1
|
Zhang N, Sun L, Zhou S, Ji C, Cui T, Chu Q, Ye J, Liang S, Ma K, Liu Y, Li X, Guo X, Zhang W, Gu X, Cheng C, Zha Q, Tao S, Zhang Y, Chu J, Wu C, Zhang Y, Wang J, Liu Y, Liu L. Cholangiocarcinoma PDHA1 succinylation suppresses macrophage antigen presentation via alpha-ketoglutaric acid accumulation. Nat Commun 2025; 16:3177. [PMID: 40180922 PMCID: PMC11968997 DOI: 10.1038/s41467-025-58429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Gemcitabine combined with cisplatin is the first-line chemotherapy for advanced cholangiocarcinoma, but drug resistance remains a challenge, leading to unsatisfactory therapeutic effect. Here, we elucidate the possibility of chemotherapy regimens sensitized by inhibiting succinylation in patients with cholangiocarcinoma from the perspective of post-translational modification. Our omics analysis reveals that succinylation of PDHA1 lysine 83, a key enzyme in the tricarboxylic acid cycle, alters PDH enzyme activity, modulates metabolic flux, and leads to alpha-ketoglutaric acid accumulation in the tumor microenvironment. This process activates the OXGR1 receptor on macrophages, triggering MAPK signaling and inhibiting MHC-II antigen presentation, which promotes immune escape and tumor progression. Moreover, we show that inhibiting PDHA1 succinylation with CPI-613 enhances the efficacy of gemcitabine and cisplatin. Targeting PDHA1 succinylation may be a promising strategy to improve treatment outcomes in cholangiocarcinoma and warrants further clinical exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuo Zhou
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiareng Ye
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuhang Liang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xianying Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Hepatobiliary Surgery Department, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Weizhi Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xuetian Gu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shengwei Tao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yunguang Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Junhui Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Lianxin Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Zhu X, Zhou X, Li S, Liu Z, Yu S, Shi H, Zhu L, Song B, Si Z, Sun M, Zhu W. PFKFB3 decreases α-ketoglutarate production while partial PFKFB3 knockdown in macrophages ameliorates arthritis in tumor necrosis factor-transgenic mice. Int Immunopharmacol 2025; 148:114102. [PMID: 39870011 DOI: 10.1016/j.intimp.2025.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVE Aberrant 6-phosphofructo-2kinase/fructose-2,6-bisphoshatase 3 (PFKFB3) expression is tightly correlated with multiple steps of tumorigenesis; however, the pathological significance of PFKFB3 in macrophages in patients with rheumatoid arthritis (RA) remains obscure. In this study, we examined whether PFKFB3 modulates macrophage activation and promotes RA development. METHOD Peripheral blood mononuclear cells (PBMCs) from patients with RA, THP-1 cells, and bone marrow-derived macrophages from conditional PFKFB3-knockout mice were used to investigate the mechanism underlying PFKFB3-induced macrophage regulation of RA. RESULT We demonstrated that patients with RA have higher PFKFB3 levels than healthy volunteers. PFKFB3 silencing suppressed M1 macrophage polarization and downregulated IL-1β, CD80, IFIT1, CCL8, and CXCL10 in macrophages of patients with RA. PFKFB3 overexpression markedly upregulated IRF5, HIF1α, IL-1β, CD80, IFI27, IFI44, IFIT1, IFIT3, CCL2, CCL8, CXCL10, CXCL11, and MMP13 in phorbol 12-myristate 13-acetate-induced THP-1 cells, although these changes were partially reversed by PFK15, an inhibitor of PFKFB3 enzyme activity. Co-immunoprecipitation assays revealed that PFKFB3 interacted with GLUD1 and decreased glutamate dehydrogenase (GDH) activity and α-ketoglutarate production. PFKFB3, TNFα, IL-6, IFNγ, CXCL9, CXCL10, CXCL11, MMP13, and MMP19 were downregulated in bone marrow-derived macrophages of conditional PFKFB3-knockout mice relative to those of wild-type mice. Partial PFKFB3 knockdown in macrophages ameliorated the clinical signs of arthritis and bone destruction, inhibited proinflammatory factor expression, and promoted GDH activity and α-ketoglutarate production in tumor necrosis factor-transgenic mice. Single-cell sequencing revealed that macrophages were the most abundant cells in the ankles of arthritic mice, and partial PFKFB3 knockdown promoted M2-like polarization and was correlated with TREM2, SPP1, APOE, and C1Q expression. CONCLUSION PFKFB3 is upregulated in macrophages in patients with RA. PFKFB3 aggravates arthritis by modulating macrophage activity, which may be related to decreased α-ketoglutarate production.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Xiaohui Zhou
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Shuaiyi Li
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Zenghui Liu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Shidi Yu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Hong Shi
- Department of Rheumatology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - LingLing Zhu
- Department of Rheumatology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Baohui Song
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Zihou Si
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Mingshuang Sun
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Wei Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China.
| |
Collapse
|
3
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
4
|
Su J, Tu Y, Hu X, Wang Y, Chen M, Cao X, Shao M, Zhang F, Ding W. Ambient PM 2.5 orchestrates M1 polarization of alveolar macrophages via activating glutaminase 1-mediated glutaminolysis in acute lung injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125467. [PMID: 39653263 DOI: 10.1016/j.envpol.2024.125467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
The temporary explosive growth events of atmospheric fine particulate matter (PM2.5) pollution during late autumn and winter seasons still frequently occur in China. High-concentration exposure to PM2.5 aggravates lung inflammation, leading to acute lung injury (ALI). Alveolar macrophages (AMs) participate in PM2.5-induced pulmonary inflammation and injury. The polarization of AMs is dependent on metabolic reprogramming. However, the mechanism underlying the PM2.5-induced glutaminase-mediated glutaminolysis in AM polarization is still largely obscure. In this study, we found that PM2.5-treated mice exhibited pulmonary dysfunction and inflammation. The concentrations of glutamate and succinate were increased in PM2.5-treated lungs and AMs compared with the controls, whereas glutamine and α-ketoglutarate (α-KG) levels were decreased, indicating that glutaminolysis in AMs was aberrantly activated as evidenced by increased mRNA and protein levels of GLS1 after PM2.5 exposure. Moreover, we determined that the GLS1/nuclear factor kappa-B (NF-κB)/hypoxia-inducible factor-1α (HIF-1α) pathway regulated M1 polarization of AMs upon PM2.5 exposure. Inhibition of glutaminolysis by GLS1 specific inhibitor CB-839 and GLS1 siRNA significantly decreased PM2.5-induced M1 macrophage polarization and attenuated pulmonary damage. Taken together, our findings reveal a novel mechanism by which a metabolic program regulates M1 polarization of AMs and suggest that GLS1-mediated glutaminolysis is a potential therapeutic target for treating PM2.5-induced ALI.
Collapse
Affiliation(s)
- Jingran Su
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yikun Tu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqi Hu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Chen
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Cao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyao Shao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Yang L, Ren Q, Wang Y, Zheng Y, Du F, Wang F, Zhou J, Gui L, Chen S, Chen X, Zhang W, Sun Y, Zhong X, Liu H, Jiang X, Zhang Z. Research progress of mitochondrial dysfunction induced pyroptosis in acute lung injury. Respir Res 2024; 25:398. [PMID: 39511593 PMCID: PMC11545853 DOI: 10.1186/s12931-024-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) is a common critical respiratory disease in clinical practice, especially in the ICU, with a high mortality rate. The pathogenesis of ALI is relatively complex, mainly involving inflammatory response imbalance, oxidative stress, cell apoptosis, and other aspects. However, currently, the treatment measures taken based on the above mechanisms have not had significant effects. Recent research shows that mitochondrial dysfunction and pyroptosis play an important role in ALI, but there is not much analysis on the relationship between mitochondrial dysfunction and pyroptosis at present. This article reviews the situation of mitochondrial dysfunction in ALI, pyroptosis in ALI, whether mitochondrial dysfunction is related to pyroptosis in ALI, and how to do so, and further analyzes the relationship between them in ALI. This review describes how to alleviate mitochondrial dysfunction, and then suppress the associated immunological pyroptosis, providing new ideas for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qingyi Ren
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yaohui Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yucheng Zheng
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fang Wang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Linxi Gui
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shengdong Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wanting Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yuhong Sun
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, 646000, China.
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Ma H, Gao L, Chang R, Zhai L, Zhao Y. Crosstalk between macrophages and immunometabolism and their potential roles in tissue repair and regeneration. Heliyon 2024; 10:e38018. [PMID: 39381218 PMCID: PMC11458987 DOI: 10.1016/j.heliyon.2024.e38018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Immune metabolism is a result of many specific metabolic reactions, such as glycolysis, the tricarboxylic acid (TCA) pathway, the pentose phosphate pathway (PPP), mitochondrial oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), fatty acid biosynthesis (FAs) and amino acid pathways, which promote cell proliferation and maintenance with structural and pathological energy to regulate cellular signaling. The metabolism of macrophages produces many metabolic intermediates that play important regulatory roles in tissue repair and regeneration. The metabolic activity of proinflammatory macrophages (M1) mainly depends on glycolysis and the TCA cycle system, but anti-inflammatory macrophages (M2) have intact functions of the TCA cycle, which enhances FAO and is dependent on OXPHOS. However, the metabolic mechanisms of macrophages in tissue repair and regeneration have not been well investigated. Thus, we review how three main metabolic mechanisms of macrophages, glucose metabolism, lipid metabolism, and amino acid metabolism, regulate tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lihong Zhai
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
7
|
Li G, Guo Y, Ma A, Wang D, Zhang Q, Zhao C, Peng X, Ding L, Chen X, Qiu F. Curcumol derivatives exhibit ameliorating effects on lipopolysaccharide-induced acute lung injury: Synthesis, biological evaluation, structure-activity relationship and action mechanism. Bioorg Chem 2024; 153:107838. [PMID: 39353222 DOI: 10.1016/j.bioorg.2024.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI) is an intricate clinical disease marked by high mortality and a sudden start. Currently, although there are no specific therapeutics for ALI, the administration of anti-inflammatory drugs is a promising treatment strategy. Curcumol, a terpenoid natural product, has demonstrated significant anti-inflammatory activity. Herein, we designed and synthesised 42 curcumol derivatives using curcumol as the core scaffold. These derivatives underwent in vitro screening for anti-inflammatory activity, and their structure-activity relationship was assessed. Among them, derivative 2 exhibited potent anti-inflammatory potential, inhibiting the expression of inflammatory markers at the nanomolar level. In addition, its water solubility was considerably improved, thereby laying the foundation for enhanced druggability. Derivative 2 also ameliorated lipopolysaccharide (LPS)-induced ALI and reduced pulmonary inflammation at a dose of 5 mg/kg. Proteomics analysis revealed that the anti-inflammatory effect of this compound primarily involved the mTOR signalling pathway. Furthermore, molecular docking and cellular thermal shift assays indicated that GSK3β is a critical target of action of derivative 2, as verified via western blotting. These findings suggest that derivative 2 can be a lead therapeutic compound for ALI, with GSK3β emerging as a promising novel target for the development of specific anti-ALI drugs.
Collapse
Affiliation(s)
- Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Anna Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Dan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Qi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Chongyan Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Liqin Ding
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Xi Chen
- School of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| |
Collapse
|
8
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
9
|
Gan Z, Guo Y, Zhao M, Ye Y, Liao Y, Liu B, Yin J, Zhou X, Yan Y, Yin Y, Ren W. Excitatory amino acid transporter supports inflammatory macrophage responses. Sci Bull (Beijing) 2024; 69:2405-2419. [PMID: 38614854 DOI: 10.1016/j.scib.2024.03.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Excitatory amino acid transporters (EAATs) are responsible for excitatory amino acid transportation and are associated with auto-immune diseases in the central nervous system and peripheral tissues. However, the subcellular location and function of EAAT2 in macrophages are still obscure. In this study, we demonstrated that LPS stimulation increases expression of EAAT2 (coded by Slc1a2) via NF-κB signaling. EAAT2 is necessary for inflammatory macrophage polarization through sustaining mTORC1 activation. Mechanistically, lysosomal EAAT2 mediates lysosomal glutamate and aspartate efflux to maintain V-ATPase activation, which sustains macropinocytosis and mTORC1. We also found that mice with myeloid depletion of Slc1a2 show alleviated inflammatory responses in LPS-induced systemic inflammation and high-fat diet induced obesity. Notably, patients with type II diabetes (T2D) have a higher level of expression of lysosomal EAAT2 and activation of mTORC1 in blood macrophages. Taken together, our study links the subcellular location of amino acid transporters with the fate decision of immune cells, which provides potential therapeutic targets for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuyi Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuexia Liao
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225009, China
| | - Bingnan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Ge Z, Chen Y, Ma L, Hu F, Xie L. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1444964. [PMID: 39131154 PMCID: PMC11310026 DOI: 10.3389/fimmu.2024.1444964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.
Collapse
Affiliation(s)
- Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangjun Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Lubin Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
李 雨, 王 瑗, 袁 泉. [Latest Findings on the Role of α-Ketoglutarate in Metabolic Syndrome]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:783-792. [PMID: 38948289 PMCID: PMC11211801 DOI: 10.12182/20240560302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 07/02/2024]
Abstract
Alpha-ketoglutarate (α-KG), an endogenous intermediate of the tricarboxylic acid cycle, is involved in a variety of cellular metabolic pathways. It serves as an energy donor, a precursor of amino acid biosynthesis, and an epigenetic regulator. α-KG plays physiological functions in immune regulation, oxidative stress, and anti-aging as well. In recent years, it has been reported that the level of α-KG in the body is closely associated with metabolic syndrome, including obesity, hyperglycemia, and other pathological factors. Exogenous supplementation of α-KG improves obesity, blood glucose levels, and cardiovascular disease risks associated with metabolic syndrome. Furthermore, α-KG regulates the common pathological mechanisms of metabolic syndrome, suggesting the potential application prospect of α-KG in metabolic syndrome. In order to provide a theoretical basis for further exploration of the application of α-KG in metabolic syndrome, we focused on α-KG and metabolic syndrome in this article and summarized the latest research progress in the role of α-KG in improving the pathological condition and disease progression of metabolic syndrome. For the next step, researchers may focus on the co-pathogenesis of metabolic syndrome and investigate whether α-KG can be used to achieve the therapeutic goal of "homotherapy for heteropathy" in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- 雨含 李
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 瑗 王
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 泉 袁
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Liu X, Xiang R, Fang X, Wang G, Zhou Y. Advances in Metabolic Regulation of Macrophage Polarization State. Immunol Invest 2024; 53:416-436. [PMID: 38206296 DOI: 10.1080/08820139.2024.2302828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| |
Collapse
|
13
|
Bravo Iniguez A, Du M, Zhu MJ. α-Ketoglutarate for Preventing and Managing Intestinal Epithelial Dysfunction. Adv Nutr 2024; 15:100200. [PMID: 38438107 PMCID: PMC11016550 DOI: 10.1016/j.advnut.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States.
| |
Collapse
|
14
|
Yang Y, Cui BB, Li J, Shan JJ, Xu J, Zhang CY, Wei XT, Zhu RR, Wang JY. Tricarboxylic acid cycle metabolites: new players in macrophage. Inflamm Res 2024:10.1007/s00011-024-01853-0. [PMID: 38498178 DOI: 10.1007/s00011-024-01853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Bing-Bing Cui
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiao-Jiao Shan
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jun Xu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Cheng-Yong Zhang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiao-Tong Wei
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ri-Ran Zhu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Jing-Yi Wang
- Department of Hematology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, 250014, China.
| |
Collapse
|
15
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
16
|
Zheng L, Zhou W, Wu Y, Xu W, Hu S, Zhang Y, Xu H, Deng H, Chen Y, Wu L, Wei J, Feng D, Wang M, Zhou H, Li Q, Zhu L, Yang H, Lv X. Melatonin Alleviates Acute Respiratory Distress Syndrome by Inhibiting Alveolar Macrophage NLRP3 Inflammasomes Through the ROS/HIF-1α/GLUT1 Pathway. J Transl Med 2023; 103:100266. [PMID: 37871834 DOI: 10.1016/j.labinv.2023.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) is a devastating clinically severe respiratory disorder, and no effective therapy is available. Melatonin (MEL), an endogenous neurohormone, has shown great promise in alleviating sepsis-induced ARDS, but the underlying molecular mechanism remains unclear. Using a lipopolysaccharide (LPS)-treated mouse alveolar macrophage cell line (MH-S) model, we found that MEL significantly inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation in LPS-treated macrophages, whereas this inhibitory effect of MEL was weakened in MH-S cells transfected with glucose transporter 1 (GLUT1) overexpressing lentivirus. Further experiments showed that MEL downregulated GLUT1 via inhibition of hypoxia-inducible factor 1 (HIF-1α). Notably, hydrogen peroxide (H2O2), a donor of reactive oxygen species (ROS), significantly increased the level of intracellular ROS and inhibited the regulatory effect of MEL on the HIF-1α/GLUT1 pathway. Interestingly, the protective effect of MEL was attenuated after the knockdown of melatonin receptor 1A (MT1) in MH-S cells. We also confirmed in vivo that MEL effectively downregulated the HIF-1α/GLUT1/NLRP3 pathway in the lung tissue of LPS-treated mice, as well as significantly ameliorated LPS-induced lung injury and improved survival in mice. Collectively, these findings revealed that MEL regulates the activation of the ROS/HIF-1α/GLUT1/NLRP3 pathway in alveolar macrophages via the MT1 receptor, further alleviating sepsis-induced ARDS.
Collapse
Affiliation(s)
- Li Zheng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yutong Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenting Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Song Hu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiguo Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huan Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingmin Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Feng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mansi Wang
- Department of Pathology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Qiao X, Wang H, He Y, Song D, Altawil A, Wang Q, Yin Y. Grape Seed Proanthocyanidin Ameliorates LPS-induced Acute Lung Injury By Modulating M2a Macrophage Polarization Via the TREM2/PI3K/Akt Pathway. Inflammation 2023; 46:2147-2164. [PMID: 37566293 PMCID: PMC10673742 DOI: 10.1007/s10753-023-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Acute lung injury (ALI) is an acute and progressive pulmonary inflammatory disease that is difficult to cure and has a poor prognosis. Macrophages, which have various phenotypes and diverse functions, play an essential role in the pathogenesis of ALI. Grape seed proanthocyanidin (GSP) has received much attention over several decades, and many biological activities such as anti-apoptotic, antioxidant, and anti-inflammatory have been identified. This study aimed to determine the effect of GSP on lipopolysaccharide (LPS)-induced ALI. In this study, we established an ALI mouse model by tracheal instillation of LPS, and by pre-injection of GSP into mice to examine the effect of GSP on the ALI mouse model. Using H&E staining, flow cytometry, and ELISA, we found that GSP attenuated LPS-induced lung pathological changes and decreased inflammatory cytokine expression in ALI mice. In addition, GSP reduced the recruitment of monocyte-derived macrophages to the lung and significantly promoted the polarization of primary mouse lung macrophages from M1 to M2a induced by LPS. In vitro, GSP also decreased the expression levels of inflammatory cytokines such as TNF-α, IL-6, IL-1β, and M1 macrophage marker iNOS induced by LPS in MH-S cells, while increasing the expression levels of M2a macrophage marker CD206. Bioinformatics analysis identified TREM2 and the PI3K/Akt pathway as candidate targets and signaling pathways that regulate M1/M2a macrophage polarization in ALI, respectively. Furthermore, GSP activated PI3K/Akt and increased TREM2 expression in vivo and in vitro. Meanwhile, GSP's impact on M2a polarization and inflammation suppression was attenuated by the PI3K inhibitor LY294002 or siRNA knockdown TREM2. In addition, GSP-enhanced PI3K/Akt activity was prevented by TREM2 siRNA. In conclusion, this study demonstrated that GSP could ameliorate LPS-induced ALI by modulating macrophage polarization from M1 to M2a via the TREM2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yulin He
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Dongfang Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
19
|
Zhang S, Yang L, Hu D, He S, Cui L, Zhao J, Zhuo Y, Zhang L, Wang X. Syringaresinol alleviates IgG immune complex induced acute lung injury via activating PPARγ and suppressing pyroptosis. Int Immunopharmacol 2023; 124:111071. [PMID: 37857123 DOI: 10.1016/j.intimp.2023.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Acute lung injury (ALI) is a life-threatening condition characterized by severe lung inflammation and tissue damage. In this study, we investigate the potential therapeutic efficacy of (+)-Syringaresinol (SYG), a natural compound known for its antioxidant and anti-inflammatory properties, in alleviating ALI induced by IgG immune complexes (IgG-IC). Using MH-S cells as a model, we explore SYG's ability to target peroxisome proliferator-activated receptor gamma (PPARγ) and its anti-inflammatory properties. Our comprehensive investigation aims to elucidate the specific molecular mechanisms underlying SYG's effects against pyroptosis, as revealed through transcriptomic analysis. Validation in C57BL/6 mice provides in vivo support. Our findings indicate that SYG effectively mitigates IgG-IC-induced lung damage, as evidenced by a significant reduction in lung inflammation and tissue injury. SYG treatment notably decreases pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β) in both lung tissue and cells. Molecular docking analysis reveals SYG's robust binding to PPARγ, leading to the inhibition of IgG-IC-induced inflammatory signaling pathways. Additionally, transcriptomic analysis unveils SYG's potential in suppressing macrophage pyroptosis, potentially through the downregulation of key inflammatory mediators (NLRP3, GSDMD, Caspase-1). In summary, our study presents compelling evidence supporting SYG as an effective therapeutic agent for ALI. SYG's activation of PPARγ contributes to the suppression of NF-κB and C/EBPs expression, thereby mitigating inflammation. Moreover, SYG demonstrates the ability to inhibit macrophage pyroptosis by targeting the NLRP3/GSDMD/caspase-1 axis.
Collapse
Affiliation(s)
- Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Dongsheng Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Siqi He
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jiuling Zhao
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital, Tianjin University, Tianjin, China.
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital, Tianjin University, Tianjin, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
20
|
Lepiarz-Raba I, Gbadamosi I, Florea R, Paolicelli RC, Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Transl Neurodegener 2023; 12:48. [PMID: 37908010 PMCID: PMC10617244 DOI: 10.1186/s40035-023-00382-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aβ) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roberta Florea
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ali Jawaid
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
21
|
Zeng W, Li F, Jin S, Ho PC, Liu PS, Xie X. Functional polarization of tumor-associated macrophages dictated by metabolic reprogramming. J Exp Clin Cancer Res 2023; 42:245. [PMID: 37740232 PMCID: PMC10517486 DOI: 10.1186/s13046-023-02832-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Macrophages are highly plastic in different tissues and can differentiate into functional subpopulations under different stimuli. Tumor-associated macrophages (TAMs) are one of the most important innate immune cells implicated in the establishment of an immunosuppressive tumor microenvironment (TME). Recent evidence pinpoints the critical role of metabolic reprogramming in dictating pro-tumorigenic functions of TAMs. Both tumor cells and macrophages undergo metabolic reprogramming to meet energy demands in the TME. Understanding the metabolic rewiring in TAMs can shed light on immune escape mechanisms and provide insights into repolarizing TAMs towards anti-tumorigenic function. Here, we discuss how metabolism impinges on the functional divergence of macrophages and its relevance to macrophage polarization in the TME.
Collapse
Affiliation(s)
- Wentao Zeng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Fei Li
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Ludwig Lausanne Branch, Lausanne, Switzerland
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan, ROC
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
22
|
Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury. Front Immunol 2023; 14:1209438. [PMID: 37691951 PMCID: PMC10483837 DOI: 10.3389/fimmu.2023.1209438] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Sepsis presents as a severe infectious disease frequently documented in clinical settings. Characterized by its systemic inflammatory response syndrome, sepsis has the potential to trigger multi-organ dysfunction and can escalate to becoming life-threatening. A common fallout from sepsis is acute lung injury (ALI), which often progresses to acute respiratory distress syndrome (ARDS). Macrophages, due to their significant role in the immune system, are receiving increased attention in clinical studies. Macrophage polarization is a process that hinges on an intricate regulatory network influenced by a myriad of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. In this review, our primary focus is on the classically activated macrophages (M1-like) and alternatively activated macrophages (M2-like) as the two paramount phenotypes instrumental in sepsis' host immune response. An imbalance between M1-like and M2-like macrophages can precipitate the onset and exacerbate the progression of sepsis. This review provides a comprehensive understanding of the interplay between macrophage polarization and sepsis-induced acute lung injury (SALI) and elaborates on the intervention strategy that centers around the crucial process of macrophage polarization.
Collapse
Affiliation(s)
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Huang ZP, Liu SF, Zhuang JL, Li LY, Li MM, Huang YL, Chen YH, Chen XR, Lin S, Ye LC, Chen CN. Role of microglial metabolic reprogramming in Parkinson's disease. Biochem Pharmacol 2023; 213:115619. [PMID: 37211170 DOI: 10.1016/j.bcp.2023.115619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by damage to nigrostriatal dopaminergic neurons. Key pathogenic mechanisms underlying PD include alpha-synuclein misfolding and aggregation, impaired protein clearance, mitochondrial dysfunction, oxidative stress, and neuroinflammation. However, to date, no study has confirmed the specific pathogenesis of PD. Similarly, current PD treatment methods still have shortcomings. Although some emerging therapies have proved effective for PD, the specific mechanism still needs further clarification. Metabolic reprogramming, a term first proposed by Warburg, is applied to the metabolic energy characteristics of tumor cells. Microglia have similar metabolic characteristics. Pro-inflammatory M1 type and anti-inflammatory M2 type are the two types of activated microglia, which exhibit different metabolic patterns in glucose, lipid, amino acid, and iron metabolism. Additionally, mitochondrial dysfunction may be involved in microglial metabolic reprogramming by activating various signaling mechanisms. Functional changes in microglia resulting from metabolic reprogramming can cause changes in the brain microenvironment, thus playing an important role in neuroinflammation or tissue repair. The involvement of microglial metabolic reprogramming in PD pathogenesis has been confirmed. Neuroinflammation and dopaminergic neuronal death can effectively be reduced by inhibiting certain metabolic pathways in M1 microglia or reverting M1 cells to the M2 phenotype. This review summarizes the relationship between microglial metabolic reprogramming and PD and provides strategies for PD treatment.
Collapse
Affiliation(s)
- Zheng-Ping Huang
- Department of Neurology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Shu-Fen Liu
- Department of Neurology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Lin-Yi Li
- Department of Neurology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Mi-Mi Li
- Department of Neurology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Ya-Li Huang
- Department of Neurology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou, Fujian Province 362000, China
| | - Xiang-Rong Chen
- Department of Neurosurgery, Second Affiliated Hospital, Second Clinical Medical College, Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Center of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Li-Chao Ye
- Department of Neurology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province 362000, China.
| | - Chun-Nuan Chen
- Department of Neurology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province 362000, China.
| |
Collapse
|
24
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Chulrik W, Jansakun C, Chaichompoo W, Supaweera N, Tedasen A, Punsawad C, Kimseng R, Rayanil KO, Suksamrarn A, Chunglok W. Protective effects of Stephania pierrei tuber-derived oxocrebanine against LPS-induced acute lung injury in mice. Inflammopharmacology 2023:10.1007/s10787-023-01231-y. [PMID: 37129718 DOI: 10.1007/s10787-023-01231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) have high mortality rates. Though corticosteroids are commonly used for the treatment of these conditions, their efficacy has not been conclusively demonstrated and their use can induce various adverse reactions. Hence, the application of corticosteroids as therapeutic modalities for ALI/ARDS is limited. Meanwhile, the aporphine alkaloid oxocrebanine isolated from Stephania pierrei tubers has demonstrated anti-inflammatory efficacy in murine/human macrophage cell lines stimulated by lipopolysaccharide (LPS). Accordingly, the primary objectives of the present study are to investigate the anti-inflammatory effects of oxocrebanine on LPS-induced murine alveolar epithelial (MLE-12) cells and its efficacy against LPS-induced murine ALI. Results show that oxocrebanine downregulates the abundance of interleukin (IL)-1beta, IL-6, and inducible nitric oxide synthase, as well as the phosphorylation of nuclear factor-kappaB (NF-κB), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38, protein kinase B (Akt), and glycogen synthase kinase-3beta signalling proteins in LPS-induced MLE-12 cells. Moreover, in a murine ALI model, oxocrebanine lowers lung injury scores and lung wet/dry weight ratios while reducing inflammatory cell infiltration. It also suppresses LPS-induced tumour necrosis factor-alpha and IL-6 in the bronchoalveolar lavage fluid and plasma. Moreover, oxocrebanine downregulates NF-κB, SAPK/JNK, p38, and Akt phosphorylation in the lung tissues of LPS-treated mice. Taken together, the foregoing results show that oxocrebanine provides significant protection against LPS-induced ALI in mice primarily by suppressing various inflammatory signalling pathways in alveolar epithelial cells and lung tissues. Hence, oxocrebanine might prove effective as an anti-inflammatory agent for the treatment of lung inflammation.
Collapse
Affiliation(s)
- Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chutima Jansakun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nassareen Supaweera
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rungruedi Kimseng
- Research and Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, 73000, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Food Technology and Innovation Center of Excellence, Research and Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
26
|
Wu YT, Xu WT, Zheng L, Wang S, Wei J, Liu MY, Zhou HP, Li QF, Shi X, Lv X. 4-octyl itaconate ameliorates alveolar macrophage pyroptosis against ARDS via rescuing mitochondrial dysfunction and suppressing the cGAS/STING pathway. Int Immunopharmacol 2023; 118:110104. [PMID: 37004345 DOI: 10.1016/j.intimp.2023.110104] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a high-mortality pulmonary disorder characterized by an intense inflammatory response and a cytokine storm. As of yet, there is no proven effective therapy for ARDS. Itaconate, an immunomodulatory derivative accumulated during inflammatory macrophage activation, has attracted widespread attention for its potent anti-inflammatory and anti-oxidative properties. This study pointed to explore the protective impacts of 4-octyl itaconate (4-OI) on ARDS. The results showed that lung injury was attenuated markedly after 4-OI pre-treatment, as represented by decreased pulmonary edema, inflammatory cell infiltration, and production of inflammatory factors. LPS stimulation induced NLRP3-mediated pyroptosis in vitro and in vivo, as represented by the cleavage of gasdermin D (GSDMD), IL-18 and IL-1β release, and these changes could be prevented by 4-OI pretreatment. Mechanistically, 4-OI eliminated mitochondrial reactive oxygen species (mtROS) and mtDNA escaping to the cytosol through the opening mitochondrial permeability transition pore (mPTP) in alveolar macrophages (AMs) under oxidative stress. In addition, 4-OI pretreatment markedly downregulated cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) expression, and interferon regulatory factor 3 (IRF3) phosphorylation in vitro and in vivo. Meanwhile, inhibition of STING/IRF3 pathway alleviated NLRP3-mediated pyroptosis induced by LPS in vitro. Taken together, this study indicated that 4-OI ameliorated ARDS by rescuing mitochondrial dysfunction and inhibiting NLRP3-mediated macrophage pyroptosis in a STING/IRF3-dependent manner, which further revealed the potential mechanism of itaconate in preventing inflammatory diseases.
Collapse
|
27
|
Wang L, Wang D, Zhang T, Ma Y, Tong X, Fan H. The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome. Front Immunol 2023; 14:1117548. [PMID: 37020557 PMCID: PMC10067752 DOI: 10.3389/fimmu.2023.1117548] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Lung macrophages constitute the first line of defense against airborne particles and microbes and are key to maintaining pulmonary immune homeostasis. There is increasing evidence suggesting that macrophages also participate in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), including the modulation of inflammatory responses and the repair of damaged lung tissues. The diversity of their functions may be attributed to their polarized states. Classically activated or inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2) macrophages are the two main polarized macrophage phenotypes. The precise regulatory mechanism of macrophage polarization is a complex process that is not completely understood. A growing body of literature on immunometabolism has demonstrated the essential role of immunometabolism and its metabolic intermediates in macrophage polarization. In this review, we summarize macrophage polarization phenotypes, the role of immunometabolism, and its metabolic intermediates in macrophage polarization and ALI/ARDS, which may represent a new target and therapeutic direction.
Collapse
Affiliation(s)
- Lian Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tianli Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Ma
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Ning L, Shishi Z, Bo W, Huiqing L. Targeting immunometabolism against acute lung injury. Clin Immunol 2023; 249:109289. [PMID: 36918041 PMCID: PMC10008193 DOI: 10.1016/j.clim.2023.109289] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions triggered by multiple intra- and extra-pulmonary injury factors, characterized by complicated molecular mechanisms and high mortality. Great strides have been made in the field of immunometabolism to clarify the interplay between intracellular metabolism and immune function in the past few years. Emerging evidence unveils the crucial roles of immunometabolism in inflammatory response and ALI. During ALI, both macrophages and lymphocytes undergo robust metabolic reprogramming and discrete epigenetic changes after activated. Apart from providing ATP and biosynthetic precursors, these metabolic cellular reactions and processes in lung also regulate inflammation and immunity.In fact, metabolic reprogramming involving glucose metabolism and fatty acidoxidation (FAO) acts as a double-edged sword in inflammatory response, which not only drives inflammasome activation but also elicits anti-inflammatory response. Additionally, the features and roles of metabolic reprogramming in different immune cells are not exactly the same. Here, we outline the evidence implicating how adverse factors shape immunometabolism in differentiation types of immune cells during ALI and summarize key proteins associated with energy expenditure and metabolic reprogramming. Finally, novel therapeutic targets in metabolic intermediates and enzymes together with current challenges in immunometabolism against ALI were discussed.
Collapse
Affiliation(s)
- Li Ning
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Zou Shishi
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wang Bo
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| | - Lin Huiqing
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
29
|
Yu MY, Jia HJ, Zhang J, Ran GH, Liu Y, Yang XH. Exosomal miRNAs-mediated macrophage polarization and its potential clinical application. Int Immunopharmacol 2023; 117:109905. [PMID: 36848789 DOI: 10.1016/j.intimp.2023.109905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Macrophages are highly heterogeneous and plastic immune cells that play an important role in the fight against pathogenic microorganisms and tumor cells. After different stimuli, macrophages can polarize to the M1 phenotype to show a pro-inflammatory effect and the M2 phenotype to show an anti-inflammatory effect. The balance of macrophage polarization is highly correlated with disease progression, and therapeutic approaches to reprogram macrophages by targeting macrophage polarization are feasible. There are a large number of exosomes in tissue cells, which can transmit information between cells. In particular, microRNAs (miRNAs) in the exosomes can regulate the polarization of macrophages and further affect the progression of various diseases. At the same time, exosomes are also effective "drug" carriers, laying the foundation for the clinical application of exosomes. This review describes some pathways involved in M1/M2 macrophage polarization and the effects of miRNA carried by exosomes from different sources on the polarization of macrophages. Finally, the application prospects and challenges of exosomes/exosomal miRNAs in clinical treatment are also discussed.
Collapse
Affiliation(s)
- Ming Yun Yu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Hui Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jing Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Guang He Ran
- Department of Medical Laboratory, Chang shou District Hospital of Traditional Chinese Medicine, No. 1 Xinglin Road, Peach Blossom New Town, Changshou District, 401200 Chongqing, China
| | - Yan Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| | - Xiu Hong Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| |
Collapse
|
30
|
Harder JW, Ma J, Alard P, Sokoloski KJ, Mathiowitz E, Furtado S, Egilmez NK, Kosiewicz MM. Male microbiota-associated metabolite restores macrophage efferocytosis in female lupus-prone mice via activation of PPARγ/LXR signaling pathways. J Leukoc Biol 2023; 113:41-57. [PMID: 36822162 DOI: 10.1093/jleuko/qiac002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Systemic lupus erythematosus development is influenced by both sex and the gut microbiota. Metabolite production is a major mechanism by which the gut microbiota influences the immune system, and we have previously found differences in the fecal metabolomic profiles of lupus-prone female and lupus-resistant male BWF1 mice. Here we determine how sex and microbiota metabolite production may interact to affect lupus. Transcriptomic analysis of female and male splenocytes showed genes that promote phagocytosis were upregulated in BWF1 male mice. Because patients with systemic lupus erythematosus exhibit defects in macrophage-mediated phagocytosis of apoptotic cells (efferocytosis), we compared splenic macrophage efferocytosis in vitro between female and male BWF1 mice. Macrophage efferocytosis was deficient in female compared to male BWF1 mice but could be restored by feeding male microbiota. Further transcriptomic analysis of the genes upregulated in male BWF1 mice revealed enrichment of genes stimulated by PPARγ and LXR signaling. Our previous fecal metabolomics analyses identified metabolites in male BWF1 mice that can activate PPARγ and LXR signaling and identified one in particular, phytanic acid, that is a very potent agonist. We show here that treatment of female BWF1 splenic macrophages with phytanic acid restores efferocytic activity via activation of the PPARγ and LXR signaling pathways. Furthermore, we found phytanic acid may restore female BWF1 macrophage efferocytosis through upregulation of the proefferocytic gene CD36. Taken together, our data indicate that metabolites produced by BWF1 male microbiota can enhance macrophage efferocytosis and, through this mechanism, could potentially influence lupus progression.
Collapse
Affiliation(s)
- James W Harder
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Edith Mathiowitz
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Stacia Furtado
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Michele M Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Ma L, Chen YQ, You ZJ, Jiang ZS, Fang Y, Dong L. Intermittent fasting attenuates lipopolysaccharide-induced acute lung injury in mice by modulating macrophage polarization. J Nutr Biochem 2022; 110:109133. [PMID: 36028098 DOI: 10.1016/j.jnutbio.2022.109133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/14/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023]
Abstract
Acute lung injury (ALI) is a spectrum of acute and life-threatening pulmonary inflammatory conditions. Treatment of ALI remains a clinical challenge. Recently, intermittent fasting (IF) has been shown to improve health and alleviate many diseases. In this study, we tested whether IF attenuated ALI and investigated the mechanism underlying this process. In vivo, the effects of IF on ALI were evaluated in a lipopolysaccharide (LPS)-induced murine ALI model. We found that two times of 24-h fasting in a week before ALI efficiently ameliorated LPS-induced lung injury in mice, characterized by alleviated lung lesions, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde content, and lower levels of tumor necrosis factor-α, interleukin-6, and interleukin-1β. In vitro, functional assays were conducted to assess IF on the inflammatory response and macrophage polarization of bone marrow-derived macrophages (BMDMs) treated with LPS or IL-4. And PPARγ antagonist GW9662 and AMPK siRNA were used to test the role of PPARγ and AMPK in the IF-mediated improvement of ALI. The results showed that IF (serum deprivation) suppressed macrophage M1 activation and promoted M2 activation in LPS-treated BMDMs. While, IF also augmented macrophage M2 polarization in IL-4-treated BMDMs. Further mechanistic studies showed that the promotive effect of IF on M2 polarization was related to the activation of the PPARγ and AMPK pathways. In conclusion, this study suggests that IF enhances M2 polarization by activating the AMPK and PPARγ pathways, thus facilitating anti-inflammatory response and ameliorating ALI.
Collapse
Affiliation(s)
- Li Ma
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China
| | - Yan-Qing Chen
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China
| | - Zhi-Jian You
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China
| | - Zhong-Sheng Jiang
- Department of Infection, Liuzhou People's Hospital, Liuzhou, Guangxi, 545001, China
| | - Yu Fang
- Medical laboratory and Pathology Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China.
| | - Liang Dong
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China.
| |
Collapse
|
32
|
Liu Z, Yang Y. Ginkgolide A Participates in LPS-Induced PMVEC Injury by Regulating miR-224 and Inhibiting p21 in a Targeted Manner. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6384334. [PMID: 36134118 PMCID: PMC9482518 DOI: 10.1155/2022/6384334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Most studies have focused on the protective effects of ginkgolide A against ischemia/reperfusion-induced cardiomyopathy and injury of the brain, liver, and other organs, but there are few reports about the protection of lung tissues. This study was designed to clarify the protection of ginkgolide A against lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cell (PMVEC) injury. PMVECs were extracted and fell into control, LPS, and ginkgolide A groups. Next, we delved into the growth activity and apoptosis rate of cells via the CCK-8 assay and Hoechst staining, independently. Beyond that, western blotting (WB) was implemented for measurement of the expressions of cyclin D1, cyclin-dependent kinase 4 (CDK4), and CDK inhibitor (p21) that pertained to the cell cycle. The target sites of ginkgolide A were confirmed by miRNA array and real-time quantitative PCR. The relationship between miR-224 and p21 was analyzed using dual-luciferase reporter gene assay. Compared with the control group, the LPS group and ginkgolide A group had significantly decreased cell growth activity and relative expressions of cyclin D1 and CDK4 and elevated apoptosis rate and p21 expression. Pronounced elevations were observable in the cell growth activity and expressions of cyclin D1, CDK4, and p21, while the ginkgolide A group presented with a reduced apoptosis rate in comparison with the LPS group (P < 0.05). MiR-224 was the target of ginkgolide A, which had targeted regulatory effects on p21. Ginkgolide A can modulate miR-224 expression and regulate p21 expression in a targeted manner to enhance the resistance of PMVECs to LPS-induced cell apoptosis.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Traditional Chinese Medicine, Affiliated Nanhua Hospital University of South China, Hengyang 421000, Hunan, China
| | - Yan Yang
- Department of Pain Medicine, Affiliated Nanhua Hospital University of South China, Hengyang 421000, Hunan, China
| |
Collapse
|
33
|
Zhou J, Li L, Qu M, Tan J, Sun G, Luo F, Zhong P, He C. Electroacupuncture pretreatment protects septic rats from acute lung injury by relieving inflammation and regulating macrophage polarization. Acupunct Med 2022:9645284221118588. [PMID: 36039902 DOI: 10.1177/09645284221118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Macrophage polarization toward the M2 phenotype may attenuate inflammation and have a therapeutic effect in acute lung injury (ALI). OBJECTIVE To investigate the role of electroacupuncture (EA) pretreatment on the inflammatory response and macrophage polarization in a septic rat model of lipopolysaccharide (LPS)-induced ALI. METHODS Male Sprague Dawley rats (n = 24) were randomly divided into three groups (n = 8 each): control (Ctrl), ALI (LPS) and pre-EA (LPS + EA pretreatment). ALI and pre-EA rats were injected with LPS via the caudal vein. Pulmonary edema was assessed by left upper pulmonary lobe wet-to-dry (W/D) ratios. Lung injury scores were obtained from paraffin-embedded and hematoxylin and eosin-stained sections of the left lower pulmonary lobe. Inflammatory activation was quantified using serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF)-β and IL-10 levels measured by enzyme linked immunosorbent assay (ELISA). Macrophage phenotype was determined by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS Mean lung W/D ratio was significantly lower and serum IL-1β levels were decreased in pre-EA rats compared to ALI rats (P < 0.05). TNF-α mRNA expression was decreased and mannose receptor (MR) and Arg1 mRNA expression was increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.01). Arg1 protein expression was similarly increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.05). CONCLUSION EA pretreatment may play a protective role by promoting macrophage polarization to the M2 phenotype in a septic rat model of LPS-induced ALI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Mengjian Qu
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Jinqu Tan
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Guanghua Sun
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Fu Luo
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Peirui Zhong
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Xu C, Yuan Y, Zhang C, Zhou Y, Yang J, Yi H, Gyawali I, Lu J, Guo S, Ji Y, Tan C, Wang S, Zhang Y, Jiang Q, Shu G. Smooth muscle AKG/OXGR1 signaling regulates epididymal fluid acid-base balance and sperm maturation. LIFE METABOLISM 2022; 1:67-80. [PMID: 39872683 PMCID: PMC11749693 DOI: 10.1093/lifemeta/loac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 01/30/2025]
Abstract
Infertility is a global concern attributed to genetic defects, lifestyle, nutrition, and any other factors that affect the local metabolism and niche microenvironment of the reproductive system. 2-Oxoglutarate receptor 1 (OXGR1) is abundantly expressed in the testis; however, its cellular distribution and biological function of OXGR1 in the male reproductive system remain unclear. In the current study, we demonstrated that OXGR1 is primarily expressed in epididymal smooth muscle cells (SMCs). Aging and heat stress significantly reduced OXGR1 expression in the epididymis. Using OXGR1 global knockout and epididymal-specific OXGR1 knockdown models, we revealed that OXGR1 is essential for epididymal sperm maturation and fluid acid-base balance. Supplementation of α-ketoglutaric acid (AKG), the endogenous ligand of OXGR1, effectively reversed epididymal sperm maturation disorders caused by aging and heat stress. Furthermore, in vitro studies showed that AKG markedly stimulated the release of instantaneous intracellular calcium from epididymal SMCs and substantially reduced the pHi value in the epididymal SMCs via OXGR1. Mechanistically, we discovered that AKG/OXGR1 considerably increased the expression of Na+/HCO3 - cotransporter (NBCe1) mRNA in the epididymal SMCs, mediated by intracellular calcium signaling. The local AKG/OXGR1 system changed the epididymal fluid pH value and HCO3 - concentration, thereby regulating sperm maturation via intracellular calcium signaling and NBCe1 mRNA expression. This study for the first time reveals the crucial role of OXGR1 in male fertility and sheds light on the applicability of metabolic intermediates in the nutritional intervention of reproduction.
Collapse
Affiliation(s)
- Chang Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yexian Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cha Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuchuan Zhou
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinping Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Huadong Yi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ishwari Gyawali
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingyi Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sile Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yunru Ji
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chengquan Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Songbo Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gang Shu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol 2022; 16:3295-3318. [PMID: 35666002 PMCID: PMC9490145 DOI: 10.1002/1878-0261.13261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Aging is the most robust risk factor for cancer development, with more than 60% of cancers occurring in those aged 60 and above. However, how aging and tumorigenesis are intertwined is poorly understood and a matter of significant debate. Metabolic changes are hallmarks of both aging and tumorigenesis. The deleterious consequences of aging include dysfunctional cellular processes, the build‐up of metabolic byproducts and waste molecules in circulation and within tissues, and stiffer connective tissues that impede blood flow and oxygenation. Collectively, these age‐driven changes lead to metabolic reprogramming in different cell types of a given tissue that significantly affects their cellular functions. Here, we put forward the idea that metabolic changes that happen during aging help create a favorable environment for tumorigenesis. We review parallels in metabolic changes that happen during aging and how these changes function both as adaptive mechanisms that enable the development of malignant phenotypes in a cell‐autonomous manner and as mechanisms that suppress immune surveillance, collectively creating the perfect environment for cancers to thrive. Hence, antiaging therapeutic strategies that target the metabolic reprogramming that occurs as we age might provide new opportunities to prevent cancer initiation and/or improve responses to standard‐of‐care anticancer therapies.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
36
|
Yu J, Zhang J, Shi M, Ding H, Ma L, Zhang H, Liu J. Maintenance of glutamine synthetase expression alleviates endotoxin-induced sepsis via alpha-ketoglutarate-mediated demethylation. FASEB J 2022; 36:e22281. [PMID: 35344214 DOI: 10.1096/fj.202200059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Glutamine synthetase (Glul) is the enzyme that synthesizes endogenous glutamine, which is responsible for critical metabolic pathways and the immune system. However, the role of Glul in regulating endotoxin (lipopolysaccharide, LPS)-induced sepsis remains unclear. Here, we found that Glul expression in macrophages was significantly inhibited in endotoxemia, and that Glul deletion induced macrophages to differentiate into the pro-inflammatory type and aggravated sepsis in mice. Mechanistically, TLR4/NF-κB-induced alpha-ketoglutarate (α-KG) depletion inhibits Glul expression through H3K27me3-mediated methylation in septic mice. Both Glul overexpression with adeno-associated virus (AAV) and restoration by replenishing α-KG can alleviate the severity of sepsis. In conclusion, the study demonstrated that Glul can regulate LPS-induced sepsis and provides a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Jianghong Yu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Ding
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liyun Ma
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huilu Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Shi X, Zhu L, Wang S, Zhu W, Li Q, Wei J, Feng D, Liu M, Chen Y, Sun X, Lu H, Lv X. Magnesium Hydride Ameliorates Endotoxin-Induced Acute Respiratory Distress Syndrome by Inhibiting Inflammation, Oxidative Stress, and Cell Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5918954. [PMID: 35528515 PMCID: PMC9072031 DOI: 10.1155/2022/5918954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
Abstract
Acute respiratory distress syndrome (ARDS) causes uncontrolled pulmonary inflammation, resulting in high morbidity and mortality in severe cases. Given the antioxidative effect of molecular hydrogen, some recent studies suggest the potential use of molecular hydrogen as a biomedicine for the treatment of ARDS. In this study, we aimed to explore the protective effects of magnesium hydride (MgH2) on two types of ARDS models and its underlying mechanism in a lipopolysaccharide (LPS)-induced ARDS model of the A549 cell line. The results showed that LPS successfully induced oxidative stress, inflammatory reaction, apoptosis, and barrier breakdown in alveolar epithelial cells (AEC). MgH2 can exert an anti-inflammatory effect by down-regulating the expressions of inflammatory cytokines (IL-1β, IL-6, and TNF-α). In addition, MgH2 decreased oxidative stress by eliminating intracellular ROS, inhibited apoptosis by regulating the expressions of cytochrome c, Bax, and Bcl-2, and suppressed barrier breakdown by up-regulating the expression of ZO-1 and occludin. Mechanistically, the expressions of p-AKT, p-mTOR, p-P65, NLRP3, and cleaved-caspase-1 were decreased after MgH2 treatment, indicating that AKT/mTOR and NF-κB/NLRP3/IL-1β pathways participated in the protective effects of MgH2. Furthermore, the in vivo study also demonstrated that MgH2-treated mice had a better survival rate and weaker pathological damage. All these findings demonstrated that MgH2 could exert an ARDS-protective effect by regulating the AKT/mTOR and NF-κB/NLRP3/IL-1β pathways to suppress LPS-induced inflammatory reaction, oxidative stress injury, apoptosis, and barrier breakdown, which may provide a potential strategy for the prevention and treatment of ARDS.
Collapse
Affiliation(s)
- Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanli Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Di Feng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuejun Sun
- Department of Naval Medicine, Naval Medical University, Shanghai, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Hongtao Lu
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1106313. [PMID: 35345831 PMCID: PMC8957416 DOI: 10.1155/2022/1106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Corneal neovascularization (CoNV) in response to chemical burns is a leading cause of vision impairment. Although glutamine metabolism plays a crucial role in macrophage polarization, its regulatory effect on macrophages involved in chemical burn-induced corneal injury is not known. Here, we elucidated the connection between the reprogramming of glutamine metabolism in macrophages and the development of alkali burn-induced CoNV. Glutaminase 1 (GLS1) expression was upregulated in the mouse corneas damaged with alkali burns and was primarily located in F4/80-positive macrophages. Treatment with a selective oral GLS1 inhibitor, CB-839 (telaglenastat), significantly decreased the distribution of polarized M2 macrophages in the alkali-injured corneas and suppressed the development of CoNV. In vitro studies further demonstrated that glutamine deprivation or CB-839 treatment inhibited the proliferation, adhesion, and M2 polarization of bone marrow-derived macrophages (BMDMs) from C57BL/6J mice. CB-839 treatment markedly attenuated the secretion of proangiogenic factors, including vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from interleukin-4- (IL-4-) regulated M2 macrophages. Our findings revealed that GLS1 inhibition or glutamine deprivation prevented alkali-induced CoNV by inhibiting the infiltration and M2 polarization of macrophages. This work suggests that pharmacological GLS1 inhibition is a feasible and effective treatment strategy for chemical burn-related CoNV in humans.
Collapse
|
39
|
NR4A1 Promotes LPS-Induced Acute Lung Injury through Inhibition of Opa1-Mediated Mitochondrial Fusion and Activation of PGAM5-Related Necroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6638244. [PMID: 35222801 PMCID: PMC8881136 DOI: 10.1155/2022/6638244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/31/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction and necroptosis have been perceived as the primary molecular mechanisms underscoring acute lung injury. Meanwhile, nuclear receptor subfamily 4 group A member 1 (NR4A1) is considered a regulator of inflammation-related endothelial injury in lung tissue although the downstream molecular events remain elusive. In this study, we employed NR4A1-/- mice to decipher the role of NR4A1 in the onset and progression of acute lung injury with a focus on mitochondrial damage and necroptosis. Our results demonstrated that NR4A1 was significantly upregulated in lipopolysaccharide- (LPS-) treated lung tissues. Knockout of NR4A1 overtly improved lung tissue morphology, inhibited inflammation, and reduced oxidative stress in LPS-treated lung tissue. A cell signaling study suggested that NR4A1 deletion repressed levels of PGAM5 and attenuated LPS-mediated necroptosis in primary murine alveolar epithelial type II (ATII) cells, the effects of which were mitigated by PGAM5 overexpression. Moreover, LPS-mediated mitochondrial injury including mitochondrial membrane potential collapse and mitochondrial oxidative stress was drastically improved by NR4A1 deletion. Furthermore, NR4A1 deletion preserved mitochondrial homeostasis through activation of Opa1-related mitochondrial fusion. Silencing of Opa1 triggered mitochondrial dysfunction in NR4A1-deleted ATII cells. Taken together, our data identified NR4A1 as a novel regulator of LPS-related acute lung injury through regulation of mitochondrial fusion and necroptosis, indicating therapeutic promises of targeting NR4A1 in the treatment of acute lung injury in clinical practice.
Collapse
|
40
|
Chen S, Chen L, Ye L, Jiang Y, Li Q, Zhang H, Zhang R, Li H, Yu D, Zhang R, Niu Y, Zhao Q, Liu J, Ouyang G, Aschner M, Zheng Y, Zhang L, Chen W, Li D. PP2A-mTOR-p70S6K/4E-BP1 axis regulates M1 polarization of pulmonary macrophages and promotes ambient particulate matter induced mouse lung injury. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127624. [PMID: 34740159 DOI: 10.1016/j.jhazmat.2021.127624] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
To identify key signaling pathways involved in ambient particulate matter (PM)-induced pulmonary injury, we generated a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit), and conducted experiments in a real-ambient PM exposure system. PP2A Aα-/- homozygote (Aα HO) mice and matched wild-type (WT) littermates were exposed to PM over 3-week and 6-week. The effects of PM exposure on pulmonary inflammation, oxidative stress, and apoptosis were significantly enhanced in Aα HO compared to WT mice. The number of pulmonary macrophages increased by 74.8~88.0% and enhanced M1 polarization appeared in Aα HO mice upon PM exposure. Secretion of M1 macrophage-related inflammatory cytokines was significantly increased in Aα HO vs. WT mice following PM exposure. Moreover, we demonstrated that PP2A-B56α holoenzyme regulated M1 polarization and that the mTOR signaling pathway mediated the persistent M1 polarization upon PM2.5 exposure. Importantly, PP2A-B56α holoenzyme was shown to complex with mTOR/p70S6K/4E-BP1, and suppression of B56α led to enhanced phosphorylation of mTOR, p70S6K, and 4E-BP1. These observations demonstrate that the PP2A-mTOR-p70S6K/4E-BP1 signaling is a critical pathway in mediating macrophage M1 polarization, which contributes to PM-induced pulmonary injury.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyan Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huiyao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Qun Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Jianhui Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
41
|
Song Y, Wu Q, Jiang H, Hu A, Xu L, Tan C, Zhang B, Yu R, Qiu Y, Wang X, Yang W. The Effect of Shionone on Sepsis-Induced Acute Lung Injury by the ECM1/STAT5/NF-κB Pathway. Front Pharmacol 2022; 12:764247. [PMID: 35153740 PMCID: PMC8826228 DOI: 10.3389/fphar.2021.764247] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: The purpose of the present study was to estimate the effect of shionone (SHI) on sepsis-induced acute lung injury (ALI). Methods: The cecal ligation and puncture (CLP) surgery was performed to induce sepsis in mice. Pulmonary hematoxylin and eosin staining, the wet/dry ratio, myeloperoxidase (MPO) activity, and the survival rate were detected. The RAW264.7 cells were treated with SHI and stimulated with lipopolysaccharide (LPS). The cells were also overexpressed by extracellular mechanism protein 1 (ECM1) adenovirus. The relative levels of granulocyte–macrophage colony-stimulating factor, IL-6, IL-1β, TNF-α, IL-10, and TGF-β in the serum and supernatant were measured by ELISA. The protein expressions of ECM1, p-STAT5, signal transducer and activator of transcription 5 (STAT5), p-NF-κB, nuclear factor kappa-B (NF-κB), Arg1, CD206, CD16/32, and iNOS in the CLP-induced lung tissues and LPS-induced cells were detected by western blot. The cell counts of Ly6G, F4/80, CD16/32, and CD206 were evaluated by flow cytometry. The ECM1 expression was also observed by immunohistochemistry and immunofluorescence staining. Results: As a result, the histopathological change, pulmonary edema, and the MPO activity were relieved by SHI. SHI treatment increased the percentage of neutrophil and macrophage in the bronchoalveolar lavage fluid. Besides, SHI administration inhibited pro-inflammatory cytokines and M1 phenotype indices, as well as augmented the anti-inflammatory cytokines and M2 phenotype indices. SHI also attenuated the ECM1/STAT5/NF-κB pathway both in vivo and in vitro. The overexpression of ECM1 confirmed that the regulated effect of SHI was due to ECM1 signaling. Conclusion: In conclusion, the present study suggests that SHI ameliorated sepsis-induced ALI by screwing M1 phenotype to M2 phenotype macrophage via the ECM1/STAT5/NF-κB pathway.
Collapse
Affiliation(s)
- Yi Song
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Qian Wu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Huojun Jiang
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Aihao Hu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Lingqi Xu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Caiping Tan
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Biao Zhang
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Rongming Yu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yizhen Qiu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xin Wang
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Wenzhong Yang
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| |
Collapse
|
42
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
43
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Wang QL, Yang L, Liu ZL, Peng Y, Gao M, Deng LT, Liu X, Xing W. Sirtuin 6 regulates macrophage polarization to alleviate sepsis-induced acute respiratory distress syndrome via dual mechanisms dependent on and independent of autophagy. Cytotherapy 2021; 24:149-160. [PMID: 34920961 DOI: 10.1016/j.jcyt.2021.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AIMS Sepsis-induced acute respiratory distress syndrome (ARDS) can be mediated by an imbalance in macrophage polarization; however, the underlying mechanisms remain poorly understood. This study aimed to investigate the modulatory role of sirtuin 6 (SIRT6) in macrophage polarization during sepsis-induced ARDS. METHODS A mouse ARDS model was established using cecal ligation and puncture. Isolated alveolar macrophages (AMs) and lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs) were adopted as in vitro models. Macrophage polarization was evaluated by measuring M1 and M2 macrophage percentages via flow cytometry and expression of specific markers. The expression of microtubule-associated light chain protein 3I/II and beclin-1 was detected for assessing macrophage autophagy. Binding between specificity protein 1 (SP1) and the target gene promoter was evaluated using a chromatin immunoprecipitation assay. RNA expression was analyzed by quantitative reverse transcription polymerase chain reaction and western blotting. RESULTS Treatment with the SIRT6 activator UBCS039 significantly alleviated lung injury in the mouse ARDS model and enhanced autophagy and M2 polarization in isolated AMs. M2 polarization and autophagy in LPS-challenged BMDMs were also effectively promoted by UBCS039 treatment or SIRT6 overexpression. An adenosine monophosphate-activated protein kinase inhibitor (Compound C) or autophagy inhibitor (3-methyladenine) partially abrogated M2 polarization mediated by SIRT6 overexpression upon LPS exposure. SIRT6 induced autophagy and M2 polarization of BMDMs partially via its deacetylase activity. SIRT6 inhibited mammalian target of rapamycin transcription by modulating SP1 to promote BMDM M2 polarization, which was independent of autophagy. CONCLUSIONS SIRT6 promotes M2 polarization of macrophages to alleviate sepsis-induced ARDS in an autophagy-dependent and -independent manner.
Collapse
Affiliation(s)
- Qian-Lu Wang
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lei Yang
- Department of Preparations, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zuo-Liang Liu
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yue Peng
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Min Gao
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Long-Tian Deng
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xi Liu
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Xing
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
46
|
Zhuo Y, Yang L, Li D, Zhang L, Zhang Q, Zhang S, Li C, Cui L, Hao J, Li J, Wang X. Syringaresinol Resisted Sepsis-Induced Acute Lung Injury by Suppressing Pyroptosis Via the Oestrogen Receptor-β Signalling Pathway. Inflammation 2021; 45:824-837. [PMID: 34807349 DOI: 10.1007/s10753-021-01587-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
Acute lung injury (ALI) is a common lung disease characterized by severe acute inflammatory lung injury in patients with sepsis. Syringaresinol (SYR) has been reported to have anti-apoptotic and anti-inflammatory effects, but whether it could prevent pyroptosis to improve sepsis-induced ALI remains unclear. The purpose of this work was to examine the impact of SYR on sepsis-induced ALI and investigate the underlying mechanisms. The ALI model was induced by caecal ligation and puncture (CLP) in C57BL/6 mice, structural damage in the lung tissues was determined using haematoxylin and eosin (HE) staining, and the levels of related inflammatory cytokines and macrophage polarization were examined by enzyme-linked immunosorbent assays (ELISAs) and flow cytometry, respectively. The activation of the NLRP3 inflammasome and the protein levels of TLR4, NF-κB and MAPKs was measured by western blotting. The results demonstrated that SYR pretreatment significantly reduced lung tissue histological damage, inhibited the production of proinflammatory cytokines and albumin in bronchoalveolar lavage fluid (BALF), and decreased myeloperoxidase (MPO) levels, thereby alleviating lung tissue injury. Meanwhile, septic mice treated with SYR displayed a higher survival rate and lower percentage of M1 macrophages in the BALF and spleen than septic mice. In addition, lung tissues from the CLP + SYR group exhibited downregulated protein expression of NLRP3, ASC, GSDMD caspase-1 p20 and TLR4, along with decreased phosphorylated levels of NF-κB, ERK, JNK and P38, indicating that SYR administration effectively prevented CLP-induced pyroptosis in the lung. SYR also suppressed LPS-induced pyroptosis in RAW 264.7 cells by inhibiting the activation of the NLRP3 inflammasome, which was abolished by an oestrogen receptor-β (ERβ) antagonist (PHTPP). In conclusion, SYR exerted protective effects on CLP-induced ALI via the oestrogen receptor-β signalling pathway.
Collapse
Affiliation(s)
- Yuzhen Zhuo
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lanqiu Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Qi Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Shukun Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Caixia Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lihua Cui
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Jian Hao
- Department of Orthopaedics, Shenzhen Pingle Orthopaedics Hospital, Shenzhen, 518010, China
| | - Jiarui Li
- Department of Nephrology, Tianjin Nankai Hospital, Tianjin, 300100, China.
| | - Ximo Wang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China. .,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| |
Collapse
|
47
|
Bao X, Liu X, Liu N, Zhuang S, Yang Q, Ren H, Zhao D, Bai J, Zhou X, Tang L. Inhibition of EZH2 prevents acute respiratory distress syndrome (ARDS)-associated pulmonary fibrosis by regulating the macrophage polarization phenotype. Respir Res 2021; 22:194. [PMID: 34217280 PMCID: PMC8255011 DOI: 10.1186/s12931-021-01785-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background We recently reported histone methyltransferase enhancer of zeste homolog 2 (EZH2) as a key epigenetic regulator that contributes to the dysfunction of innate immune responses to sepsis and subsequent lung injury by mediating the imbalance of macrophage polarization. However, the role of EZH2 in acute respiratory distress syndrome (ARDS)-associated fibrosis remains poorly understood. Methods In this study, we investigated the role and mechanisms of EZH2 in pulmonary fibrosis in a murine model of LPS-induced ARDS and in ex-vivo cultured alveolar macrophages (MH-S) and mouse lung epithelial cell line (MLE-12) by using 3-deazaneplanocin A (3-DZNeP) and EZH2 the small interfering (si) RNA. Results We found that treatment with 3-DZNeP significantly ameliorated the LPS-induced direct lung injury and fibroproliferation by blocking EMT through TGF-β1/Smad signaling pathway and regulating shift of macrophage phenotypes. In the ex-vivo polarized alveolar macrophages cells, treatment with EZH2 siRNA or 3-DZNeP suppressed the M1 while promoted the M2 macrophage differentiation through modulating the STAT/SOCS signaling pathway and activating PPAR-γ. Moreover, we identified that blockade of EZH2 with 3-DZNeP suppressed the epithelial to mesenchymal transition (EMT) in co-cultured bronchoalveolar lavage fluid (BALF) and mouse lung epithelial cell line through down-regulation of TGF-β1, TGF-βR1, Smad2 while up-regulation of Smad7 expression. Conclusions These results indicate that EZH2 is involved in the pathological process of ARDS-associated pulmonary fibrosis. Targeting EZH2 may be a potential therapeutic strategy to prevent and treat pulmonary fibrosis post ARDS.
Collapse
Affiliation(s)
- Xiaowei Bao
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Xiandong Liu
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Qian Yang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Huijuan Ren
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Dongyang Zhao
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Jianwen Bai
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, 150, Jimo Road, Shanghai, 200120, China.
| | - Lunxian Tang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China.
| |
Collapse
|
48
|
Kosyreva A, Dzhalilova D, Lokhonina A, Vishnyakova P, Fatkhudinov T. The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. Front Immunol 2021; 12:682871. [PMID: 34040616 PMCID: PMC8141811 DOI: 10.3389/fimmu.2021.682871] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are cells that mediate both innate and adaptive immunity reactions, playing a major role in both physiological and pathological processes. Systemic SARS-CoV-2-associated complications include acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation syndrome, edema, and pneumonia. These are predominantly effects of massive macrophage activation that collectively can be defined as macrophage activation syndrome. In this review we focus on the role of macrophages in COVID-19, as pathogenesis of the new coronavirus infection, especially in cases complicated by ARDS, largely depends on macrophage phenotypes and functionalities. We describe participation of monocytes, monocyte-derived and resident lung macrophages in SARS-CoV-2-associated ARDS and discuss possible utility of cell therapies for its treatment, notably the use of reprogrammed macrophages with stable pro- or anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Anna Kosyreva
- Department of Neuromorphology, Science Research Institute of Human Morphology, Moscow, Russia
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Science Research Institute of Human Morphology, Moscow, Russia
| | - Anastasia Lokhonina
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Growth and Development, Science Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
49
|
Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4 + T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 2021; 148:16-32. [PMID: 33966898 DOI: 10.1016/j.jaci.2021.03.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Guilhermina Carriche
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Luciana Berod
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
50
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinical syndromes that cause significant mortality in clinical settings and morbidity among survivors accompanied by huge healthcare costs. Lung-resident cell dysfunction/death and neutrophil alveolitis accompanied by proteinous edema are the main pathological features of ALI/ARDS. While understanding of the mechanisms underlying ALI/ARDS pathogenesis is progressing and potential treatments such as statin therapy, nutritional strategies, and mesenchymal cell therapy are emerging, poor clinical outcomes in ALI/ARDS patients persist. Thus, a better understanding of lung-resident cell death and neutrophil alveolitis and their mitigation and clearance mechanisms may provide new therapeutic strategies to accelerate lung repair and improve outcomes in critically ill patients. Macrophages are required for normal tissue development and homeostasis as well as regulating tissue injury and repair through modulation of inflammation and other cellular processes. While macrophages mediate various functions, here we review recent dead cell clearance (efferocytosis) mechanisms mediated by these immune cells for maintaining tissue homeostasis after infectious and non-infectious lung injury.
Collapse
Affiliation(s)
- Patrick M Noone
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|