1
|
Ferguson EL, Thoma M, Buto PT, Wang J, Glymour MM, Hoffmann TJ, Choquet H, Andrews SJ, Yaffe K, Casaletto K, Brenowitz WD. Visual Impairment, Eye Conditions, and Diagnoses of Neurodegeneration and Dementia. JAMA Netw Open 2024; 7:e2424539. [PMID: 39078629 PMCID: PMC11289698 DOI: 10.1001/jamanetworkopen.2024.24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/29/2024] [Indexed: 07/31/2024] Open
Abstract
Importance Vision and eye conditions are associated with increased risk for Alzheimer disease and related dementias (ADRDs), but the nature of the association and the underlying biological pathways remain unclear. If causal, vision would be an important modifiable risk factor with viable population-level interventions. Objective To evaluate potentially causal associations between visual acuity, eye conditions (specifically cataracts and myopia), neuroimaging outcomes, and ADRDs. Design, Setting, and Participants A cohort and 2-sample bidirectional mendelian randomization (MR) study was conducted using UK Biobank participants and summary statistics from previously published genome-wide association studies on cataract, myopia, and AD. The participants included in the analysis were aged 55 to 70 years without dementia at baseline (calendar years 2006 to 2010), underwent genotyping, and reported on eye conditions; a subset completed visual acuity examinations (n = 69 852-71 429) or brain imaging (n = 36 591-36 855). Data were analyzed from August 15, 2022, through November 28, 2023. Exposure Self-reported cataracts, visual acuity, and myopia measured by refraction error. Main Outcomes and Measures ADRD, AD, and vascular dementia were identified from electronic medical records. Total and regional brain volumes were determined using magnetic resonance imaging. Results The sample included 304 953 participants (mean [SD] age, 62.1 (4.1) years; 163 825 women [53.72%]); 14 295 (4.69%) had cataracts and 2754 (3.86%) had worse than 20/40 vision. Cataracts (hazard ratio [HR], 1.18; 95% CI, 1.07-1.29) and myopia (HR, 1.35; 95% CI, 1.06-1.70) were associated with a higher hazard of ADRD. In MR analyses to estimate potential causal effects, cataracts were associated with increased risk of vascular dementia (inverse variance-weighted odds ratio [OR], 1.92; 95% CI, 1.26-2.92) but were not associated with increased dementia (OR, 1.21; 95% CI, 0.98-1.50). There were no associations between myopia and dementia. In MR for potential reverse causality, AD was not associated with cataracts (inverse variance-weighted OR, 0.99; 95% CI, 0.96-1.01). Genetic risk for cataracts was associated with smaller total brain (β = -597.43 mm3; 95% CI, -1077.87 to -117.00 mm3) and gray matter (β = -375.17 mm3; 95% CI, -680.10 to -70.24 mm3) volumes, but not other brain regions. Conclusions and Relevance In this cohort and MR study of UK Biobank participants, cataracts were associated with increased risk of dementia, especially vascular dementia, and reduced total brain volumes. These findings lend further support to the hypothesis that cataract extraction may reduce the risk for dementia.
Collapse
Affiliation(s)
- Erin L. Ferguson
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Mary Thoma
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Peter T. Buto
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Department of Epidemiology, Boston University, Boston, Massachusetts
| | - Jingxuan Wang
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - M. Maria Glymour
- Department of Epidemiology, Boston University, Boston, Massachusetts
| | - Thomas J. Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Hélène Choquet
- Kaiser Permanente Northern California, Division of Research, Oakland
| | - Shea J. Andrews
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Kristine Yaffe
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Kaitlin Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Willa D. Brenowitz
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Kaiser Permanente Center for Health Research, Portland, Oregon
| |
Collapse
|
2
|
Pei YF, Li XD, Liu QY, Zhang CW, Wang YH, Chen MR, Chen HS. A nomogram for predicting cerebral white matter lesions in elderly men. Front Neurol 2024; 15:1343654. [PMID: 38751887 PMCID: PMC11094237 DOI: 10.3389/fneur.2024.1343654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Objective This study aimed to develop a nomogram tool to predict cerebral white matter lesions (WMLs) in elderly men. Methods Based on a retrospective cohort from January 2017 to December 2019, a multivariate logistic analysis was performed to construct a nomogram for predicting WMLs. The nomogram was further validated using a follow-up cohort between January 2020 and December 2022. The calibration curve, receiver operating characteristics (ROC) curves, and the decision curves analysis (DCA) were used to evaluate discrimination and calibration of this nomogram. Result A total of 436 male patients were enrolled in this study, and all 436 patients were used as the training cohort and 163 follow-up patients as the validation cohort. A multivariate logistic analysis showed that age, cystatin C, uric acid, total cholesterol, platelet, and the use of antiplatelet drugs were independently associated with WMLs. Based on these variables, a nomogram was developed. The nomogram displayed excellent predictive power with the area under the ROC curve of 0.951 [95% confidence interval (CI), 0.929-0.972] in the training cohort and 0.915 (95% CI, 0.864-0.966) in the validation cohort. The calibration of the nomogram was also good, as indicated by the Hosmer-Lemeshow test with p-value of 0.594 in the training cohort and 0.178 in the validation cohort. The DCA showed that the nomogram holds good clinical application value. Conclusion We have developed and validated a novel nomogram tool for identifying elderly men at high risk of WMLs, which exhibits excellent predictive power, discrimination, and calibration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Fukatsu-Chikumoto A, Hirano T, Takahashi S, Ishida T, Yasuda K, Donishi T, Suga K, Doi K, Oishi K, Ohata S, Murata Y, Yamaji Y, Asami-Noyama M, Edakuni N, Kakugawa T, Matsunaga K. Correlation between frailty and reduction in cortical thickness in patients with chronic obstructive pulmonary disease. Sci Rep 2024; 14:6106. [PMID: 38480723 PMCID: PMC10937661 DOI: 10.1038/s41598-024-53933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
Physical inactivity and cognitive impairment in patients with chronic obstructive pulmonary disease (COPD) can lead to frailty and poor prognoses. However, little is known regarding the association between frailty and the human brain. We hypothesized that the brain structure could change according to frailty in patients with COPD and focused on cortical thickness. Cortical thickness measured by magnetic resonance imaging and frailty scores using the Kihon Checklist (KCL) were assessed in 40 patients with stable COPD and 20 healthy controls. Among the 34 regions assessed, multiple regions were thinner in patients with COPD than in healthy individuals (p < 0.05). We found significant negative correlations between the eight regions and the KCL scores only in patients with COPD. After adjusting for age and cognitive impairment, the association between the left and six right regions remained statistically significant. The correlation coefficient was the strongest in the bilateral superior frontal gyrus (left: ρ = - 0.5319, p = 0.0006) (right: ρ = - 0.5361, p = 0.0005). Interestingly, among the KCL scores, the daily activity domain showed the strongest correlation (sensitivity, 90%; specificity, 73%) with the bottom quartile of the reduction in the superior frontal gyrus. Frailty in patients with COPD is associated with a thickness reduction in the cortical regions, reflecting social vulnerability.
Collapse
Affiliation(s)
- Ayumi Fukatsu-Chikumoto
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.
| | - Shun Takahashi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, 641-0012, Japan
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, 583-8555, Japan
- Clinical Research and Education Center, Asakayama General Hospital, Sakai, 590-0018, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Tomohiro Donishi
- Department of System Neurophysiology, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Kazuyoshi Suga
- Department of Radiology, St. Hill Hospital, Ube, 755-0155, Japan
| | - Keiko Doi
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan
| | - Keiji Oishi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Shuichiro Ohata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Yoriyuki Murata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Yoshikazu Yamaji
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Maki Asami-Noyama
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Nobutaka Edakuni
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Tomoyuki Kakugawa
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
4
|
Jochems ACC, Muñoz Maniega S, Clancy U, Arteaga C, Jaime Garcia D, Chappell FM, Hewins W, Locherty R, Backhouse EV, Barclay G, Jardine C, McIntyre D, Gerrish I, Kampaite A, Sakka E, Valdés Hernández M, Wiseman S, Bastin ME, Stringer MS, Thrippleton MJ, Doubal FN, Wardlaw JM. Magnetic Resonance Imaging Tissue Signatures Associated With White Matter Changes Due to Sporadic Cerebral Small Vessel Disease Indicate That White Matter Hyperintensities Can Regress. J Am Heart Assoc 2024; 13:e032259. [PMID: 38293936 PMCID: PMC11056146 DOI: 10.1161/jaha.123.032259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) might regress and progress contemporaneously, but we know little about underlying mechanisms. We examined WMH change and underlying quantitative magnetic resonance imaging tissue measures over 1 year in patients with minor ischemic stroke with sporadic cerebral small vessel disease. METHODS AND RESULTS We defined areas of stable normal-appearing white matter, stable WMHs, progressing and regressing WMHs based on baseline and 1-year brain magnetic resonance imaging. In these areas we assessed tissue characteristics with quantitative T1, fractional anisotropy (FA), mean diffusivity (MD), and neurite orientation dispersion and density imaging (baseline only). We compared tissue signatures cross-sectionally between areas, and longitudinally within each area. WMH change masks were available for N=197. Participants' mean age was 65.61 years (SD, 11.10), 59% had a lacunar infarct, and 68% were men. FA and MD were available for N=195, quantitative T1 for N=182, and neurite orientation dispersion and density imaging for N=174. Cross-sectionally, all 4 tissue classes differed for FA, MD, T1, and Neurite Density Index. Longitudinally, in regressing WMHs, FA increased with little change in MD and T1 (difference estimate, 0.011 [95% CI, 0.006-0.017]; -0.002 [95% CI, -0.008 to 0.003] and -0.003 [95% CI, -0.009 to 0.004]); in progressing and stable WMHs, FA decreased (-0.022 [95% CI, -0.027 to -0.017] and -0.009 [95% CI, -0.011 to -0.006]), whereas MD and T1 increased (progressing WMHs, 0.057 [95% CI, 0.050-0.063], 0.058 [95% CI, 0.050 -0.066]; stable WMHs, 0.054 [95% CI, 0.045-0.063], 0.049 [95% CI, 0.039-0.058]); and in stable normal-appearing white matter, MD increased (0.004 [95% CI, 0.003-0.005]), whereas FA and T1 slightly decreased and increased (-0.002 [95% CI, -0.004 to -0.000] and 0.005 [95% CI, 0.001-0.009]). CONCLUSIONS Quantitative magnetic resonance imaging shows that WMHs that regress have less abnormal microstructure at baseline than stable WMHs and follow trajectories indicating tissue improvement compared with stable and progressing WMHs.
Collapse
Affiliation(s)
- Angela C. C. Jochems
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Susana Muñoz Maniega
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Una Clancy
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Carmen Arteaga
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Daniela Jaime Garcia
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Francesca M. Chappell
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Will Hewins
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Rachel Locherty
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Ellen V. Backhouse
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Gayle Barclay
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Charlotte Jardine
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Donna McIntyre
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Iona Gerrish
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Agniete Kampaite
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Maria Valdés Hernández
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Stewart Wiseman
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Fergus N. Doubal
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
5
|
Lingenberg A, Herrmann FR, Armand S, Péron J, Assal F, Allali G. Forget About Memory: Disentangling the Amnestic Syndrome in Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2024; 101:1205-1216. [PMID: 39302366 DOI: 10.3233/jad-240439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) can present with both episodic amnestic syndrome and biomarkers of Alzheimer's disease (AD) pathology. Objective To examine the associations between amnestic syndrome and cerebrospinal fluid (CSF) AD biomarkers in iNPH and the CSF tap test response in iNPH patients with amnestic syndrome. Methods We used the Free and Cued Selective Reminding Test to divide iNPH into amnestic and non-amnestic patients. We compared their clinical, biological, and radiological characteristics and examined the reversibility of gait spatiotemporal parameters and neuropsychological performances after a CSF tap test. Univariate and multiple linear regression models examined the association between memory performance and clinical-biological characteristics. Results Sixty-two non-amnestic patients (mean age 77.0±7.0 years, 38.7% female) and thirty-eight amnestic patients (mean age 77.0±5.9 years, 36.8% female) presented similar levels of AD biomarkers and clinical-radiological profiles. Global cognition and education levels were lower in the amnestic iNPH group. We found no association between AD biomarkers and memory performances (total tau: β= -4.50; 95% CI [-11.96;2.96]; p = 0.236; amyloid-β (1-42): β= 8.60, 95% CI [-6.30;23.50]; p = 0.240). At baseline, amnestic iNPH patients performed worse on executive functions, attention, and gait speed but improved similarly to the non-amnestic iNPH patients after the tap test. Conclusions In our clinical sample of iNPH patients, we confirm the lack of specificity of the amnestic profile for predicting AD pathology. Clinicians should not preclude amnestic iNPH patients from undergoing an invasive procedure of CSF derivation.
Collapse
Affiliation(s)
- Alma Lingenberg
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R Herrmann
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Rehabilitation and Geriatrics, Division of Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - Frédéric Assal
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Gilles Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| |
Collapse
|
6
|
Busby N, Newman-Norlund R, Wilmskoetter J, Johnson L, Rorden C, Gibson M, Roth R, Wilson S, Fridriksson J, Bonilha L. Longitudinal Progression of White Matter Hyperintensity Severity in Chronic Stroke Aphasia. Arch Rehabil Res Clin Transl 2023; 5:100302. [PMID: 38163020 PMCID: PMC10757197 DOI: 10.1016/j.arrct.2023.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Objective To determine whether longitudinal progression of small vessel disease in chronic stroke survivors is associated with longitudinal worsening of chronic aphasia severity. Design A longitudinal retrospective study. Severity of white matter hyperintensities (WMHs) as a marker for small vessel disease was assessed on fluid-attenuated inversion recovery (FLAIR) scans using the Fazekas scale, with ratings for deep WMHs (DWMHs) and periventricular WMHs (PVHs). Setting University research laboratories. Participants This study includes data from 49 chronic stroke survivors with aphasia (N=49; 15 women, 34 men, age range=32-81 years, >6 months post-stroke, stroke type: [46 ischemic, 3 hemorrhagic], community dwelling). All participants completed the Western Aphasia Battery-Revised (WAB) and had FLAIR scans at 2 timepoints (average years between timepoints: 1.87 years, SD=3.21 years). Interventions Not applicable. Main Outcome Measures Change in white matter hyperintensity severity (calculated using the Fazekas scale) and change in aphasia severity (difference in Western Aphasia Battery scores) were calculated between timepoints. Separate stepwise regression models were used to identify predictors of WMH severity change, with lesion volume, age, time between timepoints, body mass index (BMI), and presence of diabetes as independent variables. Additional stepwise regression models investigated predictors of change in aphasia severity, with PVH change, DWMH change, lesion volume, time between timepoints, and age as independent predictors. Results 22.5% of participants (11/49) had increased WMH severity. Increased BMI was associated with increases in PVH severity (P=.007), whereas the presence of diabetes was associated with increased DWMH severity (P=.002). Twenty-five percent of participants had increased aphasia severity which was significantly associated with increased severity of PVH (P<.001, 16.8% variance explained). Conclusion Increased small vessel disease burden is associated with contributing to chronic changes in aphasia severity. These findings support the idea that good cardiovascular risk factor control may play an important role in the prevention of long-term worsening of aphasic symptoms.
Collapse
Affiliation(s)
- Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | | | - Janina Wilmskoetter
- Department of Neurology, Medical University of South Carolina, Charleston, SC
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Makayla Gibson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA
| | - Sarah Wilson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | | |
Collapse
|
7
|
Busby N, Wilson S, Wilmskoetter J, Newman-Norlund R, Sayers S, Newman-Norlund S, Roth R, Rorden C, Fridriksson J, Bonilha L. White matter hyperintensity load mediates the relationship between age and cognition. Neurobiol Aging 2023; 132:56-66. [PMID: 37729770 DOI: 10.1016/j.neurobiolaging.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
To elucidate the relationship between age and cognitive decline, it is important to consider structural brain changes such as white matter hyperintensities (WMHs), which are common in older age and may affect behavior. Therefore, we aimed to investigate if WMH load is a mediator of the relationship between age and cognitive decline. Healthy participants (N = 166, 20-80 years) completed the Montreal Cognitive Assessment (MoCA). WMHs were manually delineated on FLAIR scans. Mediation analysis was conducted to determine if WMH load mediates the relationship between age and cognition. Older age was associated with worse cognition (p < 0.001), but this was an indirect effect: older participants had more WMHs, and, in turn, increased WMH load was associated with worse MoCA scores. WMH load mediates the relationship between age and cognitive decline. Importantly, this relationship was not moderated by age (i.e., increased WMH severity is associated with poorer MoCA scores irrespective of age). Across all ages, high cholesterol was associated with increased WMH severity.
Collapse
Affiliation(s)
- Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Sarah Wilson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
| | | | - Sara Sayers
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Sarah Newman-Norlund
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
8
|
Bilski AE, Aparicio HJ, Gutierrez J, de Leeuw FE, Hilkens N. Antiplatelet Therapy or Not for Asymptomatic/Incidental Lacunar Infarction. Stroke 2023; 54:1954-1959. [PMID: 37191009 PMCID: PMC10421561 DOI: 10.1161/strokeaha.122.040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Amanda E Bilski
- Department of Neurology, New York Presbyterian Hospital/ Columbia University Irving Medical Center
| | - Hugo J. Aparicio
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine
- Boston Medical Center
| | - Jose Gutierrez
- Department of Neurology, New York Presbyterian Hospital/ Columbia University Irving Medical Center
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Nina Hilkens
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
da Silva PHR, de Leeuw FE, Zotin MCZ, Neto OMP, Leoni RF, Tuladhar AM. Cortical Thickness and Brain Connectivity Mediate the Relation Between White Matter Hyperintensity and Information Processing Speed in Cerebral Small Vessel Disease. Brain Topogr 2023:10.1007/s10548-023-00973-w. [PMID: 37273021 DOI: 10.1007/s10548-023-00973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
White matter hyperintensities of presumed vascular origin (WMH) are the most common imaging feature of cerebral small vessel disease (cSVD) and are associated with cognitive impairment, especially information processing speed (IPS) deficits. However, it is unclear how WMH can directly impact IPS or whether the cortical thickness and brain connectivity mediate such association. In this study, it was evaluated the possible mediating roles of cortical thickness and brain (structural and functional) connectivity on the relationship between WMH (also considering its topography distribution) and IPS in 389 patients with cSVD from the RUN-DMC (Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort) database. Significant (p < 0.05 after multiple comparisons correction) associations of WMH volume and topography with cortical thickness, brain connectivity, and IPS performance in cSVD individuals were found. Additionally, cortical thickness and brain structural and functional connectivity were shown to mediate the association of WMH volume and location with IPS scores. More specifically, frontal cortical thickness, functional sensorimotor network, and posterior thalamic radiation tract were the essential mediators of WMH and IPS in this clinical group. This study provided insight into the mechanisms underlying the clinical relevance of white matter hyperintensities in information processing speed deficits in cSVD through cortical thinning and network disruptions.
Collapse
Affiliation(s)
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Maria Clara Zanon Zotin
- Department of Neurology, J. Philip Kistler Stroke Research Center, MGH, Boston, MA, USA
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Octavio Marques Pontes Neto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Li B, Yabluchanskiy A, Tarantini S, Allu SR, Şencan-Eğilmez I, Leng J, Alfadhel MAH, Porter JE, Fu B, Ran C, Erdener SE, Boas DA, Vinogradov SA, Sonntag WE, Csiszar A, Ungvari Z, Sakadžić S. Measurements of cerebral microvascular blood flow, oxygenation, and morphology in a mouse model of whole-brain irradiation-induced cognitive impairment by two-photon microscopy and optical coherence tomography: evidence for microvascular injury in the cerebral white matter. GeroScience 2023; 45:1491-1510. [PMID: 36792820 PMCID: PMC10400746 DOI: 10.1007/s11357-023-00735-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 μm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.
Collapse
Affiliation(s)
- Baoqiang Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Biophotonics Research Center, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ji Leng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Mohammed Ali H Alfadhel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jason E Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sefik Evren Erdener
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, 1083, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary.
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
11
|
da Silva PHR, de Leeuw FE, Zotin MCZ, Neto OMP, Leoni RF, Tuladhar AM. Neural Substrates of Psychomotor Speed Deficits in Cerebral Small Vessel Disease: A Brain Disconnectome Mapping Study. Brain Topogr 2023:10.1007/s10548-023-00961-0. [PMID: 37156893 DOI: 10.1007/s10548-023-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
It remains unknown which factors influence how brain disconnectivity derived from White Matter Hyperintensity (WMH) lesions leads to psychomotor speed dysfunction, one of the earliest and most common cognitive manifestations in the cerebral Small Vessel Disease (cSVD) population. While the burden of WMH has been strongly linked to psychomotor speed performance, the effect that different locations and volumes of WMH may have on cSVD-related cognitive impairment remains unclear. Therefore, we aimed to explore (1) whether global WMH, deep WMH (DWMH), and periventricular (PVWMH) volumes display different psychomotor speed associations; (2) whether tract-specific WMH volume shows stronger cognitive associations compared with global measures of WMH volume; (3) whether specific patterns of WMH location lead to different degrees of disconnectivity. Using the BCBToolkit, we investigated which pattern of distribution and which locations of WMH lesion result in impaired psychomotor speed in a well-characterized sample (n = 195) of cSVD patients without dementia. Two key findings emerge from our study. First, global (and not tract-specific) measures of WMH volume were associated with psychomotor speed performance. Second, disconnection maps revealed the involvement of callosal tracts, association and projection fibers, and frontal and parietal cortical brain areas related to psychomotor speed, while the lesion location influenced such associations. In conclusion, psychomotor deficits are affected differently by WMH burden and topographic distribution through brain disconnection in non-demented cSVD patients.
Collapse
Affiliation(s)
| | - Frank-Erik de Leeuw
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Clara Zanon Zotin
- Department of Neurology, J. Philip Kistler Stroke Research Center, MGH, Boston, MA, USA
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Octavio Marques Pontes Neto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Anil M Tuladhar
- Department of Neurology (A.M.T, Donders Center for Medical Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Busby N, Newman-Norlund S, Sayers S, Newman-Norlund R, Wilson S, Nemati S, Rorden C, Wilmskoetter J, Riccardi N, Roth R, Fridriksson J, Bonilha L. White matter hyperintensity load is associated with premature brain aging. Aging (Albany NY) 2022; 14:9458-9465. [PMID: 36455869 PMCID: PMC9792198 DOI: 10.18632/aging.204397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Brain age is an MRI-derived estimate of brain tissue loss that has a similar pattern to aging-related atrophy. White matter hyperintensities (WMHs) are neuroimaging markers of small vessel disease and may represent subtle signs of brain compromise. We tested the hypothesis that WMHs are independently associated with premature brain age in an original aging cohort. METHODS Brain age was calculated using machine-learning on whole-brain tissue estimates from T1-weighted images using the BrainAgeR analysis pipeline in 166 healthy adult participants. WMHs were manually delineated on FLAIR images. WMH load was defined as the cumulative volume of WMHs. A positive difference between estimated brain age and chronological age (BrainGAP) was used as a measure of premature brain aging. Then, partial Pearson correlations between BrainGAP and volume of WMHs were calculated (accounting for chronological age). RESULTS Brain and chronological age were strongly correlated (r(163)=0.932, p<0.001). There was significant negative correlation between BrainGAP scores and chronological age (r(163)=-0.244, p<0.001) indicating that younger participants had higher BrainGAP (premature brain aging). Chronological age also showed a positive correlation with WMH load (r(163)=0.506, p<0.001) indicating older participants had increased WMH load. Controlling for chronological age, there was a statistically significant relationship between premature brain aging and WMHs load (r(163)=0.216, p=0.003). Each additional year in brain age beyond chronological age corresponded to an additional 1.1mm3 in WMH load. CONCLUSIONS WMHs are an independent factor associated with premature brain aging. This finding underscores the impact of white matter disease on global brain integrity and progressive age-like brain atrophy.
Collapse
Affiliation(s)
- Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29201, USA
| | - Sarah Newman-Norlund
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29201, USA
| | - Sara Sayers
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29201, USA
| | | | - Sarah Wilson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29201, USA
| | - Samaneh Nemati
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29201, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29201, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC 29201, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29201, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Microvascular Changes in the Retina Correlate with MRI Markers in Patients with Early-Onset Dementia. Brain Sci 2022; 12:brainsci12101391. [PMID: 36291324 PMCID: PMC9599536 DOI: 10.3390/brainsci12101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aims: Recent reports suggest that results from imaging retinal microvascular changes with optical coherence tomography angiography (OCTA) in dementia patients reflect cerebral microcirculation changes that occur during dementia. Macula microvascular impairment has been shown in dementia patients compared to controls, but very little is known about its correlation with radiological visual rating scores associated with dementia. We aimed to explore the association between retinal microvasculature and radiological visual rating in early-onset dementia (EOD) patients. Methods: Swept-source OCTA (SS-OCTA) was used to image the retinal microvasculature of all EOD patients. Automated software in the OCTA tool segmented and measured the densities in the superficial vascular plexus (SVC) and deep vascular plexus (DVC) and foveal avascular zone (FAZ) areas. Radiological visual rating scores were evaluated on all MR images. Results: Medial temporal lobe atrophy (MTA) scores significantly correlated with FAZ area (p = 0.031) in EOD patients after adjusting for risk factors. PWMH correlated with SVC (p = 0.032) while DWMH significantly correlated with SVC (p = 0.007), DVC (p = 0.018) and FAZ (p = 0.001) in EOD patients. Discussion: FAZ changes correlated with MTA scores in EOD patients, while retinal microvasculature correlated with white matter hyperintensity. Our report suggests that microvascular changes in the retina may reflect cortical changes in the brain of EOD patients.
Collapse
|
14
|
Chen TY, Chan PC, Tsai CF, Wei CY, Chiu PY. White matter hyperintensities in dementia with Lewy bodies are associated with poorer cognitive function and higher dementia stages. Front Aging Neurosci 2022; 14:935652. [PMID: 36092817 PMCID: PMC9459160 DOI: 10.3389/fnagi.2022.935652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose White matter hyperintensities (WMHs) are frequently found in elderly individuals with or without dementia. However, the association between WMHs and clinical presentations of dementia with Lewy bodies (DLB) has rarely been studied. Methods We conducted a retrospective analysis of patients with DLB registered in a dementia database. WMHs were rated visually using the Fazekas scale, and its associated factors including dementia severity, cognitive functions, neuropsychiatric symptoms, and core clinical features were compared among different Fazekas scores. Domains in the Clinical Dementia Rating (CDR), Cognitive abilities Screening Instruments (CASI), and Neuropsychiatric Inventory (NPI) were compared among different Fazekas groups after adjusting for age, sex, education, and disease duration. Results Among the 449 patients, 76, 207, 110, and 56 had Fazekas score of 0, 1, 2, and 3, respectively. There was a positive association between dementia severity and WMHs severity, and the mean sums of boxes of the Clinical Dementia Rating (CDR-SB) were 5.9, 7.8, 9.5, and 11.2 (f = 16.84, p < 0.001) for the Fazekas scale scores 0, 1, 2, and 3, respectively. There was a negative association between cognitive performance and WMHs severity, and the mean CASI were 57.7, 45.4, 4.06, and 33.4 (f = 14.22, p < 0.001) for the Fazekas scale scores 0, 1, 2, and 3, respectively. However, WMHs were not associated with the core clinical features of DLB. After adjustment, all cognitive domains in CDR increased as the Fazekas score increased. In addition, performance on all cognitive domains in CASI decreased as the Fazekas score increased (all p < 0.001). Among neuropsychiatric symptoms, delusions, euphoria, apathy, aberrant motor behavior, and sleep disorders were significantly worse in the higher Fazekas groups compared to those in the group with Fazekas score of 0 after adjustment. Conclusion WMHs in DLB might contribute to deterioration of cognitive function, neuropsychiatric symptoms, and dementia stages. However, core clinical features were not significantly influenced by WMHs in DLB.
Collapse
Affiliation(s)
- Tai-Yi Chen
- Department of Radiology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Po-Chi Chan
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Ching-Fang Tsai
- Tainan Sin-Lau Hospital, The Presbyterian Church in Taiwan, Tainan, Taiwan
| | - Cheng-Yu Wei
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Applied Mathematics, Tunghai University, Taichung, Taiwan
- *Correspondence: Pai-Yi Chiu,
| |
Collapse
|
15
|
Zhang J, Sun JG, Xing X, Wu R, Zhou L, Zhang Y, Yuan F, Wang S, Yuan Z. c-Abl-induced Olig2 phosphorylation regulates the proliferation of oligodendrocyte precursor cells. Glia 2022; 70:1084-1099. [PMID: 35156232 DOI: 10.1002/glia.24157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Oligodendrocytes (OLs), the myelinating cells in the central nervous system (CNS), are differentiated from OL progenitor cells (OPCs). The proliferation of existing OPCs is indispensable for myelination during CNS development and remyelination in response to demyelination stimulation. The transcription factor Olig2 is required for the specification of OLs and is expressed in the OL lineage. However, the post-translational modification of Olig2 in the proliferation of OPCs is poorly understood. Herein, we identified that c-Abl directly phosphorylates Olig2 mainly at the Tyr137 site, and that Olig2 phosphorylation is essential for OPC proliferation. The expression levels of c-Abl gradually decreased with brain development; moreover, c-Abl was highly expressed in OPCs. OL-specific c-Abl knockout at the developmental stage led to an insufficient proliferation of OPCs, a decreased expression of myelin-related genes, and myelination retardation. Accordingly, a c-Abl-specific kinase inhibitor suppressed OPC proliferation in vitro. Furthermore, we observed that OL-specific c-Abl knockout reduced OPC proliferation and remyelination in a cuprizone model of demyelination. In addition, we found that nilotinib, a clinically used c-Abl inhibitor, decreased the expression of myelin basic protein (Mbp) and motor coordination in mice, indicating a neurological side effect of a long-term administration of the c-Abl inhibitor. Thus, we identified the important role of c-Abl in OLs during developmental myelination and remyelination in a disease model.
Collapse
Affiliation(s)
- Jun Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jian-Guang Sun
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaowen Xing
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rong Wu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lujun Zhou
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ying Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fang Yuan
- Department of Oncology, The General Hospital of Chinese People's Liberation Army No.5 Medical Science Center, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Beijing, China
| |
Collapse
|
16
|
Fan Y, Xu Y, Shen M, Guo H, Zhang Z. Total Cerebral Small Vessel Disease Burden on MRI Correlates With Cognitive Impairment in Outpatients With Amnestic Disorders. Front Neurol 2021; 12:747115. [PMID: 34925212 PMCID: PMC8675386 DOI: 10.3389/fneur.2021.747115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Objectives: The main markers of cerebral small vessel disease (cSVD) on MRI may be entered into a scoring system, with the total score representing the overall burden of cSVD. An association between total cSVD score and cognitive dysfunction has been reported in several cohorts. The present study aimed to investigate this association in outpatients with amnestic disorders. Materials and Methods: Outpatients with amnestic complaints in a memory clinic (n = 289) were recruited retrospectively. All the patients had undergone clinical and cognitive evaluation at first presentation. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA) scale. The total cSVD score was based on the following markers on MRI: lacune; white matter hyperintensities, microbleed, and enlarged perivascular spaces. The association between total cSVD score and MoCA score was tested via Spearman's analysis and a linear regression model. Results: Among the 289 patients, rates for 0–4 cSVD markers respectively ranged from 30.4 to 2.8%. A multiple linear regression model revealed an inverse correlation between the total cSVD score and MoCA score. The association remained significant after adjusting for gender, age, education, levels of medial temporal lobe atrophy, and classical vascular risk factors [β = −0.729, 95% CI (−1.244, −0.213); P = 0.006]. When individual markers were individually analyzed after adjusting for the same factors, only microbleed associated with MoCA score [β = −3.007, 95% CI (−4.533, −1.480), P < 0.001]. Conclusions: A significant association was demonstrated between total cSVD score and cognitive performance in the outpatients with amnestic disorders.
Collapse
Affiliation(s)
- Yangyi Fan
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Yicheng Xu
- Department of Neurology, Aerospace Center Hospital, Beijing, China
| | - Ming Shen
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Huailian Guo
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Zhaoxu Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
17
|
Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R. Pathogeneses and Imaging Features of Cerebral White Matter Lesions of Vascular Origins. Aging Dis 2021; 12:2031-2051. [PMID: 34881084 PMCID: PMC8612616 DOI: 10.14336/ad.2021.0414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
White matter lesion (WML), also known as white matter hyperintensities or leukoaraiosis, was first termed in 1986 to describe the hyperintense signals on T2-weighted imaging (T2WI) and fluid-attenuated inversion recovery (FLAIR) maps. Over the past decades, a growing body of pathophysiological findings regarding WMLs have been discovered and discussed. Currently, the generally accepted WML pathogeneses mainly include hypoxia-ischemia, endothelial dysfunction, blood-brain barrier disruption, and infiltration of inflammatory mediators or cytokines. However, none of them can explain the whole dynamics of WML formation. Herein, we primarily focus on the pathogeneses and neuroimaging features of vascular WMLs. To achieve this goal, we searched papers with any type published in PubMed from 1950 to 2020 and cross-referenced the keywords including “leukoencephalopathy”, “leukoaraiosis”, “white matter hyperintensity”, “white matter lesion”, “pathogenesis”, “pathology”, “pathophysiology”, and “neuroimaging”. Moreover, references of the selected articles were browsed and searched for additional pertinent articles. We believe this work will supply the robust references for clinicians to further understand the different WML patterns of varying vascular etiologies and thus make customized treatment.
Collapse
Affiliation(s)
- Xiaoqin Wu
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingyuan Ya
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,4Division of Clinical Neuroscience, Queen's Medical Center School of Medicine, the University of Nottingham, Nottingham NG7 2UH, UK
| | - Da Zhou
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- 3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Xunming Ji
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Lin CY, Jhan SR, Lee WJ, Chen PL, Chen JP, Chen HC, Chen TB. Imaging Markers of Subcortical Vascular Dementia in Patients With Multiple-Lobar Cerebral Microbleeds. Front Neurol 2021; 12:747536. [PMID: 34867731 PMCID: PMC8636110 DOI: 10.3389/fneur.2021.747536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Background and Purpose: Small vessel disease (SVD) imaging markers are related to ischemic and hemorrhage stroke and to cognitive dysfunction. This study aimed to clarify the relationship between SVD imaging markers and subcortical vascular dementia in severe SVD burden. Methods: A total of 57 subjects with multiple lobar cerebral microbleeds (CMBs) and four established SVD imaging markers were enrolled from the dementia and stroke registries of a single center. Visual rating scales that are used to semi-quantify SVD imaging changes were analyzed individually and compositely to make correlations with cognitive domains and subcortical vascular dementia. Results: Dementia group had higher subcortical and total white matter hyperintensities (WMHs) and SVD composite scores than non-dementia group. Individual imaging markers correlated differently with one another and had distinct cognitive correlations. After adjusting for demographic factors, multivariate logistic regression indicated associations of subcortical WMHs (odds ratio [OR] 2.03, CI 1.24–3.32), total WMHs (OR 1.43, CI 1.09–1.89), lacunes (OR 1.18, CI 1.02–1.35), cerebral amyloid angiopathy-SVD scores (OR 2.33, CI 1.01–5.40), C1 scores (imaging composite scores of CMB and WMH) (OR 1.41, CI 1.09–1.83), and C2 scores (imaging composite scores of CMB, WMH, perivascular space, and lacune) (OR 1.38, CI 1.08–1.76) with dementia. Conclusions: SVD imaging markers might have differing associations with cognitive domains and dementia. They may provide valuable complementary information in support of personalized treatment planning against cognitive impairment, particularly in patients with a heavy SVD load.
Collapse
Affiliation(s)
- Chia-Yen Lin
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Song-Ru Jhan
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ju Lee
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Lin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chieh Chen
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Cosmetology, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
19
|
Tang X, Jiang L, Luo Y, Fan H, Song L, Liu P, Chen Y. Leukoaraiosis and acute ischemic stroke. Eur J Neurosci 2021; 54:6202-6213. [PMID: 34331366 DOI: 10.1111/ejn.15406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Ischaemic stroke is characterized by high morbidity, high disability rate, high mortality and high recurrence rate, which can have a grave impact on the quality of life of the patients and consequently becomes an economic burden on their families and society. With the developments in imaging technology in recent years, patients with acute cerebral infarction are predominantly more likely to be diagnosed with leukoaraiosis (LA). LA is a common degenerative disease of the nervous system, which is related to cognitive decline, depression, abnormal gait, ischaemic stroke and atherosclerosis. The aetiology of LA is not clear and there is no gold standard for imaging assessment. Related studies have shown that LA has an adverse effect on the prognosis of cerebral infarction, but some experts have contrary beliefs. Hence, we undertook the present review of the literature on the mechanism and the effect of LA on the prognosis of patients with acute ischaemic stroke.
Collapse
Affiliation(s)
- Xiaojia Tang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou City, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou City, China
| | - Yuhan Luo
- Health Management Center, People's Hospital of Deyang City, Deyang City, China
| | - Hongyang Fan
- Department of Neurology, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang City, China
| | - Lilong Song
- Department of Neurology, Shanghai Fourth People's Hospital, Shanghai City, China
| | - Peipei Liu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou City, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou City, China
| |
Collapse
|
20
|
Gong L, Wang H, Dong Q, Zhu X, Zheng X, Gu Y, Cai W, Zhao Y, Liu X. Intracranial Atherosclerotic Stenosis is Related to Post-stroke Cognitive Impairment: A Cross-sectional Study of Minor Stroke. Curr Alzheimer Res 2021; 17:177-184. [PMID: 32124696 DOI: 10.2174/1567205017666200303141920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/30/2020] [Accepted: 03/01/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intracranial Atherosclerotic Stenosis (ICAS) is an important risk factor for cognitive impairment. However, it is unclear whether patients with ICAS are more likely to develop cognitive impairment after an acute, non-disabling ischemic stroke (minor stroke). OBJECTIVE We aimed to investigate the association between ICAS and post-stroke cognitive impairment. METHODS In this cross-sectional study, patients with acute, non-disabling ischemic stroke underwent two cognitive tests and imaging evaluation for ICAS, within two weeks after the stroke. To determine the association between ICAS and post-stroke cognitive impairment, we performed a multivariate logistic regression analysis adjusted for several demographic and vascular risk factors. RESULTS Of the 164 patients with minor stroke in this study, 98 (59.76%) were diagnosed with poststroke cognitive impairment (Montreal Cognitive Assessment score<26). After adjusting for potential confounders, we found that patients with ICAS were more likely to develop cognitive impairment after an acute, non-disabling ischemic stroke, compared to patients without ICAS (Odds Ratio: 2.13; 95% Confidence Interval: 1.07-4.26), and underperformed in the tests of visuospatial and executive function. CONCLUSION In this cross-sectional study of a population that has experienced a minor stroke, our findings demonstrated a positive association between ICAS and post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Li Gong
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Haichao Wang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Qiong Dong
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xiaoping Zhu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xiaoran Zheng
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Yongzhe Gu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Wangli Cai
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
21
|
Kaskikallio A, Karrasch M, Koikkalainen J, Lötjönen J, Rinne JO, Tuokkola T, Parkkola R, Grönholm-Nyman P. Effects of White Matter Hyperintensities on Verbal Fluency in Healthy Older Adults and MCI/AD. Front Aging Neurosci 2021; 13:614809. [PMID: 34025385 PMCID: PMC8134546 DOI: 10.3389/fnagi.2021.614809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND White matter hyperintensities (WMHs) are markers for cerebrovascular pathology, which are frequently seen in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Verbal fluency is often impaired especially in AD, but little research has been conducted concerning the specific effects of WMH on verbal fluency in MCI and AD. OBJECTIVE Our aim was to examine the relationship between WMH and verbal fluency in healthy old age and pathological aging (MCI/AD) using quantified MRI data. METHODS Measures for semantic and phonemic fluency as well as quantified MRI imaging data from a sample of 42 cognitively healthy older adults and 44 patients with MCI/AD (total n = 86) were utilized. Analyses were performed both using the total sample that contained seven left-handed/ambidextrous participants, as well with a sample containing only right-handed participants (n = 79) in order to guard against possible confounding effects regarding language lateralization. RESULTS After controlling for age and education and adjusting for multiple correction, WMH in the bilateral frontal and parieto-occipital areas as well as the right temporal area were associated with semantic fluency in cognitively healthy and MCI/AD patients but only in the models containing solely right-handed participants. CONCLUSION The results indicate that white matter pathology in both frontal and parieto-occipital cerebral areas may have associations with impaired semantic fluency in right-handed older adults. However, elevated levels of WMH do not seem to be associated with cumulative effects on verbal fluency impairment in patients with MCI or AD. Further studies on the subject are needed.
Collapse
Affiliation(s)
- Alar Kaskikallio
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | | | | | - Juha O. Rinne
- Turku PET-Centre, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | | | - Riitta Parkkola
- Department of Radiology, University Hospital of Turku, Turku, Finland
| | | |
Collapse
|
22
|
Patterns of white matter hyperintensities associated with cognition in middle-aged cognitively healthy individuals. Brain Imaging Behav 2021; 14:2012-2023. [PMID: 31278650 PMCID: PMC7572336 DOI: 10.1007/s11682-019-00151-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
White matter hyperintensities (WMH) are commonly detected in the brain of elderly individuals and have been associated with a negative impact on multiple cognitive domains. We aim to investigate the impact of global and regional distribution of WMH on episodic memory and executive function in middle-aged cognitively unimpaired participants [N = 561 (45–75 years)] enriched for Alzheimer’s disease risk factors. WMH were automatically segmented from FLAIR, T1 and FSE MR images. WMH load was calculated both globally and regionally. At each cerebral lobe, regional WMH load was measured at four equidistant layers extending from the lateral ventricles to juxtacortical areas. Cognition was measured by The Memory Binding Test (MBT) and WAIS-IV subtests. Global composite z-scores were calculated for the two cognitive domains. Association between global and regional WMH measurements were sought against cognitive measures, both in global composite scores and in individual subtests. We adjusted cognition and WMH burden for the main sociodemographic (age, sex and education) and genetic factors (APOE-ε4). Memory and executive function were significantly associated with global WMH load. Regionally, lower executive performance was mainly associated with higher deep WMH load in frontal areas and, to a lower degree, in occipital, parietal and temporal regions. Lower episodic memory performance was correlated with higher WMH burden in deep frontal and occipital areas. Our novel methodological approach of regional analysis allowed us to reveal the association between cognition and WMH in strategic brain locations. Our results suggest that, even a small WMH load can impact cognition in cognitively unimpaired middle-aged subjects.
Collapse
|
23
|
Salvadori E, Poggesi A, Pracucci G, Chiti A, Ciolli L, Del Bene A, Di Donato I, Marini S, Nannucci S, Orlandi G, Pasi M, Pescini F, Valenti R, Federico A, Dotti MT, Bonuccelli U, Inzitari D, Pantoni L. Longitudinal changes in MoCA performances in patients with mild cognitive impairment and small vessel disease. Results from the VMCI-Tuscany Study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100008. [PMID: 36324712 PMCID: PMC9616337 DOI: 10.1016/j.cccb.2021.100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The Montreal Cognitive Assessment (MoCA) is a cognitive screening test largely employed in vascular cognitive impairment, but there are no data about MoCA longitudinal changes in patients with cerebral small vessel disease (SVD). We aimed to describe changes in MoCA performance in patients with mild cognitive impairment (MCI) and SVD during a 2-year follow-up, and to evaluate their association with transition to major neurocognitive disorder (NCD). MATERIALS AND METHODS Within the prospective observational VMCI-Tuscany Study, patients with MCI and SVD underwent a comprehensive clinical, neuropsychological, and functional evaluation at baseline, and after 1 and 2 years. RESULTS Among the 138 patients (mean age 74.4 ± 6.9 years; males: 57%) who completed the study follow-up, 44 (32%) received a major NCD diagnosis. Baseline MoCA scores (mean±SD) were lower in major NCD patients (20.5 ± 5) than in reverter/stable MCI (22.2 ± 4.3), and the difference approached the statistical threshold of significance (p=.051). The total cohort presented a decrease in MoCA score (mean±SD) of -1.3 ± 4.2 points (-2.6 ± 4.7 in major NCD patients, -0.7 ± 3.9 in reverter/stable MCI). A multivariate logistic model on the predictors of transition from MCI to major NCD, showed MoCA approaching the statistical significance (OR=1.09, 95% CI=1.00-1.19, p=.049). DISCUSSION In our sample of MCI patients with SVD, longitudinal changes in MoCA performances were consistent with an expected more pronounced deterioration in patients who received a diagnosis of major NCD. MoCA sensitivity to change and predictive utility need to be further explored in VCI studies based on larger samples and longer follow-up periods.
Collapse
Affiliation(s)
- Emilia Salvadori
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Giovanni Pracucci
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Alberto Chiti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Ciolli
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Alessandra Del Bene
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Ilaria Di Donato
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Sandro Marini
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Serena Nannucci
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Giovanni Orlandi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Pasi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Francesca Pescini
- Stroke Unit, Emergency Department, Careggi University Hospital, Florence, Italy
| | - Raffaella Valenti
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Antonio Federico
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Inzitari
- Institute of Neuroscience Italian National Research Council (CNR), Florence, Italy
| | - Leonardo Pantoni
- Stroke and Dementia Lab, 'Luigi Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy
| | | |
Collapse
|
24
|
Hyperintense Brain Lesions in Asymptomatic Low Risk Patients with Paroxysmal Atrial Fibrillation Undergoing Radiofrequency Pulmonary Vein Isolation. J Clin Med 2021; 10:jcm10040565. [PMID: 33546182 PMCID: PMC7913160 DOI: 10.3390/jcm10040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The aim was to determine the occurrence, consequences and risk factors for brain white matter hyperintensities (WMH) assessed in magnetic resonance imaging (MRI) in low-risk patients with paroxysmal atrial fibrillation (AF) undergoing radiofrequency pulmonary vein isolation (PVI-RF). METHODS 74 patients with AF (median 58.5 years (IQR 50-63), 45 male) were included. Before and after a minimum of 6 months after PVI-RF, a brain MRI and a mini-mental state examination (MMSE) were performed. RESULTS Baseline WMH lesions were found in 55 (74.3%) patients and in 48 from 62 (77.4%) patients after PVI-RF. The WMH lesions were more frequent among older patients, with a higher CHA2DS2-Vasc (C-Congestive heart failure/LV dysfunction, H-Hypertension, A-Age, D-Diabetes mellitus, S-Stroke, V-Vascular Disease, Sc-Sex category). Factors affecting the severity of the WMH were: older age, the co-existence of the PFO and coronary artery disease (CAD). After a follow-up period, the factors predisposing to brain WMH lesions occurrence (age, higher BMI and CHA2DS2-Vasc score) and to the more advanced changes (age, higher CHA2DS2-Vasc score, CAD, PFO) were obtained. CONCLUSIONS The presence and severity of cerebral microembolism are associated with age, higher CHA2DS2-Vasc score and the coexistence of PFO and CAD. PVI-RF procedure and its efficacy does not influence on MRI lesions. In this population, cerebral microembolism is not related to cognitive impairment.
Collapse
|
25
|
Tolea MI, Heo J, Chrisphonte S, Galvin JE. A Modified CAIDE Risk Score as a Screening Tool for Cognitive Impairment in Older Adults. J Alzheimers Dis 2021; 82:1755-1768. [PMID: 34219721 PMCID: PMC8483620 DOI: 10.3233/jad-210269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although an efficacious dementia-risk score system, Cardiovascular Risk Factors, Aging, and Dementia (CAIDE) was derived using midlife risk factors in a population with low educational attainment that does not reflect today's US population, and requires laboratory biomarkers, which are not always available. OBJECTIVE Develop and validate a modified CAIDE (mCAIDE) system and test its ability to predict presence, severity, and etiology of cognitive impairment in older adults. METHODS Population consisted of 449 participants in dementia research (N = 230; community sample; 67.9±10.0 years old, 29.6%male, 13.7±4.1 years education) or receiving dementia clinical services (N = 219; clinical sample; 74.3±9.8 years old, 50.2%male, 15.5±2.6 years education). The mCAIDE, which includes self-reported and performance-based rather than blood-derived measures, was developed in the community sample and tested in the independent clinical sample. Validity against Framingham, Hachinski, and CAIDE risk scores was assessed. RESULTS Higher mCAIDE quartiles were associated with lower performance on global and domain-specific cognitive tests. Each one-point increase in mCAIDE increased the odds of mild cognitive impairment (MCI) by up to 65%, those of AD by 69%, and those for non-AD dementia by > 85%, with highest scores in cases with vascular etiologies. Being in the highest mCAIDE risk group improved ability to discriminate dementia from MCI and controls and MCI from controls, with a cut-off of ≥7 points offering the highest sensitivity, specificity, and positive and negative predictive values. CONCLUSION mCAIDE is a robust indicator of cognitive impairment in community-dwelling seniors, which can discriminate well between dementia severity including MCI versus controls. The mCAIDE may be a valuable tool for case ascertainment in research studies, helping flag primary care patients for cognitive testing, and identify those in need of lifestyle interventions for symptomatic control.
Collapse
Affiliation(s)
- Magdalena I. Tolea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Jaeyeong Heo
- Department of Neurology, Harbor UCLA Medical Center
| | - Stephanie Chrisphonte
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| |
Collapse
|
26
|
Nicolas R, Hiba B, Dilharreguy B, Barse E, Baillet M, Edde M, Pelletier A, Periot O, Helmer C, Allard M, Dartigues JF, Amieva H, Pérès K, Fernandez P, Catheline G. Changes Over Time of Diffusion MRI in the White Matter of Aging Brain, a Good Predictor of Verbal Recall. Front Aging Neurosci 2020; 12:218. [PMID: 32922282 PMCID: PMC7456903 DOI: 10.3389/fnagi.2020.00218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Extensive research using water-diffusion MRI reported age-related modifications of cerebral White Matter (WM). Moreover, water-diffusion parameter modifications have been frequently associated with cognitive performances in the elderly sample, reinforcing the idea of aging inducing microstructural disconnection of the brain which in turn impacts cognition. However, only few studies really assessed over-time modifications of these parameters and their relationship with episodic memory outcome of elderly. Materials and Methods: One-hundred and thirty elderly subjects without dementia (74.1 ± 4.1 years; 47% female) were included in this study. Diffusion tensor imaging (DTI) was performed at two-time points (3.49 ± 0.68 years apart), allowing the assessment of changes in water-diffusion parameters over time using a specific longitudinal pipeline. White matter hyperintensity (WMH) burden and gray matter (GM) atrophy were also measured on FLAIR and T1-weighted sequences collected during these two MRI sessions. Free and cued verbal recall scores assessed at the last follow-up of the cohort were used as episodic memory outcome. Changes in water-diffusion parameters over time were included in serial linear regression models to predict retrieval or storage ability of elderly. Results: GM atrophy and an increase in mean diffusivity (MD) and WMH load between the two-time points were observed. The increase in MD was significantly correlated with WMH load and the different memory scores. In models accounting for the baseline cognitive score, GM atrophy, or WMH load, MD changes still significantly predict free verbal recall, and not total verbal recall, suggesting the specific association with the retrieval deficit in healthy aging. Conclusion: In elderly, microstructural WM changes are good predictors of lower free verbal recall performances. Moreover, this contribution is not only driven by WMH load increase. This last observation is in line with studies reporting early water-diffusion modification in WM tissue during aging, resulting lately in the appearance of WMH on conventional MRI.
Collapse
Affiliation(s)
- Renaud Nicolas
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Bassem Hiba
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Bixente Dilharreguy
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Elodie Barse
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Marion Baillet
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Manon Edde
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Amandine Pelletier
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Olivier Periot
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Catherine Helmer
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France
| | - Michele Allard
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Service de Médecine Nucléaire, CHU de Bordeaux, Bordeaux, France
| | - Jean-François Dartigues
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France.,CMRR, CHU de Bordeaux, Bordeaux, France
| | - Hélène Amieva
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France
| | - Karine Pérès
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France
| | - Philippe Fernandez
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Service de Médecine Nucléaire, CHU de Bordeaux, Bordeaux, France
| | - Gwénaëlle Catheline
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| |
Collapse
|
27
|
Kaskikallio A, Karrasch M, Koikkalainen J, Lötjönen J, Rinne JO, Tuokkola T, Parkkola R, Grönholm-Nyman P. White Matter Hyperintensities and Cognitive Impairment in Healthy and Pathological Aging: A Quantified Brain MRI Study. Dement Geriatr Cogn Disord 2020; 48:297-307. [PMID: 32209796 DOI: 10.1159/000506124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Brain changes involving the white matter (WM), often an indication of cerebrovascular pathology, are frequently seen in patients with mild cognitive impairment (MCI) and Alzheimer disease (AD). Few studies have examined possible cognitive domain- or group-specific cognitive effects of WM pathology in old age, MCI, and AD. OBJECTIVE Our purpose was to examine the relationship between WM hyperintensities (WMH), a typical marker for WM pathology, and cognitive functioning in healthy old age and pathological aging using quantified MRI data. METHODS We utilized multidomain neuropsychological data and quantified MRI data from a sample of 42 cognitively healthy older adults and 44 patients with MCI/AD (total n = 86). RESULTS After controlling for age and education, WMH in the temporal and parieto-occipital lobes was associated with impairments in processing speed and parieto-occipital pathology with verbal memory impairment in the whole sample. Additionally, temporal WMH was associated with impaired processing speed in the patient group specifically. CONCLUSIONS WM pathology is strongly associated with impaired processing speed, and our results indicate that these impairments arise from WMH in the temporal and parieto-occipital regions. In MCI and AD patients with temporal WMH, processing speed impairments are especially prominent. The results of this study increase our knowledge of cognitive repercussions stemming from temporal and/or parieto-occipital WM pathology in healthy and pathological aging.
Collapse
Affiliation(s)
| | | | | | | | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | | | - Riitta Parkkola
- Department of Radiology, University and University Hospital of Turku, Turku, Finland
| | | |
Collapse
|
28
|
Kasahara H, Ikeda M, Nagashima K, Fujita Y, Makioka K, Tsukagoshi S, Yamazaki T, Takai E, Sanada E, Kobayashi A, Kishi K, Suto T, Higuchi T, Tsushima Y, Ikeda Y. Deep White Matter Lesions Are Associated with Early Recognition of Dementia in Alzheimer's Disease. J Alzheimers Dis 2020; 68:797-808. [PMID: 30775989 DOI: 10.3233/jad-180939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroimages of cerebral amyloid-β (Aβ) accumulation and small vessel disease (SVD) were examined in patients with various types of cognitive disorders using 11C-labeled Pittsburgh Compound B-positron emission tomography (PiB-PET) and magnetic resonance imaging (MRI). The mean cortical standardized uptake value ratio (mcSUVR) was applied for a quantitative analysis of PiB-PET data. The severity of white matter lesions (WML) and enlarged perivascular spaces (EPVS) on MRI were assessed to evaluate complicating cerebral SVD using semiquantitative scales. In homozygous apolipoprotein E ɛ3/ɛ3 carriers, the incidence of more severe WML and EPVS was higher in PiB-positive than PiB-negative patients, indicating that WML and EPVS might be associated with enhanced Aβ accumulation. An association study between PiB-PET and MRI findings revealed that higher WML grades significantly correlate with lower mcSUVRs, especially in the frontal area, indicating that more severe ischemic MRI findings are associated with milder Aβ accumulation among patients with Alzheimer's disease. In these patients SVD may accelerate the occurrence of cognitive decline and facilitate early recognition of dementia.
Collapse
Affiliation(s)
- Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masaki Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuaki Nagashima
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yukio Fujita
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Setsuki Tsukagoshi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsuneo Yamazaki
- Department of Rehabilitation, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Eriko Takai
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Etsuko Sanada
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayumi Kobayashi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiro Kishi
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Takayuki Suto
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
29
|
Youssef MI, Zhou Y, Eissa IH, Wang Y, Zhang J, Jiang L, Hu W, Qi J, Chen Z. Tetradecyl 2,3-dihydroxybenzoate alleviates oligodendrocyte damage following chronic cerebral hypoperfusion through IGF-1 receptor. Neurochem Int 2020; 138:104749. [PMID: 32387468 DOI: 10.1016/j.neuint.2020.104749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Currently, there is no effective therapy for chronic cerebral hypoperfusion-induced subcortical ischemic vascular dementia (SIVD), which displays cognitive deficits and progressive white matter damage. Tetradecyl 2,3-dihydroxybenzoate (ABG-001) is a lead compound derived from gentisides with neuritogenic activity. In this report, we intended to investigate the effect of ABG-001 on the SIVD experimental model through right unilateral common carotid arteries occlusion (rUCCAO) in mice. We found that ABG-001 remarkably alleviated white matter damage and cognitive deficits after cerebral hypoperfusion induced by rUCCAO. The protection of ABG-001 on the white matter was related to an amelioration of the oligodendrocyte apoptosis and demyelination rather than promoting remyelination. Molecular docking study showed that ABG-001 possesses a high affinity for insulin-like growth factor-1 receptor (IGF-1R), but not for tropomyosin receptor kinase A (TrkA). The protection of ABG-001 against oligodendrocyte damage was abrogated by IGF-1R antagonist or knockdown of IGF-1R through shRNA, but not TrkA antagonist. Moreover, ABG-001 did not induce hematological, renal or hepatic toxicity after chronic treatment. The present study indicates that ABG-001 protects oligodendrocytes through IGF-1R to relieve demyelination following chronic cerebral hypoperfusion, which could be represented as an encouraging treatment for SIVD.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yiting Zhou
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, Zhejiang, 310016, PR China
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Yanhui Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Zhang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, Zhejiang, 310016, PR China
| | - Lei Jiang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Weiwei Hu
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Jianhua Qi
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
30
|
Janes F, Cifù A, Pessa ME, Domenis R, Gigli GL, Sanvilli N, Nilo A, Garbo R, Curcio F, Giacomello R, Fabris M, Valente M. ADMA as a possible marker of endothelial damage. A study in young asymptomatic patients with cerebral small vessel disease. Sci Rep 2019; 9:14207. [PMID: 31578412 PMCID: PMC6775279 DOI: 10.1038/s41598-019-50778-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
Sporadic small vessel disease (SVD) has high prevalence in aging population and stroke patients, but also in younger asymptomatic subjects. In this last group it can represents a prelude to stroke and cognitive impairment. Still nowadays, its pathogenesis is unclear. 35 consecutive patients with SVD at brain MRI and 35 age- and sex-matched controls, between January 2016 and February 2018, underwent an extended screening for thrombophilia, autoimmunity and evaluated levels of blood markers of inflammation and endothelial activation. Asymmetric DiMethyl Arginine (ADMA) levels proved higher in patients (70.44 ± 36.25 ng/ml vs. 46.58 ± 30.67 ng/ml; p = 0.004), also after controlling for confounding factors. ADMA levels showed positive correlation with Fazekas score (r = 0.304; p = 0.01). ROC curve analysis showed a moderate accuracy in discriminating patients and controls (AUC = 0.70; CI 0.57–0.82; p = 0.004): a cut-off of 46 ng/ml is associated with 80% sensitivity, but limited (54%) specificity. Higher ADMA levels characterize selected subjects with sporadic SVD, asymptomatic for vascular diseases and without latent inflammatory conditions or coagulopathy. This reinforces the hypothesis of the key role of endothelial dysfunction in SVD. Further studies should explore the cause-effect relationship between ADMA pathway and SVD.
Collapse
Affiliation(s)
- Francesco Janes
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy.
| | - Adriana Cifù
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Maria Elena Pessa
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Rossana Domenis
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Nova Sanvilli
- Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Annacarmen Nilo
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Riccardo Garbo
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Francesco Curcio
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Roberta Giacomello
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Martina Fabris
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Mariarosaria Valente
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
31
|
Badji A, Sabra D, Bherer L, Cohen-Adad J, Girouard H, Gauthier CJ. Arterial stiffness and brain integrity: A review of MRI findings. Ageing Res Rev 2019; 53:100907. [PMID: 31063866 DOI: 10.1016/j.arr.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Given the increasing incidence of vascular diseases and dementia, a better understanding of the cerebrovascular changes induced by arterial stiffness is important for early identification of white and gray matter abnormalities that might antedate the appearance of clinical cognitive symptoms. Here, we review the evidence from neuroimaging demonstrating the impact of arterial stiffness on the aging brain. METHOD This review presents findings from recent studies examining the association between arterial stiffness, cognitive function, cerebral hypoperfusion, and markers of neuronal fiber integrity using a variety of MRI techniques. RESULTS Overall, changes associated with arterial stiffness indicates that the corpus callosum, the internal capsule and the corona radiata may be the most vulnerable regions to microvascular damage. In addition, the microstructural integrity of these regions appears to be associated with cognitive performance. Changes in gray matter structure have also been found to be associated with arterial stiffness and are present as early as the 5th decade. Moreover, low cerebral perfusion has been associated with arterial stiffness as well as lower cognitive performance in age-sensitive tasks such as executive function. CONCLUSION Considering the established relationship between arterial stiffness, brain and cognition, this review highlights the need for future studies of brain structure and function in aging to implement measurements of arterial stiffness in parallel with quantitative imaging.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dalia Sabra
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Biomedical Science, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Louis Bherer
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hélène Girouard
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine J Gauthier
- Physics Department, Concordia University, Montréal, QC, Canada; PERFORM Centre, Concordia University, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
32
|
Distinct profiles of cognitive impairment associated with different silent cerebrovascular lesions in hypertensive elderly Chinese. J Neurol Sci 2019; 403:139-145. [DOI: 10.1016/j.jns.2019.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
|
33
|
Kaskikallio A, Karrasch M, Rinne JO, Tuokkola T, Parkkola R, Grönholm-Nyman P. Domain-specific cognitive effects of white matter pathology in old age, mild cognitive impairment and Alzheimer's disease. AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:453-470. [PMID: 31198088 DOI: 10.1080/13825585.2019.1628916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Concomitant white matter (WM) brain pathology is often present in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Cognitive effects of WM pathology on cognition in normal and pathological aging have been studied, but very little is known about possible group-specific effects in old age, MCI and AD. The purpose of the current study was to examine the relationship between WM pathology and cognitive functioning in four cognitive domains in old age, MCI and AD. The study utilized multi-domain neuropsychological data and visually rated MRI imaging data from a sample of 56 healthy older adults, 40 patients with MCI and 52 patients with AD (n = 148). After controlling for age and education, main effects of frontal WM pathology (especially in the left hemisphere) were found for cognitive performances in two domains, whereas a main effect of parieto-occipital WM pathology was only found for processing speed. In addition, with regard to processing speed, an interaction between group and WM changes was found: Patients with AD that had moderate or severe left frontal WM pathology were considerably slower than patients with AD that had milder cerebrovascular pathology. Frontal WM pathology, especially in the left hemisphere, seems to affect cognitive functions in many domains in all three groups. The results of the study increase our knowledge of cognitive repercussions stemming from frontal and/or parieto-occipital WM pathology in AD. Clinicians should be aware that patients with AD with prominent frontal cerebrovascular pathology can have considerably slowed cognitive processing.
Collapse
Affiliation(s)
- Alar Kaskikallio
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Juha O Rinne
- Turku PET-Centre, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | | | - Riitta Parkkola
- Department of Radiology, University and University Hospital of Turku, Turku, Finland
| | | |
Collapse
|
34
|
Can the trail making test black and white predict white matter hyperintensity on MRI? J Clin Neurosci 2019; 64:155-159. [DOI: 10.1016/j.jocn.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/08/2019] [Indexed: 11/23/2022]
|
35
|
Toyama K, Spin JM, Mogi M, Tsao PS. Therapeutic perspective on vascular cognitive impairment. Pharmacol Res 2019; 146:104266. [PMID: 31108183 DOI: 10.1016/j.phrs.2019.104266] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Dementia is one of the greatest public health concerns for the modern aging world. Over the last decade, most researchers developing new therapeutic strategies for dementia have focused on amyloid-β. In contrast, numerous recent studies have indicated that vascular risk factors are associated with various forms of dementia, and that in fact most forms of dementia can be considered an extension of vascular disease. Accordingly, it is sensible to pursue treatment approaches that focus on the blood vessels. Blood-brain barrier (BBB) disruptions in the white matter of patients with vascular cognitive impairment (VCI) have been observed using imaging analysis, and might be potential targets for novel VCI treatment. Tight junctions between cerebral endothelial cells play an important role in the function of the BBB, and recent studies have demonstrated the essential role of microRNAs in regulating tight junctions. Further elucidation of the mechanisms of tight junction-disruption in dementia are likely to lead to promising novel treatments. In this article, we summarize current knowledge regarding microRNAs and vascular cognitive impairment and the possibility of utilizing microRNAs as biomarkers for BBB dysfunction, and seek to envision future therapeutic strategies.
Collapse
Affiliation(s)
- Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
36
|
Gu T, Fu C, Shen Z, Guo H, Zou M, Chen M, Rockwood K, Song X. Age-Related Whole-Brain Structural Changes in Relation to Cardiovascular Risks Across the Adult Age Spectrum. Front Aging Neurosci 2019; 11:85. [PMID: 31105550 PMCID: PMC6492052 DOI: 10.3389/fnagi.2019.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The brain atrophy and lesion index (BALI) has been developed to assess whole-brain structural deficits that are commonly seen on magnetic resonance imaging (MRI) in aging. It is unclear whether such changes can be detected at younger ages and how they might relate to other exposures. Here, we investigate how BALI scores, and the subcategories that make the total score, compare across adulthood and whether they are related to the level of cardiovascular risks, in both young and old adulthood. Methods: Data were from 229 subjects (72% men; 24-80 years of age) whose annual health evaluation included a routine anatomical MRI examination. A BALI score was generated for each subject from T2-weighted MRI. Differences in the BALI total score and categorical subscores were examined by age and by the level of cardiovascular risk factors (CVRFs). Regression analysis was used to evaluate relationships between continuous variables. Relative risk ratios (RRRs) of CVRF on BALI were examined using a multinomial logistic regression. The area under the receiver operating characteristic (ROC) curve was used to estimate the classification accuracy. Results: Nearly 90% of the participants had at least one CVRF. Mean CVRF scores increased with age (slope = 0.03; r = 0.36, 95% confidence intervals: 0.23-0.48; p < 0.001). The BALI total score was closely related to age (slope = 0.18; r = 0.69, 95% confidence intervals: 0.59-0.78; p < 0.001), as so were the categorical subscores (r's = 0.41-0.61, p < 0.001); each differed by the number of CVRF (t-test: 4.16-14.83, χ 2: 6.9-43.9, p's < 0.050). Multivariate analyses adjusted for age and sex suggested an independent impact of age and the CVRF on the BALI score (for each year of advanced age, RRR = 1.20, 95% CI = 1.11-1.29; for each additional CVRF, RRR = 3.63, 95% CI = 2.12-6.23). The CVRF and BALI association remained significant even in younger adults. Conclusion: The accumulation of MRI-detectable structural brain deficits can be evident from young adulthood. Age and the number of CVFR are independently associated with BALI score. Further research is needed to understand the extent to which other age-related health deficits can increase the risk of abnormalities in brain structure and function, and how these, with BALI scores, relate to cognition.
Collapse
Affiliation(s)
- Tao Gu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Health Research and Innovation, Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC, Canada
- SFU ImageTech Lab, Surrey Memorial Hospital, Surrey, BC, Canada
| | - Chunyi Fu
- Department of Emergency Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhengyin Shen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hui Guo
- Health Research and Innovation, Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC, Canada
- Department of Diagnostic Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meicun Zou
- Health Research and Innovation, Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC, Canada
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Kenneth Rockwood
- Department of Medicine (Geriatric Medicine & Neurology), Dalhousie University, Halifax, NS, Canada
- Centre for Healthcare of the Elderly, QEII Sciences Centre, Halifax, NS, Canada
| | - Xiaowei Song
- Health Research and Innovation, Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC, Canada
- SFU ImageTech Lab, Surrey Memorial Hospital, Surrey, BC, Canada
- Department of Medicine (Geriatric Medicine & Neurology), Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
37
|
Giorgio A, Di Donato I, De Leucio A, Zhang J, Salvadori E, Poggesi A, Diciotti S, Cosottini M, Ciulli S, Inzitari D, Pantoni L, Mascalchi M, Federico A, Dotti MT, De Stefano N. Relevance of brain lesion location for cognition in vascular mild cognitive impairment. NEUROIMAGE-CLINICAL 2019; 22:101789. [PMID: 30927600 PMCID: PMC6439281 DOI: 10.1016/j.nicl.2019.101789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/27/2019] [Accepted: 03/22/2019] [Indexed: 12/03/2022]
Abstract
Background Vascular mild cognitive impairment (VMCI) is a potentially transitional state between normal aging and vascular dementia. The presence of macroscopic white matter lesions (WML) of moderate or severe extension on brain MRI is the hallmark of the VMCI. Objective To assess the clinical relevance of the frequency of WML in patients with VMCI independently of total lesion volume (LV). Methods In this multicenter study, we included 110 patients with VMCI (age: 74.3 ± 6.6 years; sex: 60 women). Cognitive assessment was performed with the VMCI-Tuscany Neuropsychological Battery, which allowed to identify four VMCI groups: amnestic single (n = 9) and multi-domain (n = 76), non-amnestic single- (n = 10) and multi-domain (n = 15). Distribution and frequency of WML on MRI FLAIR images were evaluated with lesion probability map (LPM). Voxelwise statistics was performed with nonparametric permutation tests, controlling for age, sex, slice thickness, center, magnetic field strength, total LV and head size (p < .01, family-wise error-corrected for multiple comparisons across space). Results LPM of the WML had a fairly symmetric and widespread distribution across brain. A higher frequency of WML along association tracts of the WM such as inferior longitudinal fascicle, inferior fronto-occipital fascicle and superior longitudinal fascicle, was correlated with worst cognitive scores at the Trail Making Test Part A and Copy of the Rey–Osterrieth Complex Figure. The non-amnestic groups showed a higher frequency of WML in the anterior cingulum and superior longitudinal fascicle close to the frontal gyrus. Conclusions Our study showed that in patients with VMCI, independently of total LV, the higher frequency of lesions along association tracts of the WM, which mediate intrahemispheric long-range connectivity, is related with psychomotor speed and constructional praxis. Moreover, a prevalence of lesions in the frontal WM seems to characterize VMCI patients with involvement of non-amnestic domains. Vascular mild cognitive impairment (VMCI) has moderate-to-severe white matter lesions (WML). 110 VMCI patients were assessed by a full neuropsychological battery and a lesion mapping approach on MRI images. Higher WML frequency along association tracts correlated with worst psychomotor speed and constructional praxis. Non-amnestic groups of VMCI had higher WML frequency in the frontal WM.
Collapse
Affiliation(s)
- Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Ilaria Di Donato
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro De Leucio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jian Zhang
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emilia Salvadori
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy.
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy.
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy.
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Stefano Ciulli
- Department of Clinical and Experimental Biomedical Sciences -"Mario Serio", University of Florence, Florence, Italy
| | - Domenico Inzitari
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy.
| | - Leonardo Pantoni
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milano, Italy.
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences -"Mario Serio", University of Florence, Florence, Italy.
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| |
Collapse
|
38
|
Premawardhena A, Ranawaka U, Pilapitiya T, Weerasinghe G, Hapangama A, Hettiarachchi S, Pathmeswaran A, Salvin K, Silva I, Hameed N, Weatherall M, Olivieri N, Weatherall D. Headache: an important symptom possibly linked to white matter lesions in thalassaemia. Br J Haematol 2019; 185:541-548. [DOI: 10.1111/bjh.15825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2019] [Indexed: 01/03/2023]
Affiliation(s)
| | - Udaya Ranawaka
- Faculty of Medicine University of Kelaniya Ragama Sri Lanka
| | | | | | | | | | | | | | - Ishari Silva
- Hemals Thalassaemia Care Centre North Colombo (Teaching) Hospital Ragama Ragama Sri Lanka
| | - Nizri Hameed
- Hemals Thalassaemia Care Centre North Colombo (Teaching) Hospital Ragama Ragama Sri Lanka
| | | | - Nancy Olivieri
- Professor, Pediatrics, Medicine and Public Health Sciences University of Toronto Canada
| | - David Weatherall
- Weatherall Institute of Molecular Medicine University of Oxford Oxford UK
| |
Collapse
|
39
|
Chan SL, Nelson MT, Cipolla MJ. Transient receptor potential vanilloid-4 channels are involved in diminished myogenic tone in brain parenchymal arterioles in response to chronic hypoperfusion in mice. Acta Physiol (Oxf) 2019; 225:e13181. [PMID: 30153398 DOI: 10.1111/apha.13181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022]
Abstract
AIM Adaptive responses of brain parenchymal arterioles (PAs), a target for cerebral small vessel disease, to chronic cerebral hypoperfusion are largely unknown. Previous evidence suggested that transient receptor potential vanilloid 4 channels may be involved in the regulation of cerebrovascular tone. Therefore, we investigated the role of TRPV4 in adaptations of PAs in a mouse model of chronic hypoperfusion. METHODS TRPV4 knockout (-/- ) and wild-type (WT) mice were subjected to unilateral common carotid artery occlusion (UCCAo) for 28 days. Function and structure of PAs ipsilateral to UCCAo were studied isolated and pressurized in an arteriograph. RESULTS Basal tone of PAs was similar between WT and TRPV4-/- mice (22 ± 3 vs 23 ± 5%). After UCCAo, active inner diameters of PAs from WT mice were larger than control (41 ± 2 vs 26 ± 5 μm, P < 0.05) that was due to decreased tone (8 ± 2 vs 23 ± 5%, P < 0.05), increased passive inner diameters (46 ± 3 vs 34 ± 2 μm, P < 0.05), and decreased wall-to-lumen ratio (0.104 ± 0.01 vs 0.137 ± 0.01, P < 0.05). However, UCCAo did not affect vasodilation to a small- and intermediate-conductance calcium-activated potassium channel agonist NS309, the nitric oxide (NO) donor sodium nitroprusside, or constriction to a NO synthase inhibitor L-NNA. Wall thickness and distensibility in PAs from WT mice were unaffected. In TRPV4-/- mice, UCCAo had no effect on active inner diameters or tone and only increased passive inner diameters (53 ± 2 vs 43 ± 3 μm, P < 0.05). CONCLUSION Adaptive response of PAs to chronic cerebral hypoperfusion includes myogenic tone reduction and outward remodelling. TRPV4 channels were involved in tone reduction but not outward remodelling in response to UCCAo.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
| | - Mark T. Nelson
- Department of Pharmacology; University of Vermont College of Medicine; Burlington Vermont
| | - Marilyn J. Cipolla
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
- Department of Pharmacology; University of Vermont College of Medicine; Burlington Vermont
- Department of Obstetrics, Gynecology & Reproductive Sciences; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
40
|
Qiu J, Cheng HD, Dong T, Xiang L, Wang M, Xia L, Wang K. Prospective memory impairment in patients with white matter lesions. Int J Neurosci 2019; 129:438-446. [PMID: 30616434 DOI: 10.1080/00207454.2018.1538988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE A vast majority of the episodic memory literature in white matter lesions (WML) had focused on "retrospective memory (RM)", little was known about prospective memory (PM) in WML patients. The aim of our study was to investigate the effect of WML patients on event-based prospective memory (EBPM) and time-based prospective memory (TBPM). In addition, our study attempted to understand the possible mechanisms of PM damage in WML patients. METHODS A total of 42 WML patients and 40 age and education level matched healthy controls were included. EBPM (an action whenever particular words were presented) and TBPM (an action at certain times) were performed to test the involvement of PM in WML. The extent of WML within cholinergic pathways were assessed using the cholinergic pathways hyperintensities scale (CHIPS). RESULTS A significant difference was found in the performance of Montreal Cognitive Assessment (MOCA) (21.8 ± 3.9 vs. 26.6 ± 1.7, p < 0.05) and TBPM (2.88 ± 1.21 vs. 4.27 ± 0.78, p < 0.05), but not Mini-Mental State Examination (MMSE) (26.9 ± 2.8 vs. 27.3 ± 1.2, p > 0.05) and EBPM (3.62 ± 1.25 vs.4.47 ± 1.11, p > 0.05) in WML patients compared with the healthy controls. Moreover, TBPM and MOCA scores were negatively correlated with CHIPS scores. CONCLUSIONS WML patients were impaired in TBPM but not in EBPM, supporting that EBPM and TBPM have different neural mechanisms. Our results demonstrated that WML are involved in the TBPM probably by affecting the central cholinergic pathway.
Collapse
Affiliation(s)
- Ju Qiu
- a Department of Neurology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China.,b Anhui Province Key Laboratory of Cognition and Neuropsychiatry Disorder , Hefei , Anhui Province , China.,c Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health , Hefei , Anhui Province , China.,d Department of Medical Psychology , Anhui Psychologic Medicine Center, Anhui Medical University , Hefei , Anhui Province , China.,e Department of Neurology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Huai-Dong Cheng
- f Department of Oncology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Ting Dong
- g Department of Neurology , The First Affiliated Hospital of Anhui University of Chinese Medicine , Hefei , Anhui , China
| | - Li Xiang
- h Department of Radiology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Min Wang
- e Department of Neurology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Lan Xia
- e Department of Neurology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Kai Wang
- a Department of Neurology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China.,b Anhui Province Key Laboratory of Cognition and Neuropsychiatry Disorder , Hefei , Anhui Province , China.,c Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health , Hefei , Anhui Province , China.,d Department of Medical Psychology , Anhui Psychologic Medicine Center, Anhui Medical University , Hefei , Anhui Province , China
| |
Collapse
|
41
|
López-Sanz D, Suárez-Méndez I, Bernabé R, Pasquín N, Rodríguez-Mañas L, Maestú F, Walter S. Scoping Review of Neuroimaging Studies Investigating Frailty and Frailty Components. Front Med (Lausanne) 2018; 5:284. [PMID: 30349819 PMCID: PMC6186819 DOI: 10.3389/fmed.2018.00284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/17/2018] [Indexed: 01/10/2023] Open
Abstract
Background: Neuroimaging techniques are a cornerstone for diagnosing and investigating cognitive decline and dementia in the elderly. In frailty research, the physical as opposed to the cognitive domain of the aging process, neuroimaging studies are less common. Here we systematically review the use of neuroimaging techniques in frailty research. Methods: We searched PUBMED for any publication reporting the association between neuroimaging markers and frailty, following Fried's original definition, as well as its determining phenotypes: gait speed, grip strength, fatigue and recent weight loss in the non-diseased population older than 65 years. Results: The search returned a total of 979 abstracts which were independently screened by 3 reviewers. In total, 17 studies met the inclusion criteria. Of these, 12 studies evaluated gait speed, 2 grip strength, and 3 frailty (2 Fried Frailty, 1 Frailty Index). An association between increased burden of white matter lesions, lower fractional anisotropy, and higher diffusivity has been associated consistently to frailty and worse performance in the different frailty components. Conclusions: White matter lesions were significantly associated to frailty and frailty components thus highlighting the potential utility of neuroimaging in unraveling the underlying mechanisms of this state. However, considering small sample size and design effects, it is not possible to completely rule out reverse causality between frailty and neuroimaging findings. More studies are needed to clarify this important clinical question.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Isabel Suárez-Méndez
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain
| | - Raquel Bernabé
- Fundación Para la Investigación Biomédica, Getafe University Hospital, Madrid, Spain
| | - Natalia Pasquín
- Fundación Para la Investigación Biomédica, Getafe University Hospital, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación Para la Investigación Biomédica, Getafe University Hospital, Madrid, Spain.,Geriatrics Department, Getafe University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Stefan Walter
- Fundación Para la Investigación Biomédica, Getafe University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
42
|
Uiterwijk R, Staals J, Huijts M, van Kuijk SMJ, de Leeuw PW, Kroon AA, van Oostenbrugge RJ. Hypertensive organ damage predicts future cognitive performance: A 9-year follow-up study in patients with hypertension. J Clin Hypertens (Greenwich) 2018; 20:1458-1463. [PMID: 30277642 PMCID: PMC6220879 DOI: 10.1111/jch.13372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 01/10/2023]
Abstract
Hypertension is associated with cognitive deficits, probably caused by cerebral small vessel disease. The authors examined whether additional presence of cardiac and renal organ damages, and their combined presence, are associated with future cognitive performance. In 78 patients with essential hypertension (mean age 51.2 ± 12.0 years), brain damage was determined by MRI features, cardiac damage by left ventricular mass index (LVMI), and renal damage by estimated glomerular filtration rate (eGFR) and albuminuria. At 9‐year follow‐up, neuropsychological assessment was performed. LVMI was associated with future lower cognition (P = 0.032), independent of age, sex, premorbid cognition, and brain damage, but eGFR and albuminuria were not. The presence of 2 or 3 types of organ damage compared to none was associated with future lower cognition. Increasing number of hypertensive organ damages, and cardiac damage independently of brain damage, might indicate a more severe hypertensive disease burden and could help to identify patients at risk of cognitive problems.
Collapse
Affiliation(s)
- Renske Uiterwijk
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marjolein Huijts
- Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter W de Leeuw
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Internal Medicine, Zuyderland Medical Centre, Sittard/Heerlen, The Netherlands
| | - Abraham A Kroon
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
43
|
Cuadrado-Godia E, Dwivedi P, Sharma S, Ois Santiago A, Roquer Gonzalez J, Balcells M, Laird J, Turk M, Suri HS, Nicolaides A, Saba L, Khanna NN, Suri JS. Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. J Stroke 2018; 20:302-320. [PMID: 30309226 PMCID: PMC6186915 DOI: 10.5853/jos.2017.02922] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cerebral small vessel disease (cSVD) has a crucial role in lacunar stroke and brain hemorrhages and is a leading cause of cognitive decline and functional loss in elderly patients. Based on underlying pathophysiology, cSVD can be subdivided into amyloidal and non-amyloidal subtypes. Genetic factors of cSVD play a pivotal role in terms of unraveling molecular mechanism. An important pathophysiological mechanism of cSVD is blood-brain barrier leakage and endothelium dysfunction which gives a clue in identification of the disease through circulating biological markers. Detection of cSVD is routinely carried out by key neuroimaging markers including white matter hyperintensities, lacunes, small subcortical infarcts, perivascular spaces, cerebral microbleeds, and brain atrophy. Application of neural networking, machine learning and deep learning in image processing have increased significantly for correct severity of cSVD. A linkage between cSVD and other neurological disorder, such as Alzheimer's and Parkinson's disease and non-cerebral disease, has also been investigated recently. This review draws a broad picture of cSVD, aiming to inculcate new insights into its pathogenesis and biomarkers. It also focuses on the role of deep machine strategies and other dimensions of cSVD by linking it with several cerebral and non-cerebral diseases as well as recent advances in the field to achieve sensitive detection, effective prevention and disease management.
Collapse
Affiliation(s)
- Elisa Cuadrado-Godia
- Department of Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Sanjiv Sharma
- Department of Computer Science & Engineering and Information Technology, Madhav Institute of Technology and Science, Gwalior, India
| | - Angel Ois Santiago
- Department of Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jaume Roquer Gonzalez
- Department of Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, IQS School of Engineering, Barcelona, Spain
| | - John Laird
- Department of Cardiology, St. Helena Hospital, St. Helena, CA, USA
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | | | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | | | - Jasjit S Suri
- Stroke Monitoring Division, AtheroPoint, Roseville, CA, USA
| |
Collapse
|
44
|
Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, Nedergaard M, Smith KJ, Zlokovic BV, Wardlaw JM. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018; 114:1462-1473. [PMID: 29726891 PMCID: PMC6455920 DOI: 10.1093/cvr/cvy113] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Small vessel diseases (SVDs) are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood. Magnetic resonance imaging has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that form part of a vicious cycle involving impaired cerebrovascular reactivity, blood-brain barrier dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid space, leading to accumulation of toxins, hypoxia, and tissue damage. Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD.
Collapse
Affiliation(s)
- Rosalind Brown
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, USA
| | - Sandra E Black
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Maiken Nedergaard
- Section for Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, USA
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh, Chancellor's Building, Edinburgh, UK
- Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| |
Collapse
|
45
|
Shulginova A, Konoplya A, Bystrova N. Disorders of the immune status in patients with chronic cerebral ischemia; differentiated pharmacological correction. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.28304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Chronic cerebral ischemia (CCI) accounts for 60-75% of all cerebrovascular diseases in Russia and around the world. The problem: the issues concerning the role of immunity in the pathogenesis of CCI depending on the main etiologic factor and stage of the disease are hardly elaborated, which makes the main pharmacological correction impossible. The objective of the study is to establish the immune disorder patterns in patients with CCI I-II associated with arterial hypertension and to develop differentiated pharmacological methods for their correction.
Material and methods: The results of treatment of 104 patients of Kursk Regional Clinical Hospital with CCI associated with II-stage arterial hypertension were analyzed: 52 patients were with CCI I stage (2th-4th groups of 12-14 patients) and 52 patients were with CCI II stage (5th -7th groups of 12-14 patients), aged 50±5, who received the basic pharmacological therapy (enalapril and vinpocetine). The patients of the 2nd and 5th groups additionally received ceraxon and mexicor, those of the 3rd and the 6th groups additionally received immunomodulator glutoxim, and those from the 4th and 7th groups received polyoxidonium. Twenty-two healthy donors were in the control group. Immune disorders were assessed by the parameters of the functional activity of neutrophils, levels of cytokines in plasma, components of the complement and inhibitors.
Results and discussion: In the case of CCI I and II stages similar proinflamatory immune disorders were detected, which is indicative of immune inflammation. The inclusion of glutoxime and polyoxidonium in a complex pharmacotherapy helps reduce the severity of immune and neuropsychic status indicators, which are more evident in case of stage II.
Conclusions: In case of CCI I stage, the medications used can be arranged according to their clinico-immunological efficacy in ascending order: ceraxon+mexicore ® ceraxon+mexicor+glutoxim ® ceraxon+mexicor+polyoxidonium, and in case of CCI II stage: ceraxon+mexicor ® ceraxon+mexicor+polyoxidonium = ceraxon+mexicor+glutoxim.
Collapse
|
46
|
Kynast J, Lampe L, Luck T, Frisch S, Arelin K, Hoffmann KT, Loeffler M, Riedel-Heller SG, Villringer A, Schroeter ML. White matter hyperintensities associated with small vessel disease impair social cognition beside attention and memory. J Cereb Blood Flow Metab 2018; 38:996-1009. [PMID: 28685621 PMCID: PMC5999004 DOI: 10.1177/0271678x17719380] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Age-related white matter hyperintensities (WMH) are a manifestation of white matter damage seen on magnetic resonance imaging (MRI). They are related to vascular risk factors and cognitive impairment. This study investigated the cognitive profile at different stages of WMH in a large community-dwelling sample; 849 subjects aged 21 to 79 years were classified on the 4-stage Fazekas scale according to hyperintense lesions seen on individual T2-weighted fluid-attenuated inversion recovery MRI scans. The evaluation of cognitive functioning included seven domains of cognitive performance and five domains of subjective impairment, as proposed by the DSM-5. For the first time, the impact of age-related WMH on Theory of Mind was investigated. Differences between Fazekas groups were analyzed non-parametrically and effect sizes were computed. Effect sizes revealed a slight overall cognitive decline in Fazekas groups 1 and 2 relative to healthy subjects. Fazekas group 3 presented substantial decline in social cognition, attention and memory, although characterized by a high inter-individual variability. WMH groups reported subjective cognitive decline. We demonstrate that extensive WMH are associated with specific impairment in attention, memory, social cognition, and subjective cognitive performance. The detailed neuropsychological characterization of WMH offers new therapeutic possibilities for those affected by vascular cognitive decline.
Collapse
Affiliation(s)
- Jana Kynast
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Leonie Lampe
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Tobias Luck
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,3 Institute for Social Medicine, Occupational Medicine and Public Health, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Stefan Frisch
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,4 Department of Neurology, University Hospital Frankfurt/Goethe University, Frankfurt am Main, Germany
| | - Katrin Arelin
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Karl-Titus Hoffmann
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,5 Department of Neuroradiology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,6 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Steffi G Riedel-Heller
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,3 Institute for Social Medicine, Occupational Medicine and Public Health, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,7 Clinic for Cognitive Neurology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,7 Clinic for Cognitive Neurology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Lam CLM, Yiend J, Lee TMC. Imaging and neuropsychological correlates of white matter lesions in different subtypes of Mild Cognitive Impairment: A systematic review. NeuroRehabilitation 2018; 41:189-204. [PMID: 28527230 DOI: 10.3233/nre-171471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND White matter lesions (WML) are prevalent in older adults. The association between WML and cognition in different subtypes of Mild Cognitive Impairment (MCI) is inconsistent in the literature. OBJECTVES We aim to provide a systematic review on the impact of WML in different subtypes of MCI, and discuss the recent findings on white matter plasticity. METHODS We reviewed peer-reviewed articles from January 2011 to August 2016 and identified 12 studies investigating the association between WML and subtypes of MCI with both neuroimaging and cognitive measures. RESULTS Our review shows that 1) WM abnormality was identified between different subtypes of MCI and healthy controls on diffusion imaging; 2) neither visual ratings of WML nor its volumetry differentiate different subtypes of MCI or its prognosis to dementia; and 3) cognitive correlates of WML were evident in the Amnestic-type MCI in the domains of memory, language, psychomotor speed, attention and executive functions. CONCLUSION Cognitive reserve and the plasticity of white matter may modulate the impact of WML on the manifestation of the neurodegenerative disease. Further research is needed to study the plasticity of white matter in the MCI population to evaluate its potential clinical application.
Collapse
Affiliation(s)
- Charlene L M Lam
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong.,Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong
| | - Jenny Yiend
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Tatia M C Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong.,Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
48
|
Pauls MMH, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH, Isaacs JD. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: A systematic review. J Cereb Blood Flow Metab 2018; 38:189-203. [PMID: 29256324 PMCID: PMC5951021 DOI: 10.1177/0271678x17747177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Agents that augment cerebral blood flow (CBF) could be potential treatments for vascular cognitive impairment. Phosphodiesterase-5 inhibitors are vasodilating drugs established in the treatment of erectile dysfunction (ED) and pulmonary hypertension. We reviewed published data on the effects of phosphodiesterase-5 inhibitors on CBF in adult humans. A systematic review according to PRISMA guidelines was performed. Embase, Medline and Cochrane Library Trials databases were searched. Sixteen studies with 353 participants in total were retrieved. Studies included healthy volunteers and patients with migraine, ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5 inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated with an impaired endothelial dilatory response. This supports the potential therapeutic use of phosphodiesterase-5 inhibitors in vascular cognitive impairment where CBF is reduced. Further studies with better resolution of deep CBF are warranted. The review is registered on the PROSPERO database (registration number CRD42016029668).
Collapse
Affiliation(s)
- Mathilde MH Pauls
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
- Department of Geriatric and Stroke
Medicine, Beaumont Hospital, Dublin, Ireland
| | - Thomas R Barrick
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
| | - Christina Kruuse
- Department of Neurology, Neurovascular
Research Unit, Herlev Gentofte Hospital and University of Copenhagen, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St
George's University Hospitals NHS Foundation Trust, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Jeremy D Isaacs
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
49
|
Morley JE. Editorial: Bidirectional Communication Between Brain and Muscle. J Nutr Health Aging 2018; 22:1144-1145. [PMID: 30498818 DOI: 10.1007/s12603-018-1141-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J E Morley
- John E. Morley, MB,BCh, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd., M238, St. Louis, MO 63104,
| |
Collapse
|
50
|
Aldrugh S, Sardana M, Henninger N, Saczynski JS, McManus DD. Atrial fibrillation, cognition and dementia: A review. J Cardiovasc Electrophysiol 2017; 28:958-965. [PMID: 28569383 DOI: 10.1111/jce.13261] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation (AF) is one of the most common types of cardiac arrhythmia, particularly among older adults. AF confers a 5-fold risk for thromboembolic stroke as well as a 2-fold higher risk for congestive heart failure, morbidity, and mortality. Although stroke remains an important and impactful complication of AF, recent studies have shown that AF is independently associated with other neurological disorders, including cognitive impairment and dementia, even after adjusting for prior ischemic stroke. We performed a review of the published literature on the association between AF and cognitive status. Further, we reviewed studies investigating the underlying mechanisms for this association and/or reporting the impact of AF treatment on cognitive function. While most published studies demonstrate associations between AF and impaired cognition, no AF treatment has yet been associated with a reduced incidence of cognitive decline or dementia.
Collapse
Affiliation(s)
- Summer Aldrugh
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mayank Sardana
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jane S Saczynski
- Department of Pharmacy and Health System Sciences, Northeastern University, Boston, MA
| | - David D McManus
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|