1
|
Lui JC, Palmer AC, Christian P. Nutrition, Other Environmental Influences, and Genetics in the Determination of Human Stature. Annu Rev Nutr 2024; 44:205-229. [PMID: 38759081 DOI: 10.1146/annurev-nutr-061121-091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Linear growth during three distinct stages of life determines attained stature in adulthood: namely, in utero, early postnatal life, and puberty and the adolescent period. Individual host factors, genetics, and the environment, including nutrition, influence attained human stature. Each period of physical growth has its specific biological and environmental considerations. Recent epidemiologic investigations reveal a strong influence of prenatal factors on linear size at birth that in turn influence the postnatal growth trajectory. Although average population height changes have been documented in high-income regions, stature as a complex human trait is not well understood or easily modified. This review summarizes the biology of linear growth and its major drivers, including nutrition from a life-course perspective, the genetics of programmed growth patterns or height, and gene-environment interactions that determine human stature in toto over the life span. Implications for public health interventions and knowledge gaps are discussed.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
2
|
Posset R, Garbade SF, Gleich F, Scharre S, Okun JG, Gropman AL, Nagamani SCS, Druck AC, Epp F, Hoffmann GF, Kölker S, Zielonka M. Severity-adjusted evaluation of liver transplantation on health outcomes in urea cycle disorders. Genet Med 2024; 26:101039. [PMID: 38054409 DOI: 10.1016/j.gim.2023.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE Liver transplantation (LTx) is performed in individuals with urea cycle disorders when medical management (MM) insufficiently prevents the occurrence of hyperammonemic events. However, there is a paucity of systematic analyses on the effects of LTx on health-related outcome parameters compared to individuals with comparable severity who are medically managed. METHODS We investigated the effects of LTx and MM on validated health-related outcome parameters, including the metabolic disease course, linear growth, and neurocognitive outcomes. Individuals were stratified into "severe" and "attenuated" categories based on the genotype-specific and validated in vitro enzyme activity. RESULTS LTx enabled metabolic stability by prevention of further hyperammonemic events after transplantation and was associated with a more favorable growth outcome compared with individuals remaining under MM. However, neurocognitive outcome in individuals with LTx did not differ from the medically managed counterparts as reflected by the frequency of motor abnormality and cognitive standard deviation score at last observation. CONCLUSION Whereas LTx enabled metabolic stability without further need of protein restriction or nitrogen-scavenging therapy and was associated with a more favorable growth outcome, LTx-as currently performed-was not associated with improved neurocognitive outcomes compared with long-term MM in the investigated urea cycle disorders.
Collapse
Affiliation(s)
- Roland Posset
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sven F Garbade
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Svenja Scharre
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea L Gropman
- Children's National Health System and The George Washington School of Medicine, Washington, DC
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Ann-Catrin Druck
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Friederike Epp
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Zielonka
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Names GR, Grindstaff JL, Westneat DF, Heidinger BJ. Climate change and its effects on body size and shape: the role of endocrine mechanisms. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220509. [PMID: 38310941 PMCID: PMC10838645 DOI: 10.1098/rstb.2022.0509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
In many organisms, rapidly changing environmental conditions are inducing dramatic shifts in diverse phenotypic traits with consequences for fitness and population viability. However, the mechanisms that underlie these responses remain poorly understood. Endocrine signalling systems often influence suites of traits and are sensitive to changes in environmental conditions; they are thus ideal candidates for uncovering both plastic and evolved consequences of climate change. Here, we use body size and shape, a set of integrated traits predicted to shift in response to rising temperatures with effects on fitness, and insulin-like growth factor-1 as a case study to explore these ideas. We review what is known about changes in body size and shape in response to rising temperatures and then illustrate why endocrine signalling systems are likely to be critical in mediating these effects. Lastly, we discuss research approaches that will advance understanding of the processes that underlie rapid responses to climate change and the role endocrine systems will have. Knowledge of the mechanisms involved in phenotypic responses to climate change will be essential for predicting both the ecological and the long-term evolutionary consequences of a warming climate. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Gabrielle R. Names
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, Fargo, ND 58102, USA
- Biology Department, California Lutheran University, 60 West Olsen Road, Thousand Oaks, CA 91360, USA
| | | | - David F. Westneat
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, KY 40506, USA
| | - Britt J. Heidinger
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, Fargo, ND 58102, USA
| |
Collapse
|
4
|
Brankovič J, Leskovec J, Šturm S, Cerkvenik-Flajs V, Šterpin S, Osredkar J, Pogorevc E, Antolinc D, Vrecl M. Experimental Exposure to Bisphenol A Has Minimal Effects on Bone Tissue in Growing Rams-A Preliminary Study. Animals (Basel) 2022; 12:2179. [PMID: 36077899 PMCID: PMC9454980 DOI: 10.3390/ani12172179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) is a well-known synthetic compound that belongs to the group of endocrine-disrupting chemicals. Although bone tissue is a target for these compounds, studies on BPA-related effects on bone morphology in farm animals are limited. In this preliminary study, we investigated the effects of short-term dietary BPA exposure on femoral morphology, metabolism, mineral content, and biomechanical behavior in rams aged 9-12 months. Fourteen rams of the Istrian Pramenka breed were randomly divided into a BPA group and a control group (seven rams/group) and exposed to 25 µg BPA/kg bw for 64 days in feed. Blood was collected for determination of bone turnover markers (procollagen N-terminal propeptide, C-terminal telopeptide), and femurs were assessed via computed tomography, histomorphometry, three-point bending test, and mineral analysis. BPA had no significant effects on most of the parameters studied. Only mineral analysis showed decreased manganese (50%; p ≤ 0.05) and increased copper content (25%; p ≤ 0.05) in the femurs of BPA-exposed rams. These results suggest that a 2-month, low-dose exposure to BPA in growing rams did not affect the histomorphology, metabolism, and biomechanical behavior of femurs; however, it affected the composition of microelements, which could affect the histometric and biophysical properties of bone in the long term.
Collapse
Affiliation(s)
- Jana Brankovič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Jakob Leskovec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Sabina Šturm
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Vesna Cerkvenik-Flajs
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Saša Šterpin
- University Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
| | - Joško Osredkar
- University Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Estera Pogorevc
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Cesta v Mestni log 47, 1000 Ljubljana, Slovenia
| | - David Antolinc
- Chair for Testing in Materials and Structures, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Zheng Y, Zhang Y, Wu L, Riaz H, Li Z, Shi D, Rehman SU, Liu Q, Cui K. Generation of Heritable Prominent Double Muscle Buttock Rabbits via Novel Site Editing of Myostatin Gene Using CRISPR/Cas9 System. Front Vet Sci 2022; 9:842074. [PMID: 35669173 PMCID: PMC9165342 DOI: 10.3389/fvets.2022.842074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Rabbits have been domesticated for meat, wool, and fur production, and have also been cherished as a companion, artistic inspiration, and an experimental model to study many human diseases. In the present study, the muscle mass negative regulator gene myostatin (MSTN) was knocked out in rabbits at two novel sites in exon3, and the function of these mutations was determined in subsequent generations. The prominent double muscle phenotype with hyperplasia or hypertrophy of muscle fiber was observed in the MSTN-KO rabbits, and a similar phenotype was confirmed in the F1 generation. Moreover, the average weight of 80-day-old MSTN-KO rabbits (2,452 ± 63 g) was higher than that of wild-type rabbits (2,393.2 ± 106.88 g), and also the bodyweight of MSTN-KO rabbits (3,708 ± 43.06g) was significantly higher (P < 0.001) at the age of 180 days than wild-type (WT) rabbits (3,224 ± 48.64g). In MSTN-KO rabbits, fourteen rabbit pups from the F1 generation and thirteen from the F2 generation stably inherited the induced MSTN gene mutations. Totally, 194 pups were produced in the F1 generation of which 49 were MSTN-KO rabbits, while 47 pups were produced in the F2 generation of which 20 were edited rabbits, and the ratio of edited to wild-type rabbits in the F2 generation was approximately 1:1. Thus, we successfully generated a heritable double muscle buttocks rabbits via myostatin mutation with CRISPR/Cas9 system, which could be valuable in rabbit's meat production and also a useful animal model to study the development of muscles among livestock species and improve their important economic traits as well as the human muscle development-related diseases.
Collapse
Affiliation(s)
- Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Liyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Zeng ZG, Zhou GP, Wei L, Qu W, Liu Y, Tan YL, Wang J, Sun LY, Zhu ZJ. Therapeutic potential of living donor liver transplantation from heterozygous carrier donors in children with propionic acidemia. Orphanet J Rare Dis 2022; 17:62. [PMID: 35189944 PMCID: PMC8862340 DOI: 10.1186/s13023-022-02233-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/06/2022] [Indexed: 02/08/2023] Open
Abstract
Background Current world experience regarding living donor liver transplantation (LDLT) in the treatment of propionic acidemia (PA) is limited, especially in terms of using obligate heterozygous carriers as donors. This study aimed to evaluate the clinical outcomes of LDLT in children with PA.
Methods From November 2017 to January 2020, 7 of the 192 children who underwent LDLT at our institution had been diagnosed with PA (median age, 2.1 years; range, 1.1–5.8 years). The primary indication for transplantation was frequent metabolic decompensations in 6 patients and preventative treatment in 1 patient. Of the seven parental living donors, six were genetically proven obligate heterozygous carriers. Results During a median follow-up of 23.9 months (range, 13.9–40.2 months), all patients were alive with 100% allograft survival, and no severe transplant-related complications occurred. In the case of liberalized protein intake, they did not suffer metabolic decompensation or disease-related complications and made progress in neurodevelopmental delay and body growth, as well as blood and urinary metabolite levels. In one patient with pre-existing mild dilated cardiomyopathy, her echocardiogram results completely normalized 13.8 months post-transplant. All living donors recovered well after surgery, with no metabolic decompensations or procedure-related complications. Western blotting revealed that the hepatic expressions of PCCA and PCCB in one of the heterozygous donors were comparable to those of the normal healthy control at the protein level. Conclusions LDLT using partial liver grafts from asymptomatic obligate heterozygous carrier donors is a viable therapeutic option for selected PA patients, with no negative impact on donors’ and recipients' clinical courses.
Collapse
|
7
|
Lin C, Ruan N, Li L, Chen Y, Hu X, Chen Y, Hu X, Zhang Y. FGF8-mediated signaling regulates tooth developmental pace during odontogenesis. J Genet Genomics 2021; 49:40-53. [PMID: 34500094 DOI: 10.1016/j.jgg.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
The developing human and mouse teeth constitute an ideal model system to study the regulatory mechanism underlying organ growth control since their teeth share highly conserved and well-characterized developmental processes and their developmental tempo varies notably. In the current study, we manipulated heterogenous recombination between human and mouse dental tissues and demonstrate that the dental mesenchyme dominates the tooth developmental tempo and FGF8 could be a critical player during this developmental process. Forced activation of FGF8 signaling in the dental mesenchyme of mice promoted cell proliferation, prevented cell apoptosis via p38 and perhaps PI3K-Akt intracellular signaling, and impelled the transition of the cell cycle from G1- to S-phase in the tooth germ, resulting in the slowdown of the tooth developmental pace. Our results provide compelling evidence that extrinsic signals can profoundly affect tooth developmental tempo and the dental mesenchymal FGF8 could be a pivotal factor in controlling the developmental pace in a non-cell-autonomous manner during mammalian odontogenesis.
Collapse
Affiliation(s)
- Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Ningsheng Ruan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Linjun Li
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Yibin Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| |
Collapse
|
8
|
Carlone DL, Riba-Wolman RD, Deary LT, Tovaglieri A, Jiang L, Ambruzs DM, Mead BE, Shah MS, Lengner CJ, Jaenisch R, Breault DT. Telomerase expression marks transitional growth-associated skeletal progenitor/stem cells. Stem Cells 2021; 39:296-305. [PMID: 33438789 PMCID: PMC7986156 DOI: 10.1002/stem.3318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self‐renewing tissues. Here we investigated the role of mTert‐expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth. mTert‐GFP+ cells were identified in regions known to house SSCs, including the metaphyseal stroma, growth plate, and the bone marrow. We also show that mTert‐expressing cells are a distinct SSC population with enriched colony‐forming capacity and contribute to multiple mesenchymal lineages, in vitro. In contrast, in vivo lineage‐tracing studies identified mTert+ cells as osteochondral progenitors and contribute to the bone‐forming cell pool during endochondral bone growth with a subset persisting into adulthood. Taken together, our results show that mTert expression is temporally regulated and marks SSCs during a discrete phase of transitional growth between rapid bone growth and maintenance.
Collapse
Affiliation(s)
- Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Rebecca D Riba-Wolman
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luke T Deary
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lijie Jiang
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dana M Ambruzs
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Benjamin E Mead
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Effects of hand preference on digit lengths and digit ratios among children and adults. Early Hum Dev 2020; 151:105204. [PMID: 33059164 DOI: 10.1016/j.earlhumdev.2020.105204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Prenatal sex hormones may not exclusively determine effects of hand preference on digit ratios. Genetic determination is an alternative possibility. AIM To study the likelihood of similar effects of hand preference on digit lengths and digit ratios. METHODS We selected similar numbers of left-handers and right-handers in samples of kindergarten children (N = 101, age range: 3.5-7 years) and adults (N = 189, age range: 17-28 years) and measured digit lengths (excluding the thumb) directly on the palmar hand. RESULTS Compared to right-handers, left-handers had longer digits and lower third-to-fourth (3D:4D) digit ratios among children, whereas an opposite pattern of handedness differences occurred among adults. CONCLUSIONS Effects of hand preference on digit lengths and ratios might be genetically/ontogenetically determined. Also discussed are implications of this set of findings for digit ratio research.
Collapse
|
10
|
Brankovič J, Jan J, Fazarinc G, Vrecl M. Bone tissue morphology of rat offspring lactationally exposed to polychlorinated biphenyl 169 and 155. Sci Rep 2020; 10:19016. [PMID: 33149271 PMCID: PMC7642367 DOI: 10.1038/s41598-020-76057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous, persistent, organic pollutants also considered endocrine-disrupting chemicals. Our study examined the effects of lactational exposure to nondioxin-like PCB-155 and/or dioxin-like PCB-169 on longitudinal femur growth at the distal epiphyseal growth plate (EGP) in young rats at three different ages [postnatal days (PNDs) 9, 22, and 42]. After delivery, lactating rats were divided into four groups (PCB-169, PCB-155, PCB-155 + 169, and control) and administered PCBs intraperitoneally. The femurs of offspring were used to estimate growth rate (µm/day), and histomorphometric analysis on the distal femur included the thickness of the EGP and zones of proliferation and hypertrophy with calcification. Stereometry was used to determine trabecular bone volume density. In the PCB-169 and PCB-155 + 169 groups, PCB-169 affected longitudinal bone growth in the early postnatal period by interfering with chondrocytes in the EGP zone of proliferation and, to a lesser extent, the zone of hypertrophy. Morphometric alterations in EGP structure diminished until puberty. A slow growth rate persisted in the PCB-169 group until PND 42, while in the PCB-155 group, a fast growth rate between PNDs 9 to 22 was significantly reduced between PNDs 22 to 42. Sterometric assessment showed decreased trabecular bone volume in the PCB-155 + 169 group compared with that in the control on PND 9 and increased in the PCB-169 group compared with that in the PCB-155 group on PND 42. To summarize, studied PCB congeners exerted congener- and age-dependent effects on femur growth rate and its histomorphometric characteristics.
Collapse
Affiliation(s)
- Jana Brankovič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia.
| | - Janja Jan
- Department of Dental Diseases and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, Slovenia
| | - Gregor Fazarinc
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| |
Collapse
|
11
|
Abstract
Growth is the task of children. We review the normal process of linear growth from the fetus through adolescence and note that growth is the result of age- and gender-dependent interactions among key genetic, environmental, dietary, socioeconomic, developmental, behavioral, nutritional, metabolic, biochemical, and hormonal factors. We then define the wide range of normative data at each stage of growth and note that a pattern within this range is generally indicative of good general health and that growth significantly slower than this range may lead to growth faltering and subsequent short stature. Although not often emphasized, we detail how to properly measure infants and children because height velocity is usually determined from two height measurements (both relatively large values) to calculate the actual height velocity (a relatively much smaller number in comparison). Traditionally the physiology of growth has been taught from an endocrine-centric point-of-view. Here we review the hypothalamic-pituitary-end organ axes for the GH/IGF-1 and gonadal steroid hormones (hypothalamic-pituitary-gonadal axis), both during "mini"-puberty as well as at puberty. However, over the past few decades much more emphasis has been placed on the growth plate and its many interactions with the endocrine system but also with its own intrinsic physiology and gene mutations. These latter, whether individually (large effect size) or in combination with many others including endocrine system-based, may account in toto for meaningful differences in adult height. The clinical assessment of children with short stature includes medical, social and family history, physical exam and importantly proper interpretation of the growth curve. This analysis should lead to judicious use of screening laboratory and imaging tests depending on the pre-test probability (Bayesian inference) of a particular diagnosis in that child. In particular for those with no pathological features in the history and physical exam and a low, but normal height velocity, may lead only to a bone age exam and reevaluation (re-measurement), perhaps 6 months later. he next step depends on the comfort level of the primary care physician, the patient, and the parent; that is, whether to continue with the evaluation with more directed, more sophisticated testing, again based on Bayesian inference or to seek consultation with a subspecialist pediatrician based on the data obtained. This is not necessarily an endocrinologist. The newest area and the one most in flux is the role for genetic testing, given that growth is a complex process with large effect size for single genes but smaller effect sizes for multiple other genes which in the aggregate may be relevant to attained adult height. Genetics is a discipline that is rapidly changing, especially as the cost of exome or whole gene sequencing diminishes sharply. Within a decade it is quite likely that a genetic approach to the evaluation of children with short stature will become the standard, truncating the diagnostic odyssey and be cost effective as fewer biochemical and imaging studies are required to make a proper diagnosis.
Collapse
Affiliation(s)
- Roberto Bogarín
- Department of Pediatric Endocrinology, National Children's Hospital, San José, Costa Rica
| | - Erick Richmond
- Department of Pediatric Endocrinology, National Children's Hospital, San José, Costa Rica
| | - Alan D Rogol
- Department of Pediatric Endocrinology, University of Virginia, Charlottesville, VA, USA -
| |
Collapse
|
12
|
GPR101 drives growth hormone hypersecretion and gigantism in mice via constitutive activation of G s and G q/11. Nat Commun 2020; 11:4752. [PMID: 32958754 PMCID: PMC7506554 DOI: 10.1038/s41467-020-18500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Growth hormone (GH) is a key modulator of growth and GH over-secretion can lead to gigantism. One form is X-linked acrogigantism (X-LAG), in which infants develop GH-secreting pituitary tumors over-expressing the orphan G-protein coupled receptor, GPR101. The role of GPR101 in GH secretion remains obscure. We studied GPR101 signaling pathways and their effects in HEK293 and rat pituitary GH3 cell lines, human tumors and in transgenic mice with elevated somatotrope Gpr101 expression driven by the rat Ghrhr promoter (GhrhrGpr101). Here, we report that Gpr101 causes elevated GH/prolactin secretion in transgenic GhrhrGpr101 mice but without hyperplasia/tumorigenesis. We show that GPR101 constitutively activates not only Gs, but also Gq/11 and G12/13, which leads to GH secretion but not proliferation. These signatures of GPR101 signaling, notably PKC activation, are also present in human pituitary tumors with high GPR101 expression. These results underline a role for GPR101 in the regulation of somatotrope axis function.
Collapse
|
13
|
Posset R, Garbade SF, Gleich F, Gropman AL, de Lonlay P, Hoffmann GF, Garcia-Cazorla A, Nagamani SCS, Baumgartner MR, Schulze A, Dobbelaere D, Yudkoff M, Kölker S, Zielonka M. Long-term effects of medical management on growth and weight in individuals with urea cycle disorders. Sci Rep 2020; 10:11948. [PMID: 32686765 PMCID: PMC7371674 DOI: 10.1038/s41598-020-67496-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Low protein diet and sodium or glycerol phenylbutyrate, two pillars of recommended long-term therapy of individuals with urea cycle disorders (UCDs), involve the risk of iatrogenic growth failure. Limited evidence-based studies hamper our knowledge on the long-term effects of the proposed medical management in individuals with UCDs. We studied the impact of medical management on growth and weight development in 307 individuals longitudinally followed by the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD). Intrauterine growth of all investigated UCDs and postnatal linear growth of asymptomatic individuals remained unaffected. Symptomatic individuals were at risk of progressive growth retardation independent from the underlying disease and the degree of natural protein restriction. Growth impairment was determined by disease severity and associated with reduced or borderline plasma branched-chain amino acid (BCAA) concentrations. Liver transplantation appeared to have a beneficial effect on growth. Weight development remained unaffected both in asymptomatic and symptomatic individuals. Progressive growth impairment depends on disease severity and plasma BCAA concentrations, but cannot be predicted by the amount of natural protein intake alone. Future clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth in UCDs.
Collapse
Affiliation(s)
- Roland Posset
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Florian Gleich
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Service de Maladies Metaboliques (MaMEA), filière G2M, Université Paris-Descartes, Paris, France
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Angeles Garcia-Cazorla
- Hospital San Joan de Deu, Institut Pediàtric de Recerca. Servicio de Neurologia and CIBERER, ISCIII, Barcelona, Spain
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Matthias R Baumgartner
- University Children's Hospital Zurich and Children's Research Center, Zurich, Switzerland
| | - Andreas Schulze
- University of Toronto and the Hospital for Sick Children, Toronto, ON, Canada
| | - Dries Dobbelaere
- Centre de Référence Maladies Héréditaires du Métabolisme de L'Enfant Et de L'Adulte, Jeanne de Flandre Hospital, CHRU Lille, and Faculty of Medicine, University Lille 2, Lille, France
| | - Marc Yudkoff
- School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Matthias Zielonka
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| |
Collapse
|
14
|
Abe T, Bell ZW, Wong V, Spitz RW, Yamada Y, Song JS, Loenneke JP. Skeletal muscle size distribution in large‐sized male and female athletes. Am J Hum Biol 2020; 33:e23473. [DOI: 10.1002/ajhb.23473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Takashi Abe
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory The University of Mississippi University Mississippi USA
| | - Zachary W. Bell
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory The University of Mississippi University Mississippi USA
| | - Vickie Wong
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory The University of Mississippi University Mississippi USA
| | - Robert W. Spitz
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory The University of Mississippi University Mississippi USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory The University of Mississippi University Mississippi USA
| | - Jun Seob Song
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory The University of Mississippi University Mississippi USA
| | - Jeremy P. Loenneke
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory The University of Mississippi University Mississippi USA
| |
Collapse
|
15
|
Nicholas JL, Douglas KE, Waters W, Gallegos Riofrío CA, Chapnick M, Habif DV, True S, Musonza C, Iannotti L. US Evaluation of Bone Age in Rural Ecuadorian Children: Association with Anthropometry and Nutrition. Radiology 2020; 296:161-169. [PMID: 32343211 DOI: 10.1148/radiol.2020190606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Stunted growth and development is a serious global public health problem. A limited number of field measures exist that can be used to evaluate stunting and its underlying biologic mechanisms. Purpose To assess bone age using tablet-based US in young children living in a rural community in Ecuador, where stunting is prevalent, and to evaluate the associations between bone age, anthropometry, and diet. Materials and Methods From June through August 2017, tablet-based US was used to assess bone age in young children within their homes in rural Cotopaxi, Ecuador. Bone age z scores (BAZs) were assigned using the standards of Greulich and Pyle. Anthropometric data were collected using international protocols; z scores were generated from World Health Organization Child Growth Standards. Groups were compared using the Student t test. Univariate analyses and generalized linear regression modeling were applied to test the association between bone age and anthropometry, adjusting for covariates including age, sex, dietary intake, and morbidities. Results A total of 128 children (mean age, 33.9 months ± 1.8 [standard deviation]; 59 girls, 69 boys) were evaluated. Mean BAZ was -1.20 ± 1.16. Mean BAZ was lower in children with stunted growth (-1.42 ± 1.18) than in children without stunted growth (-0.98 ± 1.10, P = .04). In adjusted analysis, BAZ was associated with the following variables: height-for-age z score (β coefficient, 0.26; 95% confidence interval [CI]: 0.05, 0.46; P = .01), female sex (β coefficient, 0.51; 95% CI: 0.15, 0.88; P = .006), number of times eggs were consumed in the previous 24 hours (β coefficient, 0.22; 95% CI: 0.05, 0.38; P = .009), number of times savory or salty snacks were consumed in the previous 24 hours (β coefficient, 0.42; 95% CI: 0.15, 0.68; P = .002), and ownership of pig livestock, which was a binary variable (β coefficient, -0.46; 95% CI: -0.82, -0.09; P = .01). Conclusion Bone age determined using tablet-based US was lower in children who had stunted growth and was associated with diet in a cohort of children living in rural Ecuador. © RSNA, 2020 See also the editorial by Dillman and Ayyala in this issue.
Collapse
Affiliation(s)
- Jennifer L Nicholas
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - Katherine E Douglas
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - William Waters
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - Carlos Andres Gallegos Riofrío
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - Melissa Chapnick
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - David V Habif
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - Sarah True
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - Clive Musonza
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| | - Lora Iannotti
- From the Mallinckrodt Institute of Radiology-Pediatric Radiology, Washington University School of Medicine, St Louis, Mo (J.L.N., K.E.D.); Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Quito, Ecuador (W.W.); and Brown School of Social Work and Public Health, Washington University, St Louis, Mo (C.A.G.R., M.C., D.V.H., S.T., C.M., L.I.)
| |
Collapse
|
16
|
Romanov D, Butenko E, Bakhtadze G, Shkurat T. Genome distance between conserved elements in neighborhoods of growth-regulating genes is correlated with morpho-physiological traits in mammals. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Molema F, Gleich F, Burgard P, van der Ploeg AT, Summar ML, Chapman KA, Lund AM, Rizopoulos D, Kölker S, Williams M. Decreased plasma l-arginine levels in organic acidurias (MMA and PA) and decreased plasma branched-chain amino acid levels in urea cycle disorders as a potential cause of growth retardation: Options for treatment. Mol Genet Metab 2019; 126:397-405. [PMID: 30827756 DOI: 10.1016/j.ymgme.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Patients with methylmalonic acidemia (MMA) and propionic acidemia (PA) and urea cycle disorders (UCD), treated with a protein restricted diet, are prone to growth failure. To obtain optimal growth and thereby efficacious protein incorporation, a diet containing the essential and functional amino acids for growth is necessary. Optimal growth will result in improved protein tolerance and possibly a decrease in the number of decompensations. It thus needs to be determined if amino acid deficiencies are associated with the growth retardation in these patient groups. We studied the correlations between plasma L-arginine levels, plasma branched chain amino acids (BCAA: L-isoleucine, L-leucine and L-valine) levels (amino acids known to influence growth), and height in MMA/PA and UCD patients. METHODS We analyzed data from longitudinal visits made in stable metabolic periods by patients registered at the European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD, Chafea no. 2010 12 01). RESULTS In total, 263 MMA/PA and 311 UCD patients were included, all aged below 18 years of age. In patients with MMA and PA, height z-score was positively associated with patients' natural-protein-to-energy prescription ratio and their plasma L-valine and L-arginine levels, while negatively associated with the amount of synthetic protein prescription and their age at visit. In all UCDs combined, height z-score was positively associated with the natural-protein-to-energy prescription ratio. In those with carbamylphosphate synthetase 1 deficiency (CPS1-D), those with male ornithine transcarbamylase deficiency (OTC-D), and those in the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome subgroup, height z-score was positively associated with patients' plasma L-leucine levels. In those with argininosuccinate synthetase deficiency (ASS-D) and argininosuccinate lyase deficiency (ASL-D), height was positively associated with patients' plasma L-valine levels. CONCLUSION Plasma L-arginine and L-valine levels in MMA/PA patients and plasma L-leucine and L-valine levels in UCD patients, as well as the protein-to-energy prescription ratio in both groups were positively associated with height. Optimization of these plasma amino acid levels is essential to support normal growth and increase protein tolerance in these disorders. Consequently this could improve the protein-to-energy intake ratio.
Collapse
Affiliation(s)
- Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Florian Gleich
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, Department I, University Hospital D-69120, Heidelberg, Germany
| | - Peter Burgard
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, Department I, University Hospital D-69120, Heidelberg, Germany
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marshall L Summar
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, DC 20010, USA
| | - Kimberly A Chapman
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, DC 20010, USA
| | - Allan M Lund
- Departments of Paediatrics and Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, Department I, University Hospital D-69120, Heidelberg, Germany
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Romanov DE, Butenko EV, Shkurat TP. Genome distance between growth-regulating genes and telomeres is correlated with morpho-physiological traits in mammals. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Vandekar SN, Shou H, Satterthwaite TD, Shinohara RT, Merikangas AK, Roalf DR, Ruparel K, Rosen A, Gennatas ED, Elliott MA, Davatzikos C, Gur RC, Gur RE, Detre JA. Sex differences in estimated brain metabolism in relation to body growth through adolescence. J Cereb Blood Flow Metab 2019; 39:524-535. [PMID: 29072856 PMCID: PMC6421255 DOI: 10.1177/0271678x17737692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human brain consumes a disproportionate amount of the body's overall metabolic resources, and evidence suggests that brain and body may compete for substrate during development. Using perfusion MRI from a large cross-sectional cohort, we examined developmental changes of MRI-derived estimates of brain metabolism, in relation to weight change. Nonlinear models demonstrated that, in childhood, changes in body weight were inversely related to developmental age-related changes in brain metabolism. This inverse relationship persisted through early adolescence, after which body and brain metabolism began to decline. Females achieved maximum body growth approximately two years earlier than males, with a correspondingly earlier stabilization of brain metabolism to adult levels. These findings confirm prior findings with positron emission tomography performed in a much smaller cohort, demonstrate that relative brain metabolism can be inferred from noninvasive MRI data, and extend observations on the associations between body growth and brain metabolism to sex differences through adolescence.
Collapse
Affiliation(s)
- Simon N Vandekar
- 1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Haochang Shou
- 1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Russell T Shinohara
- 1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison K Merikangas
- 2 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Roalf
- 2 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kosha Ruparel
- 2 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Adon Rosen
- 2 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mark A Elliott
- 3 Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- 3 Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- 2 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.,3 Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,4 Philadelphia Veterans Administration Medical Center, Philadelphia, PA, USA.,5 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel E Gur
- 2 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.,3 Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- 3 Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
BMP Signaling Determines Body Size via Transcriptional Regulation of Collagen Genes in Caenorhabditis elegans. Genetics 2018; 210:1355-1367. [PMID: 30274988 DOI: 10.1534/genetics.118.301631] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023] Open
Abstract
Body size is a tightly regulated phenotype in metazoans that depends on both intrinsic and extrinsic factors. While signaling pathways are known to control organ and body size, the downstream effectors that mediate their effects remain poorly understood. In the nematode Caenorhabditis elegans, a Bone Morphogenetic Protein (BMP)-related signaling pathway is the major regulator of growth and body size. We investigated the transcriptional network through which the BMP pathway regulates body size and identified cuticle collagen genes as major effectors of growth control. We demonstrate that cuticle collagens can act as positive regulators (col-41), negative regulators (col-141), or dose-sensitive regulators (rol-6) of body size. Moreover, we find a requirement of BMP signaling for stage-specific expression of cuticle collagen genes. We show that the Smad signal transducers directly bind conserved Smad-binding elements in regulatory regions of col-141 and col-142, but not of col-41 Hence, cuticle collagen genes may be directly and indirectly regulated via the BMP pathway. Our work thus connects a conserved signaling pathway with its critical downstream effectors, advancing insight into how body size is specified. Since collagen mutations and misregulation are implicated in numerous human genetic disorders and injury sequelae, understanding how collagen gene expression is regulated has broad implications.
Collapse
|
21
|
Energy expenditure-body size associations: molecular coordination. Eur J Clin Nutr 2018; 72:1314-1319. [PMID: 30185844 DOI: 10.1038/s41430-018-0214-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022]
|
22
|
Abstract
Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC Rm 1-3330, 10 Center Drive, MSC-1103, Bethesda, MD, 20892-1103, United States.
| |
Collapse
|
23
|
Serrat MA, Ion G. Imaging IGF-I uptake in growth plate cartilage using in vivo multiphoton microscopy. J Appl Physiol (1985) 2017; 123:1101-1109. [PMID: 28798204 DOI: 10.1152/japplphysiol.00645.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Bones elongate through endochondral ossification in cartilaginous growth plates located at ends of primary long bones. Linear growth ensues from a cascade of biochemical signals initiated by actions of systemic and local regulators on growth plate chondrocytes. Although cellular processes are well defined, there is a fundamental gap in understanding how growth regulators are physically transported from surrounding blood vessels into and through dense, avascular cartilage matrix. Intravital imaging using in vivo multiphoton microscopy is one promising strategy to overcome this barrier by quantitatively tracking molecular delivery to cartilage from the vasculature in real time. We previously used in vivo multiphoton imaging to show that hindlimb heating increases vascular access of large molecules to growth plates using 10-, 40-, and 70-kDa dextran tracers. To comparatively evaluate transport of similarly sized physiological regulators, we developed and validated methods for measuring uptake of biologically active IGF-I into proximal tibial growth plates of live 5-wk-old mice. We demonstrate that fluorescently labeled IGF-I (8.2 kDa) is readily taken up in the growth plate and localizes to chondrocytes. Bioactivity tests performed on cultured metatarsal bones confirmed that the labeled protein is functional, assessed by phosphorylation of its signaling kinase, Akt. This methodology, which can be broadly applied to many different proteins and tissues, is relevant for understanding factors that affect delivery of biologically relevant molecules to the skeleton in real time. Results may lead to the development of drug-targeting strategies to treat a wide range of bone and cartilage pathologies.NEW & NOTEWORTHY This paper describes and validates a novel method for imaging transport of biologically active, fluorescently labeled IGF-I into skeletal growth plates of live mice using multiphoton microscopy. Cellular patterns of fluorescence in the growth plate were completely distinct from our prior publications using biologically inert probes, demonstrating for the first time in vivo localization of IGF-I in chondrocytes and perichondrium. These results form important groundwork for future studies aimed at targeting therapeutics into growth plates.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Gabriela Ion
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
24
|
Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ. Perspective: The Potential Role of Essential Amino Acids and the Mechanistic Target of Rapamycin Complex 1 (mTORC1) Pathway in the Pathogenesis of Child Stunting. Adv Nutr 2016; 7:853-65. [PMID: 27633102 PMCID: PMC5015042 DOI: 10.3945/an.116.013276] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missing. A dietary pattern of poor-quality protein is associated with stunting. Stunted children have significantly lower circulating essential amino acids than do nonstunted children. Inadequate dietary intakes of essential amino acids could adversely affect growth, because amino acids are required for synthesis of proteins. The master growth regulation pathway, the mechanistic target of rapamycin complex 1 (mTORC1) pathway, is exquisitely sensitive to amino acid availability. mTORC1 integrates cues such as nutrients, growth factors, oxygen, and energy to regulate growth of bone, skeletal muscle, nervous system, gastrointestinal tract, hematopoietic cells, immune effector cells, organ size, and whole-body energy balance. mTORC1 represses protein and lipid synthesis and cell and organismal growth when amino acids are deficient. Over the past 4 decades, the main paradigm for child nutrition in developing countries has been micronutrient malnutrition, with relatively less attention paid to protein. In this Perspective, we present the view that essential amino acids and the mTORC1 pathway play a key role in child growth. The current assumption that total dietary protein intake is adequate for growth among most children in developing countries needs re-evaluation.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
25
|
Trivellin G, Bjelobaba I, Daly AF, Larco DO, Palmeira L, Faucz FR, Thiry A, Leal LF, Rostomyan L, Quezado M, Schernthaner-Reiter MH, Janjic MM, Villa C, Wu TJ, Stojilkovic SS, Beckers A, Feldman B, Stratakis CA. Characterization of GPR101 transcript structure and expression patterns. J Mol Endocrinol 2016; 57:97-111. [PMID: 27282544 PMCID: PMC4959428 DOI: 10.1530/jme-16-0045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022]
Abstract
We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. In this work, GPR101 transcripts were characterized in human tissues by 5'-Rapid Amplification of cDNA Ends (RACE) and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-quantitative PCR (qPCR), whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat and zebrafish. We identified four GPR101 isoforms characterized by different 5'-untranslated regions (UTRs) and a common 6.1kb long 3'UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult monkey and rat pituitaries expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary, Gpr101 is expressed only after birth and shows sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ivana Bjelobaba
- Section on Cellular SignalingEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adrian F Daly
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Darwin O Larco
- Department of Obstetrics and GynecologyUniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leonor Palmeira
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Fabio R Faucz
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Albert Thiry
- Department of PathologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Letícia F Leal
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA Department of PediatricsUniversity of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Liliya Rostomyan
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Martha Quezado
- Laboratory of PathologyNational Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marie Helene Schernthaner-Reiter
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marija M Janjic
- Section on Cellular SignalingEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Chiara Villa
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium Hopital FochService d'Anatomie et Cytologie Pathologiques, Suresnes Cedex, France
| | - T John Wu
- Department of Obstetrics and GynecologyUniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stanko S Stojilkovic
- Section on Cellular SignalingEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Albert Beckers
- Department of EndocrinologyUniversity of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Benjamin Feldman
- Division of Developmental BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
26
|
Brizola E, McCarthy E, Shapiro JR. Bulbous epiphysis and popcorn calcification as related to growth plate differentiation in osteogenesis imperfecta. ACTA ACUST UNITED AC 2015; 12:202-6. [PMID: 26604951 DOI: 10.11138/ccmbm/2015.12.2.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. METHODS Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. RESULTS An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. CONCLUSION The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI.
Collapse
Affiliation(s)
- Evelise Brizola
- Bone and Osteogenesis Imperfecta Department, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Postgraduate Program in Child and Adolescent Health, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jay Robert Shapiro
- Bone and Osteogenesis Imperfecta Department, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|