1
|
Karwatowska-Prokopczuk E, Lesogor A, Yan JH, Hoenlinger A, Margolskee A, Li L, Tsimikas S. Efficacy and safety of olezarsen in lowering apolipoprotein C-III and triglycerides in healthy Japanese Americans. Lipids Health Dis 2024; 23:329. [PMID: 39363329 PMCID: PMC11448427 DOI: 10.1186/s12944-024-02297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Olezarsen is a GalNAc3-conjugated, hepatic-targeted antisense oligonucleotide that lowers apolipoprotein C-III (apoC-III) and triglyceride levels. The efficacy and safety of olezarsen has not previously been studied in ethnically diverse American populations. The aim of this study is to assess the effect of olezarsen in healthy Japanese Americans. METHODS A randomized, placebo-controlled, double-blind phase 1 study was performed in 28 healthy Japanese American participants treated with olezarsen in single-ascending doses (SAD; 30, 60, 90 mg) or multiple doses (MD; 60 mg every 4 weeks for 4 doses). The primary, secondary, and exploratory objectives were safety and tolerability, pharmacokinetics, and effects of olezarsen on fasting serum triglycerides and apoC-III, respectively. RESULTS There were 20 participants (16 active:4 placebo) in the SAD part of the study, and 8 participants (6 active:2 placebo) in the MD part of the study. For the primary endpoint, no serious adverse events or clinically relevant laboratory abnormalities were reported. The majority of olezarsen plasma exposure occurred within 24 h post-dose. In the SAD cohorts at Day 15 the percentage reduction in apoC-III/TG was - 39.4%/ - 17.8%, - 60.8%/ - 52.7%, and - 68.1%/ - 39.2% in the 30, 60 and 90 mg doses, respectively, vs 2.3%/44.5% increases in placebo. In the MD cohort, at Day 92 the percentage reduction in apoC-III/TG was - 81.6/ - 73.8% vs - 17.2/ - 40.8% reduction in placebo. Favorable changes were also present in VLDL-C, apoB and HDL-C. CONCLUSIONS Single- and multiple-dose administration of olezarsen was safe, was well tolerated, and significantly reduced apoC-III and triglyceride levels in healthy Japanese Americans.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Sotirios Tsimikas
- Ionis Pharmaceuticals, Carlsbad, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA, 92093-0682, USA.
| |
Collapse
|
2
|
Zhu J, Zhu X, Shi C, Li Q, Jiang Y, Chen X, Sun P, Jin Y, Wang T, Chen J. Integrative analysis of aging-related genes reveals CEBPA as a novel therapeutic target in non-small cell lung cancer. Cancer Cell Int 2024; 24:267. [PMID: 39068458 PMCID: PMC11282817 DOI: 10.1186/s12935-024-03457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND To explore the impact of ARGs on the prognosis of NSCLC, and its correlation with clinicopathological parameters and immune microenvironment. Preliminary research on the biological functions of CEBPA in NSCLC. METHODS Using consensus clustering analysis to identify molecular subtypes of ARGs in NSCLC patients; employing LASSO regression and multivariate Cox analysis to select 7 prognostic risk genes and construct a prognostic risk model; validating independent prognostic factors of NSCLC using forest plot analysis; analyzing immune microenvironment correlations using ESTIMATE and ssGSEA; assessing correlations between prognostic risk genes via qPCR and Western blot in NSCLC; measuring mRNA and protein expression levels of knocked down and overexpressed CEBPA in NSCLC using CCK-8 and EdU assays; evaluating the effects of knocked down and overexpressed CEBPA on cell proliferation using Transwell experiments; examining the correlation of CEBPA with T cells and B cells using mIHC analysis. RESULTS Consensus clustering analysis identified three molecular subtypes, suggesting significant differential expression of these ARGs in NSCLC prognosis and clinical pathological parameters. There was significant differential expression between the two risk groups in the prognostic risk model, with P < 0.001. The risk score of the prognostic risk model was also P < 0.001. CEBPA exhibited higher mRNA and protein expression levels in NSCLC cell lines. Knockdown of CEBPA significantly reduced mRNA and protein expression levels of CEBPB, YWHAZ, ABL1, and CDK1 in H1650 and A549 cells. siRNA-mediated knockdown of CEBPA markedly inhibited proliferation, migration, and invasion of NSCLC cells, whereas overexpression of CEBPA showed the opposite trend. mIHC results indicated a significant increase in CD3 + CD4+, CD3 + CD8+, and CD20 + cell counts in the high CEBPA expression group. CONCLUSIONS The risk score of the prognostic risk model can serve as an independent prognostic factor, guiding the diagnosis and treatment of NSCLC. CEBPA may serve as a potential tumor biomarker and immune target, facilitating further exploration of the biological functions and immunological relevance in NSCLC.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Conglin Shi
- Cancer Immunotherapy Center, Cancer Research Institute, Xuzhou Medical University, Xuzhou, China
| | - Qixuan Li
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yun Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xingyou Chen
- School of Medicine, Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank, The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Tianyi Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Jianle Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
3
|
den Hollander B, Brands MM, Nijhuis IJM, Doude van Troostwijk LJAE, van Essen P, Hofsteenge GH, Koot BG, Müller AR, Tseng LA, Stroes ESG, van de Ven PM, Wiegman A, van Karnebeek CDM. Breaking the chains of lipoprotein lipase deficiency: A pediatric perspective on the efficacy and safety of Volanesorsen. Mol Genet Metab 2024; 142:108347. [PMID: 38401382 DOI: 10.1016/j.ymgme.2024.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
RATIONALE Lipoprotein lipase (LPL) deficiency, a rare inherited metabolic disorder, is characterized by high triglyceride (TG) levels and life-threatening acute pancreatitis. Current treatment for pediatric patients involves a lifelong severely fat-restricted diet, posing adherence challenges. Volanesorsen, an EMA-approved RNA therapy for adults, effectively reduces TG levels by decreasing the production of apolipoprotein C-III. This 96-week observational open-label study explores Volanesorsen's safety and efficacy in a 13-year-old female with LPL deficiency. METHODS The patient, with a history of severe TG elevations, 53 hospital admissions, and life-threatening recurrent pancreatitis despite dietary restrictions, received weekly subcutaneous Volanesorsen injections. We designed a protocol for this investigator-initiated study, primarily focusing on changes in fasting TG levels and hospital admissions. RESULTS While the injections caused occasional pain and swelling, no other adverse events were observed. TG levels decreased during treatment, with more measurements below the pancreatitis risk threshold compared to pre-treatment. No hospital admissions occurred in the initial 14 months of treatment, contrasting with 21 admissions in the 96 weeks before. In the past 10 months, two pancreatitis episodes may have been linked to dietary noncompliance. Dietary restrictions were relaxed, increasing fat intake by 65% compared to baseline. While not fully reflected in the PedsQL, both parents and the patient narratively reported an improved quality of life. CONCLUSION This study demonstrates, for the first time, that Volanesorsen is tolerated in a pediatric patient with severe LPL deficiency and effectively lowers TG levels, preventing life-threatening complications. This warrants consideration for expanded access in this population.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Marion M Brands
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Ilse J M Nijhuis
- Wilhelmina Hospital Assen, Department of Pediatrics, Europaweg-Zuid 1, Assen, the Netherlands
| | | | - Peter van Essen
- Radboud University Medical Center, Department of Pediatrics, Amalia Children's Hospital, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Geesje H Hofsteenge
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Nutrition & Dietetics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bart G Koot
- Amsterdam UMC location University of Amsterdam, Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Annelieke R Müller
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Laura A Tseng
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; University Medical Center Rotterdam, Department of Pediatrics, Sophia Children's Hospital, Dr. Molewaterplein 40, Rotterdam, the Netherlands
| | - Erik S G Stroes
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Meibergdraaf 9, Amsterdam, the Netherlands
| | - Peter M van de Ven
- University Medical Centre Utrecht, Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, Heidelberglaan 100, Utrecht, Netherlands
| | - Albert Wiegman
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Clara D M van Karnebeek
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Chebli J, Larouche M, Gaudet D. APOC3 siRNA and ASO therapy for dyslipidemia. Curr Opin Endocrinol Diabetes Obes 2024; 31:70-77. [PMID: 38334488 DOI: 10.1097/med.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA). RECENT FINDINGS ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO. SUMMARY Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.
Collapse
Affiliation(s)
- Jasmine Chebli
- Clinical lipidology and Rare Lipid Disorders Unit, Community Gene Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21, Chicoutimi, Quebec, Canada
| | | | | |
Collapse
|
5
|
Zhang X, Han K, Kan L, Zhang Z, Gong Y, Xiao S, Bai Y, Liu N, Meng C, Qi H, Shen F. A Differential Protein Study on Bronchoalveolar Lavage Fluid at Different Stages of Silicosis. Comb Chem High Throughput Screen 2024; 27:2366-2401. [PMID: 38173059 DOI: 10.2174/0113862073260760231023055036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES In this study, by comparing the difference in protein expression in bronchoalveolar lavage fluid between silicosis patients in different stages and healthy controls, the pathogenesis of pneumoconiosis was discussed, and a new idea for the prevention and treatment of pneumoconiosis was provided. METHODS The lung lavage fluid was pretreated by 10 K ultrafiltration tube, Agilent 1100 conventional liquid phase separation, strong cation exchange column (SCX) HPLC pre-separation, and C18 reverse phase chromatography desalting purification, and protein was labeled with isotope. GO, KEGG pathway, and PPI analysis of differential proteins were conducted by bioinformatics, and protein types and corresponding signal pathways were obtained. RESULTS Thermo Q-Exactive mass spectrometry identified 943 proteins. T-test analysis was used to evaluate the different significance of the results, and the different protein of each group was obtained by screening with the Ratio≥1.2 or Ratio≤0.83 and P<0.05. We found that there are 16 kinds of protein throughout the process of silicosis. There are different expressions of protein in stages III/control, stages II/control, stage I/control, stages III/ stages II, stages III/ stage I and stages II/ stage I groups. The results of ontology enrichment analysis of total differential protein genes show that KEGG pathway enrichment analysis of differential protein suggested that there were nine pathways related to silicosis. CONCLUSION The main biological changes in the early stage of silicosis are glycolysis or gluconeogenesis, autoimmunity, carbon metabolism, phagocytosis, etc., and microfibril-associated glycoprotein 4 may be involved in the early stage of silicosis. The main biological changes in the late stage of silicosis are autoimmunity, intercellular adhesion, etc. Calcium hippocampus binding protein may participate in the biological changes in the late stage of silicosis. It provides a new idea to understand the pathogenesis of silicosis and also raises new questions for follow-up research.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Ke Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Linhui Kan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Zheng Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Yihong Gong
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, 063000, P.R. China
| | - Yuping Bai
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Nan Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Chunyan Meng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Huisheng Qi
- Tangshan City workers' Hospital, Tangshan, Hebei, 063000, P.R. China
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| |
Collapse
|
6
|
Larouche M, Khoury E, Brisson D, Gaudet D. Inhibition of Angiopoietin-Like Protein 3 or 3/8 Complex and ApoC-III in Severe Hypertriglyceridemia. Curr Atheroscler Rep 2023; 25:1101-1111. [PMID: 38095804 DOI: 10.1007/s11883-023-01179-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW The role of the inhibition of ANGPTL3 in severe or refractory hypercholesterolemia is well documented, less in severe hyperTG. This review focuses on the preclinical and clinical development of ApoC-III inhibitors and ANGPTL3, 4, and 3/8 complex inhibitors for the treatment of severe or refractory forms of hypertriglyceridemia to prevent cardiovascular disease or other morbidities. RECENT FINDINGS APOC3 and ANGPTL3 became targets for drug development following the identification of naturally occurring loss of function variants in families with a favorable lipid profile and low cardiovascular risk. The inhibition of ANGPTL3 covers a broad spectrum of lipid disorders from severe hypercholesterolemia to severe hypertriglyceridemia, while the inhibition of ApoC-III can treat hypertriglyceridemia regardless of the severity. Preclinical and clinical data suggest that ApoC-III inhibitors, ANGPTL3 inhibitors, and inhibitors of the ANGPTL3/8 complex that is formed postprandially are highly effective for the treatment of severe or refractory hypertriglyceridemia. Inhibition of ANGPTL3 or the ANGPTL3/8 complex upregulates LPL and facilitates the hydrolysis and clearance of triglyceride-rich lipoproteins (TRL) (LPL-dependent mechanisms), whereas ApoC-III inhibitors contribute to the management and clearance of TRL through both LPL-dependent and LPL-independent mechanisms making it possible to successfully lower TG in subjects completely lacking LPL (familial chylomicronemia syndrome). Most of these agents are biologicals including monoclonal antibodies (mAb), antisense nucleotides (ASO), small interfering RNA (siRNA), or CRISPR-cas gene editing strategies.
Collapse
Affiliation(s)
- Miriam Larouche
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Etienne Khoury
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Diane Brisson
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada.
| |
Collapse
|
7
|
Cai X, Xue Z, Zeng FF, Tang J, Yue L, Wang B, Ge W, Xie Y, Miao Z, Gou W, Fu Y, Li S, Gao J, Shuai M, Zhang K, Xu F, Tian Y, Xiang N, Zhou Y, Shan PF, Zhu Y, Chen YM, Zheng JS, Guo T. Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome. Cell Rep Med 2023; 4:101172. [PMID: 37652016 PMCID: PMC10518601 DOI: 10.1016/j.xcrm.2023.101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.
Collapse
Affiliation(s)
- Xue Cai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Zhangzhi Xue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China
| | - Jun Tang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Liang Yue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Bo Wang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yuting Xie
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zelei Miao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wanglong Gou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuanqing Fu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Sainan Li
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jinlong Gao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Menglei Shuai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ke Zhang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fengzhe Xu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yunyi Tian
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Nan Xiang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yan Zhou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Peng-Fei Shan
- Department of Endocrinology, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yi Zhu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ju-Sheng Zheng
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
8
|
Huang M, Zheng J, Chen L, You S, Huang H. Advances in the study of the pathogenesis of obesity: Based on apolipoproteins. Clin Chim Acta 2023; 545:117359. [PMID: 37086940 DOI: 10.1016/j.cca.2023.117359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Obesity is a state presented by excessive accumulation and abnormal distribution of body fat, with metabolic disorders being one of its distinguishing features. Obesity is associated with dyslipidemia, apolipoproteins are important structural components of plasma lipoproteins, which influence lipid metabolism in the body by participating in lipoprotein metabolism and are closely related to the progression of obesity. Apolipoproteins influence the progression of obesity from lipid metabolism, energy expenditure and inflammatory response. In this review, we discuss the alterations of apolipoproteins in obesity, understand the potential mechanisms by which apolipoproteins affect obesity, as well as provide new targets for the treatment of obesity.
Collapse
Affiliation(s)
- Mingjing Huang
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jingyi Zheng
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lijun Chen
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Sufang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
9
|
Oral EA, Garg A, Tami J, Huang EA, O'Dea LSL, Schmidt H, Tiulpakov A, Mertens A, Alexander VJ, Watts L, Hurh E, Witztum JL, Geary RS, Tsimikas S. Assessment of efficacy and safety of volanesorsen for treatment of metabolic complications in patients with familial partial lipodystrophy: Results of the BROADEN study: Volanesorsen in FPLD; The BROADEN Study. J Clin Lipidol 2022; 16:833-849. [PMID: 36402670 DOI: 10.1016/j.jacl.2022.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Volanesorsen, an antisense oligonucleotide, is designed to inhibit hepatic apolipoprotein C-III synthesis and reduce plasma apolipoprotein C-III and triglyceride concentrations. OBJECTIVE The present study assessed efficacy and safety of volanesorsen in patients with familial partial lipodystrophy (FPLD) and concomitant hypertriglyceridemia and diabetes. METHODS BROADEN was a randomized, placebo-controlled, phase 2/3, 52-week study with open-label extension and post-treatment follow-up periods. Patients received weekly subcutaneous volanesorsen 300 mg or placebo. The primary endpoint was percent change from baseline in fasting triglycerides at 3 months. Secondary endpoints included relative percent change in hepatic fat fraction (HFF), visceral adiposity, and glycated hemoglobin levels. RESULTS Forty patients (11 men, 29 women) were enrolled, majority of whom were aged <65 years (mean, 47 years) and White. Least squares mean (LSM) percent change in triglycerides from baseline to 3 months was -88% (95% CI, -134 to -43) in the volanesorsen group versus -22% (95% CI, -61 to 18) in the placebo group, with a difference in LSM of -67% (95% CI, -104 to -30; P=0.0009). Volanesorsen induced a significant LSM relative reduction in HFF of 53% at month 12 versus placebo (observed mean [SD]: 9.7 [7.65] vs. 18.0 [8.89]; P=0.0039). No statistically significant changes were noted in body volume measurements (fat, liver, spleen, visceral/subcutaneous adipose tissue) or glycated hemoglobin. Serious adverse events in patients assigned to volanesorsen included 1 case each of sarcoidosis, anaphylactic reaction, and systemic inflammatory response syndrome. CONCLUSION In BROADEN, volanesorsen significantly reduced serum triglyceride levels and hepatic steatosis in patients with FPLD.
Collapse
Affiliation(s)
- Elif A Oral
- Metabolism, Endocrinology and Diabetes Division and Brehm Center for Diabetes, University of Michigan, Ann Arbor, MI, USA (Dr Oral).
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA (Dr Garg)
| | - Joseph Tami
- Ionis Pharmaceuticals, Carlsbad, CA, USA (Drs Tami, Alexander, Watts, Geary, and Tsimikas)
| | - Eric A Huang
- Akcea Therapeutics, Inc., Boston, MA, USA (Drs Huang, O'Dea, and Hurh)
| | - Louis St L O'Dea
- Akcea Therapeutics, Inc., Boston, MA, USA (Drs Huang, O'Dea, and Hurh)
| | - Hartmut Schmidt
- University Hospital Muenster, Muenster, Germany (Dr Schmidt)
| | - Anatoly Tiulpakov
- Endocrinology Research Centre, Moscow, Russian Federation (Dr Tiulpakov)
| | - Ann Mertens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium (Dr Mertens)
| | - Veronica J Alexander
- Ionis Pharmaceuticals, Carlsbad, CA, USA (Drs Tami, Alexander, Watts, Geary, and Tsimikas)
| | - Lynnetta Watts
- Ionis Pharmaceuticals, Carlsbad, CA, USA (Drs Tami, Alexander, Watts, Geary, and Tsimikas)
| | - Eunju Hurh
- Akcea Therapeutics, Inc., Boston, MA, USA (Drs Huang, O'Dea, and Hurh)
| | - Joseph L Witztum
- School of Medicine, University of California San Diego, San Diego, CA, USA (Drs Witztum and Tsimikas)
| | - Richard S Geary
- Ionis Pharmaceuticals, Carlsbad, CA, USA (Drs Tami, Alexander, Watts, Geary, and Tsimikas)
| | - Sotirios Tsimikas
- Ionis Pharmaceuticals, Carlsbad, CA, USA (Drs Tami, Alexander, Watts, Geary, and Tsimikas); School of Medicine, University of California San Diego, San Diego, CA, USA (Drs Witztum and Tsimikas)
| |
Collapse
|
10
|
Wang L, Xu T, Wang R, Wang X, Wu D. Hypertriglyceridemia Acute Pancreatitis: Animal Experiment Research. Dig Dis Sci 2022; 67:761-772. [PMID: 33939144 DOI: 10.1007/s10620-021-06928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022]
Abstract
In recent years, the number of acute pancreatitis cases caused by hypertriglyceridemia has increased gradually, which has caught the attention of the medical community. However, because the exact mechanism of hypertriglyceridemic acute pancreatitis (HTG-AP) is not clear, treatment and prevention in clinical practice face enormous challenges. Animal models are useful for elucidating the pathogenesis of diseases and developing and testing novel interventions. Therefore, animal experiments have become the key research means for us to understand and treat this disease. We searched almost all HTG-AP animal models by collecting many studies and finally collated common animals such as rats, mice and included some rare animals that are not commonly used, summarizing the methods to model spontaneous pancreatitis and induce pancreatitis. We sorted them on the basis of three aspects, including the selection of different animals, analyzed the characteristics of different animals, different approaches to establish hypertriglyceridemic pancreatitis and their relative advantages and disadvantages, and introduced the applications of these models in studies of pathogenesis and drug therapy. We hope this review can provide relevant comparisons and analyses for researchers who intend to carry out animal experiments and will help researchers to select and establish more suitable animal experimental models according to their own experimental design.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ting Xu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruifeng Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiaobing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Goyal S, Tanigawa Y, Zhang W, Chai JF, Almeida M, Sim X, Lerner M, Chainakul J, Ramiu JG, Seraphin C, Apple B, Vaughan A, Muniu J, Peralta J, Lehman DM, Ralhan S, Wander GS, Singh JR, Mehra NK, Sidorov E, Peyton MD, Blackett PR, Curran JE, Tai ES, van Dam R, Cheng CY, Duggirala R, Blangero J, Chambers JC, Sabanayagam C, Kooner JS, Rivas MA, Aston CE, Sanghera DK. APOC3 genetic variation, serum triglycerides, and risk of coronary artery disease in Asian Indians, Europeans, and other ethnic groups. Lipids Health Dis 2021; 20:113. [PMID: 34548093 PMCID: PMC8456544 DOI: 10.1186/s12944-021-01531-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypertriglyceridemia has emerged as a critical coronary artery disease (CAD) risk factor. Rare loss-of-function (LoF) variants in apolipoprotein C-III have been reported to reduce triglycerides (TG) and are cardioprotective in American Indians and Europeans. However, there is a lack of data in other Europeans and non-Europeans. Also, whether genetically increased plasma TG due to ApoC-III is causally associated with increased CAD risk is still unclear and inconsistent. The objectives of this study were to verify the cardioprotective role of earlier reported six LoF variants of APOC3 in South Asians and other multi-ethnic cohorts and to evaluate the causal association of TG raising common variants for increasing CAD risk. METHODS We performed gene-centric and Mendelian randomization analyses and evaluated the role of genetic variation encompassing APOC3 for affecting circulating TG and the risk for developing CAD. RESULTS One rare LoF variant (rs138326449) with a 37% reduction in TG was associated with lowered risk for CAD in Europeans (p = 0.007), but we could not confirm this association in Asian Indians (p = 0.641). Our data could not validate the cardioprotective role of other five LoF variants analysed. A common variant rs5128 in the APOC3 was strongly associated with elevated TG levels showing a p-value 2.8 × 10- 424. Measures of plasma ApoC-III in a small subset of Sikhs revealed a 37% increase in ApoC-III concentrations among homozygous mutant carriers than the wild-type carriers of rs5128. A genetically instrumented per 1SD increment of plasma TG level of 15 mg/dL would cause a mild increase (3%) in the risk for CAD (p = 0.042). CONCLUSIONS Our results highlight the challenges of inclusion of rare variant information in clinical risk assessment and the generalizability of implementation of ApoC-III inhibition for treating atherosclerotic disease. More studies would be needed to confirm whether genetically raised TG and ApoC-III concentrations would increase CAD risk.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, California, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore , 117549, Singapore
| | - Marcio Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore , 117549, Singapore
| | - Megan Lerner
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Juliane Chainakul
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Jonathan Garcia Ramiu
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Chanel Seraphin
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Blair Apple
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - April Vaughan
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - James Muniu
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA
| | - Juan Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Donna M Lehman
- Departments of Medicine and Epidemiology and Biostatistics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sarju Ralhan
- Hero DMC Heart Institute, Ludhiana, Punjab, India
| | | | - Jai Rup Singh
- Central University of Punjab, Bathinda, Punjab, India
| | - Narinder K Mehra
- All India Institute of Medical Sciences and Research, New Delhi, India
| | - Evgeny Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Marvin D Peyton
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Piers R Blackett
- Department of Pediatrics, Section of Endocrinology, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore , 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore , 119228, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Rob van Dam
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore , 119228, Singapore
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ching-Yu Cheng
- Duke-NUS Medical School, Singapore, 169857, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- National University of Singapore, Singapore, 119077, Singapore
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Lee Kong Chan School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Charumathi Sabanayagam
- Duke-NUS Medical School, Singapore, 169857, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Manuel A Rivas
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, California, USA
| | - Christopher E Aston
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA.
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Zheng JJ, Agus JK, Hong BV, Tang X, Rhodes CH, Houts HE, Zhu C, Kang JW, Wong M, Xie Y, Lebrilla CB, Mallick E, Witwer KW, Zivkovic AM. Isolation of HDL by sequential flotation ultracentrifugation followed by size exclusion chromatography reveals size-based enrichment of HDL-associated proteins. Sci Rep 2021; 11:16086. [PMID: 34373542 PMCID: PMC8352908 DOI: 10.1038/s41598-021-95451-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
High-density lipoprotein (HDL) particles have multiple beneficial and cardioprotective roles, yet our understanding of their full structural and functional repertoire is limited due to challenges in separating HDL particles from contaminating plasma proteins and other lipid-carrying particles that overlap HDL in size and/or density. Here we describe a method for isolating HDL particles using a combination of sequential flotation density ultracentrifugation and fast protein liquid chromatography with a size exclusion column. Purity was visualized by polyacrylamide gel electrophoresis and verified by proteomics, while size and structural integrity were confirmed by transmission electron microscopy. This HDL isolation method can be used to isolate a high yield of purified HDL from a low starting plasma volume for functional analyses. This method also enables investigators to select their specific HDL fraction of interest: from the least inclusive but highest purity HDL fraction eluting in the middle of the HDL peak, to pooling all of the fractions to capture the breadth of HDL particles in the original plasma sample. We show that certain proteins such as lecithin cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and clusterin (CLUS) are enriched in large HDL particles whereas proteins such as alpha-2HS-glycoprotein (A2HSG), alpha-1 antitrypsin (A1AT), and vitamin D binding protein (VDBP) are enriched or found exclusively in small HDL particles.
Collapse
Affiliation(s)
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - Hannah E Houts
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Chenghao Zhu
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Emily Mallick
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
13
|
The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021; 9:biomedicines9070782. [PMID: 34356847 PMCID: PMC8301479 DOI: 10.3390/biomedicines9070782] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoprotein lipase (LPL) plays a major role in the lipid homeostasis mainly by mediating the intravascular lipolysis of triglyceride rich lipoproteins. Impaired LPL activity leads to the accumulation of chylomicrons and very low-density lipoproteins (VLDL) in plasma, resulting in hypertriglyceridemia. While low-density lipoprotein cholesterol (LDL-C) is recognized as a primary risk factor for atherosclerosis, hypertriglyceridemia has been shown to be an independent risk factor for cardiovascular disease (CVD) and a residual risk factor in atherosclerosis development. In this review, we focus on the lipolysis machinery and discuss the potential role of triglycerides, remnant particles, and lipolysis mediators in the onset and progression of atherosclerotic cardiovascular disease (ASCVD). This review details a number of important factors involved in the maturation and transportation of LPL to the capillaries, where the triglycerides are hydrolyzed, generating remnant lipoproteins. Moreover, LPL and other factors involved in intravascular lipolysis are also reported to impact the clearance of remnant lipoproteins from plasma and promote lipoprotein retention in capillaries. Apolipoproteins (Apo) and angiopoietin-like proteins (ANGPTLs) play a crucial role in regulating LPL activity and recent insights into LPL regulation may elucidate new pharmacological means to address the challenge of hypertriglyceridemia in atherosclerosis development.
Collapse
|
14
|
Ren Y, Li X, Han G, Wang M, Xi M, Shen J, Li Y, Li C. Dynamic variations in serum amino acid and the related gene expression in liver, ovary, and oviduct of pigeon during one egg-laying cycle. Poult Sci 2021; 100:101184. [PMID: 34089936 PMCID: PMC8182434 DOI: 10.1016/j.psj.2021.101184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
The present study was carried to investigate dynamic variations in serum amino acid (AA) contents and the relative mRNA abundance of the AA transporters and AA synthesis-related enzymes in liver, ovary and oviduct of pigeons during one egg-laying cycle (ELC). In experiment 1, seventy laying pigeons (American Silver King) were randomly divided into 14 groups by different days of one ELC (DELC) and arranged as a 2 × 7 factorial design, which included 2 ages (6-mo-old or 12-mo-old) and 7 DELCs. For experiment 2, 35 six-mo-old laying pigeons (American Silver King) were randomly divided into 7 groups by different DELCs and immediately treated with a 12-h fasting. Dynamic variations in serum AAs were detected during one ELC, characterized by high levels of Lys, Met, Leu, Phe, Tyr, Asp, Ser, Glu, Ala, and TAA on day 1 (D1) of one ELC (P < 0.05). Fasting caused obvious decreases in serum levels of Leu, Ile, Val, Phe, Tyr, and TAA from day 2 (D2) to day 7 (D7) (P < 0.05). Relative organ weights of ovary and oviduct increased to the peak values on day 13 (D13) (P < 0.05). Serum calcium decreased to the lowest level on day 4 (D4) (P < 0.05) and serum total triglyceride was kept in a high level on D1, D7, day 10 (D10), and D13 (P < 0.05). Relative mRNA expression of the AA synthesis genes and the AA transport genes exhibited different variation patterns in liver, ovary and oviduct, but Pearson correlation test showed the percentage of positive r values with significant differences were much higher in oviduct than those in liver or ovary. In conclusion, dynamic variations of serum AAs during one ELC were positively related with the expression of the AA transport genes and AA synthesis genes in oviduct, suggesting the upregulated serum AAs might be necessary to meet the AAs requirement for egg white formation in pigeon.
Collapse
Affiliation(s)
- Yu Ren
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Xiaotong Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Guofeng Han
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Mingli Wang
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Mengxue Xi
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Jiakun Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Yansen Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China.
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
15
|
Contribution of sleep characteristics to the association between obstructive sleep apnea and dyslipidemia. Sleep Med 2021; 84:63-72. [PMID: 34111805 DOI: 10.1016/j.sleep.2021.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES/BACKGROUND Little information is available about the association of obstructive sleep apnea (OSA) with atherogenic dyslipidemia and the contribution of sleep characteristics to lipid alterations. We compare dyslipidemia prevalence among non-apneic subjects and mild-severe OSA patients to identify the sleep characteristics that are independently associated with dyslipidemia and serum lipid levels in OSA patients. PATIENTS/METHODS We recruited 809 consecutive patients who had been referred for polysomnography study by OSA suspicion. Anthropometric characteristics, body composition and comorbidities were recorded. Spirometry and 24-h ambulatory blood pressure monitoring were performed the same day of the sleep study. The day after attended polysomnography, fasting blood samples were drawn to measure the lipid profile. RESULTS Dyslipidemia prevalence increased with the presence of OSA, from non-OSA subjects to mild, moderate and severe OSA patients (31%, 33%, 42% and 51%, respectively; p < 0.001). After adjusting for sex, age, body mass index and smoking habit, only severe OSA had an independent association with dyslipidemia when compared to non-OSA subjects (adjusted odds ratio 1.71, 95%CI 1.09 to 2.69, p = 0.019). In OSA patients, multivariate logistic regression identified active smoking, apnea-hypopnea index (AHI) and mean nocturnal saturation as variables independently associated with dyslipidemia. However, in these patients, arousal index, slow wave sleep duration and REM latency were also independently associated with cholesterol and low-density lipoprotein levels. CONCLUSIONS The association between dyslipidemia and OSA is limited to severe patients, with high AHI and nocturnal hypoxemia. However, sleep fragmentation and increased sympathetic activity could also contribute to OSA-related lipid dysregulation.
Collapse
|
16
|
Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J 2021; 41:99-109c. [PMID: 31764986 PMCID: PMC6938588 DOI: 10.1093/eurheartj/ehz785] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Hypertriglyceridaemia is a common clinical problem. Epidemiologic and genetic studies have established that triglyceride-rich lipoproteins (TRL) and their remnants as important contributors to ASCVD while severe hypertriglyceridaemia raises risk of pancreatitis. While low-density lipoprotein is the primary treatment target for lipid lowering therapy, secondary targets that reflect the contribution of TRL such as apoB and non-HDL-C are recommended in the current guidelines. Reduction of severely elevated triglycerides is important to avert or reduce the risk of pancreatitis. Here we discuss interventions for hypertriglyceridaemia, including diet and lifestyle, established treatments such as fibrates and omega-3 fatty acid preparations and emerging therapies, including various biological agents. ![]()
Collapse
Affiliation(s)
- Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, Leipzig, Germany
| | - Klaus G Parhofer
- University Munich, Medical Department 4 - Grosshadern, Marchioninistr. 15, Munich, Germany
| | - Henry N Ginsberg
- Irving Institute for Clinical and Translational Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
17
|
Allard J, Bucher S, Massart J, Ferron PJ, Le Guillou D, Loyant R, Daniel Y, Launay Y, Buron N, Begriche K, Borgne-Sanchez A, Fromenty B. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol 2021; 37:151-175. [PMID: 32535746 PMCID: PMC8012331 DOI: 10.1007/s10565-020-09537-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Simon Bucher
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Julie Massart
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
- HCS Pharma, 250 rue Salvador Allende, 59120 Loos, France
| | - Dounia Le Guillou
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Roxane Loyant
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Yoann Daniel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Nelly Buron
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Karima Begriche
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Annie Borgne-Sanchez
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
18
|
Berger JM, Moon YA. Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content. Mol Cells 2021; 44:116-125. [PMID: 33658436 PMCID: PMC7941001 DOI: 10.14348/molcells.2021.2147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/17/2020] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMGCoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.
Collapse
Affiliation(s)
- Jean-Mathieu Berger
- Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
19
|
Piché ME, Tardif I, Auclair A, Poirier P. Effects of bariatric surgery on lipid-lipoprotein profile. Metabolism 2021; 115:154441. [PMID: 33248063 DOI: 10.1016/j.metabol.2020.154441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Most patients with severe obesity will present some lipid-lipoprotein abnormalities. The atherogenic dyslipidemia associated with severe obesity is characterized by elevated fasting and postprandial triglyceride levels, low high-density lipoprotein cholesterol concentrations, and increased proportion of small and dense low-density lipoproteins. Bariatric surgery has been proven safe and successful in terms of long-term weight loss and improvement in obesity co-existing metabolic conditions including lipid-lipoprotein abnormalities. Nevertheless, bariatric surgery procedures are not all equivalent. We conducted a comprehensive critical analysis of the literature related to severe obesity, bariatric surgery and lipid-lipoprotein metabolism/profile. In this review, we described the metabolic impacts of different bariatric surgery procedures on the lipid-lipoprotein profile, and the mechanisms linking bariatric surgery and dyslipidemia remission based on recent epidemiological, clinical and preclinical studies. Further mechanistic studies are essential to assess the potential of bariatric/metabolic surgery in the management of lipid-lipoprotein abnormalities associated with severe obesity. Understanding the beneficial effects of various bariatric surgery procedures on the lipid-lipoprotein metabolism and profile may result in a wider acceptance of this strategy as a long-term metabolic treatment of lipid-lipoprotein abnormalities in severe obesity and help clinician to develop an individualized and optimal approach in the management of dyslipidemia associated with severe obesity. BRIEF SUMMARY: Abnormal lipid-lipoprotein profile is frequent in patients with severe obesity. Significant improvements in lipid-lipoprotein profile following bariatric surgery occur early in the postoperative period, prior to weight loss, and persists throughout the follow-up. The mechanisms that facilitate the remission of dyslipidemia after bariatric surgery, may involve positive effects on adipose tissue distribution/function, insulin sensitivity, liver fat content/function and lipid-lipoprotein metabolism.
Collapse
Affiliation(s)
- Marie-Eve Piché
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada; Faculty of Medicine, Laval University, Quebec, Canada
| | - Isabelle Tardif
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada
| | - Audrey Auclair
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada
| | - Paul Poirier
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec, Canada.
| |
Collapse
|
20
|
Lightbourne M, Wolska A, Abel BS, Rother KI, Walter M, Kushchayeva Y, Auh S, Shamburek RD, Remaley AT, Muniyappa R, Brown RJ. Apolipoprotein CIII and Angiopoietin-like Protein 8 are Elevated in Lipodystrophy and Decrease after Metreleptin. J Endocr Soc 2020; 5:bvaa191. [PMID: 33442570 DOI: 10.1210/jendso/bvaa191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Context Lipodystrophy syndromes cause hypertriglyceridemia that improves with leptin treatment using metreleptin. Mechanisms causing hypertriglyceridemia and improvements after metreleptin are incompletely understood. Objective Determine relationship of circulating lipoprotein lipase (LPL) modulators with hypertriglyceridemia in healthy controls and in patients with lipodystrophy before and after metreleptin. Methods Cross-sectional comparison of patients with lipodystrophy (generalized lipodystrophy n = 3; partial lipodystrophy n = 11) vs age/sex-matched healthy controls (n = 28), and longitudinal analyses in patients before and after 2 weeks and 6 months of metreleptin. The study was carried out at the National Institutes of Health, Bethesda, Maryland. Outcomes were LPL stimulators apolipoprotein (apo) C-II and apoA-V and inhibitors apoC-III and angiopoietin-like proteins (ANGPTLs) 3, 4, and 8; ex vivo activation of LPL by plasma. Results Patients with lipodystrophy were hypertriglyceridemic and had higher levels of all LPL stimulators and inhibitors vs controls except for ANGPTL4, with >300-fold higher ANGPTL8, 4-fold higher apoC-III, 3.5-fold higher apoC-II, 1.9-fold higher apoA-V, 1.6-fold higher ANGPTL3 (P < .05 for all). At baseline, all LPL modulators except ANGPLT4 positively correlated with triglycerides. Metreleptin decreased apoC-II and apoC-III after 2 weeks and 6 months, and decreased ANGPTL8 after 6 months (P < 0.05 for all). Plasma from patients with lipodystrophy caused higher ex vivo LPL activation vs hypertriglyceridemic control plasma (P < .0001), which did not change after metreleptin. Conclusion Elevations in LPL inhibitors apoC-III and ANGPTL8 may contribute to hypertriglyceridemia in lipodystrophy, and may mediate reductions in circulating and hepatic triglycerides after metreleptin. These therefore are strong candidates for therapies to lower triglycerides in these patients.
Collapse
Affiliation(s)
- Marissa Lightbourne
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brent S Abel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristina I Rother
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yevgeniya Kushchayeva
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sungyoung Auh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert D Shamburek
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ranganath Muniyappa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Wilson JM, Nikooienejad A, Robins DA, Roell WC, Riesmeyer JS, Haupt A, Duffin KL, Taskinen M, Ruotolo G. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab 2020; 22:2451-2459. [PMID: 33462955 PMCID: PMC7756479 DOI: 10.1111/dom.14174] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
AIM To better understand the marked decrease in serum triglycerides observed with tirzepatide in patients with type 2 diabetes, additional lipoprotein-related biomarkers were measured post hoc in available samples from the same study. MATERIALS AND METHODS Patients were randomized to receive once-weekly subcutaneous tirzepatide (1, 5, 10 or 15 mg), dulaglutide (1.5 mg) or placebo. Serum lipoprotein profile, apolipoprotein (apo) A-I, B and C-III and preheparin lipoprotein lipase (LPL) were measured at baseline and at 4, 12 and 26 weeks. Lipoprotein particle profile by nuclear magnetic resonance was assessed at baseline and 26 weeks. The lipoprotein insulin resistance (LPIR) score was calculated. RESULTS At 26 weeks, tirzepatide dose-dependently decreased apoB and apoC-III levels, and increased serum preheparin LPL compared with placebo. Tirzepatide 10 and 15 mg decreased large triglyceride-rich lipoprotein particles (TRLP), small low-density lipoprotein particles (LDLP) and LPIR score compared with both placebo and dulaglutide. Treatment with dulaglutide also reduced apoB and apoC-III levels but had no effect on either serum LPL or large TRLP, small LDLP and LPIR score. The number of total LDLP was also decreased with tirzepatide 10 and 15 mg compared with placebo. A greater reduction in apoC-III with tirzepatide was observed in patients with high compared with normal baseline triglycerides. At 26 weeks, change in apoC-III, but not body weight, was the best predictor of changes in triglycerides with tirzepatide, explaining up to 22.9% of their variability. CONCLUSIONS Tirzepatide treatment dose-dependently decreased levels of apoC-III and apoB and the number of large TRLP and small LDLP, suggesting a net improvement in atherogenic lipoprotein profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Axel Haupt
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | - Marja‐Riitta Taskinen
- Research Program for Clinical and Molecular Medicine UnitDiabetes and Obesity, University of HelsinkiHelsinkiFinland
| | | |
Collapse
|
22
|
Abstract
BACKGROUND Despite advances in the development of lipid-lowering therapies, clinical trials have shown that a significant residual risk of cardiovascular disease persists. Specifically, new drugs are needed for non-responding or statin-intolerant subjects or patients considered at very high risk for cardiovascular events even though are already on treatment with the best standard of care. RESULTS AND CONCLUSIONS Besides, genetic and epidemiological studies and Mendelian randomization analyses have strengthened the linear correlation between the concentration of low-density lipoprotein cholesterol (LDL-C) and the incidence of cardiovascular events and highlighted various novel therapeutic targets. This review describes the novel strategies to reduce the levels of LDL-C, non-HDL-C, triglyceride, apolipoprotein B, and Lp(a), focusing on those developed using biotechnology-based strategies.
Collapse
|
23
|
Barros D, García-Río F. Obstructive sleep apnea and dyslipidemia: from animal models to clinical evidence. Sleep 2020; 42:5204276. [PMID: 30476296 DOI: 10.1093/sleep/zsy236] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/02/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023] Open
Abstract
Lipid metabolism deregulation constitutes the pathogenic basis for the development of atherosclerosis and justifies a high incidence of cardiovascular-related morbidity and mortality. Some data suggest that dyslipidemia may be associated with sleep-disordered breathing, mainly obstructive sleep apnea (OSA), due to alterations in fundamental biochemical processes, such as intermittent hypoxia (IH). The aim of this systematic review was to identify and critically evaluate the current evidence supporting the existence of a possible relationship between OSA and alterations in lipid metabolism. Much evidence shows that, during the fasting state, OSA and IH increase lipid delivery from the adipose tissue to the liver through an up-regulation of the sterol regulatory element-binding protein-1 and stearoyl-CoA desaturase-1, increasing the synthesis of cholesterol esters and triglycerides. In the postprandial state, lipoprotein clearance is delayed due to lower lipoprotein lipase activity, probably secondary to IH-up-regulation of angiopoietin-like protein 4 and decreased activity of the peroxisome proliferator-activated receptor alpha. Moreover, oxidative stress can generate dysfunctional oxidized lipids and reduce the capacity of high-density lipoproteins (HDL) to prevent low-density lipoprotein (LDL) oxidation. In the clinical field, several observational studies and a meta-regression analysis support the existence of a link between OSA and dyslipidemia. Although there is evidence of improved lipid profile after apnea-hypopnea suppression with continuous positive airway pressure (CPAP), the majority of the data come from observational studies. In contrast, randomized controlled trials evaluating the effects of CPAP on lipid metabolism present inconclusive results and two meta-analyses provide contradictory evidence.
Collapse
Affiliation(s)
- David Barros
- Servicio de Neumología, Hospital Montecelo, Pontevedra, Spain
| | - Francisco García-Río
- Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Chronic consumption of fructose and fructose-containing sugars leads to dyslipidemia. Apolipoprotein (apo) CIII is strongly associated with elevated levels of triglycerides and cardiovascular disease risk. We reviewed the effects of fructose consumption on apoCIII levels and the role of apoCIII in fructose-induced dyslipidemia. RECENT FINDINGS Consumption of fructose increases circulating apoCIII levels compared with glucose. The more marked effects of fructose compared with glucose on apoCIII concentrations may involve the failure of fructose consumption to stimulate insulin secretion. The increase in apoCIII levels after fructose consumption correlates with increased postprandial serum triglyceride. Further, RNA interference of apoCIII prevents fructose-induced dyslipidemia in nonhuman primates. Increases in postprandial apoCIII after fructose, but not glucose consumption, are positively associated with elevated triglycerides in large triglyceride-rich lipoproteins and increased small dense LDL levels. SUMMARY ApoCIII might be causal in the lipid dysregulation observed after consumption of fructose and fructose-containing sugars. Decreased consumption of fructose and fructose-containing sugars could be an effective strategy for reducing circulating apoCIII and subsequently lowering triglyceride levels.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
25
|
Florentin M, Kostapanos MS, Anagnostis P, Liamis G. Recent developments in pharmacotherapy for hypertriglyceridemia: what’s the current state of the art? Expert Opin Pharmacother 2019; 21:107-120. [PMID: 31738617 DOI: 10.1080/14656566.2019.1691523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Matilda Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Michael S Kostapanos
- Lipid clinic, Department of General Medicine, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Panagiotis Anagnostis
- Unit of reproductive endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Liamis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
26
|
Abstract
Several new or emerging drugs for dyslipidemia owe their existence, in part, to human genetic evidence, such as observations in families with rare genetic disorders or in Mendelian randomization studies. Much effort has been directed to agents that reduce LDL (low-density lipoprotein) cholesterol, triglyceride, and Lp[a] (lipoprotein[a]), with some sustained programs on agents to raise HDL (high-density lipoprotein) cholesterol. Lomitapide, mipomersen, AAV8.TBG.hLDLR, inclisiran, bempedoic acid, and gemcabene primarily target LDL cholesterol. Alipogene tiparvovec, pradigastat, and volanesorsen primarily target elevated triglycerides, whereas evinacumab and IONIS-ANGPTL3-LRx target both LDL cholesterol and triglyceride. IONIS-APO(a)-LRx targets Lp(a).
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla (S.T.)
| |
Collapse
|
27
|
Gao X, You L, Liu A, Sang X, Li T, Zhang S, Li K, Huang G, Wang T, Xu A. Serum protein profiles suggest a possible link between qi deficiency constitution and Pi-qi-deficiency syndrome of chronic superficial gastritis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
28
|
Kegulian NC, Ramms B, Horton S, Trenchevska O, Nedelkov D, Graham MJ, Lee RG, Esko JD, Yassine HN, Gordts PLSM. ApoC-III Glycoforms Are Differentially Cleared by Hepatic TRL (Triglyceride-Rich Lipoprotein) Receptors. Arterioscler Thromb Vasc Biol 2019; 39:2145-2156. [PMID: 31390883 DOI: 10.1161/atvbaha.119.312723] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE ApoC-III (apolipoprotein C-III) glycosylation can predict cardiovascular disease risk. Higher abundance of disialylated (apoC-III2) over monosialylated (apoC-III1) glycoforms is associated with lower plasma triglyceride levels. Yet, it remains unclear whether apoC-III glycosylation impacts TRL (triglyceride-rich lipoprotein) clearance and whether apoC-III antisense therapy (volanesorsen) affects distribution of apoC-III glycoforms. Approach and Results: To measure the abundance of human apoC-III glycoforms in plasma over time, human TRLs were injected into wild-type mice and mice lacking hepatic TRL clearance receptors, namely HSPGs (heparan sulfate proteoglycans) or both LDLR (low-density lipoprotein receptor) and LRP1 (LDLR-related protein 1). ApoC-III was more rapidly cleared in the absence of HSPG (t1/2=25.4 minutes) than in wild-type animals (t1/2=55.1 minutes). In contrast, deficiency of LDLR and LRP1 (t1/2=56.1 minutes) did not affect clearance of apoC-III. After injection, a significant increase in the relative abundance of apoC-III2 was observed in HSPG-deficient mice, whereas the opposite was observed in mice lacking LDLR and LRP1. In patients, abundance of plasma apoC-III glycoforms was assessed after placebo or volanesorsen administration. Volanesorsen treatment correlated with a statistically significant 1.4-fold increase in the relative abundance of apoC-III2 and a 15% decrease in that of apoC-III1. The decrease in relative apoC-III1 abundance was strongly correlated with decreased plasma triglyceride levels in patients. CONCLUSIONS Our results indicate that HSPGs preferentially clear apoC-III2. In contrast, apoC-III1 is more effectively cleared by LDLR/LRP1. Clinically, the increase in the apoC-III2/apoC-III1 ratio on antisense lowering of apoC-III might reflect faster clearance of apoC-III1 because this metabolic shift associates with improved triglyceride levels.
Collapse
Affiliation(s)
- Natalie C Kegulian
- From the Department of Medicine, University of Southern California, Los Angeles (N.C.K., S.H., H.N.Y.)
| | - Bastian Ramms
- Department of Medicine (B.R., J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Steven Horton
- From the Department of Medicine, University of Southern California, Los Angeles (N.C.K., S.H., H.N.Y.)
| | | | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe (O.T., D.N.)
| | - Mark J Graham
- Ionis Pharmaceuticals, Carlsbad, CA (M.J.G., R.G.L.)
| | - Richard G Lee
- Ionis Pharmaceuticals, Carlsbad, CA (M.J.G., R.G.L.)
| | - Jeffrey D Esko
- Department of Medicine (B.R., J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
- Glycobiology Research and Training Center (J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
| | - Hussein N Yassine
- From the Department of Medicine, University of Southern California, Los Angeles (N.C.K., S.H., H.N.Y.)
| | - Philip L S M Gordts
- Department of Medicine (B.R., J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
- Glycobiology Research and Training Center (J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
| |
Collapse
|
29
|
Adiels M, Taskinen MR, Björnson E, Andersson L, Matikainen N, Söderlund S, Kahri J, Hakkarainen A, Lundbom N, Sihlbom C, Thorsell A, Zhou H, Pietiläinen KH, Packard C, Borén J. Role of apolipoprotein C-III overproduction in diabetic dyslipidaemia. Diabetes Obes Metab 2019; 21:1861-1870. [PMID: 30972934 DOI: 10.1111/dom.13744] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
AIMS To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics. MATERIALS AND METHODS Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5-2 H3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. RESULTS Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). CONCLUSIONS The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III.
Collapse
Affiliation(s)
- Martin Adiels
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Juhani Kahri
- Department of Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Nina Lundbom
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Haihong Zhou
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, New Jersey
| | - Kirsi H Pietiläinen
- Endocrinology, Abdominal Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chris Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
30
|
Harney DJ, Hutchison AT, Hatchwell L, Humphrey SJ, James DE, Hocking S, Heilbronn LK, Larance M. Proteomic Analysis of Human Plasma during Intermittent Fasting. J Proteome Res 2019; 18:2228-2240. [PMID: 30892045 PMCID: PMC6503536 DOI: 10.1021/acs.jproteome.9b00090] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intermittent fasting (IF) increases lifespan and decreases metabolic disease phenotypes and cancer risk in model organisms, but the health benefits of IF in humans are less clear. Human plasma derived from clinical trials is one of the most difficult sample sets to analyze using mass spectrometry-based proteomics due to the extensive sample preparation required and the need to process many samples to achieve statistical significance. Here, we describe an optimized and accessible device (Spin96) to accommodate up to 96 StageTips, a widely used sample preparation medium enabling efficient and consistent processing of samples prior to LC-MS/MS. We have applied this device to the analysis of human plasma from a clinical trial of IF. In this longitudinal study employing 8-weeks IF, we identified significant abundance differences induced by the IF intervention, including increased apolipoprotein A4 (APOA4) and decreased apolipoprotein C2 (APOC2) and C3 (APOC3). These changes correlated with a significant decrease in plasma triglycerides after the IF intervention. Given that these proteins have a role in regulating apolipoprotein particle metabolism, we propose that IF had a positive effect on lipid metabolism through modulation of HDL particle size and function. In addition, we applied a novel human protein variant database to detect common protein variants across the participants. We show that consistent detection of clinically relevant peptides derived from both alleles of many proteins is possible, including some that are associated with human metabolic phenotypes. Together, these findings illustrate the power of accessible workflows for proteomics analysis of clinical samples to yield significant biological insight.
Collapse
Affiliation(s)
- Dylan J Harney
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Amy T Hutchison
- Discipline of Medicine , University of Adelaide , Adelaide , SA 5005 , Australia
| | - Luke Hatchwell
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Samantha Hocking
- Central Clinical School, Faculty of Medicine and Health , University of Sydney , Sydney , NSW 2006 , Australia
| | - Leonie K Heilbronn
- Discipline of Medicine , University of Adelaide , Adelaide , SA 5005 , Australia
| | - Mark Larance
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
31
|
Lim S, Taskinen MR, Borén J. Crosstalk between nonalcoholic fatty liver disease and cardiometabolic syndrome. Obes Rev 2019; 20:599-611. [PMID: 30589487 DOI: 10.1111/obr.12820] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition characterized by fat accumulation combined with low-grade inflammation in the liver. A large body of clinical and experimental data shows that increased flux of free fatty acids from increased visceral adipose tissue and de novo lipogenesis can lead to NAFLD and insulin resistance. Thus, individuals with obesity, insulin resistance, and dyslipidaemia are at the greatest risk of developing NAFLD. Conversely, NAFLD is a phenotype of cardiometabolic syndrome. Notably, researchers have discovered a close association between NAFLD and impaired glucose metabolism and focused on the role of NAFLD in the development of type 2 diabetes. Moreover, recent studies provide substantial evidence for an association between NAFLD and atherosclerosis and cardiometabolic disorders. Even if NAFLD can progress into severe liver disorders including nonalcoholic steatohepatitis (NASH) and cirrhosis, the majority of subjects with NAFLD die from cardiovascular disease eventually. In this review, we propose a potential pathological link between NAFLD/NASH and cardiometabolic syndrome. The potential factors that can play a pivotal role in this link, such as inflammation, insulin resistance, alteration in lipid metabolism, oxidative stress, genetic predisposition, and gut microbiota are discussed.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Marja-Riitta Taskinen
- Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes & Obesity, University of Helsinki, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The endocannabinoid system affects several physiological functions. A family of endocannabinoid receptors is susceptible to cannabis constituents. Cannabis is widely used in our society and following its recent legalization in Canada, we focus on how exposure to cannabis and pharmacologic cannabinoid receptor type 1 (CB1) inhibition affect lipoprotein levels. RECENT FINDINGS Several groups have reported that exposure to cannabis does not increase weight despite the marked increase in caloric intake. In observational studies, the effect of smoked cannabis exposure on plasma lipids is variable. Some studies in specific patient populations with longer exposure to cannabis seemed to identify slightly more favorable lipoprotein profiles in the exposed group. Several larger controlled clinical trials using orally administered rimonabant, a CB1 receptor antagonist, have consistently shown relative improvements in weight and plasma levels of triglyceride and high-density lipoprotein cholesterol among patients receiving the treatment. SUMMARY The widely variable findings on the relationship of cannabis in various forms with plasma lipids preclude any definitive conclusions. Cannabis has complex effects on the cardiovascular system and its effects on lipid profile must be considered in this overall context. Further properly controlled research is required to better understand this topic.
Collapse
Affiliation(s)
- Julieta Lazarte
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
33
|
The silencing of ApoC3 suppresses oxidative stress and inflammatory responses in placenta cells from mice with preeclampsia via inhibition of the NF-κB signaling pathway. Biomed Pharmacother 2018; 107:1377-1384. [PMID: 30257353 DOI: 10.1016/j.biopha.2018.08.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Preeclampsia is one of the three primary causes of maternal morbidity and mortality worldwide. This study evaluated ApoC3 in placenta cells of mice with preeclampsia to explore its therapeutic role in preeclampsia and assess its function on oxidative stress and inflammatory responses involving the NF-κB signaling pathway. METHODS A mouse model of preeclampsia was successfully established. APOC3-siRNA with the best silencing effect was screened out. The expression levels of ApoC3, p65, and IkBα were evaluated. The effect of ApoC3 silencing on metabolic activity and apoptosis was measured. The level of high-sensitivity C-reactive protein (hs-CPR), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and the expression of malondialdehyde (MDA), 8-isoprostane and oxidized low-density lipoprotein (ox-LDL) were determined. RESULTS ApoC3-siRNA-3 was the most effective siRNA. The mRNA expression of ApoC3 was scarcely observed, while the expression of p65 decreased and the expression of p-IkBα increased in the ApoC3-siRNA group. Compared with those in the model and empty vector groups, the cell apoptosis rate and the activities of invasion-related factors MMP-2 and MMP-9 increased, while the levels of hs-CPR, IL-6, TNF-α, MDA, 8-isoprostane, and ox-LDL decreased in the ApoC3-siRNA group. CONCLUSION Silencing ApoC3 could suppress the NF-κB signaling pathway, thereby exercising a protective effect on cell injury induced by oxidative stress and reducing inflammatory responses.
Collapse
|
34
|
Stanhope KL, Goran MI, Bosy-Westphal A, King JC, Schmidt LA, Schwarz JM, Stice E, Sylvetsky AC, Turnbaugh PJ, Bray GA, Gardner CD, Havel PJ, Malik V, Mason AE, Ravussin E, Rosenbaum M, Welsh JA, Allister-Price C, Sigala DM, Greenwood MRC, Astrup A, Krauss RM. Pathways and mechanisms linking dietary components to cardiometabolic disease: thinking beyond calories. Obes Rev 2018; 19:1205-1235. [PMID: 29761610 PMCID: PMC6530989 DOI: 10.1111/obr.12699] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022]
Abstract
Calories from any food have the potential to increase risk for obesity and cardiometabolic disease because all calories can directly contribute to positive energy balance and fat gain. However, various dietary components or patterns may promote obesity and cardiometabolic disease by additional mechanisms that are not mediated solely by caloric content. Researchers explored this topic at the 2017 CrossFit Foundation Academic Conference 'Diet and Cardiometabolic Health - Beyond Calories', and this paper summarizes the presentations and follow-up discussions. Regarding the health effects of dietary fat, sugar and non-nutritive sweeteners, it is concluded that food-specific saturated fatty acids and sugar-sweetened beverages promote cardiometabolic diseases by mechanisms that are additional to their contribution of calories to positive energy balance and that aspartame does not promote weight gain. The challenges involved in conducting and interpreting clinical nutritional research, which preclude more extensive conclusions, are detailed. Emerging research is presented exploring the possibility that responses to certain dietary components/patterns are influenced by the metabolic status, developmental period or genotype of the individual; by the responsiveness of brain regions associated with reward to food cues; or by the microbiome. More research regarding these potential 'beyond calories' mechanisms may lead to new strategies for attenuating the obesity crisis.
Collapse
Affiliation(s)
- K L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - M I Goran
- Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA, USA
| | - A Bosy-Westphal
- Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - J C King
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - L A Schmidt
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, San Francisco, CA, USA
- California Clinical and Translational Science Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Anthropology, History, and Social Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - J-M Schwarz
- Touro University, Vallejo, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - E Stice
- Oregon Research Institute, Eugene, OR, USA
| | - A C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - P J Turnbaugh
- Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California, San Francisco, San Francisco, CA, USA
| | - G A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - C D Gardner
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - P J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - V Malik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - A E Mason
- Department of Psychiatry, Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - E Ravussin
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - M Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY, USA
| | - J A Welsh
- Department of Pediatrics, Emory University School of Medicine, Wellness Department, Children's Healthcare of Atlanta, Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - C Allister-Price
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - D M Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - M R C Greenwood
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - A Astrup
- Department of Nutrition, Exercise, and Sports, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
35
|
Danford CJ, Yao ZM, Jiang ZG. Non-alcoholic fatty liver disease: a narrative review of genetics. J Biomed Res 2018; 32:389-400. [PMID: 30355853 PMCID: PMC6283828 DOI: 10.7555/jbr.32.20180045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver diseases worldwide. It encompasses a spectrum of disorders ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. One of the key challenges in NAFLD is identifying which patients will progress. Epidemiological and genetic studies indicate a strong pattern of heritability that may explain some of the variability in NAFLD phenotype and risk of progression. To date, at least three common genetic variants in the PNPLA3, TM6SF2, and GCKR genes have been robustly linked to NAFLD in the population. The function of these genes revealed novel pathways implicated in both the development and progression of NAFLD. In addition, candidate genes previously implicated in NAFLD pathogenesis have also been identified as determinants or modulators of NAFLD phenotype including genes involved in hepatocellular lipid handling, insulin resistance, inflammation, and fibrogenesis. This article will review the current understanding of the genetics underpinning the development of hepatic steatosis and the progression of NASH. These newly acquired insights may transform our strategy to risk-stratify patients with NAFLD and to identify new potential therapeutic targets.
Collapse
Affiliation(s)
- Christopher J Danford
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ze-Min Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
36
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
37
|
Benes LB, Brandt EJ, Davidson MH. Advances in diagnosis and potential therapeutic options for familial chylomicronemia syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1419863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lane B. Benes
- Section of Cardiology, The University of Chicago Medicine, Chicago, IL, USA
| | - Eric J. Brandt
- Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
38
|
Hiyoshi T, Fujiwara M, Yao Z. Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes. J Biomed Res 2017; 33:1. [PMID: 29089472 PMCID: PMC6352876 DOI: 10.7555/jbr.31.20160164] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Postprandial glucose level is an independent risk factor for cardiovascular disease that exerts effects greater than glucose levels at fasting state, whereas increase in serum triglyceride level, under both fasting and postprandial conditions, contributes to the development of arteriosclerosis. Insulin resistance is a prevailing cause of abnormalities in postabsorptive excursion of blood glucose and postprandial lipid profile. Excess fat deposition renders a vicious cycle of hyperglycemia and hypertriglyceridemia in the postprandial state, and both of which are contributors to atherosclerotic change of vessels especially in patients with type 2 diabetes mellitus. Several therapeutic approaches for ameliorating each of these abnormalities have been attempted, including various antidiabetic agents or new compounds targeting lipid metabolism.
Collapse
Affiliation(s)
- Toru Hiyoshi
- . Division of Diabetes and Endocrinology, Department of Internal Medicine, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Mutsunori Fujiwara
- . Division of Diabetes and Endocrinology, Department of Internal Medicine, Japanese Red Cross Medical Center, Tokyo, Japan
- . Department of Laboratory Medicine, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Zemin Yao
- . Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
39
|
West G, Rodia C, Li D, Johnson Z, Dong H, Kohan AB. Key differences between apoC-III regulation and expression in intestine and liver. Biochem Biophys Res Commun 2017; 491:747-753. [PMID: 28739253 PMCID: PMC6069593 DOI: 10.1016/j.bbrc.2017.07.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
ApoC-III is a critical cardiovascular risk factor, and humans expressing null mutations in apoC-III are robustly protected from cardiovascular disease. Because of its critical role in elevating plasma lipids and CVD risk, hepatic apoC-III regulation has been studied at length. Considerably less is known about the factors that regulate intestinal apoC-III. In this work, we use primary murine enteroids, Caco-2 cells, and dietary studies in wild-type mice to show that intestinal apoC-III expression does not change in response to fatty acids, glucose, or insulin administration, in contrast to hepatic apoC-III. Intestinal apoC-III is not sensitive to changes in FoxO1 expression (which is itself very low in the intestine, as is FoxO1 target IGFBP-1), nor is intestinal apoC-III responsive to western diet, a significant contrast to hepatic apoC-III stimulation during western diet. These data strongly suggest that intestinal apoC-III is not a FoxO1 target and support the idea that apoC-III is not regulated coordinately with hepatic apoC-III, and establishes another key aspect of apoC-III that is unique in the intestine from the liver.
Collapse
Affiliation(s)
- Gabrielle West
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Rd, Storrs, CT 06269-4017, United States
| | - Cayla Rodia
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Rd, Storrs, CT 06269-4017, United States
| | - Diana Li
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Rd, Storrs, CT 06269-4017, United States
| | - Zania Johnson
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Rd, Storrs, CT 06269-4017, United States
| | - Hongli Dong
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Rd, Storrs, CT 06269-4017, United States
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, 1392 Storrs Rd, Storrs, CT 06269-4017, United States.
| |
Collapse
|
40
|
Sundaram M, Curtis KR, Amir Alipour M, LeBlond ND, Margison KD, Yaworski RA, Parks RJ, McIntyre AD, Hegele RA, Fullerton MD, Yao Z. The apolipoprotein C-III (Gln38Lys) variant associated with human hypertriglyceridemia is a gain-of-function mutation. J Lipid Res 2017; 58:2188-2196. [PMID: 28887372 DOI: 10.1194/jlr.m077313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/04/2017] [Indexed: 11/20/2022] Open
Abstract
Recent cell culture and animal studies have suggested that expression of human apo C-III in the liver has a profound impact on the triacylglycerol (TAG)-rich VLDL1 production under lipid-rich conditions. The apoC-III Gln38Lys variant was identified in subjects of Mexican origin with moderate hypertriglyceridemia. We postulated that Gln38Lys (C3QK), being a gain-of-function mutation, promotes hepatic VLDL1 assembly/secretion. To test this hypothesis, we expressed C3QK in McA-RH7777 cells and apoc3-null mice to contrast its effect with WT apoC-III (C3WT). In both model systems, C3QK expression increased the secretion of VLDL1-TAG (by 230%) under lipid-rich conditions. Metabolic labeling experiments with C3QK cells showed an increase in de novo lipogenesis (DNL). Fasting plasma concentration of TAG, cholesterol, cholesteryl ester, and FA were increased in C3QK mice as compared with C3WT mice. Liver of C3QK mice also displayed an increase in DNL and expression of lipogenic genes as compared with that in C3WT mice. These results suggest that C3QK variant is a gain-of-function mutation that can stimulate VLDL1 production, through enhanced DNL.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kaitlin R Curtis
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mohsen Amir Alipour
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kaitlyn D Margison
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rebecca A Yaworski
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Robin J Parks
- Ottawa Hospital Research Institute Ottawa, Ontario K1H 8L6, Canada
| | - Adam D McIntyre
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario N6A 5B7, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario N6A 5B7, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
41
|
Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis 2017; 16:149. [PMID: 28797250 PMCID: PMC5553798 DOI: 10.1186/s12944-017-0541-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
Background Epidemiological and genetic studies suggest that elevated triglyceride (TG)-rich lipoprotein levels in the circulation increase the risk of cardiovascular disease. Prescription formulations of omega-3 fatty acids (OM3FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma TG levels and are approved for the treatment of patients with severe hypertriglyceridemia. Many preclinical studies have investigated the TG-lowering mechanisms of action of OM3FAs, but less is known from clinical studies. Methods We conducted a review, using systematic methodology, of studies in humans assessing the mechanisms of action of EPA and DHA on apolipoprotein B-containing lipoproteins, including TG-rich lipoproteins and low-density lipoproteins (LDLs). A systematic search of PubMed retrieved 55 articles, of which 30 were used in the review; 35 additional arrticles were also included. Results In humans, dietary DHA is retroconverted to EPA, while production of DHA from EPA is not observed. Dietary DHA is preferentially esterified into TGs, while EPA is more evenly esterified into TGs, cholesterol esters and phospholipids. The preferential esterification of DHA into TGs likely explains the higher turnover of DHA than EPA in plasma. The main effects of both EPA and DHA are decreased fasting and postprandial serum TG levels, through reduction of hepatic very-low-density lipoprotein (VLDL)-TG production. The exact mechanism for reduced VLDL production is not clear but does not include retention of lipids in the liver; rather, increased hepatic fatty acid oxidation is likely. The postprandial reduction in TG levels is caused by increased lipoprotein lipase activity and reduced serum VLDL-TG concentrations, resulting in enhanced chylomicron clearance. Overall, no clear differences between the effects of EPA and DHA on TG levels, or on turnover of TG-rich lipoproteins, have been observed. Effects on LDL are complex and may be influenced by genetics, such as APOE genotype. Conclusions EPA and DHA diminish fasting circulating TG levels via reduced production of VLDL. The mechanism of reduced VLDL production does not involve hepatic retention of lipids. Lowered postprandial TG levels are also explained by increased chylomicron clearance. Little is known about the specific cellular and biochemical mechanisms underlying the TG-lowering effects of EPA and DHA in humans.
Collapse
Affiliation(s)
- Jan Oscarsson
- AstraZeneca Gothenburg, Pepparedsleden 1, SE-431 83, Mölndal, Sweden.
| | - Eva Hurt-Camejo
- AstraZeneca Gothenburg, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| |
Collapse
|
42
|
Taskinen MR, Borén J. Why Is Apolipoprotein CIII Emerging as a Novel Therapeutic Target to Reduce the Burden of Cardiovascular Disease? Curr Atheroscler Rep 2017; 18:59. [PMID: 27613744 PMCID: PMC5018018 DOI: 10.1007/s11883-016-0614-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ApoC-III was discovered almost 50 years ago, but for many years, it did not attract much attention. However, as epidemiological and Mendelian randomization studies have associated apoC-III with low levels of triglycerides and decreased incidence of cardiovascular disease (CVD), it has emerged as a novel and potentially powerful therapeutic approach to managing dyslipidemia and CVD risk. The atherogenicity of apoC-III has been attributed to both direct lipoprotein lipase-mediated mechanisms and indirect mechanisms, such as promoting secretion of triglyceride-rich lipoproteins (TRLs), provoking proinflammatory responses in vascular cells and impairing LPL-independent hepatic clearance of TRL remnants. Encouraging results from clinical trials using antisense oligonucleotide, which selectively inhibits apoC-III, indicate that modulating apoC-III may be a potent therapeutic approach to managing dyslipidemia and cardiovascular disease risk.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes & Obesity, University of Helsinki, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden. .,Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Metabolomics directly measure substrates and products of biological processes and pathways. Based on instrumentation and throughput advances, the use of metabolomics has only recently become feasible at the population level. This has led to an intense interest in using the new information in combination with genomics, and other omics technologies, to give biological context to the rapidly accumulating associations between genes and diseases or their risk factors. RECENT FINDINGS The use of metabolomics-genomic associations for the metabolic characterization of genes of interest has confirmed known pathways and permitted the identification of new ones. These include the unknown metabolite X12063 linking statins to myopathies, the role of glycerophospholipids in cholesterol metabolism, the structure of lipoprotein (a), the lipoprotein lipase-independent effect of Apolipoprotein C-III coding and the role of branched chain amino acids in the antagonistic coregulation of levels of HDLs and triglyceride. SUMMARY The findings reviewed illustrate the importance of integrating metabolomics and genomics for the greater understanding of biological mechanisms. The limitations of the current approaches are also discussed together with approaches that will be required to make the most of the current multiomics data available.
Collapse
Affiliation(s)
- Fotios Drenos
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Bristol, UK
| |
Collapse
|
44
|
Metrakos P, Nilsson T. Non-alcoholic fatty liver disease--a chronic disease of the 21<sup>st</sup> century. J Biomed Res 2017; 32:327-335. [PMID: 28550272 PMCID: PMC6163117 DOI: 10.7555/jbr.31.20160153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of metabolic states ranging from simple steatosis to inflammation with associated fibrosis to cirrhosis. Though accumulation of hepatic fat is not associated with a significant increase in mortality rates, hepatic inflammation is, as this augments the risk of terminal liver disease, i.e., cirrhosis, hepatic decompensation (liver failure) and/or hepatocellular carcinoma. Disease progression is usually slow, over a decade or more and, for the most part, remains asymptomatic. Recent estimates suggest that the global prevalence of NAFLD is high, about one in four. In most cases, NAFLD overlaps with overweight, obesity, cardiovascular disease and the metabolic syndrome with numerous contributing parameters including a dysregulation of adipose tissue, insulin resistance, type 2 diabetes, changes in the gut microbiome, neuronal and hormonal dysregulation and metabolic stress. NAFLD is diagnosed incidentally, despite its high prevalence. Non-invasive imaging techniques have emerged, making it possible to determine degree of steatosis as well asfibrosis. Despite this, the benefit of routine diagnostics remains uncertain. A better understanding of the (molecular) pathogenesis of NAFLD is needed combined with long-term studies where benefits of treatment can be assessed to determine cost-benefit ratios. This review summarizes the current state of knowledge and possible areas of treatment.
Collapse
Affiliation(s)
- Peter Metrakos
- Cancer Research Program, Block-E, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal QC H4A 3J1, Canada
| | - Tommy Nilsson
- Cancer Research Program, Block-E, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal QC H4A 3J1, Canada
| |
Collapse
|
45
|
Impact of bariatric surgery on apolipoprotein C-III levels and lipoprotein distribution in obese human subjects. J Clin Lipidol 2017; 11:495-506.e3. [DOI: 10.1016/j.jacl.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
|
46
|
Jattan J, Rodia C, Li D, Diakhate A, Dong H, Bataille A, Shroyer NF, Kohan AB. Using primary murine intestinal enteroids to study dietary TAG absorption, lipoprotein synthesis, and the role of apoC-III in the intestine. J Lipid Res 2017; 58:853-865. [PMID: 28159868 DOI: 10.1194/jlr.m071340] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/18/2017] [Indexed: 02/01/2023] Open
Abstract
Since its initial report in 2009, the intestinal enteroid culture system has been a powerful tool used to study stem cell biology and development in the gastrointestinal tract. However, a major question is whether enteroids retain intestinal function and physiology. There have been significant contributions describing ion transport physiology of human intestinal organoid cultures, as well as physiology of gastric organoids, but critical studies on dietary fat absorption and chylomicron synthesis in primary intestinal enteroids have not been undertaken. Here we report that primary murine enteroid cultures recapitulate in vivo intestinal lipoprotein synthesis and secretion, and reflect key aspects of the physiology of intact intestine in regard to dietary fat absorption. We also show that enteroids can be used to elucidate intestinal mechanisms behind CVD risk factors, including tissue-specific apolipoprotein functions. Using enteroids, we show that intestinal apoC-III overexpression results in the secretion of smaller, less dense chylomicron particles along with reduced triacylglycerol secretion from the intestine. This model significantly expands our ability to test how specific genes or genetic polymorphisms function in dietary fat absorption and the precise intestinal mechanisms that are critical in the etiology of metabolic disease.
Collapse
Affiliation(s)
- Javeed Jattan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Cayla Rodia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Diana Li
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Adama Diakhate
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Hongli Dong
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Amy Bataille
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Noah F Shroyer
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
47
|
Meyers NL, Larsson M, Vorrsjö E, Olivecrona G, Small DM. Aromatic residues in the C terminus of apolipoprotein C-III mediate lipid binding and LPL inhibition. J Lipid Res 2017; 58:840-852. [PMID: 28159869 DOI: 10.1194/jlr.m071126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Plasma apoC-III levels correlate with triglyceride (TG) levels and are a strong predictor of CVD outcomes. ApoC-III elevates TG in part by inhibiting LPL. ApoC-III likely inhibits LPL by competing for lipid binding. To probe this, we used oil-drop tensiometry to characterize binding of six apoC-III variants to lipid/water interfaces. This technique monitors the dependence of lipid binding on surface pressure, which increases during TG hydrolysis by LPL. ApoC-III adsorption increased surface pressure by upward of 18 mN/m at phospholipid/TG/water interfaces. ApoC-III was retained to high pressures at these interfaces, desorbing at 21-25 mN/m. Point mutants, which substituted alanine for aromatic residues, impaired the lipid binding of apoC-III. Adsorption and retention pressures decreased by 1-6 mN/m in point mutants, with the magnitude determined by the location of alanine substitutions. Trp42 was most critical to mediating lipid binding. These results strongly correlate with our previous results, linking apoC-III point mutants to increased LPL binding and activity at lipid surfaces. We propose that aromatic residues in the C-terminal half of apoC-III mediate binding to TG-rich lipoproteins. Increased apoC-III expression in the hypertriglyceridemic state allows apoC-III to accumulate on lipoproteins and inhibit LPL by preventing binding and/or access to substrate.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA.,Department of Virology and Immunology, Gladstone Institutes, San Francisco, CA
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Evelina Vorrsjö
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Donald M Small
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| |
Collapse
|
48
|
Wang Y, Yin X, Li L, Deng S, He Z. Association of Apolipoprotein C3 Genetic Polymorphisms with the Risk of Ischemic Stroke in the Northern Chinese Han Population. PLoS One 2016; 11:e0163910. [PMID: 27690381 PMCID: PMC5045204 DOI: 10.1371/journal.pone.0163910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/18/2016] [Indexed: 12/16/2022] Open
Abstract
The apolipoprotein C3 (APOC3) gene, which is a member of the APOA1/C3/A4/A5 gene cluster, plays a crucial role in lipid metabolism. Dyslipidemia is an important risk factor for ischemic stroke. In the present study, we performed a hospital-based case-control study of 895 ischemic stroke patients and 883 control subjects to examine the effects of four APOC3 single nucleotide polymorphisms (SNPs) (rs2854116, rs2854117, rs4520 and rs5128) on the risk of ischemic stroke in a northern Chinese Han population. The SNaPshot Multiplex sequencing assay was used for SNP genotyping, and the potential association of genotype distributions and allele frequencies with ischemic stroke was analyzed statistically. Compared with the GG genotype, the CC+GC genotype of rs5128 was significantly associated with an increased risk in females (adjusted OR = 3.38, 95% CI = 1.82-6.28, P <0.01) after all of the risk factors were adjusted for with logistic regression analyses. A similar relationship was found between the rs4520 polymorphism and ischemic stroke risk in Han Chinese women. Under a recessive genetic model, the TT+TC genotypes of this variant increased ischemic stroke risk (adjusted OR = 2.05; 95% CI = 1.28-3.29; P <0.01). Haplotype analysis revealed that in males, the T-C-T-C haplotype of rs2854116-rs2854117-rs4520-rs5128 was significantly more frequent in the ischemic stroke group than in the control group (OR = 1.49, 95% CI = 1.18-1.87, P<0.01). The results of our study indicate that the APOC3 polymorphisms contribute to ischemic stroke susceptibility in females in the northern Chinese Han population.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Yin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Lei Li
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shumin Deng
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- * E-mail:
| |
Collapse
|
49
|
Yamamoto T, Wada F, Harada-Shiba M. Development of Antisense Drugs for Dyslipidemia. J Atheroscler Thromb 2016; 23:1011-25. [PMID: 27466159 PMCID: PMC5090806 DOI: 10.5551/jat.rv16001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abnormal elevation of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins in plasma as well as dysfunction of anti-atherogenic high-density lipoprotein (HDL) have both been recognized as essential components of the pathogenesis of atherosclerosis and are classified as dyslipidemia. This review describes the arc of development of antisense oligonucleotides for the treatment of dyslipidemia. Chemically-armed antisense candidates can act on various kinds of transcripts, including mRNA and miRNA, via several different endogenous antisense mechanisms, and have exhibited potent systemic anti-dyslipidemic effects. Here, we present specific cutting-edge technologies have recently been brought into antisense strategies, and describe how they have improved the potency of antisense drugs in regard to pharmacokinetics and pharmacodynamics. In addition, we discuss perspectives for the use of armed antisense oligonucleotides as new clinical options for dyslipidemia, in the light of outcomes of recent clinical trials and safety concerns indicated by several clinical and preclinical studies.
Collapse
|
50
|
Hegele RA. Multidimensional regulation of lipoprotein lipase: impact on biochemical and cardiovascular phenotypes. J Lipid Res 2016; 57:1601-7. [PMID: 27412676 DOI: 10.1194/jlr.c070946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|