conditions, phenotype switching from contractile to synthetic state or other cell types will occur in SMCs to positively or negatively contribute to disease progression. Various studies demonstrated that functional changes of SMCs are implicated in several cardiovascular diseases. In this review, we present the function of vascular SMCs (VSMCs) and the involved molecular mechanisms about phenotype switching, and summarize the roles of SMCs in atherosclerosis, hypertension, arterial aneurysms and myocardial infarction, hoping to obtain potential therapeutic targets against cardiovascular disease in the clinical practices.
Collapse
Affiliation(s)
- Yingzhi Zhuge
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fanyu Qian
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengwang Wen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hao Ji
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
31
|
FANG J, PAN Z, GUO X. [Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:113-117. [PMID: 32621415 PMCID: PMC8800783 DOI: 10.3785/j.issn.1008-9292.2020.02.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Atherosclerosis is an important pathological basis for coronary artery disease. ANRIL is an antisense non-coding RNA located in Chr9p21 locus, which was identified as the most significant risk locus associated with atherosclerosis. ANRIL can produce multiple transcripts including linear and circular transcripts after various transcript splicing. It has been illustrated that ANRIL plays important roles in the pathology of atherosclerosis by regulating the proliferation and apoptosis of vascular cells. Linear ANRIL can regulate the proliferation of vascular smooth muscle cells (VSMCs) in plaques by chromatin modification, as well as influence the proliferation and the apoptosis of macrophages in post transcription; circular ANRIL can affect the proliferation and apoptosis of VSMCs by chromatin modification as well as interfering with rRNA maturation. In this review, we describe the ANRIL evolution, different transcripts characteristics, and their roles in the proliferation and apoptosis of vascular cells to participate in the process of atherosclerosis, for further understanding the pathogenesis of atherosclerosis and finding potential targets for diagnosis and treatment of atherosclerosis.
Collapse
|
32
|
Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol 2020; 17:216-228. [PMID: 31578516 PMCID: PMC7770754 DOI: 10.1038/s41569-019-0265-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Monocytes and macrophages provide defence against pathogens and danger signals. These cells respond to stimulation in a fast and stimulus-specific manner by utilizing complex cascaded activation by lineage-determining and signal-dependent transcription factors. The complexity of the functional response is determined by interactions between triggered transcription factors and depends on the microenvironment and interdependent signalling cascades. Dysregulation of macrophage phenotypes is a major driver of various diseases such as atherosclerosis, rheumatoid arthritis and type 2 diabetes mellitus. Furthermore, exposure of monocytes, which are macrophage precursor cells, to certain stimuli can lead to a hypo-inflammatory tolerized phenotype or a hyper-inflammatory trained phenotype in a macrophage. In atherosclerosis, macrophages and monocytes are exposed to inflammatory cytokines, oxidized lipids, cholesterol crystals and other factors. All these stimuli induce not only a specific transcriptional response but also interact extensively, leading to transcriptional and epigenetic heterogeneity of macrophages in atherosclerotic plaques. Targeting the epigenetic landscape of plaque macrophages can be a powerful therapeutic tool to modulate pro-atherogenic phenotypes and reduce the rate of plaque formation. In this Review, we discuss the emerging role of transcription factors and epigenetic remodelling in macrophages in the context of atherosclerosis and inflammation, and provide a comprehensive overview of epigenetic enzymes and transcription factors that are involved in macrophage activation.
Collapse
Affiliation(s)
- Tatyana Kuznetsova
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Koen H M Prange
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Amsterdam, Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
33
|
Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells 2020; 9:cells9030584. [PMID: 32121535 PMCID: PMC7140394 DOI: 10.3390/cells9030584] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.
Collapse
|
34
|
Wang Y, Dubland JA, Allahverdian S, Asonye E, Sahin B, Jaw JE, Sin DD, Seidman MA, Leeper NJ, Francis GA. Smooth Muscle Cells Contribute the Majority of Foam Cells in ApoE (Apolipoprotein E)-Deficient Mouse Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:876-887. [PMID: 30786740 DOI: 10.1161/atvbaha.119.312434] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Smooth muscle cells (SMCs) are the most abundant cells in human atherosclerotic lesions and are suggested to contribute at least 50% of atheroma foam cells. In mice, SMCs contribute fewer total lesional cells. The purpose of this study was to determine the contribution of SMCs to total foam cells in apolipoprotein E-deficient (ApoE-/-) mice, and the utility of these mice to model human SMC foam cell biology and interventions. Approach and Results- Using flow cytometry, foam cells in the aortic arch of ApoE-/- mice were characterized based on the expression of leukocyte-specific markers. Nonleukocyte foam cells increased from 37% of total foam cells in 27-week-old to 75% in 57-week-old male ApoE-/- mice fed a chow diet and were ≈70% in male and female ApoE-/- mice following 6 weeks of Western diet feeding. A similar contribution to total foam cells by SMCs was found using SMC-lineage tracing ApoE-/- mice fed the Western diet for 6 or 12 weeks. Nonleukocyte foam cells contributed a similar percentage of total atheroma cholesterol and exhibited lower expression of the cholesterol exporter ABCA1 (ATP-binding cassette transporter A1) when compared with leukocyte-derived foam cells. Conclusions- Consistent with previous studies of human atheromas, we present evidence that SMCs contribute the majority of atheroma foam cells in ApoE-/- mice fed a Western diet and a chow diet for longer periods. Reduced expression of ABCA1, also seen in human intimal SMCs, suggests a common mechanism for formation of SMC foam cells across species, and represents a novel target to enhance atherosclerosis regression.
Collapse
Affiliation(s)
- Ying Wang
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada.,Division of Vascular Surgery, Stanford University, CA (Y.W., N.J.L.)
| | - Joshua A Dubland
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Sima Allahverdian
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Enyinnaya Asonye
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Basak Sahin
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Jen Erh Jaw
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Don D Sin
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Michael A Seidman
- Pathology and Laboratory Medicine (M.A.S.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Nicholas J Leeper
- Division of Vascular Surgery, Stanford University, CA (Y.W., N.J.L.)
| | - Gordon A Francis
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Allahverdian S, Ortega C, Francis GA. Smooth Muscle Cell-Proteoglycan-Lipoprotein Interactions as Drivers of Atherosclerosis. Handb Exp Pharmacol 2020; 270:335-358. [PMID: 33340050 DOI: 10.1007/164_2020_364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In humans, smooth muscle cells (SMCs) are the main cell type in the artery medial layer, in pre-atherosclerotic diffuse thickening of the intima, and in all stages of atherosclerotic lesion development. SMCs secrete the proteoglycans responsible for the initial binding and retention of atherogenic lipoproteins in the artery intima, with this retention driving foam cell formation and subsequent stages of atherosclerosis. In this chapter we review current knowledge of the extracellular matrix generated by SMCs in medial and intimal arterial layers, their relationship to atherosclerotic lesion development and stabilization, how these findings correlate with mouse models of atherosclerosis, and potential therapies aimed at targeting the SMC matrix-lipoprotein interaction for atherosclerosis prevention.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Carleena Ortega
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Chemokine (C-C motif) ligand 2 and coronary artery disease: Tissue expression of functional and atypical receptors. Cytokine 2019; 126:154923. [PMID: 31739217 DOI: 10.1016/j.cyto.2019.154923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Chemokines, particularly chemokine (C-C- motif) ligand 2 (CCL2), control leukocyte migration into the wall of the artery and regulate the traffic of inflammatory cells. CCL2 is bound to functional receptors (CCR2), but also to atypical chemokine receptors (ACKRs), which do not induce cell migration but can modify chemokine gradients. Whether atherosclerosis alters CCL2 function by influencing the expression of these receptors remains unknown. In a necropsy study, we used immunohistochemistry to explore where and to what extent CCL2 and related receptors are present in diseased arteries that caused the death of men with coronary artery disease compared with unaffected arteries. CCL2 was marginally detected in normal arteries but was more frequently found in the intima. The expression of CCL2 and related receptors was significantly increased in diseased arteries with relative differences among the artery layers. The highest relative increases were those of CCL2 and ACKR1. CCL2 expression was associated with a significant predictive value of atherosclerosis. Findings suggest the need for further insight into receptor specificity or activity and the interplay among chemokines. CCL2-associated conventional and atypical receptors are overexpressed in atherosclerotic arteries, and these may suggest new potential therapeutic targets to locally modify the overall anti-inflammatory response.
Collapse
|
37
|
Wang R, Wu W, Li W, Huang S, Li Z, Liu R, Shan Z, Zhang C, Li W, Wang S. Activation of NLRP3 Inflammasome Promotes Foam Cell Formation in Vascular Smooth Muscle Cells and Atherogenesis Via HMGB1. J Am Heart Assoc 2019; 7:e008596. [PMID: 30371306 PMCID: PMC6404867 DOI: 10.1161/jaha.118.008596] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background This study aimed at investigating whether NLRP3 (the Nod like receptor family, pyrin domain‐containing 3 protein) inflammasome activation induced HMGB1 (high mobility group box‐1 protein) secretion and foam cell formation in human vascular smooth muscle cells (VSMCs) and atherosclerosis in ApoE−/− mice. Methods and Results VSMCs or ApoE−/− mice were treated with lipopolysaccharides (LPS) and/or ATP or LPS and high‐fat diet to induce NLRP3 inflammasome activation. HMGB1 distribution and foam cell formation in VSMCs were characterized. Liver X receptor α and ATP‐binding cassette transporter expression were determined. The impact of NLRP3 or receptor for advanced glycation end product silencing, ZYVAD‐FMK (caspase‐1 inhibitor), glycyrrhizin (HMGB1 inhibitor) or receptor for advanced glycation end product antagonist peptide on HMGB1 secretion, foam cell formation, liver X receptor α and ATP‐binding cassette transporter expression was examined. Expression level of HMGB1 in human atherosclerosis obliterans arterial tissues was characterized. Our results found that NLRP3 inflammasome activation promoted foam cell formation and HMGB1 secretion in VSMCs. Extracellular HMGB1 was a key signal molecule in inflammasome activation‐mediated foam cell formation. Furthermore, inflammasome activation‐induced HMGB1 activity and foam cell formation were achieved by receptor for advanced glycation end product/liver X receptor α /ATP‐binding cassette transporter glycyrrhizin. Experiments in vivo found glycyrrhizin significantly attenuated the LPS/high‐fat diet‐induced atherosclerosis and serum HMGB1 levels in mice. Finally, levels of HMGB1 and NLRP3 were increased in tunica media adjacent to intima of atherosclerosis obliteran arteries. Conclusions Our results revealed that HMGB1 is a key downstream signal molecule of NLRP3 inflammasome activation and plays an important role in VSMCs foam cell formation and atherogenesis by downregulating liver X receptor α and ATP‐binding cassette transporter expression through receptor for advanced glycation end product.
Collapse
Affiliation(s)
- Rui Wang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Weibin Wu
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Wen Li
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shuichuan Huang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zilun Li
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Ruiming Liu
- 2 Laboratory of General Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhen Shan
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Chunxiang Zhang
- 3 Department of Biomedical Engineering School of Medicine University of Alabama at Birmingham AL
| | - Wen Li
- 2 Laboratory of General Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shenming Wang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China.,3 Department of Biomedical Engineering School of Medicine University of Alabama at Birmingham AL
| |
Collapse
|
38
|
Bräuer AU, Kuhla A, Holzmann C, Wree A, Witt M. Current Challenges in Understanding the Cellular and Molecular Mechanisms in Niemann-Pick Disease Type C1. Int J Mol Sci 2019; 20:ijms20184392. [PMID: 31500175 PMCID: PMC6771135 DOI: 10.3390/ijms20184392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are a heterogeneous group of very different clinical syndromes. Their most common causes are defects in the hereditary material, and they can therefore be passed on to descendants. Rare diseases become manifest in almost all organs and often have a systemic expressivity, i.e., they affect several organs simultaneously. An effective causal therapy is often not available and can only be developed when the underlying causes of the disease are understood. In this review, we focus on Niemann–Pick disease type C1 (NPC1), which is a rare lipid-storage disorder. Lipids, in particular phospholipids, are a major component of the cell membrane and play important roles in cellular functions, such as extracellular receptor signaling, intracellular second messengers and cellular pressure regulation. An excessive storage of fats, as seen in NPC1, can cause permanent damage to cells and tissues in the brain and peripheral nervous system, but also in other parts of the body. Here, we summarize the impact of NPC1 pathology on several organ systems, as revealed in experimental animal models and humans, and give an overview of current available treatment options.
Collapse
Affiliation(s)
- Anja U Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
| | - Carsten Holzmann
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Andreas Wree
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Martin Witt
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| |
Collapse
|
39
|
Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 2019; 114:540-550. [PMID: 29385543 DOI: 10.1093/cvr/cvy022] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Current knowledge suggests that intimal smooth muscle cells (SMCs) in native atherosclerotic plaque derive mainly from the medial arterial layer. During this process, SMCs undergo complex structural and functional changes giving rise to a broad spectrum of phenotypes. Classically, intimal SMCs are described as dedifferentiated/synthetic SMCs, a phenotype characterized by reduced expression of contractile proteins. Intimal SMCs are considered to have a beneficial role by contributing to the fibrous cap and thereby stabilizing atherosclerotic plaque. However, intimal SMCs can lose their properties to such an extent that they become hard to identify, contribute significantly to the foam cell population, and acquire inflammatory-like cell features. This review highlights mechanisms of SMC plasticity in different stages of native atherosclerotic plaque formation, their potential for monoclonal or oligoclonal expansion, as well as recent findings demonstrating the underestimated deleterious role of SMCs in this disease.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| | - Kamel Boukais
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| |
Collapse
|
40
|
Abstract
Increasing numbers of studies implicate abnormal DNA methylation in cancer and many non-malignant diseases. This is consistent with numerous findings about differentiation-associated changes in DNA methylation at promoters, enhancers, gene bodies, and sites that control higher-order chromatin structure. Abnormal increases or decreases in DNA methylation contribute to or are markers for cancer formation and tumour progression. Aberrant DNA methylation is also associated with neurological diseases, immunological diseases, atherosclerosis, and osteoporosis. In this review, I discuss DNA hypermethylation in disease and its interrelationships with normal development as well as proposed mechanisms for the origin of and pathogenic consequences of disease-associated hypermethylation. Disease-linked DNA hypermethylation can help drive oncogenesis partly by its effects on cancer stem cells and by the CpG island methylator phenotype (CIMP); atherosclerosis by disease-related cell transdifferentiation; autoimmune and neurological diseases through abnormal perturbations of cell memory; and diverse age-associated diseases by age-related accumulation of epigenetic alterations.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Tulane Cancer Center and Tulane Center for Bioinformatics and Genomics, Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
41
|
Orekhov AN, Sobenin IA. Modified and Dysfunctional Lipoproteins in Atherosclerosis: Effectors or Biomarkers? Curr Med Chem 2019; 26:1512-1524. [PMID: 29557739 DOI: 10.2174/0929867325666180320121137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/14/2018] [Accepted: 03/05/2018] [Indexed: 01/17/2023]
Abstract
Atherosclerotic diseases are the leading cause of mortality in industrialized countries. Correspondingly, studying the pathogenesis of atherosclerosis and developing new methods for its diagnostic and treatment remain in the focus of current medicine and health care. This review aims to discuss the mechanistic role of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in atherogenesis. In particular, the generally accepted hypothesis about the key role of oxidized LDL in atherogenesis is questioned, and an alternative concept of multiple modification of LDL is presented. The fundamental question discussed in this review is whether LDL and HDL are effectors or biomarkers, or both. This is important for understanding whether lipoproteins are a therapeutic target or just diagnostic indicators.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russian Federation
| | - Igor A Sobenin
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, Russian Federation
| |
Collapse
|
42
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
43
|
Liao S, Zhou Q, Zhang Y. Elastic aortic wrap reduced aortic stiffness by partially alleviating the impairment of cholesterol efflux capacity in pigs. J Diabetes Metab Disord 2019; 17:101-109. [PMID: 30918842 DOI: 10.1007/s40200-018-0345-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
Purpose Metabolic syndrome patients exhibit impaired cholesterol efflux capacity. Previous studies have shown a positive association between aortic stiffness and metabolic syndrome. However, it is unknown whether cholesterol efflux capacity participates in the process of aortic stiffness. This study sought to determine the effect of metabolic syndrome on aortic stiffening, and to investigate the effectiveness of aortic wraps on aortic compliance and the underlying mechanisms. Methods In a swine model of metabolic syndrome, we compared the cholesterol efflux capacity and aortic compliance responding to diet modifications and aortic wrap applications. Results Metabolic syndrome induced by high cholesterol diet significantly decreased cholesterol efflux capacity and aortic compliance. Elastic aortic wrap application increased aortic compliance and partially restored cholesterol efflux capacity via ATP binding cassette transporter A1 (ABCA1) pathway. Conclusions Cholesterol efflux plays a role in aortic stiffening. Elastic aortic wrap application could be a potential treatment for aortic stiffness related to metabolic syndrome.
Collapse
Affiliation(s)
- Shutan Liao
- 1Rural Clinical School, University of New South Wales, Sydney, NSW Australia.,2The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Zhou
- 3Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, 53 Taohua Road, Nanchang, 330008 Jiangxi China
| | - Yang Zhang
- 3Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, 53 Taohua Road, Nanchang, 330008 Jiangxi China
| |
Collapse
|
44
|
Orekhov AN, Grechko AV, Romanenko EB, Zhang D, Chistiakov DA. Novel Approaches to Anti-atherosclerotic Therapy: Cell-based Models and Herbal Preparations (Review of Our Own Data). Curr Drug Discov Technol 2019; 17:278-285. [PMID: 30621565 DOI: 10.2174/1570163816666190101112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic arterial disease characterized by vascular inflammation, accumulation of lipids in the arterial wall, and formation and growth of atherosclerotic plaques followed by ischemia. In subclinical atherosclerosis, cholesterol retention in subendothelial cells leads to induction of local inflammation, generation of foam cells and lesion formation, followed by a chain of other pathogenic events. Atherosclerotic progression can frequently be fatal, since plaque rupture may lead to thrombosis and acute events, such as myocardial infarction, stroke and sudden death. Traditional anti-atherosclerotic therapy is mainly focused on improving the blood lipid profile and does not target various stages of plaque progression. Obviously, treating the disease at initial stages is better than beginning treatment at advanced stages and, in that regard, current atherosclerosis management can be improved. Cholesterol retention is an important component of atherogenesis that precedes plaque formation. Therapeutic targeting of cholesterol retention may be beneficial for preventing further atherogenic progression. For this purpose, we suggest using herbal preparations due to good tolerability and suitability for long-lasting treatment. We developed test systems based on cultured human intimal aortic cells for rapid screening of potential anti-atherogenic drugs. With the help of these test systems, we selected several natural substances with significant anti-atherogenic activity and further use these compounds to prepare herbal preparations for anti-atherosclerotic therapy. These preparations were clinically tested and showed good safety and a potent anti-atherogenic potential.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia,Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia,Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia
| | - Elena B Romanenko
- Department of Molecular Basis of Ontogenesis, Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, P.R China
| | - Dimitry A Chistiakov
- Department of Neurochemistry, Division of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, 119991 Moscow, Russia
| |
Collapse
|
45
|
Fibla M, Hernández-Aguilera A, Camps J, Menendez JA, Joven J. Treating atherosclerosis: targeting risk factors should not be the only option. ANNALS OF TRANSLATIONAL MEDICINE 2019; 6:S34. [PMID: 30613609 DOI: 10.21037/atm.2018.09.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Montserrat Fibla
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain
| | - Anna Hernández-Aguilera
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,The Campus of International Excellence Southern Catalonia, Tarragona, Spain
| |
Collapse
|
46
|
Manzini S, Busnelli M, Parolini C, Minoli L, Ossoli A, Brambilla E, Simonelli S, Lekka E, Persidis A, Scanziani E, Chiesa G. Topiramate protects apoE-deficient mice from kidney damage without affecting plasma lipids. Pharmacol Res 2018; 141:189-200. [PMID: 30593851 DOI: 10.1016/j.phrs.2018.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/16/2018] [Accepted: 12/24/2018] [Indexed: 11/28/2022]
Abstract
Topiramate is an anticonvulsant drug also prescribed for migraine prophylaxis that acts through several mechanisms of action. Several studies indicate that topiramate induces weight loss and a moderate reduction of plasma lipids and glucose. Based on these favourable metabolic effects, aim of this study was to evaluate if topiramate could modulate atherosclerosis development and protect target organs of dysmetabolic conditions. Thirty apoE-deficient mice were divided into three groups and fed for 12 weeks a high fat diet (Control) or the same diet containing topiramate at 0.125% and 0.250%. Body weight, water and food intake were monitored throughout the study. Plasma lipids and glucose levels were measured and a glucose tolerance test was performed. Atherosclerosis development was evaluated in the whole aorta and at the aortic sinus. Histological analysis of liver, kidney and adipose tissue was performed. Topiramate did not affect weight gain and food intake. Glucose tolerance and plasma lipids were not changed and, in turn, atherosclerosis development was not different among groups. Topiramate did not modify liver and adipose tissue histology. Conversely, in the kidneys, the treatment reduced the occurrence of glomerular lipidosis by decreasing foam cells accumulation and reducing the expression of inflammatory markers. Blood urea nitrogen levels were also reduced by treatment. Our results indicate that topiramate does not affect atherosclerosis development, but preserves kidney structure and function. The study suggests that topiramate could be investigated in drug repurposing studies for the treatment of glomerular lipidosis.
Collapse
Affiliation(s)
- Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133 Milano, Italy; Mouse & Animal Pathology Laboratory (MAPLab), Fondazione UniMi, viale Ortles 22/4, 20139 Milano, Italy
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Elena Brambilla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Sara Simonelli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Eftychia Lekka
- Biovista, 34 Rodopoleos Street Ellinikon, Athens 16777, Greece
| | | | - Eugenio Scanziani
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133 Milano, Italy; Mouse & Animal Pathology Laboratory (MAPLab), Fondazione UniMi, viale Ortles 22/4, 20139 Milano, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
47
|
Lacey M, Baribault C, Ehrlich KC, Ehrlich M. Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis 2018; 280:183-191. [PMID: 30529831 DOI: 10.1016/j.atherosclerosis.2018.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a widespread and complicated disease involving phenotypic modulation and transdifferentiation of vascular smooth muscle cells (SMCs), the predominant cells in aorta, as well as changes in endothelial cells and infiltrating monocytes. Alterations in DNA methylation are likely to play central roles in these phenotypic changes, just as they do in normal differentiation and cancer. METHODS We examined genome-wide DNA methylation changes in atherosclerotic aorta using more stringent criteria for differentially methylated regions (DMRs) than in previous studies and compared these DMRs to tissue-specific epigenetic features. RESULTS We found that disease-linked hypermethylated DMRs account for 85% of the total atherosclerosis-associated DMRs and often overlap aorta-associated enhancer chromatin. These hypermethylated DMRs were associated with functionally different sets of genes compared to atherosclerosis-linked hypomethylated DMRs. The extent and nature of the DMRs could not be explained as direct effects of monocyte/macrophage infiltration. Among the known atherosclerosis- and contractile SMC-related genes that exhibited hypermethylated DMRs at aorta enhancer chromatin were ACTA2 (aorta α2 smooth muscle actin), ELN (elastin), MYOCD (myocardin), C9orf3 (miR-23b and miR-27b host gene), and MYH11 (smooth muscle myosin). Our analyses also suggest a role in atherosclerosis for developmental transcription factor genes having little or no previous association with atherosclerosis, such as NR2F2 (COUP-TFII) and TBX18. CONCLUSIONS We provide evidence for atherosclerosis-linked DNA methylation changes in aorta SMCs that might help minimize or reverse the standard contractile character of many of these cells by down-modulating aorta SMC-related enhancers, thereby facilitating pro-atherosclerotic phenotypic changes in many SMCs.
Collapse
Affiliation(s)
- Michelle Lacey
- Tulane Cancer Center, Tulane University Health Sciences Center, LA, 70112, USA; Department of Mathematics, Tulane University, New Orleans, LA, 70118, USA
| | - Carl Baribault
- Tulane Cancer Center, Tulane University Health Sciences Center, LA, 70112, USA
| | - Kenneth C Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, USA
| | - Melanie Ehrlich
- Tulane Cancer Center, Tulane University Health Sciences Center, LA, 70112, USA; Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, USA; Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
48
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
49
|
Li S, Sun W, Zheng H, Tian F. Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed Pharmacother 2018; 103:851-857. [PMID: 29710501 DOI: 10.1016/j.biopha.2018.03.173] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammation, which is a major cause of morbidity and mortality in the world. Accumulative evidences have demonstrated that miRNAs exert crucial roles in the development of AS. However, the effects of miR-145 and its underlying molecular mechanism remain incompletely clear. The aim of the present study is to explore the function of miR-145 in the occurrence and development of AS through investigating its role in inflammatory reactions. High-fat diet (HFD)-treated ApoE-/- mice were used as an in vivo model of atherosclerosis (AS). OxLDL-induced macrophages was employed as cell models of atherosclerosis. RT-PCR was used to evaluate the transfected efficiency of miR-145 mimic and inhibitor. RT-PCR and ELISA were performed to detect the expression of miR-145, and inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), C-C motif chemokine ligand 2 (CCL-2), CCL-4 and CCL-7. Western blotting was used to evaluate the protein expression of nuclear factor κB (NF-κB) and its related proteins such as phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), p-IκBα and acetylated p65 (ac-p65). Hematoxylin and eosin (H&E) staining were conducted to examine atherosclerotic lesion. Immunohistochemistry was carried out to detect the expression of α-smooth muscle Actin (α-SMA) and CD68. Luciferase reporter assay were carried out to examine the effect of miR-145 on the transcriptional activity of NF-κB. Our results showed that over-expression of miR-145 promoted the expression of IL-1β, TNF-α, CCL-2, CCL-4 and CCL-7 through promotion of NF-κB, p-IκBα, p-STAT3 and ac-p65 expression in vivo and in vitro. Besides, down-regulation of miR-145 expression relieved the aortic sinus lesion, increased the number of VSMCs and decreased the number of macrophages. In conclusion, our study demonstrated that miR-145 accelerated the inflammatory reaction through activation of NF-κB signaling in AS.
Collapse
Affiliation(s)
- Sheng Li
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China
| | - Wenlei Sun
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China
| | - Hongjian Zheng
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China
| | - Feifei Tian
- Department of Cardiology, Jining No. 1 People's Hospital, Jining City, Shandong Province, 272000, China.
| |
Collapse
|
50
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|