1
|
Salvadores Farran N, Wang L, Pirih P, Wilts BD. Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:1-10. [PMID: 39777305 PMCID: PMC11702294 DOI: 10.3762/bjnano.16.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The scales of the gold-dust weevil Hypomeces squamosus are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations. The reciprocal space images and reflection spectra obtained from single domains indicated a partial photonic bandgap in the wavelength range from 450 to 650 nm. Light reflected from {111}-oriented domains is green-yellow. Light reflected from blue, {100}-oriented domains exhibits polarization conversion, rotating the angle of linearly polarized light. The overall coloration, resulting from the reflections from many scales, is close to uniformly diffuse because of the random orientation of the domains. Using titania sol-gel chemistry, we produced negative replicas that exhibited a 70 to 120 nm redshift of the bandgap, depending on the lattice orientation. The wavelength shift in {100} orientation is supported by full-wave optical modeling of a dual diamond network with an exchanged fill fraction (0.56) of the material with the refractive index in the range of 1.55 to 2.00. The study suggests that the effective refractive index of titania in the 3D lattice is similar to that in sol-gel films. The study demonstrates the potential of replicating complex biophotonic structures using the sol-gel technique. Optimization of the sol-gel process could lead to customizable photonic bandgaps that might be used in novel optical materials.
Collapse
Affiliation(s)
- Norma Salvadores Farran
- Department for Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
- Current address: Institute of Materials Science and Technology, Vienna Technical University, 1060 Vienna, Austria
| | - Limin Wang
- Department for Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| | - Primoz Pirih
- Department for Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| | - Bodo D Wilts
- Department for Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Ospina-Rozo L, Medina I, Hugall A, Rankin KJ, Roberts NW, Roberts A, Mitchell A, Reid CAM, Moussalli A, Stuart-Fox D. Polarization and reflectance are linked to climate, size and mechanistic constraints in a group of scarab beetles. Sci Rep 2024; 14:29349. [PMID: 39592655 PMCID: PMC11599573 DOI: 10.1038/s41598-024-80325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Beetles exhibit an extraordinary diversity of brilliant and colourful appearances and optical effects invisible to humans. Their underlying mechanisms have received some attention, but we know little about the ecological variables driving their evolution. Here we investigated environmental correlates of reflectivity and circular polarization in a group of optically diverse beetles (Scarabaeidae-Rutelinae). We quantified the optical properties of 261 specimens representing 46 species using spectrophotometry and calibrated photographs. Then, we examined associations between these properties and environmental variables such as temperature, humidity and vegetation cover, controlling for body size and phylogenetic relatedness. Our results showed larger beetles have higher visible reflectivity in drier environments. Unexpectedly, near-infrared (NIR) reflectivity was not correlated with ecological variables. However, we found a correlation between humidity and polarization (chiral nanostructures). We identified trade-offs between optical properties: beetles without polarization-associated nanostructures had higher NIR reflectivity. By contrast, visible reflectivity was negatively correlated with the accumulation of pigments such as melanin. Our study highlights the value of a macroecological approach for testing alternative hypotheses to explain the diversity of optical effects in beetles and to understand the link between structure and function.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Iliana Medina
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Hugall
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Katrina J Rankin
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Mitchell
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Chris A M Reid
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Adnan Moussalli
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
3
|
Zewude DA, Akamatsu M, Ifuku S. Structural Color of Partially Deacetylated Chitin Nanowhisker Film Inspired by Jewel Beetle. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5357. [PMID: 39517631 PMCID: PMC11547443 DOI: 10.3390/ma17215357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Nanochitin was developed to effectively utilize crab shells, a food waste product, and there is ongoing research into its applications. Short nanowhiskers were produced by sonicating partially deacetylated nanochitin in water, resulting in a significant decrease in viscosity due to reduced entanglement of the nanowhiskers. These nanowhiskers self-assembled into a multilayered film through an evaporation technique. The macro- and nanoscale structures within the film manipulate light, producing vibrant and durable structural colors. The dried cast film exhibited green and purple stripes extending from the center to the edge formed by interference effects from the multilayer structure and thickness variations. Preserving structural colors requires maintaining a low ionic strength in the dispersion, as a higher ionic strength reduces electrostatic repulsion between nanofibers, increasing viscosity and potentially leading to the fading of color. This material's sensitivity to environmental changes, combined with chitin's biocompatibility, makes it well-suited for food sensors, wherein it can visually indicate freshness or spoilage. Furthermore, chitin's stable and non-toxic properties offer a sustainable alternative to traditional dyes in cosmetics, delivering vivid and long-lasting color.
Collapse
Affiliation(s)
- Dagmawi Abebe Zewude
- Organization for Research Initiative and Promotion, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan; (D.A.Z.); (M.A.)
| | - Masaaki Akamatsu
- Organization for Research Initiative and Promotion, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan; (D.A.Z.); (M.A.)
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8550, Japan
| | - Shinsuke Ifuku
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
4
|
Yen CY, Rana S, Awasthi K, Ohta N, Oh-E M. Characterizing the photoluminescence of fluorescein-labeled cellulose in aqueous and alcohol solutions: influence of the cellulose backbone. Sci Rep 2024; 14:26223. [PMID: 39482331 PMCID: PMC11528010 DOI: 10.1038/s41598-024-72773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Although many dyes have been introduced into cellulose, whether bound to its backbone or within a cellulose matrix, few studies have determined whether the backbone statically or dynamically quenches the photoluminescence of the dye. To advance cellulosic fluorescent films, the influence of the cellulose backbone on photoluminescence must be understood. We determined the fluorescence properties of fluorescein isothiocyanate (FITC) and fluorescein-labeled cellulose (FLC) in water and alcohol, including their quantum yields [Formula: see text], lifetimes [Formula: see text], and rates of radiative [Formula: see text] and nonradiative [Formula: see text] decay. Dissolved FLC had a ~ 30× lower [Formula: see text] than FITC, suggesting that incorporating FITC into the cellulose backbone remarkably reduces the fluorescence efficiency. The FLC solutions had a six-fold lower [Formula: see text] than their FITC counterparts but a 10-20 times higher [Formula: see text]. Presumably, this was because the cellulose backbone interacted weakly with the fluorescein moieties, suggesting a quenching mechanism that can be termed quasi-static, corresponding to static quenching between the fluorescein moieties and cellulose backbone, in addition to the fluorescence quenching caused by the intramolecular nonradiative processes of fluorescein, as observed in conventional molecules. Using the Strickler‒Berg formula, we deduced the analytical radiative decay rate constants [Formula: see text] and eventually estimated the number of very short-lived fluorescein moieties per single fluorescent fluorescein moiety, corresponding well with static quenching.
Collapse
Affiliation(s)
- Chi-Yang Yen
- Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Shailesh Rana
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan
| | - Kamlesh Awasthi
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan.
| | - Masahito Oh-E
- Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan.
| |
Collapse
|
5
|
Santos AFM, Figueirinhas JL, Dionísio M, Godinho MH, Branco LC. Ionic Liquid Crystals as Chromogenic Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4563. [PMID: 39336305 PMCID: PMC11432927 DOI: 10.3390/ma17184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024]
Abstract
Ionic liquid crystals (ILCs), a class of soft matter materials whose properties can be tuned by the wise pairing of the cation and anion, have recently emerged as promising candidates for different applications, combining the characteristics of ionic liquids and liquid crystals. Among those potential uses, this review aims to cover chromogenic ILCs. In this context, examples of photo-, electro- and thermochromism based on ILCs are provided. Furthermore, thermotropic and lyotropic ionic liquid crystals are also summarised, including the most common chemical and phase structures, as well as the advantages of confining these materials. This manuscript also comprises the following main experimental techniques used to characterise ILCs: Differential Scanning Calorimetry (DSC), Polarised Optical Microscopy (POM) and X-Ray Powder Diffraction (XRD). Chromogenic ILCs can be interesting smart materials for energy and health purposes.
Collapse
Affiliation(s)
- Andreia F M Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João L Figueirinhas
- CeFEMA and Department of Physics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria H Godinho
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Luis C Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Wallon S, Rigal F, Melo CD, Elias RB, Borges PAV. Unveiling Arthropod Responses to Climate Change: A Functional Trait Analysis in Intensive Pastures. INSECTS 2024; 15:677. [PMID: 39336645 PMCID: PMC11432249 DOI: 10.3390/insects15090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This study investigates the impact of elevated temperatures on arthropod communities in intensively managed pastures on the volcanic island of Terceira, Azores (Portugal), using a functional trait approach. Open Top Chambers (OTCs) were employed to simulate increased temperatures, and the functional traits of ground dwelling arthropods were analyzed along a small elevation gradient (180-400 m) during winter and summer. Key findings include lower abundances of herbivores, coprophagous organisms, detritivores, and fungivores at high elevations in summer, with predators showing a peak at middle elevations. Larger-bodied arthropods were more prevalent at higher elevations during winter, while beetles exhibited distinct ecological traits, with larger species peaking at middle elevations. The OTCs significantly affected the arthropod communities, increasing the abundance of herbivores, predators, coprophagous organisms, and fungivores during winter by alleviating environmental stressors. Notably, iridescent beetles decreased with elevation and were more common inside OTCs at lower elevations, suggesting a thermoregulatory advantage. The study underscores the importance of considering functional traits in assessing the impacts of climate change on arthropod communities and highlights the complex, species-specific nature of their responses to environmental changes.
Collapse
Affiliation(s)
- Sophie Wallon
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
| | - François Rigal
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- Institut des Sciences Analytiques et de Physico Chimie Pour L'environnement et les Materiaux UMR 5254, Comité National de la Recherche Scientifque-University de Pau et des Pays de l'Adour-E2S UPPA, 64053 Pau, France
| | - Catarina D Melo
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- CFE-Centre for Functional Ecology, Universidade de Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui B Elias
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
| | - Paulo A V Borges
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- IUCN SSC Atlantic Islands Invertebrate Specialist Group, 9700-042 Angra do Heroísmo, Portugal
| |
Collapse
|
7
|
Jessop AL, Pirih P, Wang L, Patel NH, Clode PL, Schröder-Turk GE, Wilts BD. Elucidating nanostructural organization and photonic properties of butterfly wing scales using hyperspectral microscopy. J R Soc Interface 2024; 21:20240185. [PMID: 39257280 PMCID: PMC11463223 DOI: 10.1098/rsif.2024.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Biophotonic nanostructures in butterfly wing scales remain fascinating examples of biological functional materials, with intriguing open questions with regard to formation and evolutionary function. One particularly interesting butterfly species, Erora opisena (Lycaenidae: Theclinae), develops wing scales that contain three-dimensional photonic crystals that closely resemble a single gyroid geometry. Unlike most other gyroid-forming butterflies, E. opisena develops discrete gyroid crystallites with a pronounced size gradient hinting at a developmental sequence frozen in time. Here, we present a novel application of a hyperspectral (wavelength-resolved) microscopy technique to investigate the ultrastructural organization of these gyroid crystallites in dry, adult wing scales. We show that reflectance corresponds to crystallite size, where larger crystallites reflect green wavelengths more intensely; this relationship could be used to infer size from the optical signal. We further successfully resolve the red-shifted reflectance signal from wing scales immersed in refractive index liquids with varying refractive index, including values similar to water or cytosol. Such photonic crystals with lower refractive index contrast may be similar to the hypothesized nanostructural forms in the developing butterfly scales. The ability to resolve these fainter signals hints at the potential of this facile light microscopy method for in vivo analysis of nanostructure formation in developing butterflies.
Collapse
Affiliation(s)
- Anna-Lee Jessop
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, Western Australia6150, Australia
| | - Primož Pirih
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg5020, Austria
| | - Limin Wang
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg5020, Austria
| | - Nipam H. Patel
- Marine Biological Laboratory, University of Chicago, Woods Hole, MA02543, USA
| | - Peta L. Clode
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia6009, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia6009, Australia
| | - Gerd E. Schröder-Turk
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, Western Australia6150, Australia
- Research School of Physics, The Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Bodo D. Wilts
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg5020, Austria
| |
Collapse
|
8
|
Papachristopoulou K, Vainos NA. Bioarchitectonic Nanophotonics by Replication and Systolic Miniaturization of Natural Forms. Biomimetics (Basel) 2024; 9:487. [PMID: 39194466 DOI: 10.3390/biomimetics9080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
The mimesis of biological mechanisms by artificial devices constitutes the modern, rapidly expanding, multidisciplinary biomimetics sector. In the broader bioinspiration perspective, however, bioarchitectures may perform independent functions without necessarily mimicking their biological generators. In this paper, we explore such Bioarchitectonic notions and demonstrate three-dimensional photonics by the exact replication of insect organs using ultra-porous silica aerogels. The subsequent conformal systolic transformation yields their miniaturized affine 'clones' having higher mass density and refractive index. Focusing on the paradigms of ommatidia, the compound eye of the hornet Vespa crabro flavofasciata and the microtrichia of the scarab Protaetia cuprea phoebe, we fabricate their aerogel replicas and derivative clones and investigate their photonic functionalities. Ultralight aerogel microlens arrays are proven to be functional photonic devices having a focal length f ~ 1000 μm and f-number f/30 in the visible spectrum. Stepwise systolic transformation yields denser and affine functional elements, ultimately fused silica clones, exhibiting strong focusing properties due to their very short focal length of f ~ 35 μm and f/3.5. The fabricated transparent aerogel and xerogel replicas of microtrichia demonstrate a remarkable optical waveguiding performance, delivering light to their sub-100 nm nanotips. Dense fused silica conical clones deliver light through sub-50 nm nanotips, enabling nanoscale light-matter interactions. Super-resolution bioarchitectonics offers new and alternative tools and promises novel developments and applications in nanophotonics and other nanotechnology sectors.
Collapse
Affiliation(s)
- Konstantina Papachristopoulou
- Photonics Nanotechnology Research Laboratory-PNRL, Department of Materials Science, University of Patras, 26504 Patras, Greece
| | - Nikolaos A Vainos
- Photonics Nanotechnology Research Laboratory-PNRL, Department of Materials Science, University of Patras, 26504 Patras, Greece
| |
Collapse
|
9
|
Li WZ, Wu YK, Zhang YX, Jin L, Li GQ. Behavioral events and functional analysis of bursicon signal during adult eclosion in the 28-spotted larger potato ladybird. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106011. [PMID: 39084776 DOI: 10.1016/j.pestbp.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
To accommodate growth, insects must periodically shed their exoskeletons. In Manduca sexta, Drosophila melanogaster and Tribolium castaneum, Bursicon (Burs)/ Partner of bursicon (Pburs)-LGR2 signal is an indispensable component for the proper execution of ecdysis behavior during adult eclosion. Nevertheless, the behavioral events and the roles of bursicon signaling in other insects deserve further exploration. In the current paper, we found that the pupal-adult ecdysis in Henosepilachna vigintioctomaculata could be divided into three distinct stages, preecdysis, ecdysis and postecdysis. Preecdysis behavioral sequences included abdomen twitches, dorsal-ventral contractions and air filling that function to loosen the old cuticle. Ecdysis events began with anterior-posterior contractions that gradually split the old integument along the dorsal body midline, followed by freeing of legs and mouthparts, and culminated in detachment from pupal cuticle. Postecdysis behavioral processes contained three actions: perch selection and stretching of elytra and hindwings. RNA interference for HvBurs, HvPburs or Hvrk (encoding LGR2) strongly impaired wing expansion actions, and slightly influenced preecdysis and ecdysis behaviors. The RNAi beetles failed to extend their elytra and hindwings. In addition, injected with dsrk also caused kinked femurs and tibia. Our findings establish that bursicon pathway is involved in regulation of adult eclosion behavior, especially wing expansion motor programs. Given that wings facilitate food foraging, courtship, predator avoidance, dispersal and migration, our results provide a potential target for controlling H. vigintioctomaculata.
Collapse
Affiliation(s)
- Wen-Ze Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi-Kuan Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yu-Xing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Zomer A, Ingham CJ, von Meijenfeldt FAB, Escobar Doncel Á, van de Kerkhof GT, Hamidjaja R, Schouten S, Schertel L, Müller KH, Catón L, Hahnke RL, Bolhuis H, Vignolini S, Dutilh BE. Structural color in the bacterial domain: The ecogenomics of a 2-dimensional optical phenotype. Proc Natl Acad Sci U S A 2024; 121:e2309757121. [PMID: 38990940 PMCID: PMC11260094 DOI: 10.1073/pnas.2309757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/23/2024] [Indexed: 07/13/2024] Open
Abstract
Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.
Collapse
Affiliation(s)
- Aldert Zomer
- Division of Infectious Diseases and Immunology, Utrecht University, Utrecht3584 CL, the Netherlands
| | - Colin J. Ingham
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | | | - Gea T. van de Kerkhof
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Sanne Schouten
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, University of Fribourg, FribourgCH-1700, Switzerland
| | - Karin H. Müller
- Department of Physiology, Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Laura Catón
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Richard L. Hahnke
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig38124, Germany
| | - Henk Bolhuis
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena07743, Germany
| |
Collapse
|
11
|
Felix LC, Ambekar R, Tromer RM, Woellner CF, Rodrigues V, Ajayan PM, Tiwary CS, Galvao DS. Schwarzites and Triply Periodic Minimal Surfaces: From Pure Topology Mathematics to Macroscale Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400351. [PMID: 38874126 DOI: 10.1002/smll.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Indexed: 06/15/2024]
Abstract
Schwarzites are porous (spongy-like) carbon allotropes with negative Gaussian curvatures. They are proposed by Mackay and Terrones inspired by the works of the German mathematician Hermann Schwarz on Triply-Periodic Minimal Surfaces (TPMS). This review presents and discusses the history of schwarzites and their place among curved carbon nanomaterials. The main works on schwarzites are summarized and are available in the literature. Their unique structural, electronic, thermal, and mechanical properties are discussed. Although the synthesis of carbon-based schwarzites remains elusive, recent advances in the synthesis of zeolite-templates nanomaterials have brought them closer to reality. Atomic-based models of schwarzites are translated into macroscale ones that are 3D-printed. These 3D-printed models are exploited in many real-world applications, including water remediation and biomedical ones.
Collapse
Affiliation(s)
- Levi C Felix
- Applied Physics Department, State University of Campinas, Campinas, SP, 13083-970, Brazil
- Center for Computational Engineering and Sciences, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Rushikesh Ambekar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 88C7+665, West Bengal, West Bengal, 721302, India
| | - Raphael M Tromer
- Applied Physics Department, State University of Campinas, Campinas, SP, 13083-970, Brazil
- Center for Computational Engineering and Sciences, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Cristiano F Woellner
- Physics Department, Federal University of Paraná, Rua Francisco H dos Santos, 100, Curitiba, PR, 82590-300, Brazil
| | - Varlei Rodrigues
- Applied Physics Department, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, 6100 Main St., Houston, TX, 77005-1827, USA
| | - Chandra S Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 88C7+665, West Bengal, West Bengal, 721302, India
| | - Douglas S Galvao
- Applied Physics Department, State University of Campinas, Campinas, SP, 13083-970, Brazil
- Center for Computational Engineering and Sciences, State University of Campinas, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
12
|
Sahanashree R, Punnath A, Rajan Priyadarsanan D. A remarkable new species of Paraparatrechina Donisthorpe (1947) (Hymenoptera, Formicidae, Formicinae) from the Eastern Himalayas, India. Zookeys 2024; 1203:159-172. [PMID: 38855795 PMCID: PMC11161688 DOI: 10.3897/zookeys.1203.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
A new ant species, Paraparatrechinaneela sp. nov., with a captivating metallic-blue color is described based on the worker caste from the East Siang district of Arunachal Pradesh, northeastern India. This discovery signifies the first new species of Paraparatrechina in 121 years, since the description of the sole previously known species, P.aseta (Forel, 1902), in the Indian subcontinent.
Collapse
Affiliation(s)
- Ramakrishnaiah Sahanashree
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bengaluru – 560064, Karnataka, IndiaAshoka Trust for Research in Ecology and the EnvironmentBengaluruIndia
| | - Aswaj Punnath
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL, 32611, USAUniversity of FloridaGainesvilleUnited States of America
| | - Dharma Rajan Priyadarsanan
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bengaluru – 560064, Karnataka, IndiaAshoka Trust for Research in Ecology and the EnvironmentBengaluruIndia
| |
Collapse
|
13
|
Wu S, Tong X, Peng C, Luo J, Zhang C, Lu K, Li C, Ding X, Duan X, Lu Y, Hu H, Tan D, Dai F. The BTB-ZF gene Bm-mamo regulates pigmentation in silkworm caterpillars. eLife 2024; 12:RP90795. [PMID: 38587455 PMCID: PMC11001300 DOI: 10.7554/elife.90795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.
Collapse
Affiliation(s)
- Songyuan Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenxing Peng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Jiangwen Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenghao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chunlin Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xin Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaohui Duan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Yaru Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Duan Tan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
14
|
Roggero A, Alù D, Laini A, Rolando A, Palestrini C. Color polymorphism and mating trends in a population of the alpine leaf beetle Oreina gloriosa. PLoS One 2024; 19:e0298330. [PMID: 38530852 DOI: 10.1371/journal.pone.0298330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 03/28/2024] Open
Abstract
The bright colors of Alpine leaf beetles (Coleoptera, Chrysomelidae) are thought to act as aposematic signals against predation. Within the European Alps, at least six species display a basal color of either blue or green, likely configuring a classic case of müllerian mimicry. In this context, intra-population color polymorphism is paradoxical as the existence of numerous color morphs might hamper the establishment of a search image in visual predators. Assortative mating may be one of the main factors contributing to the maintenance of polymorphic populations. Due to the marked iridescence of these leaf beetles, the perceived color may change as the viewing or illumination angle changes. The present study, conducted over three years, involved intensive sampling of a population of Oreina gloriosa from the Italian Alps and applied colorimetry and a decision tree method to identify the color morphs in an objective manner. The tertiary sex ratio of the population was biased in favor of males, suggesting that viviparous females hide to give birth. Seven color morphs were identified, and their frequencies varied significantly over the course of the study. Three different analyses of mating (JMating, QInfomating, and Montecarlo simulations) recognized a general trend for random mating which coexists with some instances of positive and negative assortative mating. This could help explain the pre-eminence of one morph (which would be favored because of positive selection due to positive assortative mating) in parallel with the persistence of six other morphs (maintained due to negative assortative mating).
Collapse
Affiliation(s)
- Angela Roggero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Daniele Alù
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Alex Laini
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
15
|
Aucone E, Geckeler C, Morra D, Pallottino L, Mintchev S. Synergistic morphology and feedback control for traversal of unknown compliant obstacles with aerial robots. Nat Commun 2024; 15:2646. [PMID: 38531857 DOI: 10.1038/s41467-024-46967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Animals traverse vegetation by direct physical interaction using their entire body to push aside and slide along compliant obstacles. Current drones lack this interaction versatility that stems from synergies between body morphology and feedback control modulated by sensing. Taking inspiration from nature, we show that a task-oriented design allows a drone with a minimalistic controller to traverse obstacles with unknown elastic responses. A discoid sensorized shell allows to establish and sense contacts anywhere along the shell and facilitates sliding along obstacles. This simplifies the formalization of the control strategy, which does not require a model of the interaction with the environment, nor high-level switching conditions for alternating between pushing and sliding. We utilize an optimization-based controller that ensures safety constraints on the robot's state and dampens the oscillations of the environment during interaction, even if the elastic response is unknown and variable. Experimental evaluation, using a hinged surface with three different stiffness values ranging from 18 to 155.5 N mm rad-1, validates the proposed embodied aerial physical interaction strategy. By also showcasing the traversal of isolated branches, this work makes an initial contribution toward enabling drone flight across cluttered vegetation, with potential applications in environmental monitoring, precision agriculture, and search and rescue.
Collapse
Affiliation(s)
- Emanuele Aucone
- Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland.
| | - Christian Geckeler
- Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Daniele Morra
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Lucia Pallottino
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Stefano Mintchev
- Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| |
Collapse
|
16
|
Jeon S, Kamble YL, Kang H, Shi J, Wade MA, Patel BB, Pan T, Rogers SA, Sing CE, Guironnet D, Diao Y. Direct-ink-write cross-linkable bottlebrush block copolymers for on-the-fly control of structural color. Proc Natl Acad Sci U S A 2024; 121:e2313617121. [PMID: 38377215 PMCID: PMC10907314 DOI: 10.1073/pnas.2313617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.
Collapse
Affiliation(s)
- Sanghyun Jeon
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Haisu Kang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jiachun Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Matthew A. Wade
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Tianyuan Pan
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
17
|
Chen IT, Premnath VA, Chang CH. Multilayer dielectric reflector using low-index nanolattices. OPTICS LETTERS 2024; 49:1093-1096. [PMID: 38359261 DOI: 10.1364/ol.516147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2 films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λo of 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation.
Collapse
|
18
|
Li Y, Han Z, Nessler R, Yi Z, Hemmer P, Brick R, Sokolov AV, Scully MO. Optical multiband polarimetric modulation sensing for gender and species identification of flying native solitary pollinators. iScience 2023; 26:108265. [PMID: 38026192 PMCID: PMC10654587 DOI: 10.1016/j.isci.2023.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Native pollinators are crucial to local ecosystems but are under threat with the introduction of managed pollinators, e.g., honeybees (Apis mellifera). We explored the feasibility of employing the entomological lidar technique in native pollinator abundance studies. This study included individuals of both genders of three common solitary bee species, Osmia californica, Osmia lignaria, and Osmia ribifloris, native to North America. Properties including optical cross-section, degree of linear polarization, and wingbeat power spectra at all three wavelengths have been extracted from the insect signals collected by a compact stand-off sensing system. These properties are then used in the classification analysis. For species with temporal and spatial overlapping, the highest accuracies of our method exceed 96% (O. ribifloris & O. lignaria) and 93% (O. lignaria & O. californica). The benefit of employing the seasonal activity and foraging preference information in enhancing identification accuracy has been emphasized.
Collapse
Affiliation(s)
- Yiyun Li
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Zehua Han
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Reed Nessler
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Zhenhuan Yi
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Philip Hemmer
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
- Department of Electrical & Computer Engineering, Texas, A&M University, College Station, TX 77843–3127, USA
| | - Robert Brick
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Alexei V. Sokolov
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
- Department of Physics, Baylor University, Waco, TX 76798, USA
| | - Marlan O. Scully
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
- Department of Physics, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
19
|
McMurry RS, Cavallaro MC, Shufran A, Hoback WW. Establishing Age-Based Color Changes for the American Burying Beetle, Nicrophorus americanus Olivier, with Implications for Conservation Efforts. INSECTS 2023; 14:844. [PMID: 37999043 PMCID: PMC10672208 DOI: 10.3390/insects14110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
The American burying beetle, Nicrophorus americanus Olivier, is a federally protected insect that once occupied most of eastern North America. Adult beetles feature distinct, recognizable markings on the pronotum and elytra, and color changes with age have been observed. Among the challenges faced by research scientists and conservation practitioners is the ability to determine beetle age in the field between and including teneral (young) and senescent (old) adult stages. Using 20 (10 male and 10 female) captive-bred beetles, we characterized the change in greyscale and red, green, and blue (RGB) color channels over the lifespan of each beetle for field-aging applications. Individual beetles were photographed at set intervals from eclosion to death, and color data were extracted using open-source ImageJ Version 1.54f software. A series of linear mixed-effects models determined that red color showed the steepest decrease among all color channels in the pronotum and elytral markings, with a more significant decrease in the pronotum. The change in greyscale between the pronotum and elytral markings was visibly different, with more rapid darkening in the pronotum. The resulting pronotum color chart was tested under field conditions in Oklahoma, aging 299 adult N. americanus, and six age categories (day range) were discernable by eye: teneral (0-15), late teneral (15-31), early mature (31-45), mature (45-59), early senescent (59-76), and senescent (76-90). The ability to more precisely estimate age will improve population structure estimates, laboratory breeding programs, and potential reintroduction efforts.
Collapse
Affiliation(s)
| | | | | | - William Wyatt Hoback
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.M.); (M.C.C.); (A.S.)
| |
Collapse
|
20
|
Davis TJ, Ospina-Rozo L, Stuart-Fox D, Roberts A. Modelling structural colour from helicoidal multi-layer thin films with natural disorder. OPTICS EXPRESS 2023; 31:36531-36546. [PMID: 38017803 DOI: 10.1364/oe.503881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
A coupled mode theory based on Takagi-Taupin equations describing electromagnetic scattering from distorted periodic arrays is applied to the problem of light scattering from beetles. We extend the method to include perturbations in the permittivity tensor to helicoidal arrays seen in many species of scarab beetle and optically anisotropic layered materials more generally. This extension permits analysis of typical dislocations arising from the biological assembly process and the presence of other structures in the elytra. We show that by extracting structural information from transmission electron microscopy data, including characteristic disorder parameters, good agreement with spectral specular and non-specular reflectance measurements is obtained.
Collapse
|
21
|
Peng B, Wei Y, Qin Y, Dai J, Li Y, Liu A, Tian Y, Han L, Zheng Y, Wen P. Machine learning-enabled constrained multi-objective design of architected materials. Nat Commun 2023; 14:6630. [PMID: 37857648 PMCID: PMC10587057 DOI: 10.1038/s41467-023-42415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Architected materials that consist of multiple subelements arranged in particular orders can demonstrate a much broader range of properties than their constituent materials. However, the rational design of these materials generally relies on experts' prior knowledge and requires painstaking effort. Here, we present a data-efficient method for the high-dimensional multi-property optimization of 3D-printed architected materials utilizing a machine learning (ML) cycle consisting of the finite element method (FEM) and 3D neural networks. Specifically, we apply our method to orthopedic implant design. Compared to uniform designs, our experience-free method designs microscale heterogeneous architectures with a biocompatible elastic modulus and higher strength. Furthermore, inspired by the knowledge learned from the neural networks, we develop machine-human synergy, adapting the ML-designed architecture to fix a macroscale, irregularly shaped animal bone defect. Such adaptation exhibits 20% higher experimental load-bearing capacity than the uniform design. Thus, our method provides a data-efficient paradigm for the fast and intelligent design of architected materials with tailored mechanical, physical, and chemical properties.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Ye Wei
- Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China.
| | - Yu Qin
- Department of Materials Science and Engineering, Peking University, Beijing, China.
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yue Li
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Liuliu Han
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
| | - Yufeng Zheng
- Department of Materials Science and Engineering, Peking University, Beijing, China
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China.
- Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Zhang X, Jin L, Li G. RNAi-Mediated Functional Analysis Reveals the Regulation of Oocyte Vitellogenesis by Ecdysone Signaling in Two Coleoptera Species. BIOLOGY 2023; 12:1284. [PMID: 37886994 PMCID: PMC10604093 DOI: 10.3390/biology12101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Coleoptera is the largest taxa of animals by far. The robust reproductive capacity is one of the main reasons for such domination. Successful female reproduction partially relies on effective vitellogenesis. However, the hormone regulation of vitellogenesis remains to be explored. In the present paper, in vitro culture of Leptinotarsa decemlineata 1-day-old adult fat bodies in the 20E-contained median did not activate juvenile hormone production and insulin-like peptide pathways, but significantly stimulated the expression of two LdVg genes, in a cycloheximide-dependent pattern. In vivo RNA interference (RNAi) of either ecdysone receptor (LdEcR) or ultraspiracle (Ldusp) by injection of corresponding dsRNA into 1-day-old female adults inhibited oocyte development, dramatically repressed the transcription of LdVg genes in fat bodies and of LdVgR in ovaries; application of JH into the LdEcR or Ldusp RNAi L. decemlineata females did not restore the oocyte development, partially rescued the decreased LdVg mRNA levels but over-compensated LdVgR expression levels. The same RNAi experiments were performed in another Coleoptera species, Henosepilachna vigintioctopunctata. Little yolk substances were seen in the misshapen oocytes in the HvEcR or Hvusp RNAi ovaries, in contrast to larger amounts of yolk granules in the normal oocytes. Correspondingly, the transcript levels of HvVg in the fat bodies and ovaries decreased significantly in the HvEcR and Hvusp RNAi samples. Our results here show that 20E signaling is indispensable in the activation of vitellogenesis in the developing oocytes of the two beetle species.
Collapse
Affiliation(s)
| | | | - Guoqing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (L.J.)
| |
Collapse
|
23
|
Henríquez-Piskulich P, Stuart-Fox D, Elgar M, Marusic I, Franklin AM. Dazzled by shine: gloss as an antipredator strategy in fast moving prey. Behav Ecol 2023; 34:862-871. [PMID: 37744168 PMCID: PMC10516678 DOI: 10.1093/beheco/arad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 09/26/2023] Open
Abstract
Previous studies on stationary prey have found mixed results for the role of a glossy appearance in predator avoidance-some have found that glossiness can act as warning coloration or improve camouflage, whereas others detected no survival benefit. An alternative untested hypothesis is that glossiness could provide protection in the form of dynamic dazzle. Fast moving animals that are glossy produce flashes of light that increase in frequency at higher speeds, which could make it harder for predators to track and accurately locate prey. We tested this hypothesis by presenting praying mantids with glossy or matte targets moving at slow and fast speed. Mantids were less likely to strike glossy targets, independently of speed. Additionally, mantids were less likely to track glossy targets and more likely to hit the target with one out of the two legs that struck rather than both raptorial legs, but only when targets were moving fast. These results support the hypothesis that a glossy appearance may have a function as an antipredator strategy by reducing the ability of predators to track and accurately target fast moving prey.
Collapse
Affiliation(s)
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Elgar
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ivan Marusic
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amanda M Franklin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
Thomas DHN, Kjernsmo K, Scott-Samuel NE, Whitney HM, Cuthill IC. Interactions between color and gloss in iridescent camouflage. Behav Ecol 2023; 34:751-758. [PMID: 37744171 PMCID: PMC10516679 DOI: 10.1093/beheco/arad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 09/26/2023] Open
Abstract
Iridescence is a taxonomically widespread form of structural coloration that produces often intense hues that change with the angle of viewing. Its role as a signal has been investigated in multiple species, but recently, and counter-intuitively, it has been shown that it can function as camouflage. However, the property of iridescence that reduces detectability is, as yet, unclear. As viewing angle changes, iridescent objects change not only in hue but also in intensity, and many iridescent animals are also shiny or glossy; these "specular reflections," both from the target and background, have been implicated in crypsis. Here, we present a field experiment with natural avian predators that separate the relative contributions of color and gloss to the "survival" of iridescent and non-iridescent beetle-like targets. Consistent with previous research, we found that iridescent coloration, and high gloss of the leaves on which targets were placed, enhance survival. However, glossy targets survived less well than matt. We interpret the results in terms of signal-to-noise ratio: specular reflections from the background reduce detectability by increasing visual noise. While a specular reflection from the target attracts attention, a changeable color reduces the signal because, we suggest, normally, the color of an object is a stable feature for detection and identification.
Collapse
Affiliation(s)
- Dylan H N Thomas
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Karin Kjernsmo
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas E Scott-Samuel
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Innes C Cuthill
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
Rebora M, Salerno G, Piersanti S, Kovalev A, Gorb SN. The origin of black and white coloration of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:496-508. [PMID: 37123532 PMCID: PMC10130904 DOI: 10.3762/bjnano.14.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Micro- and nanostructures of the white and black scales on the tarsi of the mosquito Aedes albopictus are analysed using scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. Reflectance spectra of the white areas are measured. No clear difference is present in the morphology of micro- and nanostructures of black and white scales in SEM and TEM, but black scales contain a dark pigment. The white colour of the scales has a structural origin. The structural white produced by the micro- and nanostructures of the scales on the tarsi of Ae. albopictus appears bright and is angle-dependent, since the reflected light changes according to the angle detection and according to the tarsus orientation. The optical appearance of the scale system of Ae. albopictus has a complex nature and can be explained by the combination of several effects. Among them, multiple refraction and reflection on the micro- and nanostructures of the scales are mainly responsible for the white appearance. The results suggest that mosquito scales, in addition to their superhydrophobic function, produce structural white. The biological role of white and black patches in mate recognition and defensive behaviour in the mosquitoes of the genus Aedes is hypothesized.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany
| |
Collapse
|
26
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
27
|
Xiong Y, Shepherd S, Tibbs J, Bacon A, Liu W, Akin LD, Ayupova T, Bhaskar S, Cunningham BT. Photonic Crystal Enhanced Fluorescence: A Review on Design Strategies and Applications. MICROMACHINES 2023; 14:668. [PMID: 36985075 PMCID: PMC10059769 DOI: 10.3390/mi14030668] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Nanoscale fluorescence emitters are efficient for measuring biomolecular interactions, but their utility for applications requiring single-unit observations is constrained by the need for large numerical aperture objectives, fluorescence intermittency, and poor photon collection efficiency resulting from omnidirectional emission. Photonic crystal (PC) structures hold promise to address the aforementioned challenges in fluorescence enhancement. In this review, we provide a broad overview of PCs by explaining their structures, design strategies, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-enhanced fluorescence-based biosensors incorporated with emerging technologies, including nucleic acids sensing, protein detection, and steroid monitoring. Finally, we discuss current challenges associated with PC-enhanced fluorescence and provide an outlook for fluorescence enhancement with photonic-plasmonics coupling and their promise for point-of-care biosensing as well monitoring analytes of biological and environmental relevance. The review presents the transdisciplinary applications of PCs in the broad arena of fluorescence spectroscopy with broad applications in photo-plasmonics, life science research, materials chemistry, cancer diagnostics, and internet of things.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Skye Shepherd
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Tibbs
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amanda Bacon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weinan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Lucas D. Akin
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Takhmina Ayupova
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seemesh Bhaskar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Xiang L, Li Q, Li C, Yang Q, Xu F, Mai Y. Block Copolymer Self-Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207684. [PMID: 36255138 DOI: 10.1002/adma.202207684] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Porous materials with their ordered bicontinuous structures have attracted great interest owing to ordered periodic structures as well as 3D interconnected network and pore channels. Bicontinuous structures may favor efficient mass diffusion to the interior of materials, thus increasing the utilization ratio of active sites. In addition, ordered bicontinuous structures confer materials with exceptional optical and magnetic properties, including tunable photonic bandgap, negative refraction, and multiple equivalent magnetization configurations. The attractive structural advantages and physical properties have inspired people to develop strategies for preparing bicontinuous-structured porous materials. Among a few synthetic approaches, the self-assembly of block copolymers represents a versatile strategy to prepare various bicontinuous-structured functional materials with pore sizes and lattice parameters ranging from 1 to 500 nm. This article overviews progress in this appealing area, with an emphasis on the synthetic strategies, the structural control (including topologies, pore sizes, and unit cell parameters), and their potential applications in energy storage and conversion, metamaterials, photonic crystals, cargo delivery and release, nanoreactors, and biomolecule selection.
Collapse
Affiliation(s)
- Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiqi Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
29
|
Sinnott-Armstrong MA, Middleton R, Ogawa Y, Jacucci G, Moyroud E, Glover BJ, Rudall PJ, Vignolini S, Donoghue MJ. Multiple origins of lipid-based structural colors contribute to a gradient of fruit colors in Viburnum (Adoxaceae). THE NEW PHYTOLOGIST 2023; 237:643-655. [PMID: 36229924 DOI: 10.1111/nph.18538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including in Viburnum tinus where the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genus Viburnum. We obtained fresh and herbarium fruit material from 30 Viburnum species spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance in Viburnum dentatum, and describe the evolution of cell wall architecture across Viburnum. We identify at least two (possibly three) origins of blue fruit color in Viburnum in species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light. Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.
Collapse
Affiliation(s)
- Miranda A Sinnott-Armstrong
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Ecology & Evolutionary Biology, University of Colorado-Boulder, Boulder, CO, 80303, USA
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Rox Middleton
- Department of Biological Sciences, University of Bristol, 24 Tyndall Av, Bristol, BS8 1TQ, UK
| | - Yu Ogawa
- CERMAV, CNRS, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Gianni Jacucci
- UMR 8552, Laboratoire Kastler Brossel, Collège de France, Sorbonne Université, Ecole Normale Supérieure-Paris Sciences et Lettres Research University, Centre Nationale de la Recherche Scientifique, 24 rue Lhomond, 75005, Paris, France
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 ILR, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EJ, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Michael J Donoghue
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| |
Collapse
|
30
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
31
|
Chang MH, Oh-e M. Kinetic arrest during the drying of cellulose nanocrystal films from aqueous suspensions analogous to the freezing of thermal motions. Sci Rep 2022; 12:21042. [PMID: 36470939 PMCID: PMC9722664 DOI: 10.1038/s41598-022-24926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of controlling the iridescence of cellulose films by manipulating the alignment and helical pitch of cellulose nanocrystals (CNCs) is required to advance cellulose photonics and its optoelectronic applications. Aqueous suspensions of CNCs exhibit a cholesteric liquid crystal (LC) phase with structural color; however, attaining a uniformly colored film is extremely difficult. Presumably, because multiple interrelated factors influence the CNC molecular alignment and helical pitch, existing models are not necessarily conclusive and remain a subject of debate. To eventually achieve homogeneously colored films, we compare aqueous CNC suspensions as a lyotropic liquid LC with thermotropic ones, and we spectroscopically confirm that the coloration of CNC droplets originates from the periodic CNC structure. The suspension drying process significantly influences the quality of iridescence of CNC films. Rapidly drying a droplet of a CNC suspension forms a concentric rainbow film, with red edges and a blue center, typical of the coffee-ring effect observed in air-dried films. By contrast, slow drying under controlled humidity, which reduces capillary flow, provides higher uniformity and a large blue area. Orbitally shaking films while drying under high humidity further improves the uniformity. Therefore, the evaporation rate significantly influences the thermodynamically stabilized helical pitch of CNCs, which determines the structural color. We qualitatively model the kinetic arrest induced by the rapid evaporation of lyotropic LCs in a manner equivalent to that induced by the rate of temperature change in thermotropic LCs and other materials.
Collapse
Affiliation(s)
- Meng-Hsiang Chang
- grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Masahito Oh-e
- grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 30013 Taiwan
| |
Collapse
|
32
|
Yu H, Palazzolo JS, Ju Y, Niego B, Pan S, Hagemeyer CE, Caruso F. Polyphenol-Functionalized Cubosomes as Thrombolytic Drug Carriers. Adv Healthc Mater 2022; 11:e2201151. [PMID: 36037807 DOI: 10.1002/adhm.202201151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/03/2022] [Indexed: 01/28/2023]
Abstract
The safe administration of thrombolytic agents is a challenge for the treatment of acute thrombosis. Lipid-based nanoparticle drug delivery technologies present opportunities to overcome the existing clinical limitations and deliver thrombolytic therapy with enhanced therapeutic outcomes and safety. Herein, lipid cubosomes are examined as nanocarriers for the encapsulation of thrombolytic drugs. The lipid cubosomes are loaded with the thrombolytic drug urokinase-type plasminogen activator (uPA) and coated with a low-fouling peptide that is incorporated within a metal-phenolic network (MPN). The peptide-containing MPN (pep-MPN) coating inhibits the direct contact of uPA with the surrounding environment, as assessed by an in vitro plasminogen activation assay and an ex vivo whole blood clot degradation assay. The pep-MPN-coated cubosomes prepared with 22 wt% peptide demonstrate a cell membrane-dependent thrombolytic activity, which is attributed to their fusogenic lipid behavior. Moreover, compared with the uncoated lipid cubosomes, the uPA-loaded pep-MPN-coated cubosomes demonstrate significantly reduced nonspecific cell association (<10% of the uncoated cubosomes) in the whole blood assay, a prolonged circulating half-life, and reduced splenic uPA accumulation in mice. These studies confirm the preserved bioactivity and cell membrane-dependent release of uPA within pep-MPN-coated lipid cubosomes, highlighting their potential as a delivery vehicle for thrombolytic drugs.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
33
|
Hierarchically structured biomimetic membrane with mechanically/chemically durability and special wettability for highly efficient oil–water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Ospina-Rozo L, Roberts A, Stuart-Fox D. A generalized approach to characterize optical properties of natural objects. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
To understand the diversity of ways in which natural materials interact with light, it is important to consider how their reflectance changes with the angle of illumination or viewing and to consider wavelengths beyond the visible. Efforts to characterize these optical properties, however, have been hampered by heterogeneity in measurement techniques, parameters and terminology. Here, we propose a standardized set of measurements, parameters and terminology to describe the optical properties of natural objects based on spectrometry, including angle-dependent effects, such as iridescence and specularity. We select a set of existing measurements and parameters that are generalizable to any wavelength range and spectral shape, and we highlight which subsets of measures are relevant to different biological questions. As a case study, we have applied these measures to 30 species of Christmas beetles, in which we observed previously unrealized diversity in visible and near-infrared reflectance. As expected, reflection of short wavelengths was associated with high spectral purity and angle dependence. In contrast to simple, artificial structures, iridescence and specularity were not strongly correlated, highlighting the complexity and modularity of natural materials. Species did not cluster according to spectral parameters or genus, suggesting high lability of optical properties. The proposed standardization of measures and parameters will improve our understanding of biological adaptations for manipulating light by facilitating the systematic comparison of complex optical properties, such as glossy or metallic appearances and visible or near-infrared iridescence.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne , VIC 3010 , Australia
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne , VIC 3010 , Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne , VIC 3010 , Australia
| |
Collapse
|
35
|
Bu X, Bai H. Recent Progress of Bio-inspired Camouflage Materials: From Visible to Infrared Range. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Chen P, Mahanthappa MK, Dorfman KD. Stability of cubic single network phases in diblock copolymer melts. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengyu Chen
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
37
|
Antennapedia and optix regulate metallic silver wing scale development and cell shape in Bicyclus anynana butterflies. Cell Rep 2022; 40:111052. [PMID: 35793633 DOI: 10.1016/j.celrep.2022.111052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
Butterfly wing scales can develop intricate cuticular nanostructures that produce silver colors, but the underlying genetic and physical basis of such colors is mostly unexplored. Here, we characterize different types of wild-type silver scales in Bicyclus anynana butterflies and show that the varying thickness of the air layer between two cuticular laminas is most important for producing silvery broadband reflectance. We then address the function of five genes-apterous A, Ultrabithorax, doublesex, Antennapedia, and optix-in silver scale development by examining crispants with either ectopic gains or losses of silver scales. Simultaneous transformations of three parameters-loss of the upper lamina, increased lower lamina thickness, and increased pigmentation-occur when silver scales become brown and vice versa when brown scales become silver. Antennapedia and optix are high-level regulators of different silver scale types and determine cell shape in both sexes. Moreover, Antennapedia is involved in determining ridge and crossrib orientation.
Collapse
|
38
|
Penick CA, Cope G, Morankar S, Mistry Y, Grishin A, Chawla N, Bhate D. The Comparative approach to bio-inspired design: integrating biodiversity and biologists into the design process. Integr Comp Biol 2022; 62:icac097. [PMID: 35767863 DOI: 10.1093/icb/icac097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biodiversity provides a massive library of ideas for bio-inspired design, but the sheer number of species to consider can be daunting. Current approaches for sifting through biodiversity to identify relevant biological models include searching for champion adapters that are particularly adept at solving a particular design challenge. While the champion adapter approach has benefits, it tends to focus on a narrow set of popular models while neglecting the majority of species. An alternative approach to bio-inspired design is the comparative method, which leverages biodiversity by drawing inspiration across a broad range of species. This approach uses methods in phylogenetics to map traits across evolutionary trees and compare trait variation to infer structure-function relationships. Although comparative methods have not been widely used in bio-inspired design, they have led to breakthroughs in studies on gecko-inspired adhesives and multifunctionality of butterfly wing scales. Here we outline how comparative methods can be used to complement existing approaches to bioinspired design, and we provide an example focused on bio-inspired lattices, including honeycomb and glass sponges. We demonstrate how comparative methods can lead to breakthroughs in bio-inspired applications as well as answer major questions in biology, which can strengthen collaborations with biologists and produce deeper insights into biological function.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Grace Cope
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Swapnil Morankar
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yash Mistry
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| | - Alex Grishin
- Phoenix Analysis & Design Technologies, Inc., Tempe, AZ 85284, USA
| | - Nikhilesh Chawla
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dhruv Bhate
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
39
|
Zhao J, Zhang L, Du X, Xu J, Lin T, Li Y, Yang X, You J. Panther chameleon-inspired, continuously-regulated, high-saturation structural color of a reflective grating on the nano-patterned surface of a shape memory polymer. NANOSCALE ADVANCES 2022; 4:2942-2949. [PMID: 36132013 PMCID: PMC9418828 DOI: 10.1039/d2na00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, surface nano-stripes and a reflective grating have been fabricated on shape memory polymers (SMPs) to simulate the active color change of chameleons. The structural color resulting from the interference of reflected light exhibits high saturation and it can be regulated continuously based on the shape memory effect. In addition to the viewing angle, the attained color is sensitive to the deformation at the macroscale. Uniaxial tension along stripes at high temperature produces a remarkable blueshift of the resultant color (from red to green and blue) which can switch back to red after shape recovery upon heating. The evolution of structural color can be attributed to the lower and higher magnitudes of nano-structure periods in temporary (deformed) and permanent (recovery) states respectively. Based on the combination of angle and deformation dependences of structural color, a "colorful" product code has been fabricated. It exhibits enhanced ability to hide and display information which plays an important role in anti-counterfeiting.
Collapse
Affiliation(s)
- Jiaqin Zhao
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Liang Zhang
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Xinyue Du
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Jinyan Xu
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Taotao Lin
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Yongjin Li
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Xuxin Yang
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Jichun You
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| |
Collapse
|
40
|
Li J, Zhang K, Pang C, Zhao Y, Zhou H, Chen H, Lu G, Liu F, Wu A, Du G, Akhmadaliev S, Zhou S, Chen F. Tunable structural colors in all-dielectric photonic crystals using energetic ion beams. OPTICS EXPRESS 2022; 30:23463-23474. [PMID: 36225025 DOI: 10.1364/oe.456129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
The modulation of structural color through various methods has attracted considerable attention. Herein, a new modulation method for the structural colors in all-dielectric photonic crystals (PCs) using energetic ion beams is proposed. One type of periodic PC and two different defective PCs were experimentally investigated. Under carbon-ion irradiation, the color variation primarily originated from the blue shift of the optical spectra. The varying degrees of both the reflection and transmission structural colors mainly depended on the carbon-ion fluences. Such nanostructures are promising for tunable color filters and double-sided chromatic displays based on PCs.
Collapse
|
41
|
Kjernsmo K, Lim AM, Middleton R, Hall JR, Costello LM, Whitney HM, Scott-Samuel NE, Cuthill IC. Beetle iridescence induces an avoidance response in naïve avian predators. Anim Behav 2022; 188:45-50. [PMID: 37649469 PMCID: PMC10462570 DOI: 10.1016/j.anbehav.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
It has recently been found that iridescence, a taxonomically widespread form of animal coloration defined by a change in hue with viewing angle, can act as a highly effective form of camouflage. However, little is known about whether iridescence can confer a survival benefit to prey postdetection and, if so, which optical properties of iridescent prey are important for this putative protective function. Here, we tested the effects of both iridescence and surface gloss (i.e. specular reflection) on the attack behaviour of prey-naïve avian predators. Using real and artificial jewel beetle, Sternocera aequisignata, wing cases, we found that iridescence provides initial protection against avian predation by significantly reducing the willingness to attack. Importantly, we found that the main factor explaining this aversion is iridescence, not multiple colours per se, with surface gloss also having an independent effect. Our results are important because they demonstrate that even when prey are presented up close and against a mismatching background, iridescence may confer a survival benefit by inducing hesitation or even, as sometimes observed, an aversion response in attacking birds. Furthermore, this means that even postdetection, prey do not necessarily need to have secondary defences such as sharp spines or toxins for iridescence to have a protective effect. Taken together, our results suggest that reduced avian predation could facilitate the initial evolution of iridescence in many species of insects and that it is the defining feature of iridescence, its colour changeability, that is important for this effect.
Collapse
Affiliation(s)
- Karin Kjernsmo
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | - Anna M. Lim
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | - Rox Middleton
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | - Joanna R. Hall
- School of Psychological Science, University of Bristol, Bristol, U.K
| | - Leah M. Costello
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | | | | | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
42
|
Justyn NM, Heine KB, Hood WR, Peteya JA, Vanthournout B, Debruyn G, Shawkey MD, Weaver RJ, Hill GE. A combination of red structural and pigmentary coloration in the eyespot of a copepod. J R Soc Interface 2022; 19:20220169. [PMID: 35611618 DOI: 10.1098/rsif.2022.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While the specific mechanisms of colour production in biological systems are diverse, the mechanics of colour production are straightforward and universal. Colour is produced through the selective absorption of light by pigments, the scattering of light by nanostructures or a combination of both. When Tigriopus californicus copepods were fed a carotenoid-limited diet of yeast, their orange-red body coloration became faint, but their eyespots remained unexpectedly bright red. Raman spectroscopy indicated a clear signature of the red carotenoid pigment astaxanthin in eyespots; however, refractive index matching experiments showed that eyespot colour disappeared when placed in ethyl cinnamate, suggesting a structural origin for the red coloration. We used transmission electron microscopy to identify consecutive nanolayers of spherical air pockets that, when modelled as a single thin film layer, possess the correct periodicity to coherently scatter red light. We then performed microspectrophotometry to quantify eyespot coloration and confirmed a distinct colour difference between the eyespot and the body. The observed spectral reflectance from the eyespot matched the reflectance predicted from our models when considering the additional absorption by astaxanthin. Together, this evidence suggests the persistence of red eyespots in copepods is the result of a combination of structural and pigmentary coloration.
Collapse
Affiliation(s)
- Nicholas M Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Peteya
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Bram Vanthournout
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Gerben Debruyn
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
43
|
At the Intersection of Natural Structural Coloration and Bioengineering. Biomimetics (Basel) 2022; 7:biomimetics7020066. [PMID: 35645193 PMCID: PMC9149877 DOI: 10.3390/biomimetics7020066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Most of us get inspired by and interact with the world around us based on visual cues such as the colors and patterns that we see. In nature, coloration takes three primary forms: pigmentary coloration, structural coloration, and bioluminescence. Typically, pigmentary and structural coloration are used by animals and plants for their survival; however, few organisms are able to capture the nearly instantaneous and visually astounding display that cephalopods (e.g., octopi, squid, and cuttlefish) exhibit. Notably, the structural coloration of these cephalopods critically relies on a unique family of proteins known as reflectins. As a result, there is growing interest in characterizing the structure and function of such optically-active proteins (e.g., reflectins) and to leverage these materials across a broad range of disciplines, including bioengineering. In this review, I begin by briefly introducing pigmentary and structural coloration in animals and plants as well as highlighting the extraordinary appearance-changing capabilities of cephalopods. Next, I outline recent advances in the characterization and utilization of reflectins for photonic technologies and and discuss general strategies and limitations for the structural and optical characterization of proteins. Finally, I explore future directions of study for optically-active proteins and their potential applications. Altogether, this review aims to bring together an interdisciplinary group of researchers who can resolve the fundamental questions regarding the structure, function, and self-assembly of optically-active protein-based materials.
Collapse
|
44
|
Loke JJ, Hoon S, Miserez A. Cephalopod-Mimetic Tunable Photonic Coatings Assembled from Quasi-Monodispersed Reflectin Protein Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21436-21452. [PMID: 35476418 DOI: 10.1021/acsami.2c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The remarkable dynamic camouflage ability of cephalopods arises from precisely orchestrated structural changes within their chromatophores and iridophores photonic cells. This mesmerizing color display remains unmatched in synthetic coatings and is regulated by swelling/deswelling of reflectin protein nanoparticles, which alters platelet dimensions in iridophores to control photonic patterns according to Bragg's law. Toward mimicking the photonic response of squid's skin, reflectin proteins from Sepioteuthis lessioniana were sequenced, recombinantly expressed, and self-assembled into spherical nanoparticles by conjugating reflectin B1 with a click chemistry ligand. These quasi-monodisperse nanoparticles can be tuned to any desired size in the 170-1000 nm range. Using Langmuir-Schaefer and drop-cast deposition methods, ligand-conjugated reflectin B1 nanoparticles were immobilized onto azide-functionalized substrates via click chemistry to produce monolayer amorphous photonic structures with tunable structural colors based on average particle size, paving the way for the fabrication of eco-friendly, bioinspired color-changing coatings that mimic cephalopods' dynamic camouflage.
Collapse
Affiliation(s)
- Jun Jie Loke
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Shawn Hoon
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Ali Miserez
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore 637551, Singapore
| |
Collapse
|
45
|
Yang S, Wang Y, Gao W. 3D Modelling for Photonic Crystal Structure in Papilio maackii Wing Scales. MATERIALS 2022; 15:ma15093334. [PMID: 35591668 PMCID: PMC9100648 DOI: 10.3390/ma15093334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
As a typical representative of natural structural colors, the wings of butterflies living in different zones present colors due to different chromogenic mechanisms. In this work, Papilio maackii, a common species of butterfly living in China, was studied in order to clarify the photophysics of its wing scales. A FESEM was applied to observe the microstructure of the scales, and we found that they have a periodic photonic crystal structure. X-ray photoelectron spectroscopy was applied to clarify the wings’ chemical composition. Additionally, the optical properties of the scales were investigated using a UV-vis-NIR microspectrophotometer. Then, a simplified three-dimensional photonic crystal model was built according to the microstructure of the wing scales, and the plane-wave expansion method was used to calculate the band gap. The correlation between the calculated band gap and the practical reflective spectrum was also established for the wing scales of Papilio maackii.
Collapse
|
46
|
van de Kerkhof GT, Schertel L, Catòn L, Parton TG, Müller KH, Greer HF, Ingham CJ, Vignolini S. Polysaccharide metabolism regulates structural colour in bacterial colonies. J R Soc Interface 2022; 19:20220181. [PMID: 35611622 PMCID: PMC9131120 DOI: 10.1098/rsif.2022.0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
The brightest colours in nature often originate from the interaction of light with materials structured at the nanoscale. Different organisms produce such coloration with a wide variety of materials and architectures. In the case of bacterial colonies, structural colours stem for the periodic organization of the cells within the colony, and while considerable efforts have been spent on elucidating the mechanisms responsible for such coloration, the biochemical processes determining the development of this effect have not been explored. Here, we study the influence of nutrients on the organization of cells from the structurally coloured bacteria Flavobacterium strain IR1. By analysing the optical properties of the colonies grown with and without specific polysaccharides, we found that the highly ordered organization of the cells can be altered by the presence of fucoidans. Additionally, by comparing the organization of the wild-type strain with mutants grown in different nutrient conditions, we deduced that this regulation of cell ordering is linked to a specific region of the IR1 chromosome. This region encodes a mechanism for the uptake and metabolism of polysaccharides, including a polysaccharide utilization locus (PUL operon) that appears specific to fucoidan, providing new insight into the biochemical pathways regulating structural colour in bacteria.
Collapse
Affiliation(s)
- Gea T. van de Kerkhof
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Lukas Schertel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura Catòn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Hoekmine BV, Room 1.091 (iLab), Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, Heidelberglaan 7, 3584 CS, Utrecht, The Netherlands
| | - Thomas G. Parton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Heather F. Greer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Colin J. Ingham
- Hoekmine BV, Room 1.091 (iLab), Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, Heidelberglaan 7, 3584 CS, Utrecht, The Netherlands
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
47
|
Parisotto A, Steiner U, Cabras AA, Van Dam MH, Wilts BD. Pachyrhynchus Weevils Use 3D Photonic Crystals with Varying Degrees of Order to Create Diverse and Brilliant Displays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200592. [PMID: 35426236 DOI: 10.1002/smll.202200592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The brilliant appearance of Easter Egg weevils, genus Pachyrhynchus (Coleoptera, Curculionidae), originates from complex dielectric nanostructures within their elytral scales and elytra. Previous work, investigating singular members of the Pachyrhynchus showed the presence of either quasi-ordered or ordered 3D photonic crystals based on the single diamond ( Fd3¯m ) symmetry in their scales. However, little is known about the diversity of the structural coloration mechanisms within the family. Here, the optical properties within Pachyrhynchus are investigated by systematically identifying their spectral and structural characteristics. Four principal traits that vary their appearance are identified and the evolutionary history of these traits to identify ecological trends are reconstructed. The results indicate that the coloration mechanisms across the Easter Egg weevils are diverse and highly plastic across closely related species with features appearing at multiple independent times across their phylogeny. This work lays a foundation for a better understanding of the various forms of quasi-ordered and ordered diamond photonic crystal within arthropods.
Collapse
Affiliation(s)
- Alessandro Parisotto
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Analyn Anzano Cabras
- Coleoptera Research Center, Institute for Biodiversity and Environment, University of Mindanao, Matina, Davao City, 8000, Philippines
| | - Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA, 94118, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, Salzburg, 5020, Austria
| |
Collapse
|
48
|
Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. BIOLOGY 2022; 11:biology11030395. [PMID: 35336769 PMCID: PMC8945194 DOI: 10.3390/biology11030395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Insect fossils dating 55 million-years-old from the Stolleklint Clay and Fur Formation of Denmark are known to preserve both fine morphological details and color patterns. To enhance our understanding on how such fragile animals are retained in the fossil record, we examined a pair of beetle elytra, a wasp and a damselfly using sensitive analytical techniques. In our paper, we demonstrate that all three insect fossils are composed of cuticular remains (that is, traces of the exoskeleton) that, in turn, are dominated by the natural pigment eumelanin. In addition, the beetle elytra show evidence of a delicate lamellar structure comparable to multilayered reflectors that produce metallic hues in modern insects. Our results contribute to improved knowledge on the process of fossilization of insect body fossils in marine environments. Abstract Marine sediments of the lowermost Eocene Stolleklint Clay and Fur Formation of north-western Denmark have yielded abundant well-preserved insects. However, despite a long history of research, in-depth information pertaining to preservational modes and taphonomic pathways of these exceptional animal fossils remains scarce. In this paper, we use a combination of scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to assess the ultrastructural and molecular composition of three insect fossils: a wasp (Hymenoptera), a damselfly (Odonata) and a pair of beetle elytra (Coleoptera). Our analyses show that all specimens are preserved as organic remnants that originate from the exoskeleton, with the elytra displaying a greater level of morphological fidelity than the other fossils. TEM analysis of the elytra revealed minute features, including a multilayered epicuticle comparable to those nanostructures that generate metallic colors in modern insects. Additionally, ToF-SIMS analyses provided spectral evidence for chemical residues of the pigment eumelanin as part of the cuticular remains. To the best of our knowledge, this is the first occasion where both structural colors and chemical traces of an endogenous pigment have been documented in a single fossil specimen. Overall, our results provide novel insights into the nature of insect body fossils and additionally shed light on exceptionally preserved terrestrial insect faunas found in marine paleoenvironments.
Collapse
|
49
|
Liu T, Liu T, Gao F, Glotzer SC, Solomon MJ. Structural Color Spectral Response of Dense Structures of Discoidal Particles Generated by Evaporative Assembly. J Phys Chem B 2022; 126:1315-1324. [PMID: 35112869 DOI: 10.1021/acs.jpcb.1c10015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural color─optical response due to light diffraction or scattering from submicrometer-scale structures─is a promising means for sustainable coloration. To expand the functionality of structural color, we introduce discoidal shape anisotropy into colloidal particles and characterize how structural color reflection can be engineered. Uniaxial compression of spheres is used to prepare discoids with varying shape anisotropy and particle size. Discoids are assembled into thin films by evaporation. We find that structural color of assembled films displays components due to diffuse backscattering and multilayer reflection. As discoids become more anisotropic, the assembled structure is more disordered. The multilayer reflection is suppressed─peak height becomes smaller and peak width broader; thus, the color is predominantly from diffuse backscattering. Finally, the discoid structural color can be tuned by varying particle size and has low dependence on viewing angle. We corroborate our results by comparing experimental microstructures and measured reflection spectra with Monte Carlo simulations and calculated spectra by finite-difference time-domain simulation. Our findings demonstrate that the two tunable geometries of discoids─size and aspect ratio─generate different effects on spectral response and therefore can function as independent design parameters that expand possibilities for producing noniridescent structural color.
Collapse
Affiliation(s)
- Tianyu Liu
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianyu Liu
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fengyi Gao
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sharon C Glotzer
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Solomon
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Pan X, Chi H, Luo C, Feng X, Huang Y, Zhang G. A novel metallic silvery color caused by pointillistic mixing of disordered nano-to micro-pixels of iridescent colors. RSC Adv 2022; 12:5534-5539. [PMID: 35425567 PMCID: PMC8982057 DOI: 10.1039/d1ra08573e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Rich iridescent structural colors in nature, such as peacock feathers, butterfly wings, beetle scales, and mollusc nacre, have attracted extensive attention for a long time and they generally result from the interaction between light and periodic structures. However, non-iridescent structural colors, such as silvery structural colors, have received relatively little attention, and they usually result from non-periodic structures. Here, using optical microscopy, fiber-optic spectrometry, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and laser Raman spectroscopy, we investigate the origin of a novel structural color occurring at the edge of a bivalve shell (i.e., an otter shell). We find that: (1) the structural colors are observed to be uniform metallic silvery when viewed with the naked eye; (2) they are surprisingly multicolored with various colorful pixels juxtaposed together when viewed with an optical microscope; (3) each individual pixel shows a single color originating from a periodic, multilayered organic film with definite spacing (d); and (4) different pixels vary significantly in size, shape, and color with different d values (202–387 nm). Finally, we confirm that the macroscopic silvery color results from the pointillistic mixing of nano-to microscale iridescent pixels. We also discuss the special photonic structure responsible for the silvery color. We hope that this work can not only accelerate our comprehension of photonic materials, but also provide new inspiration for the synthesis of silvery white materials. We report a new metallic silvery color caused by nano-to micro-pointillistic mixing of disordered pixels of iridescent colors, which result from a multilayer reflector.![]()
Collapse
Affiliation(s)
- Xijin Pan
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Haoyang Chi
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Chunyi Luo
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Xin Feng
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - YongChun Huang
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Gangsheng Zhang
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|