1
|
Wang C, Liu S, Yang Y, Kamronbek R, Ni S, Cheng Y, Zhou C, Yan H, Li L, Liu H, Wang Y, Qin Y, Yin C, Zhang M. Interleukin-4 and Interleukin-17 are associated with coronary artery disease. Clin Cardiol 2024; 47:e24188. [PMID: 38146141 PMCID: PMC10823557 DOI: 10.1002/clc.24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023] Open
Abstract
INTRODUCTION The present study aimed to examine the correlation between serum cytokine levels and the incidence of coronary artery disease (CAD), a leading cause of mortality globally, which is known to have a strong association with inflammatory factors. The study further sought to determine the predictors of CAD to distinguish patients with coronary artery lesions from those suspected of having CAD. METHODS AND RESULTS In this study, 487 patients who underwent coronary angiography as a result of suspected CAD but without acute myocardial infarction (AMI) were recruited. The serum levels of the cytokines interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, tumor necrosis factor-α, interferon (IFN)-α, and IFN-γ were measured using a multiplexed particle-based flow cytometric assay technique. The results of the study revealed that the levels of IL-4, IL-12p70, IL-17, IFN-α, and IFN-γ in the CAD group were significantly lower compared to those in the non-CAD group. Multivariate logistic regression analysis indicated that two serum cytokines (IL-4 and IL-17), one protective factor (high-density lipoprotein cholesterol [HDL-C]), and three risk factors (sex, smoking, and diabetes) were independently predictive of CAD. The receiver operating characteristic curve analysis showed that the combined use of these predictors in a multivariate model demonstrated good predictive performance for CAD, as evidenced by an area under the curve value of 0.826. CONCLUSION The results of the study indicated that serum IL-4 and IL-17 levels serve as independent predictors of CAD. The risk prediction model established in the research, which integrates these serum cytokines (IL-4 and IL-17) with relevant clinical risk factors (gender, smoking, and diabetes) and the protective factor HDL-C, holds the potential to differentiate patients with CAD from those suspected of having CAD but without AMI.
Collapse
Affiliation(s)
- Chenyang Wang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Sheng Liu
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunxiao Yang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Raimov Kamronbek
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Siyao Ni
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunjiu Cheng
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Can Zhou
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Huiyuan Yan
- Department of CardiologyHangjinqi People's HospitalInner MongoliaChina
| | - Li Li
- Liver Research Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hao Liu
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu Wang
- Key Laboratory of Upper Airway Dysfunction‐Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseaseCapital Medical UniversityBeijingChina
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction‐Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseaseCapital Medical UniversityBeijingChina
| | - Chengqian Yin
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ming Zhang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
3
|
Wu HD, Yang LW, Deng DY, Jiang RN, Song ZK, Zhou LT. The effects of brominated flame retardants (BFRs) on pro-atherosclerosis mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115325. [PMID: 37544066 DOI: 10.1016/j.ecoenv.2023.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Brominated flame-retardants (BFRs) are environmental endocrine disruptors, comprising several pollutants, which potentially affect the endocrine system and cause dysfunction and disease. Widespread BFR exposure may cause multisystem toxicity, including cardiovascular toxicity in some individuals. Studies have shown that BFRs not only increase heart rate, induce arrhythmia and cardiac hypertrophy, but also cause glycolipid metabolism disorders, vascular endothelial dysfunction, and inflammatory responses, all of which potentially induce pre-pathological changes in atherosclerosis. Experimental data indicated that BFRs disrupt gene expression or signaling pathways, which cause vascular endothelial dysfunction, lipid metabolism-related disease, inflammation, and possibly atherosclerosis. Considerable evidence now suggests that BFR exposure may be a pro-atherosclerotic risk factor. In this study, we reviewed putative BFR effects underpinning pro-atherosclerosis mechanisms, and focused on vascular endothelial cell dysfunction, abnormal lipid metabolism, pro-inflammatory cytokine production and foam cell formation. Consequently, we proposed a scientific basis for preventing atherosclerosis by BFRs and provided concepts for further research.
Collapse
Affiliation(s)
- Hai-Di Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Wei Yang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Da-Yong Deng
- Department of Radiology, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Rong-Na Jiang
- Department of Intensive Care Unit, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Zi-Kai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Li-Ting Zhou
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Solé C, Royo M, Sandoval S, Moliné T, Cortés-Hernández J. Small-Extracellular-Vesicle-Derived miRNA Profile Identifies miR-483-3p and miR-326 as Regulators in the Pathogenesis of Antiphospholipid Syndrome (APS). Int J Mol Sci 2023; 24:11607. [PMID: 37511365 PMCID: PMC10380201 DOI: 10.3390/ijms241411607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a systemic autoimmune disease associated with recurrent thrombosis and/or obstetric morbidity with persistent antiphospholipid antibodies (aPL). Although these antibodies drive endothelial injury and thrombophilia, the underlying molecular mechanism is still unclear. Small extracellular vesicles (sEVs) contain miRNAs, key players in intercellular communication. To date, the effects of miRNA-derived sEVs in PAPS are not well understood. We characterised the quantity, cellular origin and miRNA profile of sEVs isolated from thrombotic APS patients (PAPS, n = 50), aPL-carrier patients (aPL, n = 30) and healthy donors (HD, n = 30). We found higher circulating sEVs mainly of activated platelet origin in PAPS and aPL patients compared to HD, that were highly engulfed by HUVECs and monocyte. Through miRNA-sequencing analysis, we identified miR-483-3p to be differentially upregulated in sEVs from patients with PAPS and aPL, and miR-326 to be downregulated only in PAPS sEVs. In vitro studies showed that miR-483-3p overexpression in endothelial cells induced an upregulation of the PI3K-AKT pathway that led to endothelial proliferation/dysfunction. MiR-326 downregulation induced NOTCH pathway activation in monocytes with the upregulation of NFKB1, tissue factor and cytokine production. These results provide evidence that miRNA-derived sEVs contribute to APS pathogenesis by producing endothelial cell proliferation, monocyte activation and adhesion/procoagulant factors.
Collapse
Affiliation(s)
- Cristina Solé
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Maria Royo
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Sebastian Sandoval
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Teresa Moliné
- Department of Pathology, Vall d’Hebrón University Hospital, 08035 Barcelona, Spain;
| | - Josefina Cortés-Hernández
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| |
Collapse
|
5
|
Kotlyarov SN, Suchkov IA, Uryasev OM, Kotlyarova AA. Analysis of Inflammation Biomarkers in Exhaled Breath Condensate in Patients with COPD Combined with Peripheral Arterial Disease. THE RUSSIAN ARCHIVES OF INTERNAL MEDICINE 2023; 13:213-223. [DOI: 10.20514/2226-6704-2023-13-3-213-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
6
|
Wu T, Wu Y, Jiang D, Sun W, Zou M, Vasamsetti SB, Dutta P, Leers SA, Di W, Li G. SATB2, coordinated with CUX1, regulates IL-1β-induced senescence-like phenotype in endothelial cells by fine-tuning the atherosclerosis-associated p16 INK4a expression. Aging Cell 2023; 22:e13765. [PMID: 36633253 PMCID: PMC9924951 DOI: 10.1111/acel.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have validated a strong association of atherosclerosis with the CDKN2A/B locus, a locus harboring three tumor suppressor genes: p14ARF , p15INK4b , and p16INK4a . Post-GWAS functional analysis reveals that CUX is a transcriptional activator of p16INK4a via its specific binding to a functional SNP (fSNP) rs1537371 on the atherosclerosis-associated CDKN2A/B locus, regulating endothelial senescence. In this work, we characterize SATB2, another transcription factor that specifically binds to rs1537371. We demonstrate that even though both CUX1 and SATB2 are the homeodomain transcription factors, unlike CUX1, SATB2 is a transcriptional suppressor of p16INK4a and overexpression of SATB2 competes with CUX1 for its binding to rs1537371, which inhibits p16INK4a and p16INK4a -dependent cellular senescence in human endothelial cells (ECs). Surprisingly, we discovered that SATB2 expression is transcriptionally repressed by CUX1. Therefore, upregulation of CUX1 inhibits SATB2 expression, which enhances the binding of CUX1 to rs1537371 and subsequently fine-tunes p16INK4a expression. Remarkably, we also demonstrate that IL-1β, a senescence-associated secretory phenotype (SASP) gene itself and a biomarker for atherosclerosis, induces cellular senescence also by upregulating CUX1 and/or downregulating SATB2 in human ECs. A model is proposed to reconcile our findings showing how both primary and secondary senescence are activated via the atherosclerosis-associated p16INK4a expression.
Collapse
Affiliation(s)
- Ting Wu
- Department of Cardiovascular Medicine, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yuwei Wu
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Medicine, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Danli Jiang
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Meijuan Zou
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sathish Babu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Steven A. Leers
- UPMC Vascular LaboratoriesUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Wu Di
- Department of PeriodontologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gang Li
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Medicine, Division of CardiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Fathieh S, Grieve SM, Negishi K, Figtree GA. Potential Biological Mediators of Myocardial and Vascular Complications of Air Pollution-A State-of-the-Art Review. Heart Lung Circ 2023; 32:26-42. [PMID: 36585310 DOI: 10.1016/j.hlc.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Ambient air pollution is recognised globally as a significant contributor to the burden of cardiovascular diseases. The evidence from both human and animal studies supporting the cardiovascular impact of exposure to air pollution has grown substantially, implicating numerous pathophysiological pathways and related signalling mediators. In this review, we summarise the list of activated mediators for each pathway that lead to myocardial and vascular injury in response to air pollutants. We performed a systematic search of multiple databases, including articles between 1990 and Jan 2022, summarising the evidence for activated pathways in response to each significant air pollutant. Particulate matter <2.5 μm (PM2.5) was the most studied pollutant, followed by particulate matter between 2.5 μm-10 μm (PM10), nitrogen dioxide (NO2) and ozone (O3). Key pathogenic pathways that emerged included activation of systemic and local inflammation, oxidative stress, endothelial dysfunction, and autonomic dysfunction. We looked at how potential mediators of each of these pathways were linked to both cardiovascular disease and air pollution and included the overlapping mediators. This review illustrates the complex relationship between air pollution and cardiovascular diseases, and discusses challenges in moving beyond associations, towards understanding causal contributions of specific pathways and markers that may inform us regarding an individual's exposure, response, and likely risk.
Collapse
Affiliation(s)
- Sina Fathieh
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Stuart M Grieve
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia; Department of Cardiology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan; Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, Sydney, NSW, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Sun S, Dawuti A, Gong D, Wang R, Yuan T, Wang S, Xing C, Lu Y, Du G, Fang L. Puerarin-V Improve Mitochondrial Respiration and Cardiac Function in a Rat Model of Diabetic Cardiomyopathy via Inhibiting Pyroptosis Pathway through P2X7 Receptors. Int J Mol Sci 2022; 23:13015. [PMID: 36361807 PMCID: PMC9653882 DOI: 10.3390/ijms232113015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
There is a new form of puerarin, puerarin-V, that has recently been developed, and it is unclear whether puerarin-V has a cardioprotective effect on diabetic cardiomyopathy (DCM). Here, we determined whether puerarin-V had any beneficial influence on the pathophysiology of DCM and explored its possible mechanisms. By injecting 30 mg/kg of STZ intraperitoneally, diabetes was induced in rats. After a week of stability, the rats were injected subcutaneously with ISO (5 mg/kg). We randomly assigned the rats to eight groups: (1) control; (2) model; (3) metformin; (4-6) puerarin-V at different doses; (7) puerarin (API); (8) puerarin injection. DCM rats were found to have severe cardiac insufficiency (arrythmia, decreased LVdP/dt, and increased E/A ratio). In addition, cardiac injury biomarkers (cTn-T, NT-proBNP, AST, LDH, and CK-MB), inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α), and oxidative damage markers (MDA, SOD and GSH) were markedly increased. Treatment with puerarin-V positively adjusts these parameters mentioned above by improving cardiac function and mitochondrial respiration, suppressing myocardial inflammation, and maintaining the structural integrity of the cardiac muscle. Moreover, treatment with puerarin-V inhibits the P2X7 receptor-mediated pyroptosis pathway that was upregulated in diabetic hearts. Given these results, the current study lends credence to the idea that puerarin-V can reduce myocardial damage in DCM rats. Furthermore, it was found that the effect of puerarin-V in diabetic cardiomyopathy is better than the API, the puerarin injection, and metformin. Collectively, our research provides a new therapeutic option for the treatment of DCM in clinic.
Collapse
Affiliation(s)
- Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng Xing
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianghua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Improvement effects of esculetin on the formation and development of atherosclerosis. Biomed Pharmacother 2022; 150:113001. [PMID: 35658220 DOI: 10.1016/j.biopha.2022.113001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is one of the potential causes of death in patients with cardiovascular disease. With the discovery of new anti atherosclerotic drugs becoming the pursuit of the pharmaceutical industry, natural products have attracted more and more attention because of their unique efficacy in the treatment of atherosclerosis. More and more studies have shown that esculetin, a coumarin mainly found in cortex fraxini, can improve atherosclerosis by participating in cellular antioxidant responses and reducing inflammation related pathogenesis. This paper summarizes the researches of esculetin on anti-atherosclerosis in the past two decades. Esculetin plays an anti atherosclerotic role through reducing blood triglyceride level, preventing the proliferation of vascular smooth muscle cells (VSMC) and the production of matrix metallopeptidase 9 (MMP-9), inhibiting the oxidation of low density lipoprotein (LDL) and the secretion of adhesion factors and chemokines, and increasing the outflow level of high density lipoprotein cholesterol (HDL-C). Esculetin is safe and reliable, easy to be absorbed by the body and can be synthesized in a variety of ways. Although there are still few clinical studies on anti-atherosclerosis, in vivo experiments have proved that esculetin has high bioavailability. From the current research, the anti-atherosclerotic effect of esculetin is positive and encouraging. However, much work remains to be done to clarify the molecular mechanism of esculetin in the treatment of atherosclerosis.
Collapse
|
10
|
Baicalin Alleviates Thrombin-Induced Inflammation in Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5799308. [PMID: 35097121 PMCID: PMC8799346 DOI: 10.1155/2022/5799308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of the arterial intima. As AS represents the most common type of vascular disease, it affects millions of individuals and is a source of high morbidity and mortality rates worldwide. Overwhelming evidence indicates that AS-related inflammation is mediated by proinflammatory cytokines, chemokines, adhesion molecules and inflammatory signaling pathways, with each of these factors being shown to play critical roles during the entire progression of AS. While a number of drugs have been approved for use in the treatment of AS, their benefits are modest, which underscores the urgency for the development of new drug therapies. In part, these deficits in effective drugs can be attributable to the lack of a clear understanding of the molecular mechanisms of AS. In this study, we investigate the capacity for thrombin to trigger inflammation and induce cell proliferation in vascular smooth muscle cells (VSMCs). We then assessed the effects of baicalin and its potential mechanisms on VSMC inflammation as induced by thrombin. Baicalin, which is a natural bioactive compound of S. baicalensis Georgi (SBG), exerted a protective effect against thrombin-induced VSMC inflammation as resulting from the upregulation of PAR-1. This protection as exerted by baicalin appears to reside in its capacity to produce an inhibitory effect on the thrombin-induced activation of the ERK1/2 pathway. These findings suggest that baicalin may be a promising candidate for the treatment of atherosclerosis.
Collapse
|
11
|
Jia J, Wang Y, Huang R, Du F, Shen X, Yang Q, Li J. Protein disulfide-isomerase A3 knockdown attenuates oxidized low-density lipoprotein-induced oxidative stress, inflammation and endothelial dysfunction in human umbilical vein endothelial cells by downregulating activating transcription factor 2. Bioengineered 2022; 13:1436-1446. [PMID: 34983301 PMCID: PMC8805980 DOI: 10.1080/21655979.2021.2018980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease implicated in oxidative stress and endothelial dysfunction. Protein disulfide-isomerase A3 (PDIA3) has been reported to regulate oxidative stress and suppress inflammation. This study aimed to explore the function of PDIA3 in atherosclerosis and the underlying mechanisms. PDIA3 expression in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) was detected using RT-qPCR and Western blotting. Following PDIA3 knockdown through transfection with small interfering RNA targeting PDIA3, cell viability, oxidative stress and inflammation in ox-LDL-induced HUVECs was examined using a Cell Counting Kit-8, corresponding kits and ELISA, respectively. The levels of CD31, α-smooth muscle, iNOS, p-eNOS, eNOS and NO were assessed using RT-qPCR, Western blotting and an NO kit to reflect endothelial dysfunction in ox-LDL-induced HUVECs. The relationship between PDIA3 and the activating transcription factor 2 (ATF2) was confirmed using co-immunoprecipitation. In addition, ATF2 expression was examined following PDIA3 silencing. The results indicated that PDIA3 was highly expressed in ox-LDL-induced HUVECs. PDIA3 silencing increased cell viability, and reduced oxidative stress and inflammation, as evidenced by the decreased levels of reactive oxygen species, malondialdehyde, TNF-α, IL-1β and IL-6, and increased superoxide dismutase and glutathione peroxidase activity. In addition, PDIA3 deletion improved endothelial dysfunction. PDIA3 interacted with ATF2, and PDIA3 deletion downregulated ATF2 expression. Furthermore, ATF2 overexpression reversed the effects of PDIA3 knockdown on ox-LDL-induced damage of HUVECs. Collectively, PDIA3 knockdown was found to attenuate ox-LDL-induced oxidative stress, inflammation and endothelial dysfunction in HUVECs by downregulating ATF2 expression, showing promise for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Jia
- Department of Anesthetic Surgery, Baotou Steel Hospital, Baotou, China
| | - Yueping Wang
- Department of Cardiology, Baotou Steel Hospital, Baotou, China
| | - Ruijuan Huang
- Laser Treatment Center, Baotou Steel Hospital, Baotou, China
| | - Fengxia Du
- Department of Intensive Medicine, Baotou Steel Hospital, Baotou, China
| | - Xiaozhu Shen
- Department of Geriatrics, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Qiurong Yang
- Nursing Department, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Juan Li
- Nursing Department, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
12
|
Jiao J, Wang Z, Guo Y, Liu J, Huang X, Ni X, Gao D, Sun L, Zhu X, Zhou Q, Yang Z, Yuan H. Association between IL-1B (-511)/IL-1RN (VNTR) polymorphisms and type 2 diabetes: a systematic review and meta-analysis. PeerJ 2021; 9:e12384. [PMID: 34754627 PMCID: PMC8552784 DOI: 10.7717/peerj.12384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Interleukin-1 (IL-1) plays an essential role in the immune pro-inflammatory process, which is regarded as one of many factors in the development of type 2 diabetes mellitus (T2DM). Several case-control studies have illustrated the association of the IL-1B (-511) (rs16944, Chr 2:112,837,290, C/T Intragenic, Transition Substitution) and IL-1RN (VNTR) (gene for IL-1 receptor antagonist, IL-1RA, 86 bp tandem repeats in intron 2) polymorphisms with T2DM risk. However, the results were inconsistent and inconclusive. We performed a meta-analysis (registry number: CRD42021268494) to assess the association of the IL-1B (-511) and IL-1RN (VNTR) polymorphisms with T2DM risk. Random-effects models were applied to calculate the pooled ORs (odds ratios) and 95% CIs (confidence intervals) to test the strength of the association in the overall group and subgroups stratified by ethnicity, respectively. Between-study heterogeneity and publication bias were evaluated by the Q-test, I2 statistic, Harbord test, and Peters test accordingly. Sensitivity analyses were also performed. A total of 12 publications evaluating the association of IL-1B (-511) and IL-1RN (VNTR) polymorphisms with the risk of T2DM development were included. The meta-analysis showed that IL-1RN (VNTR) was related to the increasing development of T2DM risk in the recessive model (OR = 1.62, 95% CI [1.09-2.42], Phet = 0.377, Pz = 0.018) and in the homozygous model (OR = 2.02, 95% CI [1.07-3.83], Phet = 0.085, Pz = 0.031), and the IL-1RN 2* allele was found a significant association with evaluated T2DM risk in all ethnicities (OR = 2.08, 95% CI [1.43-3.02], Phet < 0.001, Pz < 0.001) and in EA (OR = 2.01, 95% CI [1.53-2.66], Phet = 0.541, Pz < 0.001). Moreover, stratification by ethnicity revealed that IL-1B (-511) was associated with a decreased risk of T2DM in the dominant model (OR=0.76, 95% CI [0.59-0.97], Phet = 0.218, P z = 0.027) and codominant model (OR = 0.73, 95% CI [0.54-0.99], Phet = 0.141, Pz = 0.040) in the East Asian (EA) subgroup. Our results suggest that the IL-1RN 2* allele and 2*2* homozygous polymorphism are strongly associated with increasing T2DM risk and that the IL-1B (-511) T allele polymorphism is associated with decreasing T2DM risk in the EA subgroup.
Collapse
Affiliation(s)
- Juan Jiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China.,Department of Clinical Laboratory, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| | - Yanfei Guo
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
| | - Jie Liu
- Department of Clinical Laboratory, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| | - Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China.,Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, P.R. China
| |
Collapse
|
13
|
Ain QU, Sarfraz M, Prasesti GK, Dewi TI, Kurniati NF. Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules 2021; 11:biom11101464. [PMID: 34680097 PMCID: PMC8533132 DOI: 10.3390/biom11101464] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proinflammatory biomarkers have been increasingly used in epidemiologic and intervention studies over the past decades to evaluate and identify an association of systemic inflammation with cardiovascular diseases. Although there is a strong correlation between the elevated level of inflammatory biomarkers and the pathology of various cardiovascular diseases, the mechanisms of the underlying cause are unclear. Identification of pro-inflammatory biomarkers such as cytokines, chemokines, acute phase proteins, and other soluble immune factors can help in the early diagnosis of disease. The presence of certain confounding factors such as variations in age, sex, socio-economic status, body mass index, medication and other substance use, and medical illness, as well as inconsistencies in methodological practices such as sample collection, assaying, and data cleaning and transformation, may contribute to variations in results. The purpose of the review is to identify and summarize the effect of demographic factors, epidemiological factors, medication use, and analytical and pre-analytical factors with a panel of inflammatory biomarkers CRP, IL-1b, IL-6, TNFa, and the soluble TNF receptors on the concentration of these inflammatory biomarkers in serum.
Collapse
Affiliation(s)
- Qurrat Ul Ain
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
| | - Mehak Sarfraz
- Department of Pharmacy, Comsats University Islamabad Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Gayuk Kalih Prasesti
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
| | - Triwedya Indra Dewi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung 40124, Indonesia;
| | - Neng Fisheri Kurniati
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
- Correspondence: ; +62-853-1582-6154
| |
Collapse
|
14
|
Buckler AJ, Karlöf E, Lengquist M, Gasser TC, Maegdefessel L, Matic LP, Hedin U. Virtual Transcriptomics: Noninvasive Phenotyping of Atherosclerosis by Decoding Plaque Biology From Computed Tomography Angiography Imaging. Arterioscler Thromb Vasc Biol 2021; 41:1738-1750. [PMID: 33691476 PMCID: PMC8062292 DOI: 10.1161/atvbaha.121.315969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Andrew J. Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Elucid Bioimaging Inc., Boston, MA United States
| | - Eva Karlöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Christian Gasser
- KTH Solid Mechanics, Department or Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Ma J, Chen X. Anti-inflammatory Therapy for Coronary Atherosclerotic Heart Disease: Unanswered Questions Behind Existing Successes. Front Cardiovasc Med 2021; 7:631398. [PMID: 33598482 PMCID: PMC7882495 DOI: 10.3389/fcvm.2020.631398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronary atherosclerotic heart disease is a serious threat to human health. The results of the Canakinumab Anti-Inflammatory Thrombosis Outcome Study published in 2017 put an end to the perennial debate about the anti-inflammatory treatment of coronary atherosclerotic heart disease. In addition to interleukin 1β monoclonal antibody, interleukin 6 receptor antagonists and colchicine have also shown exciting results in clinical trials within the last 3 years. However, behind these successes, questions remain that need to be addressed. In this review, we summarize the successes and existing doubts of interleukin 1β antibodies, interleukin 6 receptor antagonists, and colchicine in the anti-inflammatory treatment of coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Overview of Salvia miltiorrhiza as a Potential Therapeutic Agent for Various Diseases: An Update on Efficacy and Mechanisms of Action. Antioxidants (Basel) 2020; 9:antiox9090857. [PMID: 32933217 PMCID: PMC7555792 DOI: 10.3390/antiox9090857] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a medicinal herb that has been used for the treatment for various diseases such as cardiovascular and cerebrovascular diseases in East Asia including Korea. Considering its extensive usage as a therapeutic agent for multiple diseases, there is a need to review previous research regarding its therapeutic benefits and their mechanisms. Therefore, we searched PubMed and PubMed Central for articles reporting its therapeutic effects on certain disease groups including cancers, cardiovascular, liver, and nervous system diseases. This review provides an overview of therapeutic benefits and targets of S. miltiorrhiza, including inflammation, fibrosis, oxidative stress, and apoptosis. The findings on multi-functional properties of S. miltiorrhiza discussed in this article support the efficacy of S. miltiorrhiza extract on various diseases, but also call for further research on the multiple mechanisms that mediate its therapeutic effects.
Collapse
|
17
|
Kazemi Fard T, Tavakoli S, Ahmadi R, Moradi N, Fadaei R, Mohammadi A, Fallah S. Evaluation of IP10 and miRNA 296-a Expression Levels in Peripheral Blood Mononuclear Cell of Coronary Artery Disease Patients and Controls. DNA Cell Biol 2020; 39:1678-1684. [PMID: 32716219 DOI: 10.1089/dna.2020.5650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Coronary artery disease (CAD) is the main cause of death worldwide. Atherosclerosis, the leading underlying cause of CAD, is a progressive inflammatory disease. miRNAs play a substantial role in inflammation. The aim of this study was to investigate the associations of peripheral blood mononuclear cells (PBMCs) gene expression of IP10 and miRNA 296-a and serum levels of IP10 and serum inflammatory cytokines interleukin-6 (IL-6) in CAD patients and controls. This is a case-control study conducted on 82 angiography confirmed CAD patients and 82 controls. PBMC expressions of miR-296a and IP10 were evaluated by real-time method, and serum concentrations of IL-6 and TNF-α were evaluated by enzyme-linked immunosorbent assay in the study population. A significant increase was found for serum IP10, IL-6, and TNF-α levels, and PBMC expression of IP10 and miRNA 296-a genes expression of CAD as comparison with controls. No significant correlation was found between IP10 gene expression and miRNA 296-a. A significant positive correlation was found between PBMC gene expression level of IP10 and serum concentrations of IP10 and cytokines IL-6 and TNF-α levels. Taking together, in PBMC of CAD patients, the IP10 and 296-a miRNA genes expression levels were increased significantly than controls. IP10, IL-6, and TNF-α levels in CAD patients were more than those in controls significantly. Concerning positive relationship between miRNA 296-a gene expression level and serum concentrations of IL-6 and TNF-α in CAD patients, it is proposed that IL-6 and TNF-α inhibitor could be the main targets of miRNA 296a and, thereby the IL-6 and TNF-α levels were increased; however, further study is needed.
Collapse
Affiliation(s)
- Toktam Kazemi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samareh Tavakoli
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asghar Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mullis C, Swartz TH. NLRP3 Inflammasome Signaling as a Link Between HIV-1 Infection and Atherosclerotic Cardiovascular Disease. Front Cardiovasc Med 2020; 7:95. [PMID: 32596261 PMCID: PMC7301651 DOI: 10.3389/fcvm.2020.00095] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023] Open
Abstract
36.9 million people worldwide are living with HIV-1. The disease remains incurable and HIV-infected patients have increased risk of atherosclerosis. Inflammation is a key driver of atherosclerosis, but no targeted molecular therapies have been developed to reduce cardiovascular risk in people with HIV-1 (PWH). While the mechanism is unknown, there are several important inflammatory signaling events that are implicated in the development of chronic inflammation in PWH and in the inflammatory changes that lead to atherosclerosis. Here we describe the pro-inflammatory state of HIV-1 infection that leads to increased risk of cardiovascular disease, the role of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in HIV-1 infection, the role of the NLRP3 inflammasome in cardiovascular disease (CVD), and outline a model whereby HIV-1 infection can lead to atherosclerotic disease through NLRP3 inflammasome activation. Our discussion highlights the literature supporting HIV-1 infection as a stimulator of the NLRP3 inflammasome as a driver of atherosclerosis.
Collapse
Affiliation(s)
- Caroline Mullis
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Ning K, Wang MJ, Lin G, Zhang YL, Li MY, Yang BF, Chen Y, Huang Y, Li ZM, Huang YJ, Zhu L, Liang K, Yu B, Zhu YZ, Zhu YC. eNOS-Nitric Oxide System Contributes to a Novel Antiatherogenic Effect of Leonurine via Inflammation Inhibition and Plaque Stabilization. J Pharmacol Exp Ther 2020; 373:463-475. [PMID: 32238453 DOI: 10.1124/jpet.119.264887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Leonurine (LEO) is a bioactive small molecular compound that has protective effects on the cardiovascular system and prevents the early progression of atherosclerosis; however, it is not clear whether LEO is effective for plaque stability. A novel mouse atherosclerosis model involving tandem stenosis (TS) of the right carotid artery combined with western diet (WD) feeding was used. Apolipoprotein E gene-deficient mice were fed with a WD and received LEO administration daily for 13 weeks. TS was introduced 6 weeks after the onset of experiments. We found that LEO enhanced plaque stability by increasing fibrous cap thickness and collagen content while decreasing the population of CD68-positive cells. Enhanced plaque stability by LEO was associated with the nitric oxide synthase (NOS)-nitric oxide (NO) system. LEO restored the balance between endothelial NOS(E)- and inducible NOS(iNOS)-derived NO production; suppressed the NF-κB signaling pathway; reduced the level of the inflammatory infiltration in plaque, including cytokine interleukin 6; and downregulated the expression of adhesion molecules. These findings support the distinct role of LEO in plaque stabilization. In vitro studies with oxidized low-density lipoprotein-challenged human umbilical vein endothelial cells revealed that LEO balanced NO production and inhibited NF-κB/P65 nuclear translocation, thus mitigating inflammation. In conclusion, the restored balance of the NOS-NO system and mitigated inflammation contribute to the plaque-stabilizing effect of LEO. SIGNIFICANCE STATEMENT: LEO restored the balance between endothelial NOS and inducible NOS in NO production and inhibited excessive inflammation in atherosclerotic "unstable" and rupture-prone plaques in apolipoprotein E gene-deficient mice. The protective effect of LEO for stabilizing atherosclerotic plaques was due to improved collagen content, increased fibrous cap thickness, and decreased accumulation of macrophages/foam cells. So far, LEO has passed the safety and feasibility test of phase I clinical trial.
Collapse
Affiliation(s)
- Ke Ning
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ge Lin
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Lin Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bao-Feng Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yong Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Zhi-Ming Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Jun Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Lei Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Kun Liang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bo Yu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| |
Collapse
|
20
|
Sharma M, Boytard L, Hadi T, Koelwyn G, Simon R, Ouimet M, Seifert L, Spiro W, Yan B, Hutchison S, Fisher EA, Ramasamy R, Ramkhelawon B, Moore KJ. Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci Rep 2020; 10:5555. [PMID: 32221369 PMCID: PMC7101445 DOI: 10.1038/s41598-020-62272-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
During obesity, macrophages infiltrate the visceral adipose tissue and promote inflammation that contributes to type II diabetes. Evidence suggests that the rewiring of cellular metabolism can regulate macrophage function. However, the metabolic programs that characterize adipose tissue macrophages (ATM) in obesity are poorly defined. Here, we demonstrate that ATM from obese mice exhibit metabolic profiles characterized by elevated glycolysis and oxidative phosphorylation, distinct from ATM from lean mice. Increased activation of HIF-1α in ATM of obese visceral adipose tissue resulted in induction of IL-1β and genes in the glycolytic pathway. Using a hypoxia-tracer, we show that HIF-1α nuclear translocation occurred both in hypoxic and non-hypoxic ATM suggesting that both hypoxic and pseudohypoxic stimuli activate HIF-1α and its target genes in ATM during diet-induced obesity. Exposure of macrophages to the saturated fatty acid palmitate increased glycolysis and HIF-1α expression, which culminated in IL-1β induction thereby simulating pseudohypoxia. Using mice with macrophage-specific targeted deletion of HIF-1α, we demonstrate the critical role of HIF-1α-derived from macrophages in regulating ATM accumulation, and local and systemic IL-1β production, but not in modulating systemic metabolic responses. Collectively, our data identify enhanced glycolysis and HIF-1α activation as drivers of low-grade inflammation in obesity.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Ludovic Boytard
- Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Tarik Hadi
- Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Graeme Koelwyn
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Russell Simon
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Mireille Ouimet
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Lena Seifert
- Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Westley Spiro
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Bo Yan
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Susan Hutchison
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Ravichandran Ramasamy
- Department of Medicine, Division of Endocrinology, New York University Langone Health, New York, NY, USA
| | - Bhama Ramkhelawon
- Department of Surgery, New York University Langone Health, New York, NY, USA.
| | - Kathryn J Moore
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
21
|
Visfatin/eNampt induces endothelial dysfunction in vivo: a role for Toll-Like Receptor 4 and NLRP3 inflammasome. Sci Rep 2020; 10:5386. [PMID: 32214150 PMCID: PMC7096459 DOI: 10.1038/s41598-020-62190-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Visfatin/extracellular-nicotinamide-phosphoribosyltranferase-(eNampt) is a multifaceted adipokine enhanced in type-2-diabetes and obesity. Visfatin/eNampt cause in vitro endothelial dysfunction and vascular inflammation, although whether the same effects are achieved in vivo is unknown. Toll-like receptor-4 (TLR4), a main surface pattern recognition receptor of innate immune system is a potential target for visfatin/eNampt. We studied its capacity to generate vascular dysfunction in vivo, focusing on TLR4 role and downstream activation of nod-like-receptor-protein-3 (NLRP3)-inflammasome. 4 month-old C57BL/6 mice were exposed to 7 days infusion of visfatin/eNampt, alone or together with FK 866 (Nampt enzymatic inhibitor), CLI 095 (TLR4 blocker), MCC 950 (NLRP3-inflammasome inhibitor), or anakinra (interleukin(IL)-1-receptor antagonist). Endothelial dysfunction was tested in isolated microvessels. In human umbilical endothelial cells (HUVEC), proteins related to the NLRP3-inflammasome phosphorylated p-65, NLRP3, caspase-1, pro-IL-1β, and mature IL-1β were determined by Western blot, while the inflammasome related apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC-specks) was studied by immunofluorescence. Impaired endothelium-dependent relaxations were observed in isolated mesenteric microvessels from visfatin/eNampt-infused mice. This effect was attenuated by co-treatment with FK 866 or CLI 095, supporting a role for Nampt enzymatic activity and TLR4 activation. Moreover, cultured HUVEC exposed to visfatin/eNampt showed higher expression and activation of NLRP3-inflammasome. Again, this effect relied on Nampt enzymatic activity and TLR4 activation, and it was abrogated by the inflammasome assembly blockade with MCC 950. The endothelial dysfunction evoked by visfatin/eNampt infusion in vivo was also sensitive to both MCC 950 and anakinra treatments, suggesting that the NLRP3-inflammasome-driven tissular release of IL-1β is the final mediator of endothelial damage. We conclude that Visfatin/eNampt produces in vivo vascular dysfunction in mice by a Nampt-dependent TLR4-mediated pathway, involving NLRP3-inflammasome and paracrine IL-1β. Thus, those targets may become therapeutic strategies for attenuating the adipokine-mediated vascular dysfunction associated to obesity and/or type-2-diabetes.
Collapse
|
22
|
Wijaya A, Maruf A, Wu W, Wang G. Recent advances in micro- and nano-bubbles for atherosclerosis applications. Biomater Sci 2020; 8:4920-4939. [DOI: 10.1039/d0bm00762e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Micro- and nano-bubbles have been developed as powerful multimodal theranostic agents for atherosclerosis treatment.
Collapse
Affiliation(s)
- Andy Wijaya
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| |
Collapse
|
23
|
Russell KS, Yates DP, Kramer CM, Feller A, Mahling P, Colin L, Clough T, Wang T, LaPerna L, Patel A, Lawall H, Shennak MM, Fulmer J, Nikol S, Smith WB, Müller OJ, Ratchford EV, Basson CT. A randomized, placebo-controlled trial of canakinumab in patients with peripheral artery disease. Vasc Med 2019; 24:414-421. [PMID: 31277561 DOI: 10.1177/1358863x19859072] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extensive atherosclerotic plaque burden in the lower extremities often leads to symptomatic peripheral artery disease (PAD) including impaired walking performance and claudication. Interleukin-1β (IL-1β) may play an important pro-inflammatory role in the pathogenesis of this disease. Interruption of IL-1β signaling was hypothesized to decrease plaque progression in the leg macrovasculature and improve the mobility of patients with PAD with intermittent claudication. Thirty-eight patients (mean age 65 years; 71% male) with symptomatic PAD (confirmed by ankle-brachial index) were randomized 1:1 to receive canakinumab (150 mg subcutaneously) or placebo monthly for up to 12 months. The mean vessel wall area (by 3.0 T black-blood magnetic resonance imaging (MRI)) of the superficial femoral artery (SFA) was used to measure plaque volume. Mobility was assessed using the 6-minute walk test. Canakinumab was safe and well tolerated. Markers of systemic inflammation (interleukin-6 and high-sensitivity C-reactive protein) fell as early as 1 month after treatment. MRI (32 patients at 3 months; 21 patients at 12 months) showed no evidence of plaque progression in the SFA in either placebo-treated or canakinumab-treated patients. Although an exploratory endpoint, placebo-adjusted maximum and pain-free walking distance (58 m) improved as early as 3 months after treatment with canakinumab when compared with placebo. Although canakinumab did not alter plaque progression in the SFA, there is an early signal that it may improve maximum and pain-free walking distance in patients with symptomatic PAD. Larger studies aimed at this endpoint will be required to definitively demonstrate this. ClinicalTrials.gov Identifier: NCT01731990.
Collapse
Affiliation(s)
- Kerry S Russell
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Denise P Yates
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Andrea Feller
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Ping Mahling
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Laurence Colin
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Timothy Clough
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Tianke Wang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lucy LaPerna
- Remington-Davis Clinical Research, Columbus, OH, USA
| | - Alpa Patel
- Jacksonville Center for Clinical Research, Jacksonville, FL, USA
| | - Holger Lawall
- Praxis für Herzkreislauferkrankungen, Max Grundig Klinik Bühlerhöhe, Bühl, Germany
| | | | | | | | | | - Oliver J Müller
- University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Craig T Basson
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
24
|
Roth I, Casas R, Ribó-Coll M, Doménech M, Lamuela-Raventós RM, Estruch R. Acute consumption of Andalusian aged wine and gin decreases the expression of genes related to atherosclerosis in men with high cardiovascular risk: Randomized intervention trial. Clin Nutr 2018; 38:1599-1606. [PMID: 30471795 DOI: 10.1016/j.clnu.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease. Previous studies have suggested the beneficial effects of moderate consumption of alcoholic beverages on reducing cardiovascular risk (CVR). The aim of this study was to evaluate the effects of acute consumption of Andalusian aged wine (AAW) and gin by analyzing the expression of genes related to the appearance and progression of atherosclerosis in men with high CVR. METHODS We performed an open, randomized, controlled, crossover trial including 41 men with high CVR between 55 and 80 years age, who received a single dose of AAW or gin (0.5 g ethanol/kg). The expression of 10 genes related to atherosclerosis was determined by RT-PCR at baseline and 4 h after the intervention. RESULTS Gene expression analysis 4 h after consumption of each alcoholic beverage showed a significant decrease in Toll-like receptors 4 and 6 (TLR4, TLR6) and Caspase-1 (p < 0.05 all). Additionally, TLR2, Interleukin-1 receptor, chemokine receptor 3 and inflammasome expression decreased after AAW intake (p < 0.05, all) while only chemokine receptor 5 decreased after gin consumption (p = 0.039). CONCLUSION The decrease in the expression of several genes related to the appearance and progression of atherosclerosis was greater after AAW than gin intake, suggesting that the phenolic content of AAW may play a protective role against atherosclerosis.
Collapse
Affiliation(s)
- Irene Roth
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Rosa Casas
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain; CIBER CB06/03 Fisiopatología de la Obesidad y la Nutrición, (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain
| | - Margarita Ribó-Coll
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Mónica Doménech
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- CIBER CB06/03 Fisiopatología de la Obesidad y la Nutrición, (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; Nutrition and Food Science Department-XaRTA, INSA, Pharmacy School, University of Barcelona, Spain
| | - Ramón Estruch
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain; CIBER CB06/03 Fisiopatología de la Obesidad y la Nutrición, (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
25
|
Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018; 8:biom8030080. [PMID: 30142970 PMCID: PMC6163673 DOI: 10.3390/biom8030080] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease; unstable atherosclerotic plaque rupture, vascular stenosis, or occlusion caused by platelet aggregation and thrombosis lead to acute cardiovascular disease. Atherosclerosis-related inflammation is mediated by proinflammatory cytokines, inflammatory signaling pathways, bioactive lipids, and adhesion molecules. This review discusses the effects of inflammation and the systemic inflammatory signaling pathway on atherosclerosis, the role of related signaling pathways in inflammation, the formation of atherosclerosis plaques, and the prospects of treating atherosclerosis by inhibiting inflammation.
Collapse
|
26
|
Kasikara C, Doran AC, Cai B, Tabas I. The role of non-resolving inflammation in atherosclerosis. J Clin Invest 2018; 128:2713-2723. [PMID: 30108191 PMCID: PMC6025992 DOI: 10.1172/jci97950] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-resolving inflammation drives the development of clinically dangerous atherosclerotic lesions by promoting sustained plaque inflammation, large necrotic cores, thin fibrous caps, and thrombosis. Resolution of inflammation is not merely a passive return to homeostasis, but rather an active process mediated by specific molecules, including fatty acid-derived specialized pro-resolving mediators (SPMs). In advanced atherosclerosis, there is an imbalance between levels of SPMs and proinflammatory lipid mediators, which results in sustained leukocyte influx into lesions, inflammatory macrophage polarization, and impaired efferocytosis. In animal models of advanced atherosclerosis, restoration of SPMs limits plaque progression by suppressing inflammation, enhancing efferocytosis, and promoting an increase in collagen cap thickness. This Review discusses the roles of non-resolving inflammation in atherosclerosis and highlights the unique therapeutic potential of SPMs in blocking the progression of clinically dangerous plaques.
Collapse
Affiliation(s)
| | | | | | - Ira Tabas
- Department of Medicine
- Department of Physiology, and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
27
|
Walquist MJ, Stormo SK, Østerud B, Elvevoll EO, Eilertsen KE. Cold-pressed minke whale oil reduces circulating LDL/VLDL-cholesterol, lipid oxidation and atherogenesis in apolipoprotein E-deficient mice fed a Western-type diet for 13 weeks. Nutr Metab (Lond) 2018; 15:35. [PMID: 29755576 PMCID: PMC5935995 DOI: 10.1186/s12986-018-0269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background Long-chain n3-polyunsaturated fatty acids (LC n3-PUFA) are well known for their anti-inflammatory activity and their impact on cardiovascular disease. Cold-pressed whale oil (CWO) has half the amount of LC n3-PUFA compared to cod liver oil (CLO). Still, there has been observed more pronounced beneficial effects on cardiovascular disease markers from intake of CWO compared to intake of CLO in human intervention studies. Extracts from CWO deprived of fatty acids have also been shown to display antioxidative and anti-inflammatory effects in vitro. The aim of this study was to investigate whether intake of a high-fat Western-type diet (WD) supplemented with CWO would prevent the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice. Methods Seventy female ApoE-/- mice were fed a WD containing 1% CWO, CLO or corn oil (CO). Atherosclerotic lesion formation, body and tissue weights, hepatic gene expression together with serum levels of LDL/VLDL-cholesterol, ox-LDL, total antioxidant status and various serum cardiovascular disease/proinflammatory markers were evaluated. Statistical analyses were performed using SPSS, and Shapiro-Wilk's test was performed to determine the distribution of the variables. Statistical difference was assessed using One-Way ANOVA with Tukeys' post hoc test or Kruskal-Wallis test. The hepatic relative gene expression was analysed with REST 2009 (V2.0.13). Results Mice fed CWO had less atherosclerotic lesions in the aortic arch compared to mice fed CO. Levels of LDL/VLDL-cholesterol and ox-LDL-cholesterol were also markedly reduced whereas total antioxidant levels were enhanced in mice fed CWO compared to CO-fed mice. In addition, CWO-fed mice gained less weight and several hepatic genes involved in the cholesterol metabolism were up-regulated compared to CO-fed mice. Conclusion In the present study mice fed a WD supplemented with 1% CWO had reduced formation of atherosclerotic lesions in the aortic arch, reduced serum LDL/VLDL-cholesterol and ox-LDL-cholesterol, increased serum total antioxidant status and reduced body weight compared to mice fed a WD supplemented with 1% CO.
Collapse
Affiliation(s)
- Mari Johannessen Walquist
- 1Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Bjarne Østerud
- 3Faculty of Health Science, IMB, K.G Jebsen TREC, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Edel O Elvevoll
- 1Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Karl-Erik Eilertsen
- 1Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
28
|
Chistiakov DA, Melnichenko AA, Grechko AV, Myasoedova VA, Orekhov AN. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol 2018; 104:114-124. [PMID: 29378168 DOI: 10.1016/j.yexmp.2018.01.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation is a central pathogenic mechanism of atherosclerosis induction and progression. Vascular inflammation is associated with accelerated onset of late atherosclerosis complications. Atherosclerosis-related inflammation is mediated by a complex cocktail of pro-inflammatory cytokines, chemokines, bioactive lipids, and adhesion molecules, and blocking the key pro-atherogenic inflammatory mechanisms can be beneficial for treatment of atherosclerosis. Therapeutic agents that specifically target some of the atherosclerosis-related inflammatory mechanisms have been evaluated in preclinical and clinical studies. The most promising anti-inflammatory compounds for treatment of atherosclerosis include non-specific anti-inflammatory drugs, phospholipase inhibitors, blockers of major inflammatory cytokines, leukotrienes, adhesion molecules, and pro-inflammatory signaling pathways, such as CCL2-CCR2 axis or p38 MAPK pathway. Ongoing studies attempt evaluating therapeutic utility of these anti-inflammatory drugs for treatment of atherosclerosis. The obtained results are important for our understanding of atherosclerosis-related inflammatory mechanisms and for designing randomized controlled studies assessing the effect of specific anti-inflammatory strategies on cardiovascular outcomes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Neurochemistry, Division of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow 119991, Russia
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow 109240, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
| |
Collapse
|
29
|
Lorenzatti A, Servato ML. Role of Anti-inflammatory Interventions in Coronary Artery Disease: Understanding the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Eur Cardiol 2018; 13:38-41. [PMID: 30310469 DOI: 10.15420/ecr.2018.11.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Despite notable advances in understanding the nature of atherosclerotic processes and the use of effective medications such as statins, there remains a significant residual risk. Even after optimal medical treatments and precise revascularisations, the recurrence of MI remains at approximately one-third for 5 years after an acute coronary syndrome (ACS). Over the past two decades, compelling data from animal and human studies has clearly identified atherosclerosis as an inflammatory disease of the arterial wall, but clinical applications related to this accumulated knowledge are still scarce. Recently, the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) has provided convincing evidence that an anti-inflammatory intervention with the monoclonal antibody canakinumab reduces cardiovascular events in well-treated CAD patients without affecting LDL cholesterol levels. This article presents a brief description of the role of inflammation in atherogenesis and examines selected anti-inflammatory interventions and their potential use in CAD-affected individuals.
Collapse
Affiliation(s)
- Alberto Lorenzatti
- Docencia, Asistencia Médica e Investigación Clínica (DAMIC) Medical Institute, Rusculleda Foundation for Research Córdoba, Argentina.,Cardiology Department, Córdoba Hospital Córdoba, Argentina
| | - Maria Luz Servato
- Clinical Research Section, DAMIC Medical Institute, Rusculleda Foundation for Research Córdoba, Argentina
| |
Collapse
|
30
|
Catapano AL, Pirillo A, Norata GD. Vascular inflammation and low-density lipoproteins: is cholesterol the link? A lesson from the clinical trials. Br J Pharmacol 2017; 174:3973-3985. [PMID: 28369752 PMCID: PMC5659993 DOI: 10.1111/bph.13805] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
For long time, the role of LDL and inflammation in the pathogenesis of atherosclerosis have been studied independently from each other and only more recently a common platform has been suggested. Accumulation of excess cholesterol due to the presence of increased circulating LDL promotes endothelium dysfunction and activation, which is associated with increased production of pro-inflammatory cytokines, overexpression of adhesion molecules, chemokines and C-reactive protein (CRP), increased generation of reactive oxygen species and reduction of nitric oxide levels and bioavailability. All these processes favour the progressive infiltration of inflammatory cells within the arterial wall where cholesterol accumulates, both extracellularly and intracellularly, and promotes vascular inflammation. According to this, lipid-lowering therapies should improve inflammation and, indeed, statins decrease circulating inflammatory markers such as CRP and improve endothelial function and plaque burden. Pleiotropic activities have been proposed to explain this effect. However, mendelian randomization studies ruled out a direct role for CRP on coronary artery disease and studies with other lipid lowering drugs, such as ezetimibe showed that the beneficial effect of LDL-cholesterol-lowering therapies on systemic inflammatory status, as monitored by changes in CRP plasma levels, could be achieved, independently of the mechanism of action, only in patients presenting with baseline inflamed conditions. These observations strengthen the direct link between cholesterol and inflammation and indicate that decreasing LDL levels is one of the key goals for improving cardiovascular outcome. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
- IRCCS Multimedica HospitalSesto San GiovanniMilanItaly
| | - Angela Pirillo
- SISA Center for the Study of AtherosclerosisBassini HospitalCinisello BalsamoItaly
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWestern, Australia
| |
Collapse
|
31
|
Antioxidant and Anti-Inflammatory Activities in Extracts from Minke Whale ( Balaenoptera acutorostrata) Blubber. Mediators Inflamm 2017; 2017:3835851. [PMID: 29118465 PMCID: PMC5651123 DOI: 10.1155/2017/3835851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/28/2017] [Accepted: 09/17/2017] [Indexed: 01/07/2023] Open
Abstract
Intake of long-chain omega-3 polyunsaturated fatty acids (LC-n3-PUFA) is commonly recognized to reduce cardiovascular disease (CVD). In previous studies, cold-pressed whale oil (CWO) and cod liver oil (CLO) were given as a dietary supplement to healthy volunteers. Even though CWO contains less than half the amount of LC-n3-PUFA of CLO, CWO supplement resulted in beneficial effects on anti-inflammatory and CVD risk markers compared to CLO. In the present study, we prepared virtually lipid-free extracts from CWO and CLO and evaluated the antioxidative capacity (AOC) and anti-inflammatory effects. Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays were used to test the AOC, and the results indicated high levels of antioxidants present in all extracts. The anti-inflammatory effects of the extracts were tested with lipopolysaccharide- (LPS-) treated THP-1 cells, measuring its ability to reduce cytokine and chemokine secretion. Several CWO extracts displayed anti-inflammatory activity, and a butyl alcohol extract of CWO most effectively reduced TNF-α (50%, p < 0.05) and MCP-1 (85%, p < 0.001) secretion. This extract maintained a stable effect of reducing MCP-1 secretion (60%, p < 0.05) even after long-term storage. In conclusion, CWO has antioxidant and anti-inflammatory activities that may act in addition to its well-known LC-n3-PUFA effects.
Collapse
|
32
|
Traditional Chinese Medicine Protects against Cytokine Production as the Potential Immunosuppressive Agents in Atherosclerosis. J Immunol Res 2017; 2017:7424307. [PMID: 29038791 PMCID: PMC5606136 DOI: 10.1155/2017/7424307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a critical factor at all stages of atherosclerosis progression. Proinflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. Accordingly, strategies to inhibit immune activation and impede immune responses towards anti-inflammatory activity are an alternative therapeutic strategy to conventional chemotherapy on cardiocerebrovascular outcomes. Since a number of Chinese medicinal plants have been used traditionally to prevent and treat atherosclerosis, it is reasonable to assume that the plants used for such disease may suppress the immune responses and the resultant inflammation. This review focuses on plants that have immunomodulatory effects on the production of inflammatory cytokine burst and are used in Chinese traditional medicine for the prevention and therapy of atherosclerosis.
Collapse
|
33
|
Luo B, Huang F, Liu Y, Liang Y, Wei Z, Ke H, Zeng Z, Huang W, He Y. NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy. Front Physiol 2017; 8:519. [PMID: 28790925 PMCID: PMC5524816 DOI: 10.3389/fphys.2017.00519] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), a common consequence of longstanding diabetes mellitus, is initiated by death of cardiomyocyte. Hyperglycemia-induced reactive oxygen species (ROS) overproduction is a major contributor of the chronic low-grade inflammation that characterizes as the DCM. ROS may promote the activation of nucleotide-binding oligomerization domain like receptor (NLR) pyrin domain containing 3 (NLRP3) inflammasome, a novel regulator of inflammation and cell death, by nuclear factor-kB (NF-κB) and thioredoxin interacting/inhibiting protein (TXNIP). NLRP3 inflammasome regulates the death of cardiomyocyte and activation of fibroblast in DCM, which is involved in the structural and functional disorder of DCM. However, comprehensive understanding of molecular mechanisms linking NLRP3 inflammasome and disorder of cardiomyocyte and fibroblast in DCM is lacking. Here, we review the molecular mechanism(s) of NLRP3 inflammasome activation in response to hyperglycemia in DCM.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yanli Liu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yiying Liang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Zhe Wei
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Honghong Ke
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Zhiyu Zeng
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yan He
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| |
Collapse
|
34
|
Kirichenko TV, Sobenin IA, Nikolic D, Rizzo M, Orekhov AN. Anti-cytokine therapy for prevention of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1198-1210. [PMID: 26781385 DOI: 10.1016/j.phymed.2015.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Currently a chronic inflammation is considered to be the one of the most important reasons of the atherosclerosis progression. A huge amount of researches over the past few decades are devoted to study the various mechanisms of inflammation in the development of atherosclerotic lesions. PURPOSE To review current capabilities of anti-inflammatory therapy for the prevention and treatment of atherosclerosis and its clinical manifestations. METHODS Appropriate articles on inflammatory cytokines in atherosclerosis and anti-inflammatory prevention of atherosclerosis were searched in PubMed Database from their respective inceptions until October 2015. SECTIONS "The role of inflammatory cytokines in the development of atherosclerotic lesions" describes available data on the possible inflammatory mechanisms of the atherogenesis with a special attention to the role of cytokines. "Modern experience of anti-inflammatory therapy for the treatment of atherosclerosis" describes modern anti-inflammatory preparations with anti-atherosclerotic effect including natural preparations. In "the development of anti-inflammatory herbal preparation for atherosclerosis prevention" an algorithm is demonstrated that includes screening of anti-cytokine activity of different natural products, the development of the most effective combination and estimation of its effect in cell culture model, in animal model of the acute aseptic inflammation and in a pilot clinical trial. A natural preparation "Inflaminat" based on black elder berries (Sambucus nigra L.), violet tricolor herb (Viola tricolor L.) and calendula flowers (Calendula officinalis L.) possessing anti-cytokine activity was developed using the designed algorithm. The results of the following 2-year double blind placebo-controlled clinical study show that "Inflaminat" reduces carotid IMT progression, i.e. has anti-atherosclerotic effect. CONCLUSION Anti-cytokine therapy may be a promising direction in moderation of atherogenesis, especially when it begins on the early stages of subclinical atherosclerosis. The use of herbal preparations with anti-cytokine mechanism of action is the most perspective for timely prevention of atherosclerosis, as they have no significant side effects and can be prescribed for long-term administration.
Collapse
Affiliation(s)
- Tatiana V Kirichenko
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 4-1-207, Osennaya Str., 121609, Moscow, Russia.
| | - Igor A Sobenin
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315, Moscow, Russia; Russian Cardiology Research and Production Complex, 15-a 3rd Cherepkovskaya Str., 121552, Moscow, Russia
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, 141 Via del Vespro, 90127, Palermo, Italy
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, 141 Via del Vespro, 90127, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Via Emerico Amari 123, 90139, Palermo, Italy
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 4-1-207, Osennaya Str., 121609, Moscow, Russia; Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315, Moscow, Russia
| |
Collapse
|
35
|
Pentoxifylline Ameliorates Cardiac Fibrosis, Pathological Hypertrophy, and Cardiac Dysfunction in Angiotensin II-induced Hypertensive Rats. J Cardiovasc Pharmacol 2016; 67:76-85. [PMID: 26340750 DOI: 10.1097/fjc.0000000000000316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inflammation induces cardiac fibrosis and hypertrophy in multiple cardiovascular diseases, contributing to cardiac dysfunction. We tested the hypothesis that pentoxifylline (PTX), a phosphodiesterase inhibitor with anti-inflammatory property, would attenuate cardiac fibrosis and hypertrophy, and prevent cardiac dysfunction in angiotensin (ANG) II-induced hypertensive rats. Sprague-Dawley rats were divided into control and ANG II-infused groups treated with or without PTX for 2 weeks. PTX had no effect on ANG II-induced hypertension, but significantly attenuated cardiac fibrosis and hypertrophy, and ameliorated cardiac dysfunction in ANG II-induced hypertensive rats. In addition, ANG II-induced increase in circulating and cardiac proinflammatory cytokines were attenuated by PTX, which reduced cardiac nuclear factor-kappa B activity. Furthermore, PTX decreased cardiac expression of genetic markers important for fibrosis, hypertrophy, and endothelial dysfunction, and reduced migration and infiltration of macrophages. In contrast, PTX had no effects on the above parameters in control rats. The findings suggest that PTX ameliorates cardiac fibrosis, pathological hypertrophy, and cardiac dysfunction by suppressing inflammatory responses in angiotensin II-induced hypertension, and that these benefits were independent of the blood pressure lowering effect. The PTX by its anti-inflammatory property may be a potential therapeutic option for the prevention of cardiac remodeling and dysfunction in ANG II-induced hypertension.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Notch signaling is an evolutionary conserved pathway critical for cardiovascular development and angiogenesis. More recently, the contribution of Notch signaling to the homeostasis of the adult vasculature has emerged as an important novel paradigm, but much remains to be understood. RECENT FINDINGS Recent findings shed light on the impact of Notch in vascular and immune responses to microenvironmental signals as well as on the onset of atherosclerosis. In the past year, studies in human and mice explored the role of Notch in the maintenance of a nonactivated endothelium. Novel pieces of evidence suggest that this pathway is sensitive to environmental factors, including inflammatory mediators and diet-derived by-products. SUMMARY An emerging theme is the ability of Notch to respond to changes in the microenvironment, including glucose and lipid metabolites. In turn, alterations in Notch enable an important link between metabolism and transcriptional changes, thus this receptor appears to function as a metabolic sensor with direct implications to gene expression.
Collapse
Affiliation(s)
- Anaïs Briot
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Team 1, Toulouse, France
| | - Anne Bouloumié
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Team 1, Toulouse, France
| | - M. Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
37
|
Association of IL-1β +3953 C and HLA-DRB1*15 with Coronary Artery and Rheumatic Heart Diseases in South India. Hum Immunol 2016; 77:1275-1279. [PMID: 27521249 DOI: 10.1016/j.humimm.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022]
Abstract
Among the various candidate genes predisposing for cardiovascular diseases, HLA-DRB1* and IL-1β +3953C/T alleles have been implicated repeatedly. To test these in South India, we carried out a case control study of 323 Coronary Artery Disease (CAD) patients, 56 Rheumatic Heart Disease (RHD) patients and 254 endemic controls. The polymorphisms were studied by PCR - SSP and ARMS-PCR methods and results analyzed for various clinical and demographic parameters. In CAD, HLA-DRB1*14 allele showed significant predisposition (OR: 2.19; 95% CI: 1.04-4.58; p value=0.023), particularly in male patients (OR: 4.07; 95% CI: 1.20-13.81; p value=0.01) and further in males with Triple Vessel Disease (OR: 5.49; 95% CI: 1.45-20.60; p value=0.007). On the other hand, HLA-DRB1*15 predisposed for RHD (OR: 3.56; 95% CI: 1.87-6.78; p value=0.001) in both the genders. Population stratification showed this higher risk association in Vanniyar caste (OR: 5.00; 95% CI: 1.27-19.59; p value=0.022). Among the IL1-β +3953C/T polymorphism, the ancestral allele 'C' showed a significant high risk association with CAD (OR: 1.83; 95% CI: 1.24-2.70; p value=0.001), particularly in Mudaliar (OR: 6.07; 95% CI: 1.77-20.74; p value=0.003; AF=0.7) and Vanniyar castes (OR: 3.67; 95% CI: 0.92-14.57; p value=0.05; AF=0.660). Two different cardiac ailments studied, RHD & CAD thus showed varied associations in this South Indian cohorts. RHD having an infectious aetiology shared a HLA-DRB1*15 high risk association, while HLA-DRB1*14 and IL-1β +3953C predisposed for CAD, an inflammatory disorder, reiterating the diverse genetic predisposition of the two cardiac ailments studied.
Collapse
|
38
|
Abstract
Cognitive impairment is very common in chronic kidney disease (CKD) and is strongly associated with increased mortality. This review article will discuss the pathophysiology of cognitive impairment in CKD, as well as the effect of dialysis and transplantation on cognitive function. In CKD, uremic toxins, hyperparathyroidism and Klotho deficiency lead to chronic inflammation, endothelial dysfunction and vascular calcifications. This results in an increased burden of cerebrovascular disease in CKD patients, who consistently have more white matter hyperintensities, microbleeds, microinfarctions and cerebral atrophy on magnetic resonance imaging scans. Hemodialysis, although beneficial in terms of uremic toxin clearance, also contributes to cognitive decline by causing rapid fluid and osmotic shifts. Decreasing the dialysate temperature and increasing total dialysis time limits these shifts and helps maintain cognitive function in hemodialysis patients. For many patients, kidney transplantation is the preferred treatment modality, because it reverses the underlying mechanisms causing cognitive impairment in CKD. These positive effects have to be balanced against the possible neurotoxicity of infections and immunosuppressive medications, especially glucocorticosteroids and calcineurin inhibitors. A limited number of studies have addressed the overall effect of transplantation on cognitive function. These have mostly found an improvement after transplantation, but have a limited applicability to daily practice because they have only included relatively young patients.
Collapse
|
39
|
Lorenzatti AJ, Retzlaff BM. Unmet needs in the management of atherosclerotic cardiovascular disease: Is there a role for emerging anti-inflammatory interventions? Int J Cardiol 2016; 221:581-6. [PMID: 27420583 DOI: 10.1016/j.ijcard.2016.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/04/2016] [Indexed: 01/18/2023]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Despite extraordinary advances in the understanding of the pathophysiology and the utilization of very effective medications such as statins, there still remains a significant residual risk. In fact, even after optimal interventional and medical therapy, the possibility of recurrent myocardial infarction remains at approximately one third for five years after acute coronary syndromes, thus emphasizing the urgent need for novel therapies to prevent the progress of atherosclerosis. In addition, over the past two decades, although atherosclerosis has been clearly identified as an inflammatory disease of the arterial wall from compelling data of animal and human studies, clinical applications related to this accumulated knowledge are scarce. This review presents a brief description of the role of inflammation in atherogenesis, and examines selected potential anti-inflammatory interventions that are being tested in on-going clinical trials which have been designed to prevent adverse cardiovascular events as well as provide a proof of concept regarding the inflammatory hypothesis of atherosclerosis.
Collapse
Affiliation(s)
- Alberto J Lorenzatti
- Cardiology Department, Cordoba Hospital, Cordoba, Argentina; DAMIC Medical Institute for Research, Teaching, Patient Care, Cordoba, Argentina.
| | | |
Collapse
|
40
|
Yuan XL, Li Y, Pan XH, Zhou M, Gao QY, Li MC. Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells. Mol Biol 2016. [DOI: 10.1134/s0026893316030134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects. PLoS One 2015; 10:e0143536. [PMID: 26600018 PMCID: PMC4658070 DOI: 10.1371/journal.pone.0143536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022] Open
Abstract
We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis.
Collapse
|
42
|
Briot A, Civelek M, Seki A, Hoi K, Mack JJ, Lee SD, Kim J, Hong C, Yu J, Fishbein GA, Vakili L, Fogelman AM, Fishbein MC, Lusis AJ, Tontonoz P, Navab M, Berliner JA, Iruela-Arispe ML. Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med 2015; 212:2147-63. [PMID: 26552708 PMCID: PMC4647265 DOI: 10.1084/jem.20150603] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
Briot et al. show that inflammatory lipids deriving from a high-fat diet suppress NOTCH1 expression and signaling in adult arterial endothelium and propose that reduction of endothelial NOTCH1 is a predisposing factor in the onset of atherosclerosis. Although much progress has been made in identifying the mechanisms that trigger endothelial activation and inflammatory cell recruitment during atherosclerosis, less is known about the intrinsic pathways that counteract these events. Here we identified NOTCH1 as an antagonist of endothelial cell (EC) activation. NOTCH1 was constitutively expressed by adult arterial endothelium, but levels were significantly reduced by high-fat diet. Furthermore, treatment of human aortic ECs (HAECs) with inflammatory lipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [Ox-PAPC]) and proinflammatory cytokines (TNF and IL1β) decreased Notch1 expression and signaling in vitro through a mechanism that requires STAT3 activation. Reduction of NOTCH1 in HAECs by siRNA, in the absence of inflammatory lipids or cytokines, increased inflammatory molecules and binding of monocytes. Conversely, some of the effects mediated by Ox-PAPC were reversed by increased NOTCH1 signaling, suggesting a link between lipid-mediated inflammation and Notch1. Interestingly, reduction of NOTCH1 by Ox-PAPC in HAECs was associated with a genetic variant previously correlated to high-density lipoprotein in a human genome-wide association study. Finally, endothelial Notch1 heterozygous mice showed higher diet-induced atherosclerosis. Based on these findings, we propose that reduction of endothelial NOTCH1 is a predisposing factor in the onset of vascular inflammation and initiation of atherosclerosis.
Collapse
Affiliation(s)
- Anaïs Briot
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mete Civelek
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Atsuko Seki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Karen Hoi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Julia J Mack
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Jingjing Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ladan Vakili
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alan M Fogelman
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Mohamad Navab
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Judith A Berliner
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
43
|
Wu M, Barnard J, Kundu S, McCrae KR. A novel pathway of cellular activation mediated by antiphospholipid antibody-induced extracellular vesicles. J Thromb Haemost 2015; 13:1928-40. [PMID: 26264622 PMCID: PMC4877623 DOI: 10.1111/jth.13072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Elevated levels of endothelial cell (EC)-derived extracellular vesicles (EVs) circulate in patients with antiphospholipid antibodies (APLAs), and APLAs, particularly those against β2 -glycoprotein I (β2 GPI), stimulate EV release from ECs. However, the effects of EC-derived EVs have not been characterized. OBJECTIVE To determine the mechanism by which EVs released from ECs by anti-β2 GPI antibodies activate unstimulated ECs. PATIENTS/METHODS We used interleukin (IL)-1 receptor inhibitors, small interfering RNA (siRNA) against Toll-like receptors (TLRs) and microRNA (miRNA) profiling to assess the mechanism(s) by which EVs released from ECs exposed to anti-β2 GPI antibodies activated unstimulated ECs. RESULTS AND CONCLUSIONS Anti-β2 GPI antibodies caused formation of an EC inflammasome and the release of EVs that were enriched in mature IL-1β, had a distinct miRNA profile, and caused endothelial activation. However, activation was not inhibited by an IL-1β antibody, an IL-1 receptor antagonist, or IL-1 receptor siRNA. EC activation by EVs required IL-1 receptor-associated kinase 4 phosphorylation, and was inhibited by pretreatment of cells with TLR7 siRNA or RNase A, which degrades ssRNA. Profiling of miRNA in EVs released from ECs incubated with β2 GPI and either control IgG or anti-β2 GPI antibodies revealed numerous differences in the content of specific miRNAs, including a significant decrease in mIR126. These observations demonstrate that, although anti-β2 GPI-derived endothelial EVs contain IL-1β, they activate unstimulated ECs through a TLR7-dependent and ssRNA-dependent pathway. Alterations in miRNA content may contribute to the ability of EVs derived from ECs exposed to anti-β2 GPI antibodies to activate unstimulated ECs in an autocrine or paracrine manner.
Collapse
Affiliation(s)
- M Wu
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - J Barnard
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - S Kundu
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - K R McCrae
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
- Hematology and Solid Tumor Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
44
|
Peters AS, Hakimi M, Vittas S, Fleming TH, Nawroth PP, Böckler D, Dihlmann S. Gender difference in glyoxalase 1 activity of atherosclerotic carotid artery lesions. J Vasc Surg 2015; 62:471-6. [DOI: 10.1016/j.jvs.2014.02.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/27/2014] [Indexed: 01/23/2023]
|
45
|
Massaro M, Martinelli R, Gatta V, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Buonomo T, Stuppia L, Storelli C, De Caterina R. Transcriptome-based identification of new anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions [corrected]. PLoS One 2015; 10:e0129652. [PMID: 26114549 PMCID: PMC4482638 DOI: 10.1371/journal.pone.0129652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/12/2015] [Indexed: 01/01/2023] Open
Abstract
Scope High intakes of n-3 fatty acids exert anti-inflammatory effects and cardiovascular protection, but the underlying molecular basis is incompletely defined. By genome-wide analysis we searched for novel effects of docosahexaenoic acid (DHA) on gene expression and pathways in human vascular endothelium under pro-inflammatory conditions. Methods and Results Human umbilical vein endothelial cells were treated with DHA and then stimulated with interleukin(IL)-1β. Total RNA was extracted, and gene expression examined by DNA microarray. DHA alone altered the expression of 188 genes, decreasing 92 and increasing 96. IL-1β changed the expression of 2031 genes, decreasing 997 and increasing 1034. Treatment with DHA before stimulation significantly affected the expression of 116 IL-1β-deregulated genes, counter-regulating the expression of 55 genes among those decreased and of 61 among those increased. Functional and network analyses identified immunological, inflammatory and metabolic pathways as the most affected. Newly identified DHA-regulated genes are involved in stemness, cellular growth, cardiovascular system function and cancer, and included cytochrome p450 4F2(CYP4F2), transforming growth factor(TGF)-β2, Cluster of Differentiation (CD)47, caspase recruitment domain(CARD)11 and phosphodiesterase(PDE)5α. Conclusions Endothelial exposure to DHA regulates novel genes and related pathways. Such unbiased identification should increase our understanding of mechanisms by which n-3 fatty acids affect human diseases.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Rosanna Martinelli
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Medicine and Surgery of Salerno University, Salerno, Italy
| | - Valentina Gatta
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | | | - Liborio Stuppia
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | - Raffaele De Caterina
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
- Fondazione Toscana “Gabriele Monasterio”, Pisa, Italy
- * E-mail:
| |
Collapse
|
46
|
Verdoia M, Barbieri L, Di Giovine G, Marino P, Suryapranata H, De Luca G. Neutrophil to Lymphocyte Ratio and the Extent of Coronary Artery Disease: Results From a Large Cohort Study. Angiology 2015; 67:75-82. [PMID: 25818102 DOI: 10.1177/0003319715577529] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The neutrophil to lymphocyte ratio (NLR), an inflammatory biomarker, may be of predictive and prognostic value for cardiovascular (CV) events. We evaluated the relationship of NLR with the prevalence and extent of coronary artery disease (CAD) in consecutive patients undergoing elective or urgent coronary angiography. Our population (n = 3738 patients) was divided into NLR quartiles. Higher NLR was associated with aging and established CV risk factors, previous percutaneous coronary revascularization, acute presentation, and more complex pharmacological therapy. The NLR was related to platelet count, white blood cell count, creatinine, glycemia, uric acid, and C-reactive protein (all P = .001) levels but inversely related to hemoglobin (P < .001), total cholesterol (P = .005), and triglycerides (P < .001) levels. The NLR was associated with multivessel disease (P < .001), anterior descending, right coronary arteries (P < .001) or circumflex branch lesions (P = .01), percentage of stenosis (P < .001), coronary calcification (P < .001), and intracoronary thrombus (P < .001) but inversely with in-stent restenosis (P < .001) and thrombolysis in myocardial infarction flow (P = .04). The NLR was directly related to the prevalence of CAD (P = .001) and severe CAD (P < .001). In patients undergoing coronary angiography, the NLR is independently associated with the prevalence and severity of CAD.
Collapse
Affiliation(s)
- Monica Verdoia
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Lucia Barbieri
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Gabriella Di Giovine
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Paolo Marino
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | | | | | | |
Collapse
|
47
|
Rothmeier AS, Marchese P, Petrich BG, Furlan-Freguia C, Ginsberg MH, Ruggeri ZM, Ruf W. Caspase-1-mediated pathway promotes generation of thromboinflammatory microparticles. J Clin Invest 2015; 125:1471-84. [PMID: 25705884 DOI: 10.1172/jci79329] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/09/2015] [Indexed: 12/30/2022] Open
Abstract
Extracellular ATP is a signal of tissue damage and induces macrophage responses that amplify inflammation and coagulation. Here we demonstrate that ATP signaling through macrophage P2X7 receptors uncouples the thioredoxin (TRX)/TRX reductase (TRXR) system and activates the inflammasome through endosome-generated ROS. TRXR and inflammasome activity promoted filopodia formation, cellular release of reduced TRX, and generation of extracellular thiol pathway-dependent, procoagulant microparticles (MPs). Additionally, inflammasome-induced activation of an intracellular caspase-1/calpain cysteine protease cascade degraded filamin, thereby severing bonds between the cytoskeleton and tissue factor (TF), the cell surface receptor responsible for coagulation activation. This cascade enabled TF trafficking from rafts to filopodia and ultimately onto phosphatidylserine-positive, highly procoagulant MPs. Furthermore, caspase-1 specifically facilitated cell surface actin exposure, which was required for the final release of highly procoagulant MPs from filopodia. Together, the results of this study delineate a thromboinflammatory pathway and suggest that components of this pathway have potential as pharmacological targets to simultaneously attenuate inflammation and innate immune cell-induced thrombosis.
Collapse
|
48
|
Tang JN, Shen DL, Liu CL, Wang XF, Zhang L, Xuan XX, Zhang JY, Cui LL. Plasma Levels of Cl q/TNF-Related Protein 1 and Interleukin 6 in Patients With Acute Coronary Syndrome or Stable Angina Pectoris. Am J Med Sci 2015; 349:130-6. [DOI: 10.1097/maj.0000000000000378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Diagnostic potential of differentially expressed Homer1, IL-1β, and TNF-α in coronary artery disease. Int J Mol Sci 2014; 16:535-46. [PMID: 25551602 PMCID: PMC4307261 DOI: 10.3390/ijms16010535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022] Open
Abstract
Increasing evidences suggest that inflammation plays an important role in the pathogenesis of coronary artery disease (CAD). Numerous inflammatory cytokines and related genes mediate adverse cardiovascular events in patients with CAD, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and Homer in the present study. The study was carried out on 163 CAD patients at different stages and 68 controls. The gene expression of Homer1, Homer2, Homer3, IL-1β, and TNF-α in the peripheral blood leukocytes were measured by real-time polymerase chain reaction. The mRNA levels of Homer1, IL-1β, and TNF-α in CAD patients were significantly higher than those in the control group, but not Homer2 and Homer3. However, there was no considerable difference in the mRNA levels of Homer1, IL-1β, and TNF-α among AMI, UAP, and SAP three subgroups of CAD. The receiver operating characteristic (ROC) curves showed that Homer1 had a better diagnostic value for UAP patients compared with IL-1β and TNF-α. Like IL-1β and TNF-α, Homer1 may also be an important participant of atherosclerotic plaque development and eventually rupture. The results of the present study may provide an important basis for diagnosing CAD patients, and provide new therapeutic targets for CAD.
Collapse
|
50
|
Vallejo S, Palacios E, Romacho T, Villalobos L, Peiró C, Sánchez-Ferrer CF. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2014; 13:158. [PMID: 25518980 PMCID: PMC4276125 DOI: 10.1186/s12933-014-0158-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/21/2014] [Indexed: 01/06/2023] Open
Abstract
Background Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. Results In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. Conclusions In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.
Collapse
Affiliation(s)
- Susana Vallejo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| | - Erika Palacios
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain. .,Present address: Departamento de Ciencias de la Salud, Edificio CN208, Oficina O, Universidad de las Américas, Puebla, México.
| | - Tania Romacho
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain. .,Present address: Paul Langerhans-Group, Integrative Physiology, German Diabetes Center, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
| | - Laura Villalobos
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| | - Concepción Peiró
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| | - Carlos F Sánchez-Ferrer
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| |
Collapse
|