1
|
Giovagnoli AR, Parisi A. Fifty Years of Handedness Research: A Neurological and Methodological Update. Brain Sci 2024; 14:418. [PMID: 38790397 PMCID: PMC11117861 DOI: 10.3390/brainsci14050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Handedness, a complex human aspect that reflects the functional lateralization of the hemispheres, also interacts with the immune system. This study aimed to expand the knowledge of the lateralization of hand, foot, and eye activities in patients with immune-mediated (IM) or other (noIM) neurological diseases and to clarify the properties of the Edinburgh Handedness Inventory (EHI) in an Italian population. Three hundred thirty-four patients with IM or noIM diseases affecting the brain or spine and peripheral nervous system were interviewed about stressful events preceding the disease, subjective handedness, and familiarity for left-handedness or ambidexterity. The patients and 40 healthy subjects underwent EHI examination. In the whole group of participants, 24 items of the EHI were classified into five factors (Hand Transitive, Hand Refined, Hand Median, Foot, Eye), demonstrating good reliability and validity. Chronological age had a significant influence on hand and foot EHI factors and the laterality quotient (LQ), particularly on writing and painting. In the patient groups, EHI factors and the LQ were also predicted by age of disease onset, duration of disease, and family history of left-handedness or ambidexterity. No differences were found between patients and healthy subjects, but pencil use scored significantly lower in patients with IM diseases than in those with noIM brain diseases. These results demonstrate that the lateralization of hand and foot activities is not a fixed human aspect, but that it can change throughout life, especially for abstract and symbolic activities. Chronic neurological diseases can cause changes in handedness. This may explain why, unlike systemic immunological diseases, IM neurological diseases are not closely associated with left-handedness. In these patients, the long version of the EHI is appropriate for determining the lateralization of body activities to contextualize the neurological picture; therefore, these findings extend the Italian normative data sets.
Collapse
Affiliation(s)
- Anna Rita Giovagnoli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy;
| | | |
Collapse
|
2
|
Seo J, Lee J, Min BK. Out-of-phase transcranial alternating current stimulation modulates the neurodynamics of inhibitory control. Neuroimage 2024; 292:120612. [PMID: 38648868 DOI: 10.1016/j.neuroimage.2024.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique that enhances cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether tACS with different phase lags (0° and 180°) between the dorsal anterior cingulate and left dorsolateral prefrontal cortices modulated inhibitory control performance during the Stroop task. We found out-of-phase tACS mediated improvements in task performance, which was neurodynamically reflected as putamen, dorsolateral prefrontal, and primary motor cortical activation as well as prefrontal-based top-down functional connectivity. Our observations uncover the neurophysiological bases of tACS-phase-dependent neuromodulation and provide a feasible non-invasive approach to effectively modulate inhibitory control.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea
| | - Jehyeop Lee
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
3
|
Karch S, Maywald M, Schwartz C, Heil C, Neumüller J, Keeser D, Garcia S, Tschentscher N, Pogarell O, Paolini M, Voderholzer U. Neuronal correlates of intensification and acceptance of symptoms during exposure therapy in patients with obsessive-compulsive disorder. Front Psychol 2024; 15:1256046. [PMID: 38375106 PMCID: PMC10875107 DOI: 10.3389/fpsyg.2024.1256046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Cognitive behaviour therapy with exposure and response prevention is efficient in treating patients with obsessive-compulsive disorder (OCD). Nevertheless, it would be helpful for many patients to complement the therapeutic treatment with acceptance strategies to further increase the therapeutic benefit. The aim of the present study was to examine neurobiological responses to acceptance and intensification strategies during symptom provocation alongside the psychotherapeutic process. Method A total of 23 patients diagnosed with OCD (subtype: washing/contamination fear) was instructed to utilise either an acceptance strategy (ACS) or an intensification strategy (INS) to cope with their emotional and cognitive reactions to personalised symptom-triggering and neutral pictures. Fourteen patients participated twice: at the beginning [T1] and at the end [T2] of an inpatient multimodal treatment including cognitive behaviour therapy with response prevention to assess functional variations. Results For the contrast of T1 and T2, ACS showed increased brain activity in the left inferior frontal gyrus (IFG), left caudate body, and posterior cingulate gyrus (PCC). They also showed decreased activity in the left anterior insula. INS showed decreased activation in right lingual gyrus and right caudate body. At T2, ACS showed increased activation compared to INS in the left cerebrum: IFG, caudate nucleus, middle and superior temporal gyrus, and PCC/cuneus. For the comparison of T1 and T2, the ACS revealed increased brain activity in the left IFG, left caudate body, and right inferior parietal lobe. It showed decreased activity in the left anterior insula. The INS revealed decreased activity in right lingual gyrus and right caudate body.The psychometric questionnaires suggested that patients were able to reduce obsession, compulsion, and depression symptoms. Furthermore, patients rated the ACS as more useful for themselves compared with the INS. Conclusion The increased left IFG activity using ACS (T1 vs. T2) could be interpreted as a better inhibitory top-down process, while the increased PCC response might be due to a better reappraisal strategy after therapy. ACS seems to mobilise neuronal activations under therapy, especially in the left hemisphere. Both strategies showed reductions in emotional networks as a neuronal correlate of therapy success. Overall, ACS may be more efficient than INS, as rated by the patients and as in accordance with neurobiological findings.
Collapse
Affiliation(s)
- Susanne Karch
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Maximilian Maywald
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Clara Heil
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Radiology, University Hospital LMU, Munich, Germany
| | - Sarah Garcia
- Schoen Clinic Roseneck, Prien am Chiemsee, Germany
| | - Nadja Tschentscher
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Marco Paolini
- Department of Radiology, University Hospital LMU, Munich, Germany
| | - Ulrich Voderholzer
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Schoen Clinic Roseneck, Prien am Chiemsee, Germany
| |
Collapse
|
4
|
Basanisi R, Marche K, Combrisson E, Apicella P, Brovelli A. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals. J Neurosci 2023; 43:3339-3352. [PMID: 37015808 PMCID: PMC10162459 DOI: 10.1523/jneurosci.0952-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. RPE signals are encoded in the neural activity of multiple brain areas, such as midbrain dopaminergic neurons, prefrontal cortex, and striatum. However, it remains unclear how these signals are expressed through anatomically and functionally distinct subregions of the striatum. In the current study, we examined to which extent RPE signals are represented across different striatal regions. To do so, we recorded local field potentials (LFPs) in sensorimotor, associative, and limbic striatal territories of two male rhesus monkeys performing a free-choice probabilistic learning task. The trial-by-trial evolution of RPE during task performance was estimated using a reinforcement learning model fitted on monkeys' choice behavior. Overall, we found that changes in beta band oscillations (15-35 Hz), after the outcome of the animal's choice, are consistent with RPE encoding. Moreover, we provide evidence that the signals related to RPE are more strongly represented in the ventral (limbic) than dorsal (sensorimotor and associative) part of the striatum. To conclude, our results suggest a relationship between striatal beta oscillations and the evaluation of outcomes based on RPE signals and highlight a major contribution of the ventral striatum to the updating of learning processes.SIGNIFICANCE STATEMENT Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. Current models suggest that RPE signals are encoded in the neural activity of multiple brain areas, including the midbrain dopaminergic neurons, prefrontal cortex and striatum. However, it remains elusive whether RPEs recruit anatomically and functionally distinct subregions of the striatum. Our study provides evidence that RPE-related modulations in local field potential (LFP) power are dominant in the striatum. In particular, they are stronger in the rostro-ventral rather than the caudo-dorsal striatum. Our findings contribute to a better understanding of the role of striatal territories in reward-based learning and may be relevant for neuropsychiatric and neurologic diseases that affect striatal circuits.
Collapse
Affiliation(s)
- Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Kevin Marche
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
- Wellcome Center for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| |
Collapse
|
5
|
Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ, Holtby AR, Jambal T, Jargalsaikhan B, Jargalsaikhan U, Kadri NK, MacHugh DE, Pausch H, Readhead C, Warburton D, Dugarjaviin M, Hill EW. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun Biol 2022; 5:1320. [PMID: 36513809 PMCID: PMC9748125 DOI: 10.1038/s42003-022-04206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.
Collapse
Affiliation(s)
- Haige Han
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Beatrice A. McGivney
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Lucy Allen
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Dongyi Bai
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Leanne R. Corduff
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Gantulga Davaakhuu
- grid.425564.40000 0004 0587 3863Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 54B, Ulaanbaatar, 13330 Mongolia
| | - Jargalsaikhan Davaasambuu
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Dulguun Dorjgotov
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Thomas J. Hall
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Andrew J. Hemmings
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Amy R. Holtby
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Tuyatsetseg Jambal
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Badarch Jargalsaikhan
- grid.444534.60000 0000 8485 883XDepartment of Obstetrics and Gynecology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - Uyasakh Jargalsaikhan
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Naveen K. Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - David E. MacHugh
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland ,grid.7886.10000 0001 0768 2743UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Carol Readhead
- grid.20861.3d0000000107068890Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - David Warburton
- grid.42505.360000 0001 2156 6853The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Manglai Dugarjaviin
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Emmeline W. Hill
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland ,grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| |
Collapse
|
6
|
The structural changes of gray matter in Parkinson disease patients with mild cognitive impairments. PLoS One 2022; 17:e0269787. [PMID: 35857782 PMCID: PMC9299333 DOI: 10.1371/journal.pone.0269787] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/30/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
Parkinson disease (PD) is associated with cognitive impairments. However, the underlying neural mechanism of cognitive impairments in PD is still not clear. This study aimed to investigate the anatomic alternations of gray matter in PD patients with mild cognitive impairment (MCI) and their associations with neurocognitive measurements.
Methods
T1-weighted magnetic resonance imaging (MRI) data were acquired from 23 PD patients with MCI, 23 PD patients without MCI, and 23 matched healthy controls. The MRI data were analyzed using voxel-based morphometry (VBM) and surfaced-based morphometry (SBM) methods to assess the structural changes in gray matter volume and cortical thickness respectively. Receiver operating characteristic (ROC) analysis was used to examine the diagnostic accuracies of the indexes of interest. The correlations between the structural metrics and neurocognitive assessments (e.g., Montreal cognitive assessment, MOCA; Mini-mental state examination, MMSE) were further examined.
Results
PD patients with MCI showed reduced gray matter volume (GMV) in the frontal cortex (e.g., right inferior frontal gyrus and middle frontal gyrus) and extended to insula as well as cerebellum compared with the healthy controls and PD patients without MIC. Thinner of cortical thickens in the temporal lobe (e.g., left middle temporal gyrus and right superior temporal gyrus) extending to parietal cortex (e.g., precuneus) were found in the PD patients with MCI relative to the healthy controls and PD patients without MCI.ROC analysis indicated that the area under the ROC curve (AUC) values in the frontal, temporal, and subcortical structures (e.g., insula and cerebellum) could differentiate the PD patients with MCI and without MCI and healthy controls. Furthermore, GMV of the right middle frontal gyrus and cortical thickness of the right superior temporal gyrus were correlated with neurocognitive dysfunctions (e.g., MOCA and MMSE) in PD patients with MCI.
Conclusion
This study provided further evidence that PD with MCI was associated with structural alternations of brain. Morphometric analysis focusing on the cortical and subcortical regions could be biomarkers of cognitive impairments in PD patients.
Collapse
|
7
|
Weerasekera A, Ion-Mărgineanu A, Nolan G, Mody M. Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia. Brain Sci 2022; 12:brainsci12040439. [PMID: 35447970 PMCID: PMC9031550 DOI: 10.3390/brainsci12040439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Subcortical structures play a significant role in cognitive and social-emotional behaviors and their abnormalities are associated with neuropsychiatric conditions. This exploratory study utilized ABIDE II/COBRE MRI and corresponding phenotypic datasets to compare subcortical volumes of adults with ASD (n = 29), SZ (n = 51) and age and gender matched neurotypicals (NT). We examined the association between subcortical volumes and select behavioral measures to determine whether core symptomatology of disorders could be explained by subcortical association patterns. We observed volume differences in ASD (viz., left pallidum, left thalamus, left accumbens, right amygdala) but not in SZ compared to their respective NT controls, reflecting morphometric changes specific to one of the disorder groups. However, left hippocampus and amygdala volumes were implicated in both disorders. A disorder-specific negative correlation (r = −0.39, p = 0.038) was found between left-amygdala and scores on the Social Responsiveness Scale (SRS) Social-Cognition in ASD, and a positive association (r = 0.29, p = 0.039) between full scale IQ (FIQ) and right caudate in SZ. Significant correlations between behavior measures and subcortical volumes were observed in NT groups (ASD-NT range; r = −0.53 to −0.52, p = 0.002 to 0.004, SZ-NT range; r = −0.41 to −0.32, p = 0.007 to 0.021) that were non-significant in the disorder groups. The overlap of subcortical volumes implicated in ASD and SZ may reflect common neurological mechanisms. Furthermore, the difference in correlation patterns between disorder and NT groups may suggest dysfunctional connectivity with cascading effects unique to each disorder and a potential role for IQ in mediating behavior and brain circuits.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-781-8204501
| | - Adrian Ion-Mărgineanu
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, 3001 Leuven, Belgium;
| | - Garry Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Maria Mody
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
8
|
Ang YS, Cusin C, Petibon Y, Dillon DG, Breiger M, Belleau EL, Normandin M, Schroder H, Boyden S, Hayden E, Levine MT, Jahan A, Meyer AK, Kang MS, Brunner D, Gelda SE, Hooker J, El Fakhri G, Fava M, Pizzagalli DA. A multi-pronged investigation of option generation using depression, PET and modafinil. Brain 2022; 145:1854-1865. [PMID: 35150243 PMCID: PMC9166534 DOI: 10.1093/brain/awab429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/17/2021] [Accepted: 10/23/2021] [Indexed: 11/14/2022] Open
Abstract
Option generation is a critical process in decision making, but previous studies have largely focused on choices between options given by a researcher. Consequently, how we self-generate options for behaviour remain poorly understood. Here, we investigated option generation in major depressive disorder and how dopamine might modulate this process, as well as the effects of modafinil (a putative cognitive enhancer) on option generation in healthy individuals. We first compared differences in self-generated options between healthy non-depressed adults [n = 44, age = 26.3 years (SD 5.9)] and patients with major depressive disorder [n = 54, age = 24.8 years (SD 7.4)]. In the second study, a subset of depressed individuals [n = 22, age = 25.6 years (SD 7.8)] underwent PET scans with 11C-raclopride to examine the relationships between dopamine D2/D3 receptor availability and individual differences in option generation. Finally, a randomized, double-blind, placebo-controlled, three-way crossover study of modafinil (100 mg and 200 mg), was conducted in an independent sample of healthy people [n = 19, age = 23.2 years (SD 4.8)] to compare option generation under different doses of this drug. The first study revealed that patients with major depressive disorder produced significantly fewer options [t(96) = 2.68, P = 0.009, Cohen's d = 0.54], albeit with greater uniqueness [t(96) = -2.54, P = 0.01, Cohen's d = 0.52], on the option generation task compared to healthy controls. In the second study, we found that 11C-raclopride binding potential in the putamen was negatively correlated with fluency (r = -0.69, P = 0.001) but positively associated with uniqueness (r = 0.59, P = 0.007). Hence, depressed individuals with higher densities of unoccupied putamen D2/D3 receptors in the putamen generated fewer but more unique options, whereas patients with lower D2/D3 receptor availability were likely to produce a larger number of similar options. Finally, healthy participants were less unique [F(2,36) = 3.32, P = 0.048, partial η2 = 0.16] and diverse [F(2,36) = 4.31, P = 0.021, partial η2 = 0.19] after taking 200 mg versus 100 mg and 0 mg of modafinil, while fluency increased linearly with dosage at a trend level [F(1,18) = 4.11, P = 0.058, partial η2 = 0.19]. Our results show, for the first time, that option generation is affected in clinical depression and that dopaminergic activity in the putamen of patients with major depressive disorder may play a key role in the self-generation of options. Modafinil was also found to influence option generation in healthy people by reducing the creativity of options produced.
Collapse
Affiliation(s)
- Yuen-Siang Ang
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Social and Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Cristina Cusin
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yoann Petibon
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel G Dillon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Micah Breiger
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Emily L Belleau
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Marc Normandin
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hans Schroder
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Sean Boyden
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emma Hayden
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - M Taylor Levine
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aava Jahan
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ashley K Meyer
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Min Su Kang
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Devon Brunner
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Steven E Gelda
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Jacob Hooker
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Georges El Fakhri
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maurizio Fava
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA,Correspondence to: Diego A. Pizzagalli, PhD McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA E-mail:
| |
Collapse
|
9
|
Yuan G, Zheng Y, Wang Y, Qi X, Wang R, Ma Z, Guo X, Wang X, Zhang J. Multiscale entropy and small-world network analysis in rs-fMRI - new tools to evaluate early basal ganglia dysfunction in diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2022; 13:974254. [PMID: 36407323 PMCID: PMC9672501 DOI: 10.3389/fendo.2022.974254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The risk of falling increases in diabetic peripheral neuropathy (DPN) patients. As a central part, Basal ganglia play an important role in motor and balance control, but whether its involvement in DPN is unclear. METHODS Ten patients with confirmed DPN, ten diabetes patients without DPN, and ten healthy age-matched controls(HC) were recruited to undergo magnetic resonance imaging(MRI) to assess brain structure and zone adaptability. Multiscale entropy and small-world network analysis were then used to assess the complexity of the hemodynamic response signal, reflecting the adaptability of the basal ganglia. RESULTS There was no significant difference in brain structure among the three groups, except the duration of diabetes in DPN patients was longer (p < 0.05). The complexity of basal ganglia was significantly decreased in the DPN group compared with the non-DPN and HC group (p < 0.05), which suggested their poor adaptability. CONCLUSION In the sensorimotor loop, peripheral and early central nervous lesions exist simultaneously in DPN patients. Multiscale Entropy and Small-world Network Analysis could detect basal ganglia dysfunction prior to structural changes in MRI, potentially valuable tools for early non-invasive screening and follow-up.
Collapse
Affiliation(s)
- Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yijia Zheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ye Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Xin Qi
- Department of Plastic Surgery & Burns, Peking University First Hospital, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Zhanyang Ma
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
- *Correspondence: Jue Zhang, ;
| |
Collapse
|
10
|
Chen J, Fan Y, Wei W, Wang L, Wang X, Fan F, Jia Z, Li M, Wang J, Zou Q, Chen B, Lv Y. Repetitive transcranial magnetic stimulation modulates cortical-subcortical connectivity in sensorimotor network. Eur J Neurosci 2021; 55:227-243. [PMID: 34905661 DOI: 10.1111/ejn.15571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) holds the ability to modulate the connectivity within the stimulated network. However, whether and how the rTMS targeted over the primary motor cortex (M1) could affect the connectivity within the sensorimotor network (SMN) is not fully elucidated. Hence, in this study, we investigated the after-effects of rTMS over left M1 at different frequencies on connectivity within SMN. Forty-five healthy participants were recruited and randomly divided into three groups according to rTMS frequencies (high-frequency [HF], 3 Hz; low-frequency [LF], 1 Hz; and SHAM). Participants received 1-Hz, 3-Hz or sham stimulation and underwent two functional magnetic resonance imaging (fMRI) scanning sessions before and after rTMS intervention. Using resting-state functional connectivity (FC) approach, we found that high- and low-frequency rTMS had opposing effects on FC within the SMN, especially for connectivity with subcortical regions (i.e., putamen, thalamus and cerebellum). Specifically, the reductions in connectivity between cortical and subcortical regions within cortico-basal ganglia thalamo-cortical circuits and the cognitive loop of cerebellum, and increased connectivity between cortical and subdivisions within the sensorimotor loop of cerebellum were observed after high-frequency rTMS intervention, whereas the thalamus and cognitive cerebellum subdivisions exhibited increased connectivity, and sensorimotor cerebellum subdivisions showed decreased connectivity with stimulated target after low-frequency stimulation. Collectively, these findings demonstrated the alterations of connectivity within SMN after rTMS intervention at different frequencies and may help to understand the mechanisms of rTMS treatment for movement disorders associated with deficits in subcortical regions such as Parkinson's disease, Huntington's disease and Tourette's syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Zejuan Jia
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bing Chen
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
11
|
Fang Z, Smith DM, Albouy G, King BR, Vien C, Benali H, Carrier J, Doyon J, Fogel S. Differential Effects of a Nap on Motor Sequence Learning-Related Functional Connectivity Between Young and Older Adults. Front Aging Neurosci 2021; 13:747358. [PMID: 34776932 PMCID: PMC8582327 DOI: 10.3389/fnagi.2021.747358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
In older adults, motor sequence learning (MSL) is largely intact. However, consolidation of newly learned motor sequences is impaired compared to younger adults, and there is evidence that brain areas supporting enhanced consolidation via sleep degrade with age. It is known that brain activity in hippocampal-cortical-striatal areas is important for sleep-dependent, off-line consolidation of motor-sequences. Yet, the intricacies of how both age and sleep alter communication within this network of brain areas, which facilitate consolidation, are not known. In this study, 37 young (age 20-35) and 49 older individuals (age 55-75) underwent resting state functional magnetic resonance imaging (fMRI) before and after training on a MSL task as well as after either a nap or a period of awake rest. Young participants who napped showed strengthening of functional connectivity (FC) between motor, striatal, and hippocampal areas, compared to older subjects regardless of sleep condition. Follow-up analyses revealed this effect was driven by younger participants who showed an increase in FC between striatum and motor cortices, as well as older participants who showed decreased FC between the hippocampus, striatum, and precuneus. Therefore, different effects of sleep were observed in younger vs. older participants, where young participants primarily showed increased communication in the striatal-motor areas, while older participants showed decreases in key nodes of the default mode network and striatum. Performance gains correlated with FC changes in young adults, and this association was much greater in participants who napped compared to those who stayed awake. Performance gains also correlated with FC changes in older adults, but only in those who napped. This study reveals that, while there is no evidence of time-dependent forgetting/deterioration of performance, older adults exhibit a completely different pattern of FC changes during consolidation compared to younger adults, and lose the benefit that sleep affords to memory consolidation.
Collapse
Affiliation(s)
- Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Dylan M Smith
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Genevieve Albouy
- Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Catherine Vien
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Habib Benali
- Functional Neuroimaging Laboratory, INSERM, Paris, France
| | - Julie Carrier
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montreal, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Functional Neuroimaging Unit, Centre de Recherche Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Wang P, Feng J, Wang Y, Zhu W, Wei S, Im H, Wang Q. Sex-specific static and dynamic functional networks of sub-divisions of striatum linking to the greed personality trait. Neuropsychologia 2021; 163:108066. [PMID: 34678357 DOI: 10.1016/j.neuropsychologia.2021.108066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
The study of greed has been broadly investigated and discussed in the field of social sciences, including economics, political science, and psychology. However, the neural mechanisms underlying greed personality trait (GPT) have received little attention from the cognitive neuroscience field and still remain unclear. In this study, we explored the associations between GPT and static/dynamic reward circuit-specifically its sub-regions' functional networks including caudate, nucleus accumbens (NAcc), and putamen. Behavioral analyses revealed significant associations of GPT with Past-Negative and Present-Fatalistic time attitude as well as attention impulsivity. Imaging analyses revealed a significant interaction effect between sex and GPT on the static reward functional networks. In particular, GPT was positively correlated with static caudate-NAcc, caudate-cerebellum, and NAcc-parahippocampus/medial orbitofrontal cortex (PHG/mOFC) for males but negatively correlated for females. GPT was also marginally and negatively correlated with static putamen-occipital pole functional connectivities among males. Interestingly, sex difference interaction patterns were further observed in the dynamic reward functional networks. Further, dynamic reward functional networks also exhibited some specific characteristics, manifesting in more brain regions involved for greedy behaviors. These findings suggest sex-specific static and dynamic functional networks underlying human dispositional greed, and also implicate the critical contributions of reward circuit, especially for sub-circuits of reward, on greed.
Collapse
Affiliation(s)
- Pinchun Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Jie Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Yajie Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Wenwei Zhu
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Shiyu Wei
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Hohjin Im
- Department of Psychological Science, University of California, Irvine, 92697-7085, CA, USA.
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China; Key Research Base of Humanities and Social of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China; Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China.
| |
Collapse
|
13
|
Del Mauro G, Del Maschio N, Sulpizio S, Fedeli D, Perani D, Abutalebi J. Investigating sexual dimorphism in human brain structure by combining multiple indexes of brain morphology and source-based morphometry. Brain Struct Funct 2021; 227:11-21. [PMID: 34532783 DOI: 10.1007/s00429-021-02376-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Computational morphometry of magnetic resonance images represents a powerful tool for studying macroscopic differences in human brains. In the present study (N participants = 829), we combined different techniques and measures of brain morphology to investigate one of the most compelling topics in neuroscience: sexual dimorphism in human brain structure. When accounting for overall larger male brains, results showed limited sex differences in gray matter volume (GMV) and surface area. On the other hand, we found larger differences in cortical thickness, favoring both males and females, arguably as a result of region-specific differences. We also observed higher values of fractal dimension, a measure of cortical complexity, for males versus females across the four lobes. In addition, we applied source-based morphometry, an alternative method for measuring GMV based on the independent component analysis. Analyses on independent components revealed higher GMV in fronto-parietal regions, thalamus and caudate nucleus for females, and in cerebellar- temporal cortices and putamen for males, a pattern that is largely consistent with previous findings.
Collapse
Affiliation(s)
- Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina, 58 - 20132, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina, 58 - 20132, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Sulpizio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Davide Fedeli
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina, 58 - 20132, Milan, Italy
| | - Daniela Perani
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina, 58 - 20132, Milan, Italy. .,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy. .,The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
14
|
Liu X, Eickhoff SB, Caspers S, Wu J, Genon S, Hoffstaedter F, Mars RB, Sommer IE, Eickhoff CR, Chen J, Jardri R, Reetz K, Dogan I, Aleman A, Kogler L, Gruber O, Caspers J, Mathys C, Patil KR. Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate. Neuroimage 2021; 235:118006. [PMID: 33819611 PMCID: PMC8214073 DOI: 10.1016/j.neuroimage.2021.118006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
A wide homology between human and macaque striatum is often assumed as in both the striatum is involved in cognition, emotion and executive functions. However, differences in functional and structural organization between human and macaque striatum may reveal evolutionary divergence and shed light on human vulnerability to neuropsychiatric diseases. For instance, dopaminergic dysfunction of the human striatum is considered to be a pathophysiological underpinning of different disorders, such as Parkinson's disease (PD) and schizophrenia (SCZ). Previous investigations have found a wide similarity in structural connectivity of the striatum between human and macaque, leaving the cross-species comparison of its functional organization unknown. In this study, resting-state functional connectivity (RSFC) derived striatal parcels were compared based on their homologous cortico-striatal connectivity. The goal here was to identify striatal parcels whose connectivity is human-specific compared to macaque parcels. Functional parcellation revealed that the human striatum was split into dorsal, dorsomedial, and rostral caudate and ventral, central, and caudal putamen, while the macaque striatum was divided into dorsal, and rostral caudate and rostral, and caudal putamen. Cross-species comparison indicated dissimilar cortico-striatal RSFC of the topographically similar dorsal caudate. We probed clinical relevance of the striatal clusters by examining differences in their cortico-striatal RSFC and gray matter (GM) volume between patients (with PD and SCZ) and healthy controls. We found abnormal RSFC not only between dorsal caudate, but also between rostral caudate, ventral, central and caudal putamen and widespread cortical regions for both PD and SCZ patients. Also, we observed significant structural atrophy in rostral caudate, ventral and central putamen for both PD and SCZ while atrophy in the dorsal caudate was specific to PD. Taken together, our cross-species comparative results revealed shared and human-specific RSFC of different striatal clusters reinforcing the complex organization and function of the striatum. In addition, we provided a testable hypothesis that abnormalities in a region with human-specific connectivity, i.e., dorsal caudate, might be associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaojin Liu
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jianxiao Wu
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Ji Chen
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Renaud Jardri
- Division of Psychiatry, University of Lille, CNRS UMR9193, SCALab & CHU Lille, Fontan Hospital, CURE platform, Lille, France
| | - Kathrin Reetz
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, RWTH Aachen University, Aachen, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, RWTH Aachen University, Aachen, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lydia Kogler
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany
| | - Julian Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, Oldenburg, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
15
|
Zonnino A, Farrens AJ, Ress D, Sergi F. Measurement of stretch-evoked brainstem function using fMRI. Sci Rep 2021; 11:12544. [PMID: 34131162 PMCID: PMC8206209 DOI: 10.1038/s41598-021-91605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
Knowledge on the organization of motor function in the reticulospinal tract (RST) is limited by the lack of methods for measuring RST function in humans. Behavioral studies suggest the involvement of the RST in long latency responses (LLRs). LLRs, elicited by precisely controlled perturbations, can therefore act as a viable paradigm to measure motor-related RST activity using functional Magnetic Resonance Imaging (fMRI). Here we present StretchfMRI, a novel technique developed to study RST function associated with LLRs. StretchfMRI combines robotic perturbations with electromyography and fMRI to simultaneously quantify muscular and neural activity during stretch-evoked LLRs without loss of reliability. Using StretchfMRI, we established the muscle-specific organization of LLR activity in the brainstem. The observed organization is partially consistent with animal models, with activity primarily in the ipsilateral medulla for flexors and in the contralateral pons for extensors, but also includes other areas, such as the midbrain and bilateral pontomedullary contributions.
Collapse
Affiliation(s)
- Andrea Zonnino
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Andria J Farrens
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77020, USA
| | - Fabrizio Sergi
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
16
|
Neural substrates for poststroke complex regional pain syndrome type I: a retrospective case-control study using voxel-based lesion symptom mapping analysis. Pain 2021; 161:1311-1320. [PMID: 31985589 DOI: 10.1097/j.pain.0000000000001816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poststroke complex regional pain syndrome (CRPS) is characterized by swelling, pain, and changes in the skin that appear on the affected wrist and hand. In this retrospective study, we analyzed the relationship between poststroke CRPS and the location of stroke lesion. From all patients admitted to our hospital from 2009 to 2019, we recruited 80 patients affected by their first unilateral stroke who met the inclusion/exclusion criteria. Thirty-eight patients diagnosed with CRPS after stroke were assigned to the experimental group according to the "Budapest criteria" adopted by the International Association for the Study of Pain, and 42 patients without CRPS were included as controls. Regions of interest were manually drawn on T1-weighted magnetic resonance images, and data were normalized to a standard brain template. In the poststroke CRPS group, the relationship between the location of brain lesion and pain severity was analyzed using Freedman-Lane multivariable regression adjusting for Medication Quantification Scale rating, which was the only parameter to show a statistically significant correlation with pain intensity. A threshold of P < 0.01 was considered statistically significant for all voxel-based lesion symptom mapping tests, corrected for multiple comparisons with 5000 permutations. Analyses using voxel-wise subtraction and Liebermeister statistics indicated that the corticospinal tract (CST) was associated with the development of poststroke CRPS. Statistically significant correlations were found between pain intensity and the CST and the adjacent lentiform nucleus. Our results suggest that the CST may be a relevant neural structure for development of poststroke CRPS and the intensity of pain caused by the syndrome.
Collapse
|
17
|
Magnetic resonance imaging of neuroinflammation in chronic pain: a role for astrogliosis? Pain 2021; 161:1555-1564. [PMID: 31990749 DOI: 10.1097/j.pain.0000000000001815] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Noninvasive measures of neuroinflammatory processes in humans could substantially aid diagnosis and therapeutic development for many disorders, including chronic pain. Several proton magnetic resonance spectroscopy (H-MRS) metabolites have been linked with glial activity (ie, choline and myo-inositol) and found to be altered in chronic pain patients, but their role in the neuroinflammatory cascade is not well known. Our multimodal study evaluated resting functional magnetic resonance imaging connectivity and H-MRS metabolite concentration in insula cortex in 43 patients suffering from fibromyalgia, a chronic centralized pain disorder previously demonstrated to include a neuroinflammatory component, and 16 healthy controls. Patients demonstrated elevated choline (but not myo-inositol) in anterior insula (aIns) (P = 0.03), with greater choline levels linked with worse pain interference (r = 0.41, P = 0.01). In addition, reduced resting functional connectivity between aIns and putamen was associated with both pain interference (whole brain analysis, pcorrected < 0.01) and elevated aIns choline (r = -0.37, P = 0.03). In fact, aIns/putamen connectivity statistically mediated the link between aIns choline and pain interference (P < 0.01), highlighting the pathway by which neuroinflammation can impact clinical pain dysfunction. To further elucidate the molecular substrates of the effects observed, we investigated how putative neuroinflammatory H-MRS metabolites are linked with ex vivo tissue inflammatory markers in a nonhuman primate model of neuroinflammation. Results demonstrated that cortical choline levels were correlated with glial fibrillary acidic protein, a known marker for astrogliosis (Spearman r = 0.49, P = 0.03). Choline, a putative neuroinflammatory H-MRS-assessed metabolite elevated in fibromyalgia and associated with pain interference, may be linked with astrogliosis in these patients.
Collapse
|
18
|
Kowalczyk‐Grębska N, Skorko M, Dobrowolski P, Kossowski B, Myśliwiec M, Hryniewicz N, Gaca M, Marchewka A, Kossut M, Brzezicka A. Lenticular nucleus volume predicts performance in real-time strategy game: cross-sectional and training approach using voxel-based morphometry. Ann N Y Acad Sci 2021; 1492:42-57. [PMID: 33372699 PMCID: PMC8246877 DOI: 10.1111/nyas.14548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft® II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.
Collapse
Affiliation(s)
| | - Maciek Skorko
- Institute of Psychology, Polish Academy of SciencesWarsawPoland
| | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Monika Myśliwiec
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
| | - Nikodem Hryniewicz
- CNS Lab, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsawPoland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Małgorzata Kossut
- Laboratory of Neuroplasticity, Department of Molecular and Cellular NeurobiologyNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Aneta Brzezicka
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCalifornia
| |
Collapse
|
19
|
Fil JE, Joung S, Hayes CA, Dilger RN. Influence of Rearing Environment on Longitudinal Brain Development, Object Recognition Memory, and Exploratory Behaviors in the Domestic Pig ( Sus scrofa). Front Neurosci 2021; 15:649536. [PMID: 33841090 PMCID: PMC8024486 DOI: 10.3389/fnins.2021.649536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Over the last 40 years, the domestic pig has emerged as a prominent preclinical model as this species shares similarities with humans with regard to immunity, gastrointestinal physiology, and neurodevelopment. Artificial rearing of pigs provides a number of advantages over conventional rearing (i.e., true maternal care), including careful control of nutrient intake and environment conditions. Yet there remains a gap in knowledge when comparing brain development between sow-reared and artificially reared domestic pigs. Thus, our research sought to model brain development and assess recognition memory in a longitudinal manner by directly comparing rearing environments. Methods Forty-four intact (i.e., not castrated) male pigs were artificially reared or sow-reared from postnatal day 2 until postnatal week 4. After postnatal week 4, all pigs were housed in a group setting within the same environment until postnatal week 24. Magnetic resonance imaging was conducted on pigs at 8 longitudinal time-points to model developmental trajectories of brain macrostructural and microstructural outcomes. Additionally, pigs behavior were tested using the novel object recognition task at postnatal weeks 4 and 8. Results Throughout the 24-week study, no differences between rearing groups were noted in weekly body weights, average growth and feed intake patterns, or feed efficiency. Whole brain, gray matter, white matter, and cerebrospinal fluid growth patterns also did not differ between pigs assigned to different early-life rearing environments. Moreover, minimal differences in regional absolute volumes and fractional anisotropy developmental trajectories were identified, though artificially reared pigs exhibited higher initial rates of myelination in multiple brain regions compared with sow-reared pigs. Furthermore, behavioral assessment at both PNW 4 and 8 suggested little influence of rearing environment on recognition memory, however, an age-dependent increase in object recognition memory was observed in the sow-reared group. Conclusion Our findings suggest that early-life rearing environment influences the rate of development in some brain regions but has little influence on overall brain growth and object recognition memory and exploratory behaviors in the domestic pig. Artificial rearing may promote maturation in certain brain areas but does not appear to elicit long-term effects in outcomes including brain structure or object recognition memory.
Collapse
Affiliation(s)
- Joanne E Fil
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Sangyun Joung
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Courtney A Hayes
- College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
20
|
Santarnecchi E, Egiziano E, D'Arista S, Gardi C, Romanella SM, Mencarelli L, Rossi S, Reda M, Rossi A. Mindfulness-based stress reduction training modulates striatal and cerebellar connectivity. J Neurosci Res 2021; 99:1236-1252. [PMID: 33634892 DOI: 10.1002/jnr.24798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Mindfulness is a meditation practice frequently associated with changes in subjective evaluation of cognitive and sensorial experience, as well as with modifications of brain activity and morphometry. Aside from the anatomical localization of functional changes induced by mindfulness practice, little is known about changes in functional and effective functional magnetic resonance imaging (fMRI) connectivity. Here we performed a connectivity fMRI analysis in a group of healthy individuals participating in an 8-week mindfulness-based stress reduction (MBSR) training program. Data from both a "mind-wandering" and a "meditation" state were acquired before and after the MBSR course. Results highlighted decreased local connectivity after training in the right anterior putamen and insula during spontaneous mind-wandering and the right cerebellum during the meditative state. A further effective connectivity analysis revealed (a) decreased modulation by the anterior cingulate cortex over the anterior portion of the putamen, and (b) a change in left and right posterior putamen excitatory input and inhibitory output with the cerebellum, respectively. Results suggest a rearrangement of dorsal striatum functional and effective connectivity in response to mindfulness practice, with changes in cortico-subcortical-cerebellar modulatory dynamics. Findings might be relevant for the understanding of widely documented mindfulness behavioral effects, especially those related to pain perception.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eutizio Egiziano
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Sicilia D'Arista
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara M Romanella
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Lucia Mencarelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Simone Rossi
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - Mario Reda
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| |
Collapse
|
21
|
Hua K, Wang P, Lan Z, Li M, Zhao W, Wang T, Li S, Ma X, Li C, Fu S, Yin Y, Liu P, Fang J, Li T, Jiang G. Increased Left Putamen Volume Correlates With Pain in Ankylosing Spondylitis Patients. Front Neurol 2020; 11:607646. [PMID: 33329370 PMCID: PMC7734309 DOI: 10.3389/fneur.2020.607646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Ankylosing spondylitis (AS) mainly affects the axial skeleton and is an important factor leading to chronic lower back pain in young individuals. However, few studies have explored alterations of brain gray matter volume in AS patients. The purpose of the present study was to describe brain gray matter abnormalities associated with AS pain. A total of 61 AS patients and 52 healthy controls (HCs) were included in this study. Using voxel-based morphometrics, we detected abnormal gray matter volume in AS patients. Based on the voxel-wise analysis, the gray matter volume in the left putamen of the AS group was increased significantly compared with that of the HC group. In addition, we found that the gray matter volume of the left putamen was positively correlated with the duration of AS and total back pain scores, whereas it was not significantly correlated with Bath Ankylosing Spondylitis Disease Activity Index scores, C-reactive protein, or erythrocyte sedimentation rate in AS patients. Taken together, our findings improve our understanding of the neural substrates of pain in AS and provide evidence of AS-related neurological impairment. Hence, further investigation of the pathophysiology of the left putamen in AS is warranted.
Collapse
Affiliation(s)
- Kelei Hua
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Peijun Wang
- Department of Medical Imaging, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Zhihong Lan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenkai Zhao
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shumei Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chao Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jin Fang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
22
|
González A, Pérez P, Santapau M, González JJ, Modroño CD. A neuroimaging comparative study of changes in a cellist's brain when playing contemporary and Baroque styles. Brain Cogn 2020; 145:105623. [PMID: 32950818 DOI: 10.1016/j.bandc.2020.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
The emergence of different styles of Contemporary concert music in the 20th century led to a marked modification of the foundations built on previous styles. This work investigates whether these modifications, which include procedures and technical resources different to those used in the interpretation of previous musical styles, require different encephalic controls to those used in tonal music and if the experience of the musician in these styles influences them. Functional magnetic resonance images of encephalic regions from 13 professional cellists while interpreting Baroque and Contemporary excerpts inside an MRI scanner were acquired. Activation and connectivity encephalic maps show common cortical motor and sensorial regions (Precentral, Postcentral and Supramarginal Gyri) in both interpretation styles, but with different hemispheric intensity levels. However, certain auditory and motor regions only activate during Baroque. Connectivity maps show some exclusive seed-regions; thus, the Heschl's and Superior Frontal Gyri, Planum-Temporal and Caudate appear as prominent seeds when playing Baroque, whereas when playing Contemporary, the main seeds appear in the Cerebellar-Vermis, Insular cortex and Parietal Operculum. The discrepancies found are attributed to different cognitive, sensory and motor demands underlying the musical interpretation of each style, as well as to the musicians' learning of and training in these styles.
Collapse
Affiliation(s)
- Almudena González
- Departamento Ciencias Médicas Básicas (Fisiología, Medicina), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain; Conservatorio Superior de Música de Canarias, 38009 Santa Cruz de Tenerife, Spain; Departamento Historia del Arte y Filosofía, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain.
| | - Pompeyo Pérez
- Departamento Historia del Arte y Filosofía, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain.
| | - Manuel Santapau
- Conservatorio Profesional de Requena, 46340 Requena, Valencia, Spain; Departamento de Biología, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Julián J González
- Departamento Ciencias Médicas Básicas (Fisiología, Medicina), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain; Departamento de Biología, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Cristián D Modroño
- Departamento Ciencias Médicas Básicas (Fisiología, Medicina), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
23
|
Sotelo MR, Kalinosky BT, Goodfriend K, Hyngstrom AS, Schmit BD. Indirect Structural Connectivity Identifies Changes in Brain Networks After Stroke. Brain Connect 2020; 10:399-410. [PMID: 32731752 DOI: 10.1089/brain.2019.0725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background/Purpose: The purpose of this study was (1) to identify changes in structural connectivity after stroke and (2) to relate changes in indirect connectivity to post-stroke impairment. Methods: A novel measure of indirect connectivity was implemented to assess the impact of stroke on brain connectivity. Probabilistic tractography was performed on 13 chronic stroke and 16 control participants to estimate connectivity between gray matter (GM) regions. The Fugl-Meyer assessment of motor impairment was measured for stroke participants. Network measures of direct and indirect connectivity were calculated, and these measures were linearly combined with measures of white matter integrity to predict motor impairment. Results: We found significantly reduced indirect connectivity in the frontal and parietal lobes, ipsilesional subcortical regions, and bilateral cerebellum after stroke. When added to the regression analysis, the volume of GM with reduced indirect connectivity significantly improved the correlation between image parameters and upper extremity motor impairment (R2 = 0.71, p < 0.05). Conclusion: This study provides evidence of changes in indirect connectivity in regions remote from the lesion, particularly in the cerebellum and regions in the fronto-parietal cortices, and these changes correlate with upper extremity motor impairment. These results highlight the value of using measures of indirect connectivity to identify the effect of stroke on brain networks. Impact statement Changes in indirect structural connectivity occur in regions distant from a lesion after stroke, highlighting the impact that stroke has on brain functional networks. Specifically, losses in indirect structural connectivity occur in hubs with high centrality, including the fronto-parietal cortices and cerebellum. These losses in indirect connectivity more accurately reflect motor impairments than measures of direct structural connectivity. As a consequence, indirect structural connectivity appears to be important to recovery after stroke and imaging biomarkers that incorporate indirect structural connectivity might improve prognostication of stroke outcomes.
Collapse
Affiliation(s)
- Miguel R Sotelo
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin T Kalinosky
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karin Goodfriend
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
24
|
Liu X, Eickhoff SB, Hoffstaedter F, Genon S, Caspers S, Reetz K, Dogan I, Eickhoff CR, Chen J, Caspers J, Reuter N, Mathys C, Aleman A, Jardri R, Riedl V, Sommer IE, Patil KR. Joint Multi-modal Parcellation of the Human Striatum: Functions and Clinical Relevance. Neurosci Bull 2020; 36:1123-1136. [PMID: 32700142 DOI: 10.1007/s12264-020-00543-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
The human striatum is essential for both low- and high-level functions and has been implicated in the pathophysiology of various prevalent disorders, including Parkinson's disease (PD) and schizophrenia (SCZ). It is known to consist of structurally and functionally divergent subdivisions. However, previous parcellations are based on a single neuroimaging modality, leaving the extent of the multi-modal organization of the striatum unknown. Here, we investigated the organization of the striatum across three modalities-resting-state functional connectivity, probabilistic diffusion tractography, and structural covariance-to provide a holistic convergent view of its structure and function. We found convergent clusters in the dorsal, dorsolateral, rostral, ventral, and caudal striatum. Functional characterization revealed the anterior striatum to be mainly associated with cognitive and emotional functions, while the caudal striatum was related to action execution. Interestingly, significant structural atrophy in the rostral and ventral striatum was common to both PD and SCZ, but atrophy in the dorsolateral striatum was specifically attributable to PD. Our study revealed a cross-modal convergent organization of the striatum, representing a fundamental topographical model that can be useful for investigating structural and functional variability in aging and in clinical conditions.
Collapse
Affiliation(s)
- Xiaojin Liu
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kathrin Reetz
- Department of Neurology, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany
| | - Imis Dogan
- Jülich Aachen Research Alliance-BRAIN (JARA) Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany.,Department of Neurology, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ji Chen
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Niels Reuter
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany.,Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, 26129, Oldenburg, Germany
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Renaud Jardri
- SCALab (CNRS UMR9193) & CHU de Lille, Hôpital Fontan, Pôle de Psychiatrie (CURE), Université de Lille, 59037, Lille, France
| | - Valentin Riedl
- Departments of Neuroradiology, Nuclear Medicine and Neuroimaging Center, Technische Universität München, 80333, Munich, Germany
| | - Iris E Sommer
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, 26129, Oldenburg, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany. .,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
25
|
Looming and receding visual networks in awake marmosets investigated with fMRI. Neuroimage 2020; 215:116815. [DOI: 10.1016/j.neuroimage.2020.116815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
|
26
|
Dinkelbach L, Südmeyer M, Hartmann CJ, Roeber S, Arzberger T, Felsberg J, Ferrea S, Moldovan AS, Amunts K, Schnitzler A, Caspers S. Somatosensory area 3b is selectively unaffected in corticobasal syndrome: combining MRI and histology. Neurobiol Aging 2020; 94:89-100. [PMID: 32593032 DOI: 10.1016/j.neurobiolaging.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
An increasing number of neuroimaging studies addressing patients with corticobasal syndrome use macroscopic definitions of brain regions. As a closer link to functionally relevant units, we aimed at identifying magnetic resonance-based atrophy patterns in regions defined by probability maps of cortical microstructure. For this purpose, three analyses were conducted: (1) Whole-brain cortical thickness was compared between 36 patients with corticobasal syndrome and 24 controls. A pattern of pericentral atrophy was found, covering primary motor area 4, premotor area 6, and primary somatosensory areas 1, 2, and 3a. Within the central region, only area 3b was without atrophy. (2) In 18 patients, longitudinal measures with follow-ups of up to 59 months (mean 21.3 ± 15.4) were analyzed. Areas 1, 2, and 6 showed significantly faster atrophy rates than primary somatosensory area 3b. (3) In an individual autopsy case, longitudinal in vivo morphometry and postmortem pathohistology were conducted. The rate of magnetic resonance-based atrophy was significantly correlated with tufted-astrocyte load in those cytoarchitectonically defined regions also seen in the group study, with area 3b being selectively unaffected.
Collapse
Affiliation(s)
- Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Jörg Felsberg
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alexia-Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
27
|
Abstract
OBJECTIVE An obsessive-compulsive disorder (OCD) subtype has been associated with streptococcal infections and is called pediatric autoimmune neuropsychiatric disorders associated with streptococci (PANDAS). The neuroanatomical characterization of subjects with this disorder is crucial for the better understanding of its pathophysiology; also, evaluation of these features as classifiers between patients and controls is relevant to determine potential biomarkers and useful in clinical diagnosis. This was the first multivariate pattern analysis (MVPA) study on an early-onset OCD subtype. METHODS Fourteen pediatric patients with PANDAS were paired with 14 healthy subjects and were scanned to obtain structural magnetic resonance images (MRI). We identified neuroanatomical differences between subjects with PANDAS and healthy controls using voxel-based morphometry, diffusion tensor imaging (DTI), and surface analysis. We investigated the usefulness of these neuroanatomical differences to classify patients with PANDAS using MVPA. RESULTS The pattern for the gray and white matter was significantly different between subjects with PANDAS and controls. Alterations emerged in the cortex, subcortex, and cerebellum. There were no significant group differences in DTI measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity) or cortical features (thickness, sulci, volume, curvature, and gyrification). The overall accuracy of 75% was achieved using the gray matter features to classify patients with PANDAS and healthy controls. CONCLUSION The results of this integrative study allow a better understanding of the neural substrates in this OCD subtype, suggesting that the anatomical gray matter characteristics could have an immune origin that might be helpful in patient classification.
Collapse
|
28
|
Lee SE, Kim D, Han Y. A neural basis of unpleasant emotional processing in modified guided imagery and music: An fMRI study. NORDIC JOURNAL OF MUSIC THERAPY 2019. [DOI: 10.1080/08098131.2019.1623297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sang Eun Lee
- Department of Music Therapy, Graduate School of Social Education, Myongji University, Seoul, Republic of Korea
| | - Dongchan Kim
- Neuroscience Research Institute (NRI), College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Yeji Han
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
29
|
Klugah-Brown B, Luo C, Peng R, He H, Li J, Dong L, Yao D. Altered structural and causal connectivity in frontal lobe epilepsy. BMC Neurol 2019; 19:70. [PMID: 31023252 PMCID: PMC6485093 DOI: 10.1186/s12883-019-1300-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Background Albeit the few resting-state fMRI neuroimaging studies in frontal lobe epilepsy (FLE) patients, these studies focused on functional connectivity. The aim of this current study was to examine the effective connectivity based on voxel-based morphometry in FLE patients. Methods Resting-state structural and functional magnetic resonance imaging (fMRI) data were acquired from 19 FLE patients and 19 age and gender-matched healthy controls using the 3.0 Tesla magnetic resonance imaging (3.0 T MRI). The investigations were done by acquiring the structural information through voxel-based morphometry, then based on the seed obtained, Granger causality analysis was used to evaluate the causal flow of the designated seed to and from other significant voxels. Results Our results showed altered structural and effective connectivity. Compared with healthy controls, FLE patients showed reduced grey matter volume in bilateral putamen and right caudate as well as altered causality with increased, and decreased causal outflow from the right caudate (seed region) to inferior frontal gyrus-triangular, from bilateral putamen (seed regions) to right middle frontal gyrus and frontal gyrus medial-orbital representing the frontal executive areas, respectively. Also, significantly increased and decreased inflow from left calcarine to right caudate and from cerebellum_6 and vermis_6 to bilateral putamen, respectively. Moreover, we found that the causal alterations to and from the seed regions (from vermis_6 to right putamen and from left putamen to right middle frontal gyrus) negatively correlated with clinical scores (duration of epilepsy). Conclusions The findings point to the impairment within the executive and motor-controlled system including the cerebellum, frontal, caudate and putamen regions in FLE patients. These results would therefore enhance our understanding of structural and effective mechanisms in FLE.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, People's Republic of China.
| | - Rui Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, People's Republic of China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, People's Republic of China
| | - Jianfu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, People's Republic of China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, People's Republic of China
| |
Collapse
|
30
|
Mufford M, Cheung J, Jahanshad N, van der Merwe C, Ding L, Groenewold N, Koen N, Chimusa ER, Dalvie S, Ramesar R, Knowles JA, Lochner C, Hibar DP, Paschou P, van den Heuvel OA, Medland SE, Scharf JM, Mathews CA, Thompson PM, Stein DJ. Concordance of genetic variation that increases risk for tourette syndrome and that influences its underlying neurocircuitry. Transl Psychiatry 2019; 9:120. [PMID: 30902966 PMCID: PMC6430767 DOI: 10.1038/s41398-019-0452-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/18/2023] Open
Abstract
There have been considerable recent advances in understanding the genetic architecture of Tourette syndrome (TS) as well as its underlying neurocircuitry. However, the mechanisms by which genetic variation that increases risk for TS-and its main symptom dimensions-influence relevant brain regions are poorly understood. Here we undertook a genome-wide investigation of the overlap between TS genetic risk and genetic influences on the volume of specific subcortical brain structures that have been implicated in TS. We obtained summary statistics for the most recent TS genome-wide association study (GWAS) from the TS Psychiatric Genomics Consortium Working Group (4644 cases and 8695 controls) and GWAS of subcortical volumes from the ENIGMA consortium (30,717 individuals). We also undertook analyses using GWAS summary statistics of key symptom factors in TS, namely social disinhibition and symmetry behaviour. SNP effect concordance analysis (SECA) was used to examine genetic pleiotropy-the same SNP affecting two traits-and concordance-the agreement in single nucelotide polymorphism (SNP) effect directions across these two traits. In addition, a conditional false discovery rate (FDR) analysis was performed, conditioning the TS risk variants on each of the seven subcortical and the intracranial brain volume GWAS. Linkage disequilibrium score regression (LDSR) was used as validation of the SECA method. SECA revealed significant pleiotropy between TS and putamen (p = 2 × 10-4) and caudate (p = 4 × 10-4) volumes, independent of direction of effect, and significant concordance between TS and lower thalamic volume (p = 1 × 10-3). LDSR lent additional support for the association between TS and thalamus volume (p = 5.85 × 10-2). Furthermore, SECA revealed significant evidence of concordance between the social disinhibition symptom dimension and lower thalamus volume (p = 1 × 10-3), as well as concordance between symmetry behaviour and greater putamen volume (p = 7 × 10-4). Conditional FDR analysis further revealed novel variants significantly associated with TS (p < 8 × 10-7) when conditioning on intracranial (rs2708146, q = 0.046; and rs72853320, q = 0.035) and hippocampal (rs1922786, q = 0.001) volumes, respectively. These data indicate concordance for genetic variation involved in disorder risk and subcortical brain volumes in TS. Further work with larger samples is needed to fully delineate the genetic architecture of these disorders and their underlying neurocircuitry.
Collapse
Affiliation(s)
- Mary Mufford
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Josh Cheung
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Neda Jahanshad
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Celia van der Merwe
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Ding
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Nynke Groenewold
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa ,0000 0004 0635 1506grid.413335.3Groote Schuur Hospital and Neuroscience Institute, Cape Town, South Africa
| | - Emile R. Chimusa
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shareefa Dalvie
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa ,0000 0004 0635 1506grid.413335.3Groote Schuur Hospital and Neuroscience Institute, Cape Town, South Africa
| | - Raj Ramesar
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - James A. Knowles
- 0000 0001 2156 6853grid.42505.36Department of Psychiatry and the Behavioural Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Christine Lochner
- 0000 0001 2214 904Xgrid.11956.3aDepartment of Psychiatry, University of Stellenbosch, Stellenbosch, South Africa
| | - Derrek P. Hibar
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Peristera Paschou
- 0000 0004 1937 2197grid.169077.eDepartment of Biological Sciences, Purdue University, West Lafayette, IN USA
| | - Odile A. van den Heuvel
- grid.484519.5Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sarah E. Medland
- 0000 0001 2294 1395grid.1049.cQIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jeremiah M. Scharf
- 000000041936754Xgrid.38142.3cPsychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Carol A. Mathews
- 0000 0004 1936 8091grid.15276.37Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL USA
| | - Paul M. Thompson
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Dan J. Stein
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa ,0000 0004 0635 1506grid.413335.3Groote Schuur Hospital and Neuroscience Institute, Cape Town, South Africa
| | | |
Collapse
|
31
|
Halcomb ME, Chumin EJ, Goñi J, Dzemidzic M, Yoder KK. Aberrations of anterior insular cortex functional connectivity in nontreatment-seeking alcoholics. Psychiatry Res Neuroimaging 2019; 284:21-28. [PMID: 30640144 PMCID: PMC6668713 DOI: 10.1016/j.pscychresns.2018.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/11/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023]
Abstract
An emergent literature suggests that resting state functional magnetic resonance imaging (rsfMRI) functional connectivity (FC) patterns are aberrant in alcohol use disorder (AUD) populations. The salience network (SAL) is an established set of brain regions prominent in salience attribution and valuation, and includes the anterior insular cortex (AIC). The SAL is thought to play a role in AUD through directing increased attention to interoceptive cues of intoxication. There is very little information on the salience network (SAL) in AUD, and, in particular, there are no data on SAL FC in currently drinking, nontreatment seeking individuals with AUD (NTS). rsfMRI data from 16 NTS and 21 social drinkers (SD) were compared using FC correlation maps from ten seed regions of interest in the bilateral AIC. As anticipated, SD subjects demonstrated greater insular FC with frontal and parietal regions. We also found that, compared to SD, NTS had higher insular FC with hippocampal and medial orbitofrontal regions. The apparent overactivity in brain networks involved in salience, learning, and behavioral control in NTS suggests possible mechanisms in the development and maintenance of AUD.
Collapse
Affiliation(s)
- Meredith E Halcomb
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evgeny J Chumin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiananpolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Dzemidzic
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiananpolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Li T, Liu C, Lyu H, Xu Z, Hu Q, Xu B, Wang Y, Xu J. Alterations of Sub-cortical Gray Matter Volume and Their Associations With Disease Duration in Patients With Restless Legs Syndrome. Front Neurol 2018; 9:1098. [PMID: 30619055 PMCID: PMC6304426 DOI: 10.3389/fneur.2018.01098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/03/2018] [Indexed: 01/18/2023] Open
Abstract
Object: The purpose of this study was to uncover the pathology of restless legs syndrome (RLS) by exploring brain structural alterations and their corresponding functional abnormality. Method: Surface-based morphometry (SBM) and voxel-based morphometry (VBM) were performed to explore the alterations in cortical and sub-cortical gray matter volume (GMV) in a cohort of 20 RLS and 18 normal controls (NC). Furthermore, resting-state functional connectivity (RSFC) was also performed to identify the functional alterations in patients with RLS. Results: We found significant alterations of sub-cortical GMV, especially the bilateral putamen (PUT), rather than alterations of cortical GMV in patients with RLS compared to NC using both SBM and VBM. Further sub-regional analysis revealed that GMV alterations of PUT was mostly located in the left dorsal caudal PUT in patients with RLS. In addition, altered RSFC patterns of PUT were identified in patients with RLS compared to NC. Moreover, correlation analyses showed that the GMV of the left caudate and the left ventral rostral PUT were positively correlated with disease duration in patients with RLS. Conclusions: The alterations of subcortical GMV might imply that the primarily affected areas are located in sub-cortical areas especially in the sub-region of PUT by the pathologic process of RLS, which might be used as potential biomarkers for the early diagnosis of RLS.
Collapse
Affiliation(s)
- Tian Li
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China.,Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunyan Liu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Hanqing Lyu
- Radiology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhexue Xu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bibo Xu
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
| | - Yuping Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
33
|
Ge S, Liu H, Lin P, Gao J, Xiao C, Li Z. Neural Basis of Action Observation and Understanding From First- and Third-Person Perspectives: An fMRI Study. Front Behav Neurosci 2018; 12:283. [PMID: 30524253 PMCID: PMC6262037 DOI: 10.3389/fnbeh.2018.00283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the intentions of others while observing their actions is a fundamental aspect of social behavior. However, the differences in neural and functional mechanisms between observing actions from the first-person perspective (1PP) and third-person perspective (3PP) are poorly understood. The present study had two aims: (1) to delineate the neural basis of action observation and understanding from the 1PP and 3PP; and (2) to identify whether there are different activation patterns during action observation and understanding from 1PP and 3PP. We used a blocked functional magnetic resonance imaging (fMRI) experimental design. Twenty-six right-handed participants observed interactions between the right hand and a cup from 1PP and 3PP. The results indicated that both 1PP and 3PP were associated with similar patterns of activation in key areas of the mirror neuron system underlying action observation and understanding. Importantly, besides of the core network of mirror neuron system, we also found that parts of the basal ganglia and limbic system were involved in action observation in both the 1PP and 3PP tasks, including the putamen, insula and hippocampus, providing a more complete understanding of the neural basis for action observation and understanding. Moreover, compared with the 3PP, the 1PP task caused more extensive and stronger activation. In contrast, the opposite comparison revealed that no regions exhibited significantly more activation in the 3PP compared with the 1PP condition. The current results have important implications for understanding the role of the core network underlying the mirror neuron system, as well as parts of the basal ganglia and limbic system, during action observation and understanding.
Collapse
Affiliation(s)
- Sheng Ge
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Hui Liu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Pan Lin
- Key Laboratory of Cognitive Science, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Junfeng Gao
- Key Laboratory of Cognitive Science, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Department of Radiology, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Issa HA, Staes N, Diggs-Galligan S, Stimpson CD, Gendron-Fitzpatrick A, Taglialatela JP, Hof PR, Hopkins WD, Sherwood CC. Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Struct Funct 2018; 224:239-251. [DOI: 10.1007/s00429-018-1751-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/09/2018] [Indexed: 12/24/2022]
|
35
|
Shirinbayan SI, Dreyer AM, Rieger JW. Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study. Hum Brain Mapp 2018; 40:151-162. [PMID: 30251771 DOI: 10.1002/hbm.24361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/05/2022] Open
Abstract
Reach movements are characterized by multiple kinematic variables that can change with age or due to medical conditions such as movement disorders. While the neural control of reach direction is well investigated, the elements of the neural network regulating speed (the nondirectional component of velocity) remain uncertain. Here, we used a custom made magnetic resonance (MR)-compatible arm movement tracking system to capture the real kinematics of the arm movements while measuring brain activation with functional magnetic resonance imaging to reveal areas in the human brain in which BOLD-activation covaries with the speed of arm movements. We found significant activation in multiple cortical and subcortical brain regions positively correlated with endpoint (wrist) speed (speed-related activation), including contralateral premotor cortex (PMC), supplementary motor area (SMA), thalamus (putative VL/VA nuclei), and bilateral putamen. The hand and arm regions of primary sensorimotor cortex (SMC) and a posterior region of thalamus were significantly activated by reach movements but showed a more binary response characteristics (movement present or absent) than with continuously varying speed. Moreover, a subregion of contralateral SMA also showed binary movement activation but no speed-related BOLD-activation. Effect size analysis revealed bilateral putamen as the most speed-specific region among the speed-related clusters whereas primary SMC showed the strongest specificity for movement versus non-movement discrimination, independent of speed variations. The results reveal a network of multiple cortical and subcortical brain regions that are involved in speed regulation among which putamen, anterior thalamus, and PMC show highest specificity to speed, suggesting a basal-ganglia-thalamo-cortical loop for speed regulation.
Collapse
Affiliation(s)
| | - Alexander M Dreyer
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jochem W Rieger
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
36
|
Darki F, Klingberg T. Functional differentiation between convergence and non-convergence zones of the striatum in children. Neuroimage 2018; 173:384-393. [PMID: 29501552 DOI: 10.1016/j.neuroimage.2018.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
Most cortical areas send projections to the striatum. In some parts of the striatum, the connections converge from several cortical areas. It is unknown whether the convergence and non-convergence zones of the striatum differ functionally. Here, we used diffusion-weighted magnetic resonance imaging and probabilistic fiber tracking to parcellate the striatum based on its connections to dorsolateral prefrontal, parietal and orbitofrontal cortices in two different datasets (children aged 6-7 years and adults). In both samples, quantitative susceptibility mapping (QSM) values were significantly correlated with working memory (WM) in convergence zones, but not in non-convergence zones. In children, this was also true for mean diffusivity, MD. The association of MD to WM specifically in the convergent zone was replicated in the Pediatric Imaging, Neurocognition, and Genetics (PING) dataset for 135 children aged 6-9 years. QSM data was not available in the PING dataset, and the association to QSM still needs to be replicated. These results suggest that connectivity-based segments of the striatum exhibit functionally different characteristics. The association between convergence zones and WM performance might relate to a role in integrating and coordinating activity in different cortical areas.
Collapse
Affiliation(s)
- Fahimeh Darki
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | -
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
37
|
Pietsch S, Jansen P. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players. Front Psychol 2018; 9:220. [PMID: 29535665 PMCID: PMC5835319 DOI: 10.3389/fpsyg.2018.00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/09/2018] [Indexed: 11/24/2022] Open
Abstract
This study investigates the influence of specific soccer training with the non-dominant leg on mental rotation performance of 20 adolescent soccer players between 10 and 11 years of age. While the experimental group performed soccer specific tasks only with the non-dominant foot once a week for 10 weeks, the control group absolved the same exercises with the dominant foot for the same period of time. Both groups performed a mental rotation task and shot, dribbling and ball control tests before and after the 10 week intervention. The most relevant result was that the experimental group showed a significantly larger increase in mental rotation ability than the control group.
Collapse
Affiliation(s)
- Stefanie Pietsch
- Institute of Sport Science, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
38
|
Widmayer S, Sowislo JF, Jungfer HA, Borgwardt S, Lang UE, Stieglitz RD, Huber CG. Structural Magnetic Resonance Imaging Correlates of Aggression in Psychosis: A Systematic Review and Effect Size Analysis. Front Psychiatry 2018; 9:217. [PMID: 29930519 PMCID: PMC6000417 DOI: 10.3389/fpsyt.2018.00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Aggression in psychoses is of high clinical importance, and volumetric MRI techniques have been used to explore its structural brain correlates. Methods: We conducted a systematic review searching EMBASE, ScienceDirect, and PsycINFO through September 2017 using thesauri representing aggression, psychosis, and brain imaging. We calculated effect sizes for each study and mean Hedge's g for whole brain (WB) volume. Methodological quality was established using the PRISMA checklist (PROSPERO: CRD42014014461). Results: Our sample consisted of 12 studies with 470 patients and 155 healthy controls (HC). After subtracting subjects due to cohort overlaps, 314 patients and 96 HC remained. Qualitative analyses showed lower volumes of WB, prefrontal regions, temporal lobe, hippocampus, thalamus and cerebellum, and higher volumes of lateral ventricles, amygdala, and putamen in violent vs. non-violent people with schizophrenia. In quantitative analyses, violent persons with schizophrenia exhibited a significantly lower WB volume than HC (p = 0.004), and also lower than non-violent persons with schizophrenia (p = 0.007). Conclusions: We reviewed evidence for differences in brain volume correlates of aggression in persons with schizophrenia. Our results point toward a reduced whole brain volume in violent as opposed to non-violent persons with schizophrenia. However, considerable sample overlap in the literature, lack of reporting of potential confounding variables, and missing research on affective psychoses limit our explanatory power. To permit stronger conclusions, further studies evaluating structural correlates of aggression in psychotic disorders are needed.
Collapse
Affiliation(s)
- Sonja Widmayer
- Erwachsenen-Psychiatrische Klinik, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - Julia F Sowislo
- Erwachsenen-Psychiatrische Klinik, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - Hermann A Jungfer
- Erwachsenen-Psychiatrische Klinik, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland.,Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Asklepios Klinik Nord-Ochsenzoll, Hamburg, Germany
| | - Stefan Borgwardt
- Erwachsenen-Psychiatrische Klinik, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - Undine E Lang
- Erwachsenen-Psychiatrische Klinik, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - Rolf D Stieglitz
- Erwachsenen-Psychiatrische Klinik, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland.,Fakultät für Psychologie, Universität Basel, Basel, Switzerland
| | - Christian G Huber
- Erwachsenen-Psychiatrische Klinik, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| |
Collapse
|
39
|
Trambaiolli LR, Biazoli CE, Balardin JB, Hoexter MQ, Sato JR. The relevance of feature selection methods to the classification of obsessive-compulsive disorder based on volumetric measures. J Affect Disord 2017; 222:49-56. [PMID: 28672179 DOI: 10.1016/j.jad.2017.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Magnetic resonance images (MRI) show detectable anatomical and functional differences between individuals with obsessive-compulsive disorder (OCD) and healthy subjects. Moreover, machine learning techniques have been proposed as tools to identify potential biomarkers and, ultimately, to support clinical diagnosis. However, few studies to date have investigated feature selection (FS) influences in OCD MRI-based classification. METHODS Volumes of cortical and subcortical structures, from MRI data of 38 OCD patients (split into two groups according symptoms severity) and 36 controls, were submitted to seven feature selection algorithms. FS aims to select the most relevant and less redundant features which discriminate between two classes. Then, a classification step was applied, from which the classification performances before and after different FS were compared. For the performance evaluation, leave-one-subject-out accuracies of Support Vector Machine classifiers were considered. RESULTS Using different FS algorithms, performance improvement was achieved for Controls vs. All OCD discrimination (19.08% of improvement reducing by 80% the amount of features), Controls vs. Low OCD (20.10%, 75%), Controls vs. High OCD (17.32%, 85%) and Low OCD vs. High OCD (10.53%, 75%). Furthermore, all algorithms pointed out classical cortico-striato-thalamo-cortical circuitry structures as relevant features for OCD classification. LIMITATIONS Limitations include the sample size and using only filter approaches for FS. CONCLUSIONS Our results suggest that FS positively impacts OCD classification using machine-learning techniques. Complementarily, FS algorithms were able to select biologically plausible features automatically.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André, SP 09210-170, Brazil.
| | - Claudinei E Biazoli
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André, SP 09210-170, Brazil
| | - Joana B Balardin
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André, SP 09210-170, Brazil
| | - Marcelo Q Hoexter
- Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, São Paulo 01060-970, SP, Brazil
| | - João R Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André, SP 09210-170, Brazil
| |
Collapse
|
40
|
Allen LA, Harper RM, Kumar R, Guye M, Ogren JA, Lhatoo SD, Lemieux L, Scott CA, Vos SB, Rani S, Diehl B. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy. Front Neurol 2017; 8:544. [PMID: 29085330 PMCID: PMC5650686 DOI: 10.3389/fneur.2017.00544] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sudden unexpected death in epilepsy (SUDEP) is common among young people with epilepsy. Individuals who are at high risk of SUDEP exhibit regional brain structural and functional connectivity (FC) alterations compared with low-risk patients. However, less is known about network-based FC differences among critical cortical and subcortical autonomic regulatory brain structures in temporal lobe epilepsy (TLE) patients at high risk of SUDEP. METHODS 32 TLE patients were risk-stratified according to the following clinical criteria: age of epilepsy onset, duration of epilepsy, frequency of generalized tonic-clonic seizures, and presence of nocturnal seizures, resulting in 14 high-risk and 18 low-risk cases. Resting-state functional magnetic resonance imaging (rs-fMRI) signal time courses were extracted from 11 bilateral cortical and subcortical brain regions involved in autonomic and other regulatory processes. After computing all pairwise correlations, FC matrices were analyzed using the network-based statistic. FC strength among the 11 brain regions was compared between the high- and low-risk patients. Increases and decreases in FC were sought, using high-risk > low-risk and low-risk > high-risk contrasts (with covariates age, gender, lateralization of epilepsy, and presence of hippocampal sclerosis). RESULTS High-risk TLE patients showed a subnetwork with significantly reduced FC (t = 2.5, p = 0.029) involving the thalamus, brain stem, anterior cingulate, putamen and amygdala, and a second subnetwork with significantly elevated FC (t = 2.1, p = 0.031), which extended to medial/orbital frontal cortex, insula, hippocampus, amygdala, subcallosal cortex, brain stem, thalamus, caudate, and putamen. CONCLUSION TLE patients at high risk of SUDEP showed widespread FC differences between key autonomic regulatory brain regions compared to those at low risk. The altered FC revealed here may help to shed light on the functional correlates of autonomic disturbances in epilepsy and mechanisms involved in SUDEP. Furthermore, these findings represent possible objective biomarkers which could help to identify high-risk patients and enhance SUDEP risk stratification via the use of non-invasive neuroimaging, which would require validation in larger cohorts, with extension to patients with other epilepsies and subjects who succumb to SUDEP.
Collapse
Affiliation(s)
- Luke A Allen
- Institute of Neurology, University College London, London, United Kingdom.,Epilepsy Society, Chalfont St. Peter, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Ronald M Harper
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Brain Research Institute, Los Angeles, CA, United States
| | - Rajesh Kumar
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,UCLA Brain Research Institute, Los Angeles, CA, United States.,Department of Anaesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Bioengineering, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM UMR 7339, Marseille, France
| | - Jennifer A Ogren
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Samden D Lhatoo
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Epilepsy Centre, Neurological Institute, University Hospitals Case Medical Centre, Cleveland, OH, United States
| | - Louis Lemieux
- Institute of Neurology, University College London, London, United Kingdom.,Epilepsy Society, Chalfont St. Peter, United Kingdom
| | - Catherine A Scott
- Institute of Neurology, University College London, London, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Sjoerd B Vos
- Epilepsy Society, Chalfont St. Peter, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Translational Imaging Group, University College London, London, United Kingdom
| | - Sandhya Rani
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Epilepsy Centre, Neurological Institute, University Hospitals Case Medical Centre, Cleveland, OH, United States
| | - Beate Diehl
- Institute of Neurology, University College London, London, United Kingdom.,Epilepsy Society, Chalfont St. Peter, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
41
|
Jang H, Lee JY, Lee KI, Park KM. Are there differences in brain morphology according to handedness? Brain Behav 2017; 7:e00730. [PMID: 28729936 PMCID: PMC5516604 DOI: 10.1002/brb3.730] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the differences in brain morphology according to handedness. MATERIALS AND METHODS Forty-two healthy subjects were enrolled (21 right-handers and 21 nonright-handers). The two groups were classified according to the Edinburgh Handedness Inventory. Measures of cortical morphology, such as thickness, surface area, volume, and curvature, and the volumes of subcortical structures, such as the amygdala, caudate, hippocampus, globus pallidus, putamen, and thalamus, were compared between the groups according to handedness using whole-brain 3D T1-weighted MRI. In addition, we investigated the white matter differences between the groups using diffusion tensor imaging. Moreover, we quantified correlations between the handedness scales of the Edinburgh Handedness Inventory and each measure of different brain morphologies. RESULTS The volumes of the right putamen and left globus pallidus in nonright-handed participants were significantly larger than those who were right-handed (0.3559 vs. 0.3155%, p = .0028; 0.1101 vs. 0.0975%, p = .0025; respectively). Moreover, the volumes of the right putamen and left globus pallidus were negatively correlated with the handedness scales of the Edinburgh Handedness Inventory (r = -.392, p = .0101; r = -.361, p = .0189; respectively). However, the cortex morphology and the other subcortical volumes were not significantly different between the two groups. In addition, we did not find any white matter differences between the groups. CONCLUSIONS We demonstrated that there were significant differences in brain morphology between right-handers and nonright-handers, especially in the basal ganglia, which could produce differences in motor control according to handedness.
Collapse
Affiliation(s)
- Han Jang
- Inje University College of Medicine Haeundae-gu Busan Korea
| | - Jae Youn Lee
- Inje University College of Medicine Haeundae-gu Busan Korea
| | - Kang Il Lee
- Inje University College of Medicine Haeundae-gu Busan Korea
| | - Kang Min Park
- Inje University College of Medicine Haeundae-gu Busan Korea
| |
Collapse
|
42
|
Gawda B, Szepietowska E, Soluch P, Wolak T. Valence of Affective Verbal Fluency: fMRI Studies on Neural Organization of Emotional Concepts Joy and Fear. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2017; 46:731-746. [PMID: 27885501 DOI: 10.1007/s10936-016-9462-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The present study was designed to examine the underlying brain mechanisms of positive and negative emotional verbal fluency. Three verbal fluency tasks (one non-emotional phonemic task, two emotional tasks: Joy and Fear) were used in this study. The results were analyzed for 35 healthy, Polish-speaking, right-handed adults aged 20-35. Functional magnetic resonance imaging (3T) was used to show brain activity during active participation in emotional verbal fluency tasks. The results reported for emotional fluency confirmed activation of different brain regions for the negative and positive emotional verbal fluency: in positive emotional verbal fluency Joy elicits greater activation in the frontal regions and the cingulate cortex, while in negative verbal fluency Fear is reflected in activation of parietal and temporal areas. The study provides an evidence for differentiation in neural mechanisms between positive and negative emotional verbal fluency and/or positive and negative retrieving processes, and differentiation in brain-related determinants of the emotional concepts organization.
Collapse
Affiliation(s)
- Barbara Gawda
- Department of Psychology of Emotion and Cognition, Institute of Psychology, University of Maria Curie Sklodowska, Plac Litewski 5, 20-080, Lublin, Poland.
| | - Ewa Szepietowska
- Department of Clinical Psychology and Neuropsychology, University of Maria Curie-Sklodowska, Plac Litewski 5, 20-080, Lublin, Poland
| | - Pawel Soluch
- Neuro Device Group Ltd, Plowiecka Street 1, 94-501, Warsaw, Poland
| | - Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, Mokra street 17, 05-830, Kajetany, Poland
| |
Collapse
|
43
|
Hsu JS, Wang PW, Ko CH, Hsieh TJ, Chen CY, Yen JY. Altered brain correlates of response inhibition and error processing in females with obesity and sweet food addiction: A functional magnetic imaging study. Obes Res Clin Pract 2017; 11:677-686. [PMID: 28552670 DOI: 10.1016/j.orcp.2017.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aim of the present study was to evaluate the impulsivity and brain correlates of response inhibition and error processing among females with obesity and sweet food addiction (O & SFA). METHODS We evaluated the response inhibition and error processing by functional magnetic resonance imaging (fMRI) in subjects with O & SFA and controls. Twenty females with O & SFA and 20 controls were recruited. All subjects performed the event-related designed Go/No-go task under fMRI and completed questionnaires related to food craving and impulsivity. RESULTS The O & SFA group exhibited a higher score for impulsivity than did the control group. The O & SFA also exhibited lower brain activation when processing response inhibition over the right rolandic operculum and thalamus than controls. Both O & SFA and control groups exhibited activation of the insula and caudate during error processing. The activation over the left insula, precuneus, and bilateral putamen were higher in the subjects with O & SFA than for those in the control group. CONCLUSION Our results support the fact that the fronto-striatal network is involved in response inhibition, and the caudate and insula contributes to error processing. Furthermore, women with O & SFA have impaired rolandic operculum when processing response inhibition and have greater insular and putamen activation in maintain their error processing function.
Collapse
Affiliation(s)
- Jui-Sheng Hsu
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peng-Wei Wang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Ko
- Department of Psychiatry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsyh-Jyi Hsieh
- Department of Radiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chiao-Yun Chen
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ju-Yu Yen
- Department of Psychiatry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
44
|
Wang M, Zhang J, Dong G, Zhang H, Lu H, Du X. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood. Int J Dev Neurosci 2017; 59:31-36. [PMID: 28285946 DOI: 10.1016/j.ijdevneu.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022] Open
Abstract
Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age.
Collapse
Affiliation(s)
- Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Guangheng Dong
- Department of Psychology, Zhejiang Normal University, Jinhua City, Zhejiang Province 321004, China
| | - Hui Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Haifeng Lu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
45
|
Karcher NR, Martin EA, Kerns JG. Examining associations between psychosis risk, social anhedonia, and performance of striatum-related behavioral tasks. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 124:507-18. [PMID: 26075968 DOI: 10.1037/abn0000067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both psychosis and anhedonia have been associated to some extent with striatal functioning. The current study examined whether either psychosis risk or social anhedonia was associated with performance on 3 tasks related to striatal functioning. Psychosis risk participants had extremely elevated Perceptual Aberration/Magical Ideation (PerMag) scores (n = 69), with 43% of psychosis risk participants also having semistructured interview-assessed psychotic-like experiences which further heightens their risk of psychotic disorder (Chapman, Chapman, Kwapil, Eckblad, & Zinser, 1994). Compared with both extremely elevated social anhedonia (n = 60) and control (n = 68) groups, the PerMag group exhibited poorer performance on 2 of the striatum-related tasks, the Weather Prediction Task (WPT) and the Learned Irrelevance Paradigm, but not on Finger Tapping. In addition, PerMag participants with psychotic-like experiences were especially impaired on the WPT. Overall, this study arguably provides the first evidence that psychosis risk but not social anhedonia is associated with performance on the WPT, a task thought to be strongly associated with activation in the associative striatum, and also suggests that the WPT might be especially useful as a behavioral measure of psychosis risk.
Collapse
|
46
|
Ipsilateral Putamen and Insula Activation by Both Left and Right GB34 Acupuncture Stimulation: An fMRI Study on Healthy Participants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4173185. [PMID: 28053642 PMCID: PMC5178348 DOI: 10.1155/2016/4173185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/25/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022]
Abstract
The modulatory effects on the brain during right versus left side acupuncture stimulation of the same acupuncture point have been a subject of controversy. For clarification of this important methodological issue, the present study was designed to compare the blood oxygen level-dependent responses of acupuncture stimulation on the right versus left Yanglingquan (GB34). Twenty-two healthy subjects received right or left GB34 acupuncture. Our results show that acupuncture on the left GB34 induced neural responses in the left putamen, caudate body, insula, postcentral gyrus, claustrum, right and left thalamus, right middle frontal gyrus, hypothalamus, and subthalamic nucleus. Acupuncture on the right GB34 induced neural responses in the right middle frontal gyrus, inferior parietal lobule, thalamus, putamen, lateral globus pallidus, medial globus pallidus, and insula. Interestingly, the putamen and insula were ipsilaterally activated by acupuncture on either the left or right GB34; therefore, they seem to be the main target areas affected by GB34 acupuncture. This is the first reported functional magnetic resonance imaging study directly comparing needling on the right and left GB34. Although more replication studies are needed, our preliminary results prove that acupuncture has different modulatory effects on the brain when performed on the right versus left side.
Collapse
|
47
|
Rao J, Liu Z, Zhao C, Wei R, Zhao W, Yang Z, Li X. Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol (Oxf) 2016; 217:164-73. [PMID: 26706280 DOI: 10.1111/apha.12645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
AIM Given the unclear pattern of cerebral function reorganization induced by spinal cord injury (SCI), this study aimed to longitudinally evaluate the changes in resting-state functional connectivity (FC) in the sensorimotor network after SCI and explore their relationship with gait performance. METHODS Four adult female rhesus monkeys were examined using resting-state functional magnetic resonance imaging during their healthy stage and after hemitransected SCI (4, 8 and 12 weeks after SCI), and the gait characteristics of their hindlimbs were recorded (except 4 weeks after SCI). Twenty sensorimotor-related cortical areas were adopted in the FC analysis to evaluate the functional network reorganization. Correlation analyses were then used to explore the relationship between functional network variations and gait characteristic changes. RESULTS Compared with that during the healthy stage, the FC strength during post-SCI period was significantly increased in multiple areas of the motor control network, including the primary sensorimotor cortex, supplementary motor area (SMA) and putamen (Pu). However, the FC strength was remarkably reduced in the thalamus and parieto-occipital association cortex of the sensory network 8 weeks after SCI. Most FC intensities gradually approached the normal level 12 weeks after the SCI. Correlation analyses revealed that the enhanced FC strength between Pu and SMA in the left hemisphere, which regulates motor functions of the right side, was negatively correlated with the gait height of the right hindlimb. CONCLUSION The cerebral functional network presents an adjust-recover pattern after SCI, which may help us further understand the cerebral function reorganization after SCI.
Collapse
Affiliation(s)
- J.S. Rao
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - Z. Liu
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| | - C. Zhao
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - R.H. Wei
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - W. Zhao
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - Z.Y. Yang
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - X.G. Li
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| |
Collapse
|
48
|
Li T, Yao Y, Cheng Y, Xu B, Cao X, Waxman D, Feng W, Shen Y, Li Q, Wang J, Wu W, Li C, Feng J. Cognitive training can reduce the rate of cognitive aging: a neuroimaging cohort study. BMC Geriatr 2016; 16:12. [PMID: 26762334 PMCID: PMC4712458 DOI: 10.1186/s12877-016-0194-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neural mechanisms underlying the restorative effects of cognitive training on aging brains remain unclear. To address this issue, we examined the relationship between changes in spontaneous brain activity and cognitive performance that occur after cognitive training. METHODS Participants were older adults who were part of a randomized control trial within a larger longitudinal cognitive training study. We conducted single-domain and multi-domain cognitive training in two respective intervention groups. Participants were trained for 1 h, twice a week, for 12 weeks. Cognition was assessed in all participants and magnetic resonance images were obtained at baseline and 1 year after training. To assess spontaneous fluctuations in brain activity, we acquired resting-state fMRI data. Two indices-functional entropy and time-domain entropy-were used to measure the effects of training. Functional entropy increases with aging, and indicates disruptions in functional conectivity. Time-domain entropy decreases with aging, and indicates structural alterations in the brain and blood-flow reduction. RESULTS Seventy participants completed the study: 26 in the multi-domain cognitive training group (70.38 ± 3.30 yrs), 27 in single-domain group (70.48 ± 3.93 yrs), and 17 in a control group (68.59 ± 3.24 yrs). Functional entropy increased significantly less in the multi-domain (p = 0.047) and single-domain groups (p = 9.51 × 10(-4)) compared with the control group. In the multi-domain group, this was true in the paracentral lobule (p = 0.004, Bonferroni corrected p < 0.05). Time-domain entropy also improved with training. Compared with controls, time-domain entropy in the multi-domain group decreased less in the inferior frontal gyrus pars opercularis (p = 3.59 × 10(-4)), the medial part of superior frontal gyrus (p = 1.17 × 10(-5)), and the thalamus (p = 4.72 × 10(-5)), while that in the single-domain group decreased less in the cuneus (p = 2.58 × 10(-4), Bonferroni corrected p < 0.05). Additionally, changes in regional entropy for some regions such as hippocampus significantly correlated with improvements in cognitive performance. CONCLUSIONS Cognitive training can induce plastic changes in neural functional connectivity of healthy older people, and these changes may underlie the positive effect of cognitive training. TRIAL REGISTRATION ChiCTR-TRC-08000732 (Date of registration: 5th November, 2008).
Collapse
Affiliation(s)
- Ting Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Yao
- Centre for Computational Systems Biology, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL UK
| | - Yan Cheng
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Bing Xu
- Centre for Computational Systems Biology, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL UK
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David Waxman
- Centre for Computational Systems Biology, Fudan University, Shanghai, China
| | - Wei Feng
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Yuan Shen
- Department of Psychiatry, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyuan Wu
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
49
|
Quan X, Ye TH, Lin SF, Zou L, Tian SY. Propofol Affects Different Human Brain Regions Depending on Depth of Sedation(△). ACTA ACUST UNITED AC 2015; 30:135-42. [PMID: 26564411 DOI: 10.1016/s1001-9294(15)30037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of propofol on brain regions at different sedation levels and the association between changes in brain region activity and loss of consciousness using blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) and bispectral index (BIS) monitoring. METHODS Forty-eight participants were enrolled at Peking Union Medical College Hospital from October 2011 to March 2012 and randomly assigned to a mild or a deep sedation group using computer- generated random numbers. Preliminary tests were performed a week prior to scanning to determine target effect site concentrations based on BIS and concomitant Observer's Assessment of Alertness/Sedation scores while under propofol. Within one week of the preliminary tests where propofol dose-response was established, BOLD-fMRI was conducted to examine brain activation with the subject awake, and with propofol infusion at the sedation level. RESULTS Mild propofol sedation inhibited left inferior parietal lobe activation. Deep sedation inhibited activation of the left insula, left superior temporal gyrus, and right middle temporal gyrus. Compared with mild sedation, deep propofol sedation inhibited activation of the left thalamus, precentral gyrus, anterior cingulate, and right basal nuclei. CONCLUSION Mild and deep propofol sedation are associated with inhibition of different brain regions, possibly explaining differences in the respective loss of consciousness processes.
Collapse
|
50
|
Provost JS, Hanganu A, Monchi O. Neuroimaging studies of the striatum in cognition Part I: healthy individuals. Front Syst Neurosci 2015; 9:140. [PMID: 26500513 PMCID: PMC4596942 DOI: 10.3389/fnsys.2015.00140] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.
Collapse
Affiliation(s)
- Jean-Sebastien Provost
- Department of Psychology, Faculty of Arts and Sciences, University of Montreal Montreal, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montreal, Université de Montreal Montreal, QC, Canada
| | - Alexandru Hanganu
- Department of Clinical Neurosciences, Department of Radiology, Cumming School of Medicine, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Oury Monchi
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montreal, Université de Montreal Montreal, QC, Canada ; Department of Clinical Neurosciences, Department of Radiology, Cumming School of Medicine, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|