1
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Pitman MC, Meagher N, Price DJ, Rhodes A, Chang JJ, Scher B, Allan B, Street A, McMahon JH, Rasmussen TA, Cameron PU, Hoy JF, Kent SJ, Lewin SR. Effect of high dose vitamin D 3 on the HIV-1 reservoir: A pilot randomised controlled trial. J Virus Erad 2023; 9:100345. [PMID: 37753336 PMCID: PMC10518338 DOI: 10.1016/j.jve.2023.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction Antiretroviral therapy for people living with HIV-1 must be taken lifelong due to the persistence of latent virus in long-lived and proliferating CD4+ T cells. Vitamin D3 is a steroidal gene transcription regulator which exerts diverse effects on immune and epithelial cells including reductions in CD4+ T cell proliferation and improvement in gut barrier integrity. We hypothesised that a high dose of vitamin D3 would reduce the size of the HIV-1 reservoir by reducing CD4+ T cell proliferation. Methods We performed a randomised placebo-controlled trial evaluating the effect of 24 weeks of vitamin D3 (10,000 international units per day) on the HIV-1 reservoir and immunologic parameters in 30 adults on antiretroviral therapy; participants were followed for 12 weeks post-treatment. The primary endpoint was the effect on total HIV-1 DNA at week 24. Parameters were assessed using mixed-effects models. Results We found no effect of vitamin D3 on the change in total HIV-1 DNA from week 0 to week 24 relative to placebo. There were also no changes in integrated HIV-1 DNA, 2-long-terminal repeat (2-LTR) circles or cell-associated HIV-1 RNA. Vitamin D3 induced a significant increase in the proportion of central memory CD4+ and CD8+ T cells, a reduction in the proportion of senescent CD8+ T cells and a reduction in the natural killer cell frequency at all time points including week 36, 12 weeks after the study drug cessation. At week 36, there was a significant reduction in total HIV-1 DNA relative to placebo and persistently elevated 25-hydroxyvitamin D levels. No significant safety issues were identified. Conclusions Vitamin D3 administration had a significant impact on the T cell differentiation but overall effects on the HIV-1 reservoir were limited and a reduction in HIV-1 DNA was only seen following cessation of the study drug. Additional studies are required to determine whether the dose and duration of vitamin D3 can be optimised to promote a continued depletion of the HIV-1 reservoir over time. Trial registration ClinicalTrials.gov NCT03426592.
Collapse
Affiliation(s)
- Matthew C. Pitman
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Niamh Meagher
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Level 3, 207 Bouverie St, Parkville, Victoria, 3010, Australia
| | - David J. Price
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Level 3, 207 Bouverie St, Parkville, Victoria, 3010, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Barbara Scher
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Brent Allan
- Living Positive Victoria, Ground Floor, 95 Coventry St, Southbank, Victoria, 3006, Australia
| | - Alan Street
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - James H. McMahon
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Jennifer F. Hoy
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
- Melbourne Sexual Health Centre, The Alfred, 580 Swanston St, Carlton, Victoria, 3053, Australia
| | - Sharon R. Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
3
|
Kaushal D, Singh DK, Mehra S. Immune Responses in Lung Granulomas during Mtb/HIV Co-Infection: Implications for Pathogenesis and Therapy. Pathogens 2023; 12:1120. [PMID: 37764928 PMCID: PMC10534770 DOI: 10.3390/pathogens12091120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
HIV and TB are the cause of significant worldwide mortality and pose a grave danger to the global public health. TB is the leading cause of death in HIV-infected persons, with one in four deaths attributable to TB. While the majority of healthy individuals infected with M. tuberculosis (Mtb) are able to control the infection, co-infection with HIV increases the risk of TB infection progressing to TB disease by over 20-fold. While antiretroviral therapy (ART), the cornerstone of HIV care, decreases the incidence of TB in HIV-uninfected people, this remains 4- to 7-fold higher after ART in HIV-co-infected individuals in TB-endemic settings, regardless of the duration of therapy. Thus, the immune control of Mtb infection in Mtb/HIV-co-infected individuals is not fully restored by ART. We do not fully understand the reasons why Mtb/HIV-co-infected individuals maintain a high susceptibility to the reactivation of LTBI, despite an effective viral control by ART. A deep understanding of the molecular mechanisms that govern HIV-induced reactivation of TB is essential to develop improved treatments and vaccines for the Mtb/HIV-co-infected population. We discuss potential strategies for the mitigation of the observed chronic immune activation in combination with both anti-TB and anti-retroviral approaches.
Collapse
Affiliation(s)
| | | | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
4
|
Hassanzadeh Y, Yaghobi R, Pakzad P, Geramizadeh B. Decreased frequency of Th22 cells and IL-22 cytokine in kidney transplant patients with active cytomegalovirus infection. BMC Immunol 2023; 24:18. [PMID: 37403036 DOI: 10.1186/s12865-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The immunity of CD4+ T cell subsets against human cytomegalovirus (HCMV) is considerable due to their essential role in controlling the infection in transplant individuals. Previously explained CD4+ subsets such as T helper (Th) 1 have been proven to have a protective role against HCMV infection, while the role of the recently identified Th22 subset has not been described yet. Here, the frequency changes of Th22 cells and the IL-22 cytokine production were investigated in kidney transplant recipients with and without HCMV infection. METHODS Twenty kidney transplant patients and ten healthy controls were enrolled in this study. Patients were categorized into HCMV + and HCMV- groups based on the HCMV DNA real-time PCR results. After isolating CD4+ T cells from PBMCs, the phenotype (CCR6+CCR4+CCR10+) and cytokine profile (IFN-γ-IL-17-IL-22+) of Th22 cells were analyzed by flow cytometry. The gene expression of Aryl Hydrocarbon Receptor (AHR) transcription factor was analyzed by real-time PCR. RESULTS The phenotype frequency of these cells was lower in recipients with infection than in those without infection and healthy controls (1.88 ± 0.51 vs. 4.31 ± 1.05; P = 0.03 and 4.22 ± 0.72; P = 0.01, respectively). A lower Th22 cytokine profile was observed in patients with infection than in the two other groups (0.18 ± 0.03 vs. 0.20 ± 0.03; P = 0.96 and 0.33 ± 0.05; P = 0.04, respectively). AHR expression was also lower in patients with active infection. CONCLUSIONS Overall, this study for the first time suggests that the reduced levels of Th22 subset and IL-22 cytokine in patients with active HCMV infection might indicate the protective role of these cells against HCMV.
Collapse
Affiliation(s)
- Yashgin Hassanzadeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022; 13:899559. [PMID: 36032119 PMCID: PMC9411647 DOI: 10.3389/fimmu.2022.899559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.
Collapse
Affiliation(s)
- Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rahul P. Desai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minali Tare
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Petkov S, Chiodi F. Impaired CD4+ T cell differentiation in HIV-1 infected patients receiving early anti-retroviral therapy. Genomics 2022; 114:110367. [PMID: 35429609 DOI: 10.1016/j.ygeno.2022.110367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 01/14/2023]
Abstract
Differentiation of CD4+ T naïve (TN) into central memory (TCM) cells involves extensive molecular processes. We compared the transcriptomes of CD4+ TN and TCM cells from HIV-1 infected patients receiving early anti-retroviral therapy (ART; EA; n = 13) and controls (n = 15). Comparison of protein coding genes between TCM and TN revealed 533 and 82 differentially expressed genes (DEGs) in controls and EA, respectively. A high degree of transcriptional complexity was detected during transition of CD4+ TN to TCM cells in controls involving 70 TFs, 20 master regulators of T cell differentiation (TBX21, GATA3, RARA, FOXP3, RORC); in EA only 7 TFs were modulated with expression of several master regulators remaining unchanged during differentiation. Analysis of interactions between modulated TFs and target genes revealed important regulatory interactions missing in EA group. We conclude that T cell differentiation in EA patients is impaired due to reduced modulation of genes involved in transition from CD4+ TN to TCM cells.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
7
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Bunjun R, Omondi FMA, Makatsa MS, Keeton R, Wendoh JM, Müller TL, Prentice CSL, Wilkinson RJ, Riou C, Burgers WA. Th22 Cells Are a Major Contributor to the Mycobacterial CD4 + T Cell Response and Are Depleted During HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1239-1249. [PMID: 34389623 PMCID: PMC8387408 DOI: 10.4049/jimmunol.1900984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
HIV-1 infection substantially increases the risk of developing tuberculosis (TB). Mechanisms such as defects in the Th1 response to Mycobacterium tuberculosis in HIV-infected persons have been widely reported. However, Th1-independent mechanisms also contribute to protection against TB. To identify a broader spectrum of defects in TB immunity during HIV infection, we examined IL-17A and IL-22 production in response to mycobacterial Ags in peripheral blood of persons with latent TB infection and HIV coinfection. Upon stimulating with mycobacterial Ags, we observed a distinct CD4+ Th lineage producing IL-22 in the absence of IL-17A and IFN-γ. Mycobacteria-specific Th22 cells were present at high frequencies in blood and contributed up to 50% to the CD4+ T cell response to mycobacteria, comparable in magnitude to the IFN-γ Th1 response (median 0.91% and 0.55%, respectively). Phenotypic characterization of Th22 cells revealed that their memory differentiation was similar to M. tuberculosis-specific Th1 cells (i.e., predominantly early differentiated CD45RO+CD27+ phenotype). Moreover, CCR6 and CXCR3 expression profiles of Th22 cells were similar to Th17 cells, whereas their CCR4 and CCR10 expression patterns displayed an intermediate phenotype between Th1 and Th17 cells. Strikingly, mycobacterial IL-22 responses were 3-fold lower in HIV-infected persons compared with uninfected persons, and the magnitude of responses correlated inversely with HIV viral load. These data provide important insights into mycobacteria-specific Th subsets in humans and suggest a potential role for IL-22 in protection against TB during HIV infection. Further studies are needed to fully elucidate the role of IL-22 in protective TB immunity.
Collapse
Affiliation(s)
- Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Fidilia M A Omondi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mohau S Makatsa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jerome M Wendoh
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tracey L Müller
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Caryn S L Prentice
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Imperial College London, London, United Kingdom; and
- The Francis Crick Institute, London, United Kingdom
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa;
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
10
|
Th22 cells are efficiently recruited in the gut by CCL28 as an alternative to CCL20 but do not compensate for the loss of Th17 cells in treated HIV-1-infected individuals. Mucosal Immunol 2021; 14:219-228. [PMID: 32346082 DOI: 10.1038/s41385-020-0286-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Gut CD4+ T cells are incompletely restored in most HIV-1-infected individuals on antiretroviral therapy, notably Th17 cells, a key subset in mucosal homeostasis. By contrast, gut Th22 cells are usually restored at normal frequencies. Th22 cells display a CCR6+CCR10+ phenotype and could thus respond to CCL20- and CCL28-mediated chemotaxis, while Th17 cells, which express CCR6 but not CCR10, depend on CCL20. Herein, we found that CCL28 is normally expressed by duodenal enterocytes of treated HIV-1-infected individuals, while CCL20 expression is blunted. Ex vivo, we showed that Th22 cells contribute to the reduction of CCL20 production by enterocytes through an IL-22- and IL-18-dependent mechanism. Th22 cells preferentially migrate via CCL20- rather than CCL28-mediated chemotaxis when both chemokines are available in the microenvironment. However, when the CCL20/CCL28 ratio drops, as in treated HIV-1-infected individuals, Th22 cells can migrate via the CCR10-CCL28 axis, as an alternative to CCR6-CCL20. This could explain the better reconstitution of gut Th22 compared with Th17 cells on antiretroviral therapy. Lastly, we assessed the relationships between the frequencies of gut Th17 and Th22 cells and inflammatory markers related to microbial translocation, and showed that Th22 cells do not compensate for the loss of Th17 cells in treated HIV-1-infected individuals.
Collapse
|
11
|
Perdomo-Celis F, Medina-Moreno S, Davis H, Bryant J, Taborda NA, Rugeles MT, Kottilil S, Zapata JC. High activation and skewed T cell differentiation are associated with low IL-17A levels in a hu-PBL-NSG-SGM3 mouse model of HIV infection. Clin Exp Immunol 2020; 200:185-198. [PMID: 31951011 DOI: 10.1111/cei.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
The humanized NOD/SCID/IL-2 receptor γ-chainnull (NSG) mouse model has been widely used for the study of HIV pathogenesis. Here, NSG mice with transgenic expression of human stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-3 (NSG-SGM3) were injected with peripheral blood leukocytes (PBL mice) from two HIV-infected (HIV+ ) patients who were under anti-retroviral therapy (ART; referred as HIV+ mice) or one HIV-seronegative healthy volunteer (HIV- ). Such mice are either hu-PBL-NSG-SGM3 HIV+ or HIV- mice, depending on the source of PBL. The kinetics of HIV replication and T cell responses following engraftment were evaluated in peripheral blood and secondary lymphoid tissues. High HIV replication and low CD4 : CD8 ratios were observed in HIV+ mice in the absence of anti-retroviral therapy (ART). Consistent with high activation and skewed differentiation of T cells from the HIV-infected donor, HIV+ mice exhibited a higher T cell co-expression of human leukocyte antigen D-related (HLA-DR) and CD38 than HIV- mice, as well as a shifted differentiation to a CCR7- CD45RA+ terminal effector profile, even in the presence of ART. In addition, HIV replication and the activation/differentiation disturbances of T cells were associated with decreased plasma levels of IL-17A. Thus, this hu-PBL-NSG-SGM3 mouse model recapitulates some immune disturbances occurring in HIV-infected patients, underlying its potential use for studying pathogenic events during this infection.
Collapse
Affiliation(s)
- F Perdomo-Celis
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - S Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - H Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - N A Taborda
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - M T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - S Kottilil
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
12
|
Ren T, Xiong J, Liu G, Wang S, Tan Z, Fu B, Zhang R, Liao X, Wang Q, Guo Z. Imbalance of Th22/Treg cells causes microinflammation in uremic patients undergoing hemodialysis. Biosci Rep 2019; 39:BSR20191585. [PMID: 31427482 PMCID: PMC6822497 DOI: 10.1042/bsr20191585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells are of critical functionality in immune activation and inflammation in uremic patients undergoing hemodialysis (HD). A disruption in balance of Treg cells has potency to elicit infectious disease progression. Here, we examined possible association between ratio imbalance of Th22/Treg cells and microinflammation in uremic patients undergoing HD. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated to allow measurement of the percentage of Th22 cells and Treg cells using flow cytometry. Subsequently, serum levels of related cytokines, interleukin (IL) 22 (IL-22) and IL-10 and inflammatory factors, C-reactive protein (CRP), (TNF-α), IL-6 were determined via enzyme-linked immunosorbent assay (ELISA). Then relationships among dialysis time, microinflammation status (CRP) and dialysis adequacy (immunoreactive parathyroid hormone (iPTH), urea clearance index (Kt/V), β2-MG, serum calcium, and serum phosphorus) were evaluated. Finally, correlation between microinflammation status and dialysis adequacy was analyzed with Pearson's correlation coefficient. RESULTS An increased percentage of Th22 and a decreased percentage of Treg cells were evident in uremic patients undergoing HD. Serum levels of IL-22, CRP, TNF-α, and IL-6 were increased, while IL-10 serum level was reduced. An imbalance of Th22/Treg cells was associated with microinflammation status in uremic patients undergoing HD. Furthermore, prolongation of the dialysis time, the microinflammation status and dialysis adequacy were changed. Increased dialysis adequacy was observed to correlate with alleviated microinflammation of uremic patients undergoing HD. CONCLUSIONS Conjointly, an imbalance of Th22/Treg cells may be a potential cause responsible for uremia occurrence, which in turn indicates that uremia could be effectively alleviated by altering the ratio of Th22/Treg cells.
Collapse
Affiliation(s)
- Tingting Ren
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Jingyuan Xiong
- West China School of Public Health and Healthy Food Evaluation Center, Sichuan University, Chengdu 610041, P.R. China
| | - Guangliang Liu
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Shaoyong Wang
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Zhongqi Tan
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Bin Fu
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Ruilin Zhang
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Xuesong Liao
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Qirong Wang
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Zonglin Guo
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| |
Collapse
|
13
|
Adu-Gyamfi CG, Savulescu D, George JA, Suchard MS. Indoleamine 2, 3-Dioxygenase-Mediated Tryptophan Catabolism: A Leading Star or Supporting Act in the Tuberculosis and HIV Pas-de-Deux? Front Cell Infect Microbiol 2019; 9:372. [PMID: 31737575 PMCID: PMC6828849 DOI: 10.3389/fcimb.2019.00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Progression from latency to active Tuberculosis (TB) disease is mediated by incompletely understood host immune factors. The definitive characteristic of progressive human immunodeficiency virus (HIV) disease is a severe loss in number and function of T lymphocytes. Among the many possible mediators of T lymphocyte loss and ineffective function is the activity of the immune-modulatory enzyme indoleamine 2,3-dioxygenase (IDO). IDO is the rate-limiting enzyme converting tryptophan to kynurenine. IDO activity was initially recognized to mediate tolerance at the foeto-maternal interface. Recently, IDO activity has also been noted to play a critical role in immune tolerance to pathogens. Studies of host immune and metabolic mediators have found IDO activity significantly elevated in HIV and TB disease. In this review, we explore the link between IDO-mediated tryptophan catabolism and the presence of active TB disease in HIV-infected patients. We draw attention to increased IDO activity as a key factor marking the progression from latent to active TB disease in HIV-infected patients.
Collapse
Affiliation(s)
- Clement Gascua Adu-Gyamfi
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, Johannesburg, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Dana Savulescu
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jaya Anna George
- Department of Chemical Pathology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Melinda Shelley Suchard
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, Johannesburg, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Basilissi M, Tincati C, Merlini E, Ancona G, Borghi E, Borgo F, Barassi A, d’Arminio Monforte A, Marchetti G. Mucosal cell populations may contribute to peripheral immune abnormalities in HIV-infected subjects introducing cART with moderate immune-suppression. PLoS One 2019; 14:e0212075. [PMID: 30763359 PMCID: PMC6375585 DOI: 10.1371/journal.pone.0212075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
HIV infection causes the progressive depletion of CD4+ T-lymphocytes and profound modifications of T-cell homeostasis, which persist despite virologically-suppressive treatment and have been linked to a worse clinical outcome. Enduring alterations of the gastrointestinal tract may represent the underlying pathogenic mechanisms of these phenomena. Twenty-six HIV-infected subjects were assessed over a 12-month period following the introduction of antiretroviral therapy. 18 uninfected individuals were enrolled as controls. Parameters of peripheral T-cell homeostasis (activation, maturation), gastrointestinal function (microbial translocation, gut inflammation, fecal microbiota composition) and mucosal immunity (CD4+CCR6+CD161+, CD4+CCR9+α4β7+, stem cell memory CD4+/CD8+ T-cells) were assessed. CD4+CCR6+CD161+ cells were depleted in HIV-infected untreated subjects and maintained significantly lower levels compared to controls, despite the introduction of effective antiviral treatment. The frequency of gut-homing CD4+CCR9+α4β7+ cells was also impaired in untreated infection and correlated with the HIV RNA load and CD4+HLADR+CD38+; during therapy, we observed a contraction of this pool in the peripheral blood and the loss of its correlation with antigenic exposure/immune activation. A partial correction of the balance between stem cell memory pools and T-cell homeostasis was registered following treatment. In HIV-infected subjects with moderate immune-suppression, antiretroviral therapy has a marginal impact on mucosal immune populations which feature distinctive kinetics in the periphery, possibly reflecting their diverse recruitment from the blood to the mucosa. The persistent defects in mucosal immunity may fuel peripheral T-cell abnormalities through diverse mechanisms, including the production of IL-17/IL-22, cellular permissiveness to infection and regulation of T-lymphocyte maturation.
Collapse
Affiliation(s)
- Matteo Basilissi
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy
| | - Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy
- * E-mail:
| | - Esther Merlini
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy
| | - Giuseppe Ancona
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, Microbiology Laboratory, University of Milan, Italy
| | - Francesca Borgo
- Department of Health Sciences, Microbiology Laboratory, University of Milan, Italy
| | - Alessandra Barassi
- Department of Health Sciences, Biochemistry Laboratory, ASST Santi Paolo e Carlo, University of Milan, Italy
| | - Antonella d’Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy
| |
Collapse
|
15
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
16
|
Perdomo-Celis F, Feria MG, Taborda NA, Rugeles MT. A Low Frequency of IL-17-Producing CD8 + T-Cells Is Associated With Persistent Immune Activation in People Living With HIV Despite HAART-Induced Viral Suppression. Front Immunol 2018; 9:2502. [PMID: 30420859 PMCID: PMC6215827 DOI: 10.3389/fimmu.2018.02502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Immune activation is the hallmark of HIV infection, even in patients with highly active anti-retroviral therapy (HAART)-induced viral suppression. A major cause of immune activation during HIV infection is the intestinal microbial translocation as a consequence, among other factors, of the decrease and/or dysfunction of interleukin (IL)-17-producing T-cells, due to their role promoting the integrity of the intestinal barrier. A population of IL-17-producing CD8+ T-cells (Tc17 cells), characterized by the expression of CD161, has been described, but its relation with the persistent immune activation in non-viremic people living with HIV (PLWH) on HAART is unclear. By flow cytometry, we characterized the activation phenotype (evaluated by the expression of HLA-DR and CD38) of circulating CD161-expressing CD8+ T-cells; in addition, we explored the functionality of polyclonally-stimulated Tc17 cells in PLWH under HAART-induced viral suppression, and in healthy individuals. Finally, we determined the association of Tc17 cells with the expression of cellular and soluble activation markers. Circulating CD161-expressing CD8+ T-cells were decreased in PLWH compared with healthy individuals, despite their similar basal activation state. After polyclonal stimulation, IL-17 production was higher in CD8+ T-cells co-expressing HLA-DR and CD38 in healthy individuals. In contrast, although PLWH had a higher frequency of HLA-DR+ CD38+ CD8+ T-cells after stimulation, they had a lower production of IL-17. Interferon (IFN)-γ-producing CD8+ T-cells (Tc1 cells) were increased in PLWH. The low Tc17 cells response was associated with a high expression of CD38 and programmed death 1 protein, high levels of soluble CD14 and the treatment duration. Finally, to explore potential immunomodulatory strategies, the in vitro effect of the anti-inflammatory agent sulfasalazine was assessed on Tc17 cells. Interestingly, a decreased inflammatory environment, death of activated CD8+ T-cells, and an increased frequency of Tc17 cells were observed with sulfasalazine treatment. Thus, our findings suggest that activated CD8+ T-cells have a marked capacity to produce IL-17 in healthy individuals, but not in PLWH, despite HAART. This dysfunction of Tc17 cells is associated with the persistent immune activation observed in these patients, and can be partially restored by anti-inflammatory agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Manuel G Feria
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
17
|
Shmagel KV, Shmagel NG, Korolevskaya LB, Saydakova EV, Chereshnev VA. [Causes of T lymphocyte activation in HIV-infected patients coinfected with hepatitis C virus]. TERAPEVT ARKH 2018; 88:22-28. [PMID: 28005028 DOI: 10.17116/terarkh2016881122-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To establish the causes of T lymphocyte activation in human immunodeficiency virus (HIV)-infected patients coinfected with hepatitis C (HCV) who are adherent to their antiretroviral therapy regimen and interferon untreated. SUBJECTS AND METHODS Examinations were made in 62 people who were HIV+HCV-positive (n=21), HIV+HCV-negative (n=21), and noninfected volunteers (n=20). The activation (CD38+HLA-DR+) and proliferation (Ki-67+) of CD4+ and CD8+ T lymphocytes were estimated. The blood concentration of intestinal fatty acid-binding protein (I-FABP) was determined. RESULTS The proportion of activated cells among the CD4+ T lymphocytes was equal in the HIV+HCV-positive and HIV+HCV-negative groups. But these indicators were statistically significantly higher than those in the controls (HIV- HCV-). CD8+ T cell activation was greater in the HIV/HCV-coinfected patients than that in the other groups and that was higher in the HIV monoinfected than in the noninfected. The blood I-FABP concentrations were elevated in the HIV+HCV-positive and HIV+HCV groups compared with those in the HIV-HCV-negative group, but these did not differ among themselves. In the HIV+HCV-negative patients, CD4+ and CD8+ T cell activation directly and statistically significantly correlated with blood I-FABP levels. In the HIV+HCV-positive group, this correlation remained only for CD4+ T lymphocytes. CD8+ T cell activation in HIV/HCV-coinfected patients was unrelated to I-FABP concentrations. CONCLUSION The increased activation of CD4+ and CD8+ T lymphocytes in HIV monoinfection was found to be associated with intestinal epithelial destruction and unrelated to cell division processes. In HIV/HCV coinfection, the activated state of CD4+ T cells is determined by both the level of proliferative processes and impairment of the intestinal barrier and that of CD8+ T cells is only by proliferation.
Collapse
Affiliation(s)
- K V Shmagel
- Perm State National Research University, Perm, Russia; Institute for Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - N G Shmagel
- Perm State National Research University, Perm, Russia; Perm Territorial Centre for Protection and Control of AIDS and Infectious Diseases, Perm, Russia
| | - L B Korolevskaya
- Perm State National Research University, Perm, Russia; Institute for Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - E V Saydakova
- Perm State National Research University, Perm, Russia; Institute for Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - V A Chereshnev
- Perm State National Research University, Perm, Russia; Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
18
|
Dillon SM, Castleman MJ, Frank DN, Austin GL, Gianella S, Cogswell AC, Landay AL, Barker E, Wilson CC. Brief Report: Inflammatory Colonic Innate Lymphoid Cells Are Increased During Untreated HIV-1 Infection and Associated With Markers of Gut Dysbiosis and Mucosal Immune Activation. J Acquir Immune Defic Syndr 2018; 76:431-437. [PMID: 28825942 DOI: 10.1097/qai.0000000000001523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND HIV-1 infection is associated with intestinal inflammation, changes in the enteric microbiota (dysbiosis), and intestinal epithelial cell damage. NKp44 innate lymphoid cells (ILCs) play an important role in epithelial barrier maintenance through the production of interleukin (IL)-22 but also display functional plasticity and can produce inflammatory cytokines [eg, interferon gamma (IFNγ)] in response to cytokine milieu and stimulatory signals. The objective of this pilot study was to enumerate frequencies of IL-22 and IFNγ-expressing colonic NKp44 ILCs during untreated, chronic HIV-1 infection. SETTING A cross-sectional study was performed to compare numbers of cytokine-expressing ILCs in colonic biopsies of untreated, chronic HIV-1 infected (n = 22), and uninfected (n = 10) study participants. Associations between cytokine ILC and previously established measures of virological, immunological, and microbiome indices were analyzed. METHODS Multicolor flow cytometry was used to measure the absolute number of colonic CD3NKp44CD56 ILCs expressing IL-22 or IFNγ after in vitro mitogenic stimulation. RESULTS Numbers of colonic NKp44 ILCs that expressed IFNγ were significantly higher in HIV-1 infected versus uninfected persons and positively correlated with relative abundances of dysbiotic bacterial species in the Xanthomonadaceae and Prevotellaceae bacterial families and with colonic myeloid dendritic cell and T-cell activation. CONCLUSION Higher numbers of inflammatory colonic ILCs during untreated chronic HIV-1 infection that associated with dysbiosis and colonic myeloid dendritic cell and T-cell activation suggest that inflammatory ILCs may contribute to gut mucosal inflammation and epithelial barrier breakdown, important features of HIV-1 mucosal pathogenesis.
Collapse
Affiliation(s)
- Stephanie M Dillon
- *Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO; †University of Colorado Microbiome Research Consortium, Aurora, CO; ‡Division of Gastroenterology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; §Division of Infectious Diseases, School of Medicine, University of California, San Diego, La Jolla, CA; and ‖Department of Immunity and Emerging Pathogens, Rush University Medical Center, Chicago, IL
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu H, Gong J, Liu Y. Indoleamine 2, 3-dioxygenase regulation of immune response (Review). Mol Med Rep 2018; 17:4867-4873. [PMID: 29393500 DOI: 10.3892/mmr.2018.8537] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hao Wu
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yong Liu
- Department of Hepatobiliary Surgery, The People's Hospital of Hechuan, Chongqing 401520, P.R. China
| |
Collapse
|
20
|
Fernandes SM, Pires AR, Matoso P, Ferreira C, Nunes-Cabaço H, Correia L, Valadas E, Poças J, Pacheco P, Veiga-Fernandes H, Foxall RB, Sousa AE. HIV-2 infection is associated with preserved GALT homeostasis and epithelial integrity despite ongoing mucosal viral replication. Mucosal Immunol 2018; 11:236-248. [PMID: 28513595 DOI: 10.1038/mi.2017.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
The mechanisms that enable preservation of gut mucosal integrity during persistent viral replication and inherent inflammation remain unclear. Here, we investigated, for the first time, gut homeostasis in HIV-2 infection, a naturally occurring form of attenuated HIV disease. We found viral replication in both sigmoid and ileum of asymptomatic HIV-2+ patients (range: 240-851 circulating CD4+T-cells per μl) despite their undetectable viremia, accompanied by interferon-γ-producing CD8 T-cell expansion, irrespective of antiretroviral treatment. Nevertheless, there was no CD4 T-cell depletion, and Foxp3+ and IL-17- or IL-22-producing CD4 T-cell numbers were unaffected. Moreover, IL-22-producing innate lymphoid cells and IL-22-induced antimicrobial peptides and mucins were maintained. In agreement, the epithelium histology was preserved, including tight junction protein zonula occludens (ZO-1) levels. Furthermore, in vitro infection of colon epithelia with primary isolates revealed no HIV-2 impact on ZO-1 expression. Notably, sigmoid transcriptional levels of CCL20 and CCL28 were significantly increased, in direct correlation with GM-CSF, indicating a local response able to enhance CD4 T-cell recruitment. In conclusion, maintenance of mucosal integrity in HIV-2 infection was associated with T-cell recruitment responses, potentially counteracting CD4 T-cell depletion due to HIV-2 replication. These data have unique implications for the design of therapies targeting gut homeostasis in HIV-1 infection and other chronic inflammatory settings.
Collapse
Affiliation(s)
- S M Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
| | - A R Pires
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - P Matoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - C Ferreira
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
| | - H Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - L Correia
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
| | - E Valadas
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
- Clínica Universitária de Doenças Infecciosas, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - J Poças
- Serviço de Infecciologia, Hospital de S. Bernardo, Setúbal, Portugal
| | - P Pacheco
- Serviço de Infecciologia, Hospital Fernando da Fonseca, Amadora, Portugal
| | - H Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - A E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure. AIDS Res Hum Retroviruses 2017; 33:S40-S58. [PMID: 28882067 PMCID: PMC5685216 DOI: 10.1089/aid.2017.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4+ T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4+ T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.
Collapse
Affiliation(s)
- Shahzada Khan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Sushama Telwatte
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Martin Trapecar
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Steven Yukl
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Shomyseh Sanjabi
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
22
|
Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol 2017; 163:1-21. [PMID: 28980078 DOI: 10.1007/s00705-017-3569-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4+ T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8+ T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Mahmoud Yaseen
- Public Health, College of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Barakat Mohammad Shabsoug
- Chemical Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
23
|
Gelpi M, Hartling HJ, Ueland PM, Ullum H, Trøseid M, Nielsen SD. Tryptophan catabolism and immune activation in primary and chronic HIV infection. BMC Infect Dis 2017; 17:349. [PMID: 28511640 PMCID: PMC5434617 DOI: 10.1186/s12879-017-2456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Kynurenine/Tryptophan ratio (KTR) is increased in HIV infection, and linked to immune activation. We hypothesized that early cART initiation results in lower KTR compared to late initiation. Furthermore, we hypothesized that KTR prior to cART is a predictor of the magnitude of subsequent reduction in immune activation. METHODS Prospective study including 57 HIV-infected individuals (primary HIV infection (N = 14), early presenters (>350 CD4+ T cells/μL, N = 24), late presenters (<200 CD4+ T cells/μL, N = 19)). Kynurenine and tryptophan were analysed by liquid chromatography-tandem mass spectrometry. Total CD4+ and CD8+ T cells were determined and proportion of activated CD38 + HLA-DR+ Tcells was measured using flow cytometry at baseline and after 6 and 12 months of cART. RESULTS At baseline, primary HIV infection had higher KTR than early presenters. However, similar KTR in primary HIV infection and early presenters was found after cART initiation, while late presenters had higher KTR at all time points. In primary HIV infection and early presenters, KTR was positively associated with proportion of activated cells at baseline. Furthermore, in early presenters the KTR at baseline was associated with proportion of activated cells after 6 and 12 months. Interestingly, in primary HIV infection the KTR at baseline was positively associated with reduction in proportion of CD8 + CD38 + HLA-DR T cells after 6 and 12 months. CONCLUSIONS Lower kynurenine/tryptophan ratio during follow-up was found after early initiation of cART. KTR in primary HIV infection and early presenters was positively associated with immune activation. Importantly, KTR in primary HIV infection predicted the magnitude of subsequent reduction in immune activation. Thus, a beneficial effect of early cART on KTR was suggested.
Collapse
Affiliation(s)
- Marco Gelpi
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Hans J Hartling
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Per M Ueland
- Section for pharmacology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Henrik Ullum
- Department of Clinical Immunology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Marius Trøseid
- Section of Clinical Immunology and Infectious Diseases, University Hospital Rikshospitalet, Kirkeveien 166, Oslo, Norway
| | - Susanne D Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark.
| |
Collapse
|
24
|
Jiang BC, Liu X, Liu XH, Li ZSN, Zhu GZ. Notch Signaling Regulates Circulating T Helper 22 Cells in Patients with Chronic Hepatitis C. Viral Immunol 2017; 30:522-532. [PMID: 28410452 DOI: 10.1089/vim.2017.0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Notch signaling enhanced the response of interleukin (IL)-22-producing CD4+ T cells that were defined as T helper 22 (Th22) cells, and Notch-aryl hydrocarbon receptor (AhR)-IL-22 axis fine-tuned inflammatory response. Previous studies have demonstrated that both Notch signaling and Th22 cells took part in the pathogenesis of chronic hepatitis C virus (HCV) infection. Thus, in this study, we aimed at examining the regulatory role of Notch signaling in Th22 cells in HCV infection. A total of 59 patients with chronic hepatitis C and 22 normal controls (NCs) were enrolled in this study. The percentage of Th22 cells and mRNA expression of related transcriptional factors and cytokines were analyzed in response to γ-secretase inhibitor. Th22 cell frequency was significantly elevated in chronic hepatitis C in comparison with that in NCs. Inhibition of Notch signaling downregulated HCV-specific Th22 cells and IL-22 production, which was accompanied by the reduction of AhR and modulatory cytokines (IL-6 and tumor necrosis factor-α). Moreover, the suppression of Notch signaling also decreased the IL-22-mediated antimicrobial response in both normal and HCV-infected HepG2 cells/Huh7.5 cells. This process was also accompanied by the depression of signal transducers and activators of transcription 3 signaling. In conclusion, the current results suggested that Notch signaling acted as a critical pathway in determining the response to IL-22 in chronic hepatitis C. Thus, Notch-Th22 axis might be considered a new therapeutic target for HCV-infected patients.
Collapse
Affiliation(s)
- Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xin Liu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xiao-Hong Liu
- 2 The Geriatric Department, The First Bethune Hospital of Jilin University , Changchun, China
| | | | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
25
|
Bandera A, Colella E, Rizzardini G, Gori A, Clerici M. Strategies to limit immune-activation in HIV patients. Expert Rev Anti Infect Ther 2016; 15:43-54. [PMID: 27762148 DOI: 10.1080/14787210.2017.1250624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Antiretroviral treatment of HIV infection reduces, but does not eliminate, viral replication and down modulates immune activation. The persistence of low level HIV replication in the host, nevertheless, drives a smouldering degree of immune activation that is observed throughout the natural history of disease and is the main driving force sustaining morbidity and mortality. Areas covered: Early start of antiretroviral therapy (ART) and intensive management of behavioural risk factors are possible but, at best, marginally successful ways to manage immune activation. We review alternative, possible strategies to reduce immune activation in HIV infection including timing of ART initiation and ART intensification to reduce HIV residual viremia; switch of ART to newer molecules with reduced toxicity; use of anti inflammatory/immunomodulatory agents and, finally, interventions aimed at modifying the composition of the microbiota. Expert commentary: Current therapeutic strategies to limit immune activation are only marginally successful. Because HIV eradication is currently impossible, intensive studies are needed to determine if and how immune activation can be silenced in HIV infection.
Collapse
Affiliation(s)
- Alessandra Bandera
- a Clinic of Infectious Diseases, 'San Gerardo' Hospital - ASST Monza, School of Medicine and Surgery , University Milano-Bicocca , Monza , Italy
| | - Elisa Colella
- a Clinic of Infectious Diseases, 'San Gerardo' Hospital - ASST Monza, School of Medicine and Surgery , University Milano-Bicocca , Monza , Italy
| | - Giuliano Rizzardini
- b Department of Infectious Diseases , ASST Fatebenefratelli Sacco , Milano , Italy.,c School of Clinical Medicine, Faculty of Health Science , University of the Witwatersrand , Johannesburg , South Africa
| | - Andrea Gori
- a Clinic of Infectious Diseases, 'San Gerardo' Hospital - ASST Monza, School of Medicine and Surgery , University Milano-Bicocca , Monza , Italy
| | - Mario Clerici
- d Department of Physiopathology and Transplants , University of Milano , Milano , Italy.,e Don C. Gnocchi Foundation , Istituto di Ricovero e Cura a Carattere Scientifico [IRCCS] , Milano , Italy
| |
Collapse
|
26
|
Kynurenine Reduces Memory CD4 T-Cell Survival by Interfering with Interleukin-2 Signaling Early during HIV-1 Infection. J Virol 2016; 90:7967-79. [PMID: 27356894 DOI: 10.1128/jvi.00994-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Early HIV-1 infection is characterized by enhanced tryptophan catabolism, which contributes to immune suppression and disease progression. However, the mechanism by which kynurenine, a tryptophan-related metabolite, induces immune suppression remains poorly understood. Herein, we show that the increased production of kynurenine correlates with defective interleukin-2 (IL-2) signaling in memory CD4 T cells from HIV-infected subjects. Defective IL-2 signaling in these subjects, which drives reduced protection from Fas-mediated apoptosis, was also associated with memory CD4 T-cell loss. Treatment of memory CD4 T cells with the concentration of kynurenine found in plasma inhibited IL-2 signaling through the production of reactive oxygen species. We further show that IL-2 signaling in memory CD4 T cells is improved by the antioxidant N-acetylcysteine. Early initiation of antiretroviral therapy restored the IL-2 response in memory CD4 T cells by reducing reactive oxygen species and kynurenine production. The study findings provide a kynurenine-dependent mechanism through IL-2 signaling for reduced CD4 T-cell survival, which can be reversed by early treatment initiation in HIV-1 infection. IMPORTANCE The persistence of functional memory CD4 T cells represents the basis for long-lasting immune protection in individuals after exposure to HIV-1. Unfortunately, primary HIV-1 infection results in the massive loss of these cells within weeks of infection, which is mainly driven by inflammation and massive infection by the virus. These new findings show that the enhanced production of kynurenine, a metabolite related to tryptophan catabolism, also impairs memory CD4 T-cell survival and interferes with IL-2 signaling early during HIV-1 infection.
Collapse
|
27
|
Combination antiretroviral therapy and indoleamine 2,3-dioxygenase in HIV infections: challenges and new opportunities. AIDS 2016; 30:1839-41. [PMID: 27351927 DOI: 10.1097/qad.0000000000001168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
The comparison of Th1, Th2, Th9, Th17 and Th22 cytokine profiles in acute and chronic HIV-1 infection. Microb Pathog 2016; 97:125-30. [PMID: 27268396 DOI: 10.1016/j.micpath.2016.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/23/2022]
Abstract
The aim of this study was to compare cytokine expression on both gene and protein levels in acute and chronic phase of HIV type 1 (HIV-1) infection. Thirty four patients were enrolled for cytokine expression analysis on protein level in acute and chronic stage of HIV-1 infection. Using PCR array technology, expression of 84 cytokine genes was measured in 3 patients in acute and 3 patients in chronic stage of HIV-1 infection. Bead-based cytometry was used to quantify levels of Th1/Th2/Th9/Th17/Th22 cytokines. The results showed statistically significant increase of 13 cytokine gene expression (cd40lg, csf2, ifna5, il12b, il1b, il20, lta, osm, spp1, tgfa, tnfsf 11, 14 and 8) and downregulation of the il12a expression in chronic HIV type 1 infection. Concentrations of IL-10, IL-4 and TNF-α were increased in the acute HIV type 1 infection when compared to control group. During chronic HIV type 1 infection there was an increase of IL-10, TNF-α, IL-2, IL-6, IL-13 and IL-22 levels when compared to control group. Comparison of cytokine expression between two stages of infection showed a significant decrease in IL-9 concentration. This study showed changes in cytokine profiles on both gene and protein levels in different stages of HIV-infection.
Collapse
|
29
|
Tincati C, Douek DC, Marchetti G. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection. AIDS Res Ther 2016; 13:19. [PMID: 27073405 PMCID: PMC4828806 DOI: 10.1186/s12981-016-0103-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past 10 years, extensive work has been carried out in the field of microbial translocation in HIV infection, ranging from studies on its clinical significance to investigations on its pathogenic features. In the present work, we review the most recent findings on this phenomenon, focusing on the predictive role of microbial translocation in HIV-related morbidity and mortality, the mechanisms by which it arises and potential therapeutic approaches. From a clinical perspective, current work has shown that markers of microbial translocation may be useful in predicting clinical events in untreated HIV infection, while conflicting data exist on their role in cART-experienced subjects, possibly due to the inclusion of extremely varied patient populations in cohort studies. Results from studies addressing the pathogenesis of microbial translocation have improved our knowledge of the damage of the gastrointestinal epithelial barrier occurring in HIV infection. However, the extent to which mucosal impairment translates directly to increased gastrointestinal permeability remains an open issue. In this respect, novel work has established a role for IL-17 and IL-22-secreting T cell populations in limiting microbial translocation and systemic T-cell activation/inflammation, thus representing a possible target of immune-therapeutic interventions shown to be promising in the animal model. Further, recent reports have not only confirmed the presence of a dysbiotic intestinal community in the course of HIV infection but have also shown that it may be linked to mucosal damage, microbial translocation and peripheral immune activation. Importantly, technical advances have also shed light on the metabolic activity of gut microbes, highlighting the need for novel therapeutic approaches to correct the function, as well as the composition, of the gastrointestinal microbiota.
Collapse
|
30
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
31
|
Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, Rabiner EA, Kalk N, Bishop C, Gunn RN, Matthews PM, Winston A. Neuroinflammation in treated HIV-positive individuals: A TSPO PET study. Neurology 2016; 86:1425-1432. [PMID: 26911637 DOI: 10.1212/wnl.0000000000002485] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/06/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To explore the effects of microglial activation on brain function and structure, and its relationship with peripheral inflammatory markers, in treated, HIV-positive individuals, using in vivo [(11)C]PBR28 PET (to measure the 18 kDa translocator protein [TSPO]). METHODS Cognitively healthy HIV-positive individuals on suppressive antiretroviral therapy and HIV-negative individuals (controls) underwent brain [(11)C]PBR28 PET and MRI. HIV-positive patients completed neuropsychological testing and CSF testing for chemokines. The concentration of bacterial ribosomal 16sDNA in plasma was measured as a marker of microbial translocation. RESULTS HIV-positive individuals showed global increases in TSPO expression compared to controls (corrected p < 0.01), with significant regional increases in the parietal (p = 0.001) and occipital (p = 0.046) lobes and in the globus pallidus (p = 0.035). TSPO binding in the hippocampus, amygdala, and thalamus were associated with poorer global cognitive performance in tasks assessing verbal and visual memory (p < 0.05). Increased TSPO binding was associated with increased brain white matter diffusion MRI mean diffusivity in HIV-positive individuals, a lower CD4/CD8 ratio, and both high pretreatment HIV RNA and plasma concentration ribosomal 16s DNA (p < 0.05). CONCLUSIONS Cognitively healthy HIV-positive individuals show evidence for a chronically activated brain innate immune response and elevated blood markers of microbial translocation despite effective control of plasma viremia. Increased brain inflammation is associated with poorer cognitive performance and white matter microstructural pathology, suggesting a possible role in cognitive impairments found in some HIV-positive patients despite effective treatment.
Collapse
Affiliation(s)
- Jaime H Vera
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK.
| | - Qi Guo
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - James H Cole
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Adriano Boasso
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Louise Greathead
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Peter Kelleher
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Eugenii A Rabiner
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Nicola Kalk
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Courtney Bishop
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Roger N Gunn
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Paul M Matthews
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Alan Winston
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| |
Collapse
|
32
|
Dagenais-Lussier X, Mouna A, Routy JP, Tremblay C, Sekaly RP, El-Far M, Grevenynghe JV. Current topics in HIV-1 pathogenesis: The emergence of deregulated immuno-metabolism in HIV-infected subjects. Cytokine Growth Factor Rev 2015; 26:603-13. [PMID: 26409789 DOI: 10.1016/j.cytogfr.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023]
Abstract
HIV-1 infection results in long-lasting activation of the immune system including elevated production of pro-inflammatory cytokine/chemokines, and bacterial product release from gut into blood and tissue compartments, which are not fully restored by antiretroviral therapies. HIV-1 has also developed numerous strategies via viral regulatory proteins to hijack cell molecular mechanisms to enhance its own replication and dissemination. Here, we reviewed the relationship between viral proteins, immune activation/inflammation, and deregulated metabolism occurring in HIV-1-infected patients that ultimately dampens the protective innate and adaptive arms of immunity. Defining precisely the molecular mechanisms related to deregulated immuno-metabolism during HIV-1 infection could ultimately help in the development of novel clinical approaches to restore proper immune functions in these patients.
Collapse
Affiliation(s)
| | - Aounallah Mouna
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | | | | | - Julien van Grevenynghe
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|
33
|
Oliveira LMS, Lima JF, Cervantes CAC, Casseb JS, Mendonça M, Duarte AJS, Sato MN. Increased frequency of circulating Tc22/Th22 cells and polyfunctional CD38(-) T cells in HIV-exposed uninfected subjects. Sci Rep 2015; 5:13883. [PMID: 26347358 PMCID: PMC4561954 DOI: 10.1038/srep13883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/13/2015] [Indexed: 01/07/2023] Open
Abstract
Some individuals are resistant to HIV-1 infection despite repeated exposure to the virus, suggesting the presence of a complex antiviral response. Innate factors like IL-22 exert gut mucosal protection and polyfunctional T cells have been associated with low progression in HIV infection; therefore, we evaluated the frequencies of CD4+ and CD8+ T cell-secreting cytokines, including Tc22/Th22 cells and polyfunctional T cells in HIV-1-exposed uninfected individuals (EUs), their HIV-1-infected partners and healthy controls. EUs exhibited an increased frequency of p15 Gag CD4+ IL-22+ secreting T cells, whereas HIV-infected partners demonstrated a high frequency of CD4+ IL-17+ T cells in response to p24. Similar responses of Th22 and Tc22 cells to Gag peptides and Staphylococcal enterotoxin B (SEB) stimulation were detected in the serodiscordant couples. However, polyfunctionality in HIV subjects was associated with an HIV Gag response of CD38+ T cells, whereas polyfunctionality for EUs was induced upon SEB stimulation by CD38- T cells. EUs demonstrated the presence of Tc22/Th22 cells and polyfunctional CD38- T cells with a low activation profile. These data suggest that SEB-induced polyfunctional CD4+ and CD8+ T cells together with Tc22/Th22 cells in EU individuals can provide an immunological advantage in the response to pathogens such as HIV-1.
Collapse
Affiliation(s)
- Luanda M S Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Josenilson F Lima
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Cesar A C Cervantes
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Jorge S Casseb
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil.,Ambulatory Service of the Secondary Immunodeficiency Clinic of the Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Alberto J S Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Maria N Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Garidou L, Pomié C, Klopp P, Waget A, Charpentier J, Aloulou M, Giry A, Serino M, Stenman L, Lahtinen S, Dray C, Iacovoni JS, Courtney M, Collet X, Amar J, Servant F, Lelouvier B, Valet P, Eberl G, Fazilleau N, Douin-Echinard V, Heymes C, Burcelin R. The Gut Microbiota Regulates Intestinal CD4 T Cells Expressing RORγt and Controls Metabolic Disease. Cell Metab 2015; 22:100-12. [PMID: 26154056 DOI: 10.1016/j.cmet.2015.06.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
A high-fat diet (HFD) induces metabolic disease and low-grade metabolic inflammation in response to changes in the intestinal microbiota through as-yet-unknown mechanisms. Here, we show that a HFD-derived ileum microbiota is responsible for a decrease in Th17 cells of the lamina propria in axenic colonized mice. The HFD also changed the expression profiles of intestinal antigen-presenting cells and their ability to generate Th17 cells in vitro. Consistent with these data, the metabolic phenotype was mimicked in RORγt-deficient mice, which lack IL17 and IL22 function, and in the adoptive transfer experiment of T cells from RORγt-deficient mice into Rag1-deficient mice. We conclude that the microbiota of the ileum regulates Th17 cell homeostasis in the small intestine and determines the outcome of metabolic disease.
Collapse
Affiliation(s)
- Lucile Garidou
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France.
| | - Céline Pomié
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Pascale Klopp
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Aurélie Waget
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Julie Charpentier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Meryem Aloulou
- Université Paul Sabatier, F-31432 Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, F-31300 Toulouse, France; CNRS, UMR5282, F-31300 Toulouse, France
| | - Anaïs Giry
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Matteo Serino
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Lotta Stenman
- Danisco Sweeteners Oy Sokeritehtaantie 20 FI-02460 Kantvik, Finland
| | - Sampo Lahtinen
- Danisco Sweeteners Oy Sokeritehtaantie 20 FI-02460 Kantvik, Finland
| | - Cedric Dray
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Jason S Iacovoni
- Plateau de Bioinformatique et Biostatistique, INSERM UMR1048, F-31432 Toulouse, France
| | - Michael Courtney
- Vaiomer SAS, 516 Rue Pierre et Marie Curie, F-31670 Labège, France
| | - Xavier Collet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Jacques Amar
- Université Paul Sabatier, F-31432 Toulouse, France; Hôpital Rangueil, Département Thérapeutique, F-31059 Toulouse, France
| | - Florence Servant
- Vaiomer SAS, 516 Rue Pierre et Marie Curie, F-31670 Labège, France
| | | | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Gérard Eberl
- Institut Pasteur, Unité de Développement des Tissus Lymphoïdes, F-75724 Paris, France
| | - Nicolas Fazilleau
- Université Paul Sabatier, F-31432 Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, F-31300 Toulouse, France; CNRS, UMR5282, F-31300 Toulouse, France
| | - Victorine Douin-Echinard
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France
| | - Rémy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France; Université Paul Sabatier, F-31432 Toulouse, France.
| |
Collapse
|
35
|
Zhao X, Zhu D, Ye J, Li X, Wang Z, Zhang L, Xu W. The potential protective role of the combination of IL-22 and TNF-α against genital tract Chlamydia trachomatis infection. Cytokine 2015; 73:66-73. [PMID: 25734538 DOI: 10.1016/j.cyto.2015.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
Th22 cells are a novel class of lymphocytes characterized by the secretion of both IL-22 and TNF-α. In summary, Th22 cells have little or no direct impact on other immune cells, but exert selective effects on epithelia. It is not known, however, whether Th22 cells play a role in genital mucosal immunity. Here, we demonstrate that IL-22 and TNF-α synergistically induce several immunomodulatory molecules, such as the antimicrobial peptide mBD-2 (murine β-defensin 2) and the antimicrobial chemokines CXCL-9, -10, and -11 in primary murine oviduct epithelial cells (MOECs). The induction of innate immunity is relevant in an in vitro infection model, in which MOECs stimulated with Th22 cell supernatants or recombinant IL-22 and TNF-α effectively inhibit the growth of Chlamydia trachomatis and maintain the survival of the epithelia compared with IL-22 or TNF-α alone. In summary, we demonstrate that the Th22 cell cytokines IL-22 and TNF-α play important roles in genital tract infection. The potential for Th22 cell cytokines to modulate innate immune mediators may lead to the development of new topical agents to treat and/or prevent immune-mediated sexually transmitted diseases (STDs). In summary, we demonstrate that IL-22 and TNF-α represent a potent, synergistic cytokine combination for inducing genital mucosal immunity.
Collapse
Affiliation(s)
- Xiumin Zhao
- Department of Obstetrics and Gynecology, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, PR China
| | - Danyang Zhu
- Department of Obstetrics and Gynecology, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, PR China
| | - Jiangbin Ye
- First Affiliated Hospital, Wengzhou Medical University, Wengzhou, Zhejiang 325035, PR China
| | - Xingqun Li
- First Affiliated Hospital, Wengzhou Medical University, Wengzhou, Zhejiang 325035, PR China
| | - Zhibin Wang
- Department of Microbiology and Immunology, Wengzhou Medical University, Wengzhou, Zhejiang 325035, PR China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Wengzhou Medical University, Wengzhou, Zhejiang 325035, PR China
| | - Wen Xu
- Department of Microbiology and Immunology, Wengzhou Medical University, Wengzhou, Zhejiang 325035, PR China.
| |
Collapse
|