1
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Abdalla MM, Sayed O, Lung CYK, Rajasekar V, Yiu CKY. Applications of Bioactive Strontium Compounds in Dentistry. J Funct Biomater 2024; 15:216. [PMID: 39194654 DOI: 10.3390/jfb15080216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Divalent cations have captured the interest of researchers in biomedical and dental fields due to their beneficial effects on bone formation. These metallic elements are similar to trace elements found in human bone. Strontium is a divalent cation commonly found in various biomaterials. Since strontium has a radius similar to calcium, it has been used to replace calcium in many calcium-containing biomaterials. Strontium has the ability to inhibit bone resorption and increase bone deposition, making it useful in the treatment of osteoporosis. Strontium has also been used as a radiopacifier in dentistry and has been incorporated into a variety of dental materials to improve their radiopacity. Furthermore, strontium has been shown to improve the antimicrobial and mechanical properties of dental materials, promote enamel remineralization, alleviate dentin hypersensitivity, and enhance dentin regeneration. The objective of this review is to provide a comprehensive review of the applications of strontium in dentistry.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Osama Sayed
- Faculty of Dentistry, Fayoum University, Faiyum 63514, Egypt
| | - Christie Ying Kei Lung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Vidhyashree Rajasekar
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Liu L, Hou S, Xu G, Gao J, Mu J, Gao M, He J, Su X, Yang Z, Liu Y, Chen T, Dong Z, Cheng L, Shi Z. Evaluation of osteogenic properties of a novel injectable bone-repair material containing strontium in vitro and in vivo. Front Bioeng Biotechnol 2024; 12:1390337. [PMID: 38707496 PMCID: PMC11069309 DOI: 10.3389/fbioe.2024.1390337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Objective: This study aims to develop and evaluate the biocompatibility and osteogenic potential of a novel injectable strontium-doped hydroxyapatite bone-repair material. Methods: The properties of strontium-doped hydroxyapatite/chitosan (Sr-HA/CS), hydroxyapatite/chitosan (HA/CS) and calcium phosphate/chitosan (CAP/CS) were assessed following their preparation via physical cross-linking and a one-step simplified method. Petri dishes containing Escherichia coli and Staphylococcus epidermidis were inoculated with the material for in vitro investigations. The material was also co-cultured with stem cells derived from human exfoliated deciduous teeth (SHEDs), to assess the morphology and proliferation capability of the SHEDs, Calcein-AM staining and the Cell Counting Kit-8 assay were employed. Osteogenic differentiation of SHEDs was determined using alkaline phosphatase (ALP) staining and Alizarin Red staining. For in vivo studies, Sr-HA/CS was implanted into the muscle pouch of mice and in a rat model of ovariectomy-induced femoral defects. Hematoxylin-eosin (HE) staining was performed to determine the extent of bone formation and defect healing. The formation of new bone was determined using Masson's trichrome staining. The osteogenic mechanism of the material was investigated using Tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical studies. Results: X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) showed that strontium was successfully doped into HA. The Sr-HA/CS material can be uniformly squeezed using a syringe with a 13% swelling rate. Sr-HA/CS had a significant antibacterial effect against both E. coli and S. epidermidis (p < 0.05), with a stronger effect observed against E. coli. The Sr-HA/CS significantly improved cell proliferation and cell viability in vitro studies (p < 0.05). Compared to CAP/CS and CS, Sr-HA/CS generated a substantially greater new bone area during osteoinduction experiments (p < 0.05, p < 0.001). The Sr-HA/CS material demonstrated a significantly higher rate of bone repair in the bone defeat studies compared to the CAP/CS and CS materials (p < 0.01). The OCN-positive area and TRAP-positive cells in Sr-HA/CS were greater than those in control groups (p < 0.05). Conclusion: A novel injectable strontium-doped HA bone-repair material with good antibacterial properties, biocompatibility, and osteoinductivity was successfully prepared.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lijia Cheng
- Clinical Medical College, Affiliated Hospital, School of Basic Medical Sciences of Chengdu University, Chengdu, China
| | - Zheng Shi
- Clinical Medical College, Affiliated Hospital, School of Basic Medical Sciences of Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Xu Y, Shen D, Zhou Z, Sun Y, Pan X, Liu W, Chu CH, Zhang L, Hannig M, Fu B. Polyelectrolyte-Cation Complexes Using PAsp-Sr Complexes Induce Biomimetic Mineralization with Antibacterial Ability. Adv Healthc Mater 2024; 13:e2303002. [PMID: 38018309 DOI: 10.1002/adhm.202303002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/26/2023] [Indexed: 11/30/2023]
Abstract
Remineralized dentin with an antibacterial ability is still a significant challenge in dentistry. Previously, a polyelectrolyte-calcium complexes pre-precursor (PCCP) process is proposed for rapid collagen mineralization. In the present study, the expansion concept of the PCCP process is explored by replacing the calcium with other cations, such as strontium. The results of transmission electron microscopy (TEM), 3D stochastic optical reconstruction microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and high-resolution TEM with selected area electron diffraction demonstrate that biomimetic mineralization of collagen fibrils and demineralized dentin could be fulfilled with Sr&F-codoped hydroxyapatite (HAp) after they are treated with poly-aspartic acid-strontium (PAsp-Sr) suspension followed by a phosphate&fluoride solution. Moreover, dentin remineralized with Sr&F-codoped HAp exhibits in vitro and in vivo antibacterial ability against Streptococcus mutans. The cytotoxicity and oral mucosa irritation tests reveal excellent biocompatibility of mineralization mediums (PAsp-Sr suspension and phosphate&fluoride solution). The demineralized dentin's mechanical properties (elastic modulus and microhardness) could be restored almost to that of the intact dentin. Hence, the expansion concept of the PCCP process that replaces calcium ions with some cationic ions along with fluorine opens up new horizons for generating antibacterial remineralized dentin containing ions-doped HAp with excellent biocompatibility via biomimetic mineralization technology.
Collapse
Affiliation(s)
- Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Dongni Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yi Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xinni Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424, Homburg, Saarland, Germany
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
5
|
Thanyasiri S, Naruphontjirakul P, Padunglappisit C, Mirchandani B, Young AM, Panpisut P. Assessment of physical/mechanical properties and cytotoxicity of dual-cured resin cements containing Sr-bioactive glass nanoparticles and calcium phosphate. Dent Mater J 2023; 42:806-817. [PMID: 37880134 DOI: 10.4012/dmj.2023-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The aim was to develop dual-cured resin cements containing Sr-bioactive glass nanoparticles (Sr-BGNPs; 5 or 10 wt%) and monocalcium phosphate monohydrate (MCPM; 3 or 6 wt%). Effects of additives on degree of monomer conversion (DC), biaxial flexural strength/modulus, shear bond strength (SBS), mass/volume change, color stability, ion release, and cytotoxicity were examined. Controls included material without reactive fillers and Panavia SA Plus (PV). Experimental cements showed higher DC than PV regardless of light activation (p<0.05). Mean SBS and color stability were comparable between experimental cements and PV. Cell viability upon the exposure to sample extracts of experimental cements was 80%-92%. High additive concentrations led to lower strength and modulus than PV (p<0.05). The additives increased mass change, reduced color stability, and promoted ion release. The experimental resin cements demonstrated acceptable mechanical/chemical properties and cytotoxicity. The additives reduced the strength but provided ion release, a desirable action to prevent recurrent caries.
Collapse
Affiliation(s)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi
| | | | - Bharat Mirchandani
- Faculty of Dentistry, Datta Meghe Institute of Higher Education & Research
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University
| |
Collapse
|
6
|
Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A. Efficacy and bone-contact biocompatibility of glass ionomer cement as a biomaterial for bone regeneration: A systematic review. J Mech Behav Biomed Mater 2023; 146:106099. [PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jatinangor, 45363, Indonesia.
| |
Collapse
|
7
|
Magalhães GDAP, Thomson JJ, Smoczer C, Young LA, Matos AO, Pacheco RR, Souza MT, Zanotto ED, Puppin Rontani RM. Effect of Biosilicate ® Addition on Physical-Mechanical and Biological Properties of Dental Glass Ionomer Cements. J Funct Biomater 2023; 14:302. [PMID: 37367266 DOI: 10.3390/jfb14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
This study investigated the influence of incorporating Biosilicate® on the physico-mechanical and biological properties of glass ionomer cement (GIC). This bioactive glass ceramic (23.75% Na2O, 23.75% CaO, 48.5% SiO2, and 4% P2O5) was incorporated by weight (5%, 10%, or 15%) into commercially available GICs (Maxxion R and Fuji IX GP). Surface characterization was made by SEM (n = 3), EDS (n = 3), and FTIR (n = 1). The setting and working (S/W time) times (n = 3) and compressive strength (CS) were analyzed (n = 10) according to ISO 9917-1:2007. The ion release (n = 6) was determined and quantified by ICP OES and by UV-Vis for Ca, Na, Al, Si, P, and F. To verify cell cytotoxicity, stem cells from the apical papilla (SCAP) were exposed to eluates (n = 3, at a ratio of 1.8 cm2/mL) and analyzed 24 h post-exposure. Antimicrobial activity against Streptococcus mutans (ATCC 25175, NCTC 10449) was analyzed by direct contact for 2 h (n = 5). The data were submitted for normality and lognormality testing. One-way ANOVA and Tukey's test were applied for the working and setting time, compressive strength, and ion release data. Data from cytotoxicity and antimicrobial activity were submitted for Kruskal-Wallis' testing and Dunn's post hoc test (α = 0.05). Among all experimental groups, only those with 5% (wt) of Biosilicate® showed better surface quality. Only M5% showed a comparable W/S time to the original material (p = 0.7254 and p = 0.5912). CS was maintained for all Maxxion R groups (p > 0.0001) and declined for Fuji IX experimental groups (p < 0.0001). The Na, Si, P, and F ions released were significantly increased for all Maxxion R and Fuji IX groups (p < 0.0001). Cytotoxicity was increased only for Maxxion R with 5% and 10% of Biosilicate®. A higher inhibition of S. mutans growth was observed for Maxxion R with 5% of Biosilicate® (less than 100 CFU/mL), followed by Maxxion R with 10% of Biosilicate® (p = 0.0053) and Maxxion R without the glass ceramic (p = 0.0093). Maxxion R and Fuji IX presented different behaviors regarding Biosilicate® incorporation. The impacts on physico-mechanical and biological properties were different depending on the GIC, but therapeutic ion release was increased for both materials.
Collapse
Affiliation(s)
- Gabriela de Alencar Pinto Magalhães
- Department of Health Sciences and Pediatric Dentistry, Pediatric Division, Piracicaba Dental School, UNICAMP, State University of Campinas, Piracicaba 13414-903, Brazil
| | - Joshua J Thomson
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Cristine Smoczer
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Laura Ann Young
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Adaias O Matos
- Division of Clinical Essentials and Simulation, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA
| | - Rafael Rocha Pacheco
- Department of Restorative Sciences, Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Maria Trevelin Souza
- Vitreous Materials Laboratory, Department of Materials Engineering, Center for Research, Education and Technology in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory, Department of Materials Engineering, Center for Research, Education and Technology in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Regina Maria Puppin Rontani
- Department of Health Sciences and Pediatric Dentistry, Pediatric Division, Piracicaba Dental School, UNICAMP, State University of Campinas, Piracicaba 13414-903, Brazil
| |
Collapse
|
8
|
Riaz M, Najam M, Arif S, Farooq S, Mahmood A. The structural, biological and dielectric properties of Sr, Mg and Zn doped silicate ceramics. J Mech Behav Biomed Mater 2023; 142:105830. [PMID: 37040688 DOI: 10.1016/j.jmbbm.2023.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/13/2023]
Abstract
The current work examines the structural and biological characteristics of doped Zn, Mg, and Sr. Na2O-CaO-Si2O-P2O5 silicate ceramics synthesized by the solid state method. The undoped sample showed amorphous behavior after sintering at the 800 OC while doping of SrO, MgO and ZnO induce crystal growth; and a single phase of Parawollastonite (JCPDS# 00-043-1460) was identified in both doped samples. The strontium doped sample showed the highest value of the dielectric as compared to other three samples. The Sr doped sample had higher dielectric value because the size of Sr2+ is greater than Ca+2 so it will possess the higher polarizing power. Conductivity of Zn and Sr doped samples increased with increase in frequency and Mg doped decrease with increase in frequency. Bioactivity test confirmed that doped samples were more bioactive as compared to undoped samples, and Sr doped sample showed superior bioactivity as compared to other samples.
Collapse
Affiliation(s)
- Madeeha Riaz
- Physics Department, Lahore College for Women University, Lahore, Pakistan.
| | - Manahil Najam
- Physics Department, Lahore College for Women University, Lahore, Pakistan
| | - Shafaq Arif
- Physics Department, Lahore College for Women University, Lahore, Pakistan
| | - Shazia Farooq
- Physics Department, Lahore College for Women University, Lahore, Pakistan
| | - Arshad Mahmood
- National Institute of Lasers and Optronics (NILOP), P. O.Nilore, Islamabad, Pakistan
| |
Collapse
|
9
|
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040414. [PMID: 37106601 PMCID: PMC10136039 DOI: 10.3390/bioengineering10040414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Bone defect disease causes damage to people’s lives and property, and how to effectively promote bone regeneration is still a big clinical challenge. Most of the current repair methods focus on filling the defects, which has a poor effect on bone regeneration. Therefore, how to effectively promote bone regeneration while repairing the defects at the same time has become a challenge for clinicians and researchers. Strontium (Sr) is a trace element required by the human body, which mainly exists in human bones. Due to its unique dual properties of promoting the proliferation and differentiation of osteoblasts and inhibiting osteoclast activity, it has attracted extensive research on bone defect repair in recent years. With the deep development of research, the mechanisms of Sr in the process of bone regeneration in the human body have been clarified, and the effects of Sr on osteoblasts, osteoclasts, mesenchymal stem cells (MSCs), and the inflammatory microenvironment in the process of bone regeneration have been widely recognized. Based on the development of technology such as bioengineering, it is possible that Sr can be better loaded onto biomaterials. Even though the clinical application of Sr is currently limited and relevant clinical research still needs to be developed, Sr-composited bone tissue engineering biomaterials have achieved satisfactory results in vitro and in vivo studies. The Sr compound together with biomaterials to promote bone regeneration will be a development direction in the future. This review will present a brief overview of the relevant mechanisms of Sr in the process of bone regeneration and the related latest studies of Sr combined with biomaterials. The aim of this paper is to highlight the potential prospects of Sr functionalized in biomaterials.
Collapse
|
10
|
Wang H, Zheng TX, Yang NY, Li Y, Sun H, Dong W, Feng LF, Deng JP, Qi MC. Osteogenic and long-term antibacterial properties of Sr/Ag-containing TiO 2 microporous coating in vitro and in vivo. J Mater Chem B 2023; 11:2972-2988. [PMID: 36919628 DOI: 10.1039/d2tb01658c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Bacterial infection and poor osseointegration are two critical issues that need to be solved for long-term use of titanium implants. As such, Sr/Ag-containing TiO2 microporous coatings were prepared on a Ti alloy surface in the current study via a single-step microarc oxidation technique. The coatings showed both good cytocompatibility in vitro and biosafety in vivo. Sr/Ag incorporation brought no significant change in the surface micromorphology and physicochemical properties, but endowed the coating with strong osteogenic activity and long-term antibacterial capability in vitro. Furthermore, the osteogenic and antibacterial capability of the coating was also confirmed in vivo. In a rat osseointegration model, new bone formation, implant-bone contact, removal torque and bone mineralization were all significantly increased in the M-Sr/Ag group when compared with those in group M, although they were slightly lower than those in group M-Sr. In a periimplantitis model, no rats suffered infection in the M-Sr/Ag group after 3 months of osseointegration and 5 weeks of bacterial inoculation period, when compared to 100% and 75% infection rates in M and M-Sr groups, respectively. In addition, active bone remodeling and many mesenchymal cells were observed in the M-Sr group, suggesting good bone regeneration potential in Sr-containing coatings in the case of controlled periimplantitis. Overall, the Sr/Ag-containing TiO2 microporous coating is valuable for preventing periimplantitis and improving implant reosseointegration, and is therefore promising for long-term and high quality use of titanium implants.
Collapse
Affiliation(s)
- Huan Wang
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian (063210), Tangshan City, Hebei Province, P. R. China.
| | - Tian-Xia Zheng
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian (063210), Tangshan City, Hebei Province, P. R. China.
| | - Nuo-Ya Yang
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian (063210), Tangshan City, Hebei Province, P. R. China.
| | - Ying Li
- Department of Stomatology, First Hospital of Qinhuangdao, Qinhuangdao City, Hebei Province, China
| | - Hong Sun
- Department of Pathology, College of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Wei Dong
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian (063210), Tangshan City, Hebei Province, P. R. China.
| | - Li-Fang Feng
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian (063210), Tangshan City, Hebei Province, P. R. China.
| | - Jiu-Peng Deng
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian (063210), Tangshan City, Hebei Province, P. R. China.
| | - Meng-Chun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian (063210), Tangshan City, Hebei Province, P. R. China.
| |
Collapse
|
11
|
Panpisut P, Praesuwatsilp N, Bawornworatham P, Naruphontjirakul P, Patntirapong S, Young AM. Assessment of Physical/Mechanical Performance of Dental Resin Sealants Containing Sr-Bioactive Glass Nanoparticles and Calcium Phosphate. Polymers (Basel) 2022; 14:polym14245436. [PMID: 36559804 PMCID: PMC9783923 DOI: 10.3390/polym14245436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to assess the chemical/mechanical properties of ion-releasing dental sealants containing strontium-bioactive glass nanoparticles (Sr-BGNPs) and monocalcium phosphate monohydrate (MCPM). Two experimental sealants, TS1 (10 wt% Sr-BGNPs and 2 wt% MCPM) and TS2 (5 wt% Sr-BGNPs and 4 wt% MCPM), were prepared. Commercial controls were ClinproXT (CP) and BeautiSealant (BT). The monomer conversion (DC) was tested using ATR−FTIR (n = 5). The biaxial flexural strength (BFS) and modulus (BFM) were determined (n = 5) following 24 h and 7 days of immersion in water. The Vickers surface microhardness (SH) after 1 day in acetic acid (conc) versus water was tested (n = 5). The bulk and surface calcium phosphate precipitation in simulated body fluid was examined under SEM-EDX. The ion release at 4 weeks was analyzed using ICP-MS (n = 5). The DC after 40 s of light exposure of TS1 (43%) and TS2 (46%) was significantly lower than that of CP (58%) and BT (61%) (p < 0.05). The average BFS of TS1 (103 MPa), TS2 (123 MPa), and BT (94 MPa) were lower than that of CP (173 MPa). The average BFM and SH of TS1 (2.2 GPa, 19 VHN) and TS2 (2.0 GPa, 16 VHN) were higher than that of CP (1.6 GPa, 11 VHN) and BT (1.3 GPa, 12 VHN). TS1 showed higher Ca, P, and Sr release than TS2. Bulk calcium phosphate precipitation was detected on TS1 and TS2 suggesting some ion exchange. In conclusion, the DC of experimental sealants was lower than that of commercial materials, but their mechanical properties were within the acceptable ranges. The released ions may support remineralizing actions.
Collapse
Affiliation(s)
- Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| | | | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Somying Patntirapong
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| | - Anne M. Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
12
|
Dai LL, Mei ML, Chu CH, Lo ECM. Effect of strontium-doped bioactive glass-ceramic containing toothpaste on prevention of artificial dentine caries formation: an in vitro study. BMC Oral Health 2022; 22:288. [PMID: 35842639 PMCID: PMC9287712 DOI: 10.1186/s12903-022-02321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Backgroud Root caries in aging population was prevalent worldwide. Due to the absence of enamel and specific structure of dentine, bacteria are able to penetrate further into dentine at an earlier stage of lesion development. The aim of this study was to investigate the effect of adding of a strontium-doped bioactive glass-ceramic (HX-BGC) to a fluoride-free toothpaste on prevention of formation of artificial dentine caries. Methods Thirty-six human tooth specimens were allocated to three groups (n = 12 per group). Group 1 treated with slurry containing a fluoride-free toothpaste and 5% HX-BGC, Group 2 was treated with fluoride-free toothpaste slurry, and Group 3 received deionized water as a negative control. The specimens were subjected to four cycles (15 h demineralization and 8 h remineralization for one cycle) of biochemical cycling. A mixed suspension of five bacteria species (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Actinomyces naeslundii) were prepared in brain heart infusion broth with 5% sucrose and used as acidic challenge in biochemical cycling. Subsequently, surface morphology of the dentine lesion was assessed by scanning electron microscopy, while the lesion depths and mineral loss were assessed by micro-computed tomography. Results The mean lesion depths in dentine in Groups 1 to 3 were 87.79 ± 16.99 μm, 101.06 ± 10.04 μm and 113.60 ± 16.36 μm, respectively (p = 0.002). The mean amounts of mineral loss in Groups 1 to 3 were 0.82 ± 0.10 g/cm3, 0.89 ± 0.09 g/cm3 and 0.96 ± 0.11 g/cm3, respectively (p = 0.016). No obvious differences in the surface morphology were seen among the groups. Conclusion Addition of strontium-doped bioactive glass-ceramic to fluoride-free toothpaste has potential to reduce formation of dentine lesions.
Collapse
Affiliation(s)
- Lin Lu Dai
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Edward Chin Man Lo
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
| |
Collapse
|
13
|
Li C, Yan T, Lou Z, Jiang Z, Shi Z, Chen Q, Gong Z, Wang B. Characterization and in vitro assessment of three-dimensional extrusion Mg-Sr codoped SiO 2-complexed porous microhydroxyapatite whisker scaffolds for biomedical engineering. Biomed Eng Online 2021; 20:116. [PMID: 34819108 PMCID: PMC8611959 DOI: 10.1186/s12938-021-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large bone defects have always been a great challenge for orthopedic surgeons. The use of a good bone substitute obtained by bone tissue engineering (BTE) may be an effective treatment method. Artificial hydroxyapatite, a commonly used bone defect filler, is the main inorganic component of bones. Because of its high brittleness, fragility, and lack of osteogenic active elements, its application is limited. Therefore, its fragility should be reduced, its osteogenic activity should be improved, and a more suitable scaffold should be constructed. METHODS In this study, a microhydroxyapatite whisker (mHAw) was developed, which was doped with the essential trace active elements Mg2+ and Sr2+ through a low-temperature sintering technique. After being formulated into a slurry, a bionic porous scaffold was manufactured by extrusion molding and freeze drying, and then SiO2 was used to improve the mechanical properties of the scaffold. The hydrophilicity, pore size, surface morphology, surface roughness, mechanical properties, and release rate of the osteogenic elements of the prepared scaffold were detected and analyzed. In in vitro experiments, Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (rBMSCs) were cultured on the scaffold to evaluate cytotoxicity, cell proliferation, spreading, and osteogenic differentiation. RESULTS Four types of scaffolds were obtained: mHAw-SiO2 (SHA), Mg-doped mHAw-SiO2 (SMHA), Sr-doped mHAw-SiO2 (SSHA), and Mg-Sr codoped mHAw-SiO2 (SMSHA). SHA was the most hydrophilic (WCA 5°), while SMHA was the least (WCA 8°); SMHA had the smallest pore size (247.40 ± 23.66 μm), while SSHA had the largest (286.20 ± 19.04 μm); SHA had the smallest Young's modulus (122.43 ± 28.79 MPa), while SSHA had the largest (188.44 ± 47.89 MPa); and SHA had the smallest compressive strength (1.72 ± 0.29 MPa), while SMHA had the largest (2.47 ± 0.25 MPa). The osteogenic active elements Si, Mg, and Sr were evenly distributed and could be sustainably released from the scaffolds. None of the scaffolds had cytotoxicity. SMSHA had the highest supporting cell proliferation and spreading rate, and its ability to promote osteogenic differentiation of rBMSCs was also the strongest. CONCLUSIONS These composite porous scaffolds not only have acceptable physical and chemical properties suitable for BTE but also have higher osteogenic bioactivity and can possibly serve as potential bone repair materials.
Collapse
Affiliation(s)
- Chengyong Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhenkai Lou
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Zhimin Jiang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhi Shi
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Qinghua Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhiqiang Gong
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Bing Wang
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
14
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
15
|
Chang LC, Chung CY, Chiu CH, Lin MHC, Yang JT. The Effect of Polybutylcyanoacrylate Nanoparticles as a Protos Delivery Vehicle on Dental Bone Formation. Int J Mol Sci 2021; 22:4873. [PMID: 34062952 PMCID: PMC8125394 DOI: 10.3390/ijms22094873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dental implants are commonly used for missing teeth, for which success depends heavily on the quality of the alveolar bone. The creation of an ideal implant site is a key component in shortening the treatment time, which remains clinically challenging. Strontium ranelate (Protos) is an anti-osteoporotic agent which has previously been used to promote bone formation, however the systemic use of Protos has been linked to serious cardiovascular and venous thromboembolic events, thus local delivery strategies may be better suited for this purpose. In this study, a biodegradable, and biocompatible nanocarrier "polybutylcyanoacrylate" (PBCA) loaded with strontium was constructed and its ability to promote bone formation was assessed. METHODOLOGY PBCA nanoparticles loaded with strontium (PBCA-Sr NPs) were synthesized using the emulsion polymerization method, and their physical properties (zeta potential, size and shape) and entrapment efficiency were characterized. Committed MSCs (osteoblasts) were derived from the differentiation of cultured rat mesenchymal stem cells (MSC), which were tested with the PBCA-Sr NPs for cytotoxicity, inflammatory response, bone formation and mineralization. Scanning electron microscopy was performed following a 7-day treatment of PBCA-Sr NPs on decellularized procaine mandibular bone blocks grafted with osteoblasts. RESULTS Spherical PBCA-Sr NPs of 166.7 ± 2.3 nm, zeta potential of -1.15 ± 0.28 mV with a strontium loading efficiency of 90.04 ± 3.27% were constructed. The presence of strontium was confirmed by energy-dispersive X-ray spectroscopy. Rat committed MSCs incubated in PBCA-Sr NPs for 24 hrs showed viabilities in excess of 90% for concentrations of up to 250 ug/mL, the cellular expression of osteocalcin and alkaline phosphatase were 1.4 and 1.3 times higher than the untreated control, and significantly higher than those treated with strontium alone. Bone formation was evident following osteoblast engraftment on the decellularized procaine mandibular bone block with PBCA-Sr NPs, which appeared superior to those treated with strontium alone. CONCLUSION Treatment of committed MSCs with PBCA-Sr NPs showed higher expression of markers of bone formation when compared with strontium alone and which corresponded to greater degree of bone formation observed on the 3-dimensinal decellularized procaine mandibular bone block. Further quantitative analysis on the extent of new bone formation is warranted.
Collapse
Affiliation(s)
- Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi Branch, 6, Sec. West, Chai-Pu Road, Pu-Tz City, Chia-Yi 61363, Taiwan;
| | - Chun-Hui Chiu
- Graduate Institute of Health-Industry Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan;
- Department of Traditional Chinese Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi Branch, 6, Sec. West, Chai-Pu Road, Pu-Tz City, Chia-Yi 61363, Taiwan;
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi Branch, 6, Sec. West, Chai-Pu Road, Pu-Tz City, Chia-Yi 61363, Taiwan;
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| |
Collapse
|
16
|
Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep 2021; 11:8745. [PMID: 33888790 PMCID: PMC8062523 DOI: 10.1038/s41598-021-88058-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Bioactive glasses (BGs) have attracted added attention in the structure of the scaffolds for bone repair applications. Different metal ions could be doped in BGs to induce specific biological responses. Among these ions, strontium (Sr) is considered as an effective and safe doping element with promising effects on bone formation and regeneration. In this experiment, we evaluated the antibacterial activities of the gelatin-BG (Gel-BG) and Gel-BG/Sr scaffolds in vitro. The osteogenic properties of the prepared scaffolds were also assessed in rabbit calvarial bone defects for 12 weeks. Both scaffolds showed in vivo bone formation during 12 weeks with the newly formed bone area in Gel-BG/Sr scaffold was higher than that in Gel-BG scaffolds after the whole period. Based on the histological results, Gel-BG/Sr exhibited acceleration of early-stage bone formation in vivo. The results of antibacterial investigation for both scaffolds showed complete growth inhibition against Escherichia coli (E. coli). Although Gel-BG revealed no antibacterial effect on Staphylococcus aureus (S. aureus), the Gel-BG/Sr was able to partially inhibit the growth of S. aureus, as detected by threefold reduction in growth index. Our results confirmed that Sr doped BG is a favorable candidate for bone tissue engineering with superior antibacterial activity and bone regeneration capacity compared with similar counterparts having no Sr ion.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Eyni
- Department of Anatomical Sciences, Faculty of Medical sceinces, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Raziyeh Najafloo
- Department of Bio-Informatics, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Bhat A, Cvach N, Mizuno C, Ahn C, Zhu Q, Primus C, Komabayashi T. Ion Release From Prototype Surface Pre-Reacted Glass Ionomer (S-PRG) Sealer and EndoSequence BC Sealer. Eur Endod J 2021; 6:122-127. [PMID: 33762532 PMCID: PMC8056809 DOI: 10.14744/eej.2020.50470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Bioactive ions, when incorporated in an endodontic sealer, can contribute to the long-term success of endodontic therapy by combating the re-infection of a tooth and promoting the healing of the periapical bone. The objective of this study was to measure the release of boron, strontium, and silicon ions from surface pre-reacted glass ionomer (S-PRG) filler containing prototype endodontic sealer over a sustained period in comparison to EndoSequence BC sealer in a simulated clinical model using extracted human teeth in vitro. METHODS Twelve extracted human anterior teeth were instrumented using ProTaper Next (Dentsply Sirona, Johnson City, TN, USA) files up to size X3 (#30/variable taper) with copious 2.5% NaOCl irrigation. Teeth were obturated using a single-cone technique with a matching size tapered gutta-percha point and one of two endodontic sealers: prototype S-PRG (Shofu Inc., Kyoto, Japan) or EndoSequence BC (Brasseler, Savannah, GA, USA). The teeth were soaked in phosphate-buffered saline (PBS) solution for 336 hours. Periodically, 1-mL samples of the PBS were analyzed via an inductively coupled plasma mass spectrometer to determine the concentrations of ions released by the sealers. RESULTS The average (S.D.) cumulative release (ng/ml) of boron, silicon, and strontium ions over 2 weeks for the prototype S-PRG sealer was 8614.9 (1264.3), 35758.9 (5986.5), and 3965.2 (145.6), and for EndoSequence BC sealer was 1860.5 (82.7), 164648.7 (16468.1), and 227.7 (4.7). Generalized linear mixed model analysis showed significant differences in ion concentration among boron, silicon, and strontium over time between the two sealer groups (Boron: P<0.0001, Silicon: P=0.010, Strontium: P=0.028). Of the three ions, strontium had the lowest amount of release for both sealers. The prototype S-PRG sealer showed a rapid initial burst followed by a slow, continuous release of strontium ions. CONCLUSION The prototype S-PRG sealer released boron and strontium ions in higher cumulative concentrations over 2 weeks compared to the EndoSequence BC sealer. Both the prototype S-PRG and EndoSequence BC sealers released silicon ions, although significantly more were eluted from the EndoSequence BC sealer. Antimicrobial and osteogenic ion release from sealers is expected to positively influence the post-treatment control of microbial infections to improve periapical healing.
Collapse
Affiliation(s)
- Aparna Bhat
- From the University of New England College of Dental Medicine, Portland, ME, USA
| | - Nicholas Cvach
- From the University of New England College of Dental Medicine, Portland, ME, USA
| | - Cassia Mizuno
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, ME, USA
| | - Chul Ahn
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiang Zhu
- Division of Endodontology, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Carolyn Primus
- Augusta University Dental College of Georgia, Augusta, GA, USA
| | - Takashi Komabayashi
- From the University of New England College of Dental Medicine, Portland, ME, USA
| |
Collapse
|
18
|
O' Sullivan C, O' Neill L, O' Leary ND, O' Gara JP, Crean AM, Ryan KB. Osteointegration, antimicrobial and antibiofilm activity of orthopaedic titanium surfaces coated with silver and strontium-doped hydroxyapatite using a novel blasting process. Drug Deliv Transl Res 2021; 11:702-716. [PMID: 33713316 DOI: 10.1007/s13346-021-00946-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 01/18/2023]
Abstract
Poor integration of orthopaedic devices with the host tissue owing to aseptic loosening and device-associated infections are two of the leading causes of implant failure, which represents a significant problem for both patients and the healthcare system. Novel strategies have focused on silver to combat antimicrobial infections as an alternative to drug therapeutics. In this study, we investigated the impact of increasing the % substitution (12% wt) of silver and strontium in hydroxyapatite (HA) coatings to enhance antimicrobial properties and stimulate osteoblasts, respectively. Additionally, we prepared a binary substituted coating containing both silver and strontium (AgSrA) at 12% wt as a comparison. All coatings were deposited using a novel blasting process, CoBlast, onto biomedical grade titanium (V). Surface physicochemical properties, cytocompatibility and antimicrobial functionality were determined. The anticolonising properties of the coatings were screened using Staphylococcus aureus ATCC 1448, and thereafter, the AgA coating was evaluated using clinically relevant strains. Strontium-doped surfaces demonstrated enhanced osteoblast viability; however, a lower inhibition of biofilm formation was observed compared with the other surfaces. A co-substituted AgSrA surface did not show enhanced osteoblast or anticolonising properties compared with the SrA and AgA surfaces, respectively. Due to its superior anticolonising performance in preliminary studies, AgA was chosen for further studies. The AgA coated surfaces demonstrated good antibacterial activity (eluted and immobilised ion) against methicillin-resistant S. aureus followed by methicillin-sensitive Staphylococcus aureus clinical isolates; however, the AgA surface displayed poor impact against Staphylococcus epidermidis. In conclusion, herein, we demonstrate that HA can be substituted with a range of ions to augment the properties of HA coatings on orthopaedic devices, which offer promising potential to combat orthopaedic device-associated infections and enhance device performance.
Collapse
Affiliation(s)
- Caroline O' Sullivan
- Department of Process, Energy and Transport Engineering, Munster Technological University, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Liam O' Neill
- TheraDep, Questum Innovation Centre, Co. Tipperary, Ireland
| | - Niall D O' Leary
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - James P O' Gara
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Abina M Crean
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
19
|
Antimicrobial Potential of Strontium Hydroxide on Bacteria Associated with Peri-Implantitis. Antibiotics (Basel) 2021; 10:antibiotics10020150. [PMID: 33546189 PMCID: PMC7913193 DOI: 10.3390/antibiotics10020150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Peri-implantitis due to infection of dental implants is a common complication that may cause significant patient morbidity. In this study, we investigated the antimicrobial potential of Sr(OH)2 against different bacteria associated with peri-implantitis. Methods: The antimicrobial potential of five concentrations of Sr(OH)2 (100, 10, 1, 0.1, and 0.01 mM) was assessed with agar diffusion test, minimal inhibitory concentration (MIC), and biofilm viability assays against six bacteria commonly associated with biomaterial infections: Streptococcus mitis, Staphylococcus epidermidis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Escherichia coli, and Fusobacterium nucleatum. Results: Zones of inhibition were only observed for, 0.01, 0.1, and 1 mM of Sr(OH)2 tested against P. gingivalis, in the agar diffusion test. Growth inhibition in planktonic cultures was achieved at 10 mM for all species tested (p < 0.001). In biofilm viability assay, 10 and 100 mM Sr(OH)2 showed potent bactericidal affect against S. mitis, S. epidermidis, A. actinomycetemcomitans, E. coli, and P. gingivalis. Conclusions: The findings of this study indicate that Sr(OH)2 has antimicrobial properties against bacteria associated with peri-implantitis.
Collapse
|
20
|
Xiong B, Shirai K, Matsumoto K, Abiko Y, Furuichi Y. The potential of a surface pre-reacted glass root canal dressing for treating apical periodontitis in rats. Int Endod J 2020; 54:255-267. [PMID: 32961600 DOI: 10.1111/iej.13414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
AIM To evaluate the efficacy of a prototype root canal dressing containing surface pre-reacted glass-ionomer (S-PRG) fillers on repairing induced periapical lesions in a rat model. Calcium hydroxide [Ca(OH)2 ] was applied as a comparison in the healing process. METHODOLOGY The pulp chambers of the maxillary first molars in 64 male Wistar rats aged 16 weeks were opened to induce periapical lesions. After 28 days, the mesial canal of each tooth was prepared, irrigated with 2.5% sodium hypochlorite only (control group: irrigation) or followed by the respective dressing [Ca(OH)2 group, irrigation + Ca(OH)2 ; S-PRG group, irrigation + S-PRG] and restored with composite resin for 3 or 7 days (10/group). Four rats with healthy molars were used as blank controls. Descriptive analysis of the periapical radiographs, haematoxylin and eosin staining and immunohistochemical observation was performed 3 and 7 days after treatment. The periapical grey value, CD68 macrophages and osteoclasts (cathepsin-K) were quantified and statistically analysed with Tukey's honest significant difference test. A significant difference was achieved when P values were <0.05. RESULTS S-PRG and Ca(OH)2 dressings were associated with increased periapical grey values and inhibited osteoclast activity at 3 and 7 days; a significant difference in radiographic results and the number of osteoclasts was obtained at 3 and 7 days compared with the control group (P < 0.05). Reparative tissue was observed histologically in the space of the periapical resorbed necrotic area after S-PRG and Ca(OH)2 treatment for 3 and 7 days. The number of macrophages was significantly decreased at 3 and 7 days in the S-PRG and Ca(OH)2 specimens when compared with the controls (P < 0.05). CONCLUSIONS In a rat experimental model, the S-PRG root canal dressing was comparable to Ca(OH)2 in promoting the healing of experimentally induced periapical lesions. S-PRG paste has the potential to be used as an alternative intracanal dressing in teeth with apical periodontitis.
Collapse
Affiliation(s)
- B Xiong
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - K Shirai
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - K Matsumoto
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Y Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Y Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
21
|
Mosqueira L, Barrioni BR, Martins T, Ocarino NDM, Serakides R, Pereira MDM. In vitro effects of the co-release of icariin and strontium from bioactive glass submicron spheres on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells. ACTA ACUST UNITED AC 2020; 15:055023. [PMID: 32375130 DOI: 10.1088/1748-605x/ab9095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a metabolic disease that affects bone tissue and is highly associated with bone fractures. Typical osteoporosis fracture treatments, such as bisphosphonates and hormone replacement, present important challenges because of their low bioavailability on the site of action. Options to overcome this issue are systems for the local release of therapeutic agents such as bioactive glasses containing therapeutic molecules and ions. These agents are released during the dissolution process, combining the drugs and ion therapeutic effects for osteoporosis treatment. Among the therapeutic agents that can be applied for bone repair are strontium (Sr) ion and phytopharmaceutical icariin, which have shown potential to promote healthy bone marrow stem cells osteogenic differentiation, increase bone formation and prevent bone loss. Submicron Sr-containing bioactive glass mesoporous spheres with sustained ion release capacity were obtained. Icariin was successfully incorporated into the particles, and the glass composition influenced the icariin incorporation efficiency and release rates. In this work, for the first time, Sr and icariin were incorporated into bioactive glass submicron mesoporous spheres and the in vitro effects of the therapeutic agents release were evaluated on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells, and results showed an improvement on the reduced differentiation potential.
Collapse
Affiliation(s)
- Layla Mosqueira
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Trojani MC, Lamy B, Ruimy R, Amoretti N, Risso K, Roux C. An unusual Staphylococcus saccharolyticus spondylodiscitis post kyphoplasty: a case report. BMC Infect Dis 2020; 20:539. [PMID: 32703263 PMCID: PMC7379344 DOI: 10.1186/s12879-020-05263-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background Staphylococcus saccharolyticus is a rarely encountered coagulase-negative, which grows slowly and its strictly anaerobic staphylococcus from the skin. It is usually considered a contaminant, but some rare reports have described deep-seated infections. Virulence factors remain poorly known, although, genomic analysis highlights pathogenic potential. Case presentation We report a case of Staphylococcus saccharolyticus spondylodiscitis that followed kyphoplasty, a procedure associated with a low rate but possible severe infectious complication (0.46%), and have reviewed the literature. This case specifically stresses the risk of healthcare-associated S. saccharolyticus infection in high-risk patients (those with a history of alcoholism and heavy smoking). Conclusion S. saccharolyticus infection is difficult to diagnose due to microbiological characteristics of this bacterium; it requires timely treatment, and improved infection control procedure should be encouraged for high-risk patients.
Collapse
Affiliation(s)
| | - Brigitte Lamy
- Laboratoire de Bactériologie, Hôpital L'archet 2, CHU de Nice, Nice, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 6, Nice, France.,Faculté de Médecine, Université Côte d'Azur, Nice, France
| | - Raymond Ruimy
- Laboratoire de Bactériologie, Hôpital L'archet 2, CHU de Nice, Nice, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 6, Nice, France.,Faculté de Médecine, Université Côte d'Azur, Nice, France
| | - Nicolas Amoretti
- Département de Radiologie, Université Cote d'Azur, CHU de Nice, Nice, France
| | - Karine Risso
- Service d'infectiologie, Université Nice Côte d'Azur, CHU de Nice, Nice, France
| | - Christian Roux
- Département de Rhumatologie, Université Cote d'Azur, LAHMESS EA6309, CNRS, iBV UMR 7277, CHU de Nice, Nice, France
| |
Collapse
|
23
|
Moghanian A, Portillo-Lara R, Shirzaei Sani E, Konisky H, Bassir SH, Annabi N. Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med 2020; 14:66-81. [PMID: 31850689 PMCID: PMC6992487 DOI: 10.1002/term.2964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/07/2022]
Abstract
Orthopedic surgical procedures based on the use of conventional biological graft tissues are often associated with serious post-operative complications such as immune rejection, bacterial infection, and poor osseointegration. Bioresorbable bone graft substitutes have emerged as attractive alternatives to conventional strategies because they can mimic the composition and mechanical properties of the native bone. Among these, bioactive glasses (BGs) hold great potential to be used as biomaterials for bone tissue engineering owing to their biomimetic composition and high biocompatibility and osteoinductivity. Here, we report the development of a novel composite biomaterial for bone tissue engineering based on the incorporation of a modified strontium- and lithium-doped 58S BG (i.e., BG-5/5) into gelatin methacryloyl (GelMA) hydrogels. We characterized the physicochemical properties of the BG formulation via different analytical techniques. Composite hydrogels were then prepared by directly adding BG-5/5 to the GelMA hydrogel precursor, followed by photocrosslinking of the polymeric network via visible light. We characterized the physical, mechanical, and adhesive properties of GelMA/BG-5/5 composites, as well as their in vitro cytocompatibility and osteoinductivity. In addition, we evaluated the antimicrobial properties of these composites in vitro, using a strain of methicillin-resistant Staphylococcus Aureus. GelMA/BG-5/5 composites combined the functional characteristics of the inorganic BG component, with the biocompatibility, biodegradability, and biomimetic composition of the hydrogel network. This novel biomaterial could be used for developing osteoinductive scaffolds or implant surface coatings with intrinsic antimicrobial properties and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Mexico
| | - Ehsan Shirzaei Sani
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
| | - Hailey Konisky
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Seyed Hossein Bassir
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Mandakhbayar N, El-Fiqi A, Lee JH, Kim HW. Evaluation of Strontium-Doped Nanobioactive Glass Cement for Dentin–Pulp Complex Regeneration Therapy. ACS Biomater Sci Eng 2019; 5:6117-6126. [DOI: 10.1021/acsbiomaterials.9b01018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nandin Mandakhbayar
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Ahmed El-Fiqi
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- Glass Research Department, National Research Centre, Cairo 12622, Egypt
| | - Jung-Hwan Lee
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- Glass Research Department, National Research Centre, Cairo 12622, Egypt
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
25
|
Moheet IA, Luddin N, Rahman IA, Kannan TP, Nik Abd Ghani NR, Masudi SM. Modifications of Glass Ionomer Cement Powder by Addition of Recently Fabricated Nano-Fillers and Their Effect on the Properties: A Review. Eur J Dent 2019; 13:470-477. [PMID: 31280484 PMCID: PMC6890502 DOI: 10.1055/s-0039-1693524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of this article is to provide a brief insight regarding the recent studies and their recommendations related to the modifications to glass ionomer cement (GIC) powder in order to improve their properties. An electronic search of publications was made from the year 2000 to 2018. The databases included in the current study were EBSCOhost, PubMed, and ScienceDirect. The inclusion criteria for the current study include publication with abstract or full-text articles, original research, reviews or systematic reviews, in vitro, and in vivo studies that were written in English language. Among these only articles published in peer-reviewed journals were included. Articles published in other languages, with no available abstract and related to other nondentistry fields, were excluded. A detailed review of the recent materials used as a filler phase in GIC powder has revealed that not all modifications produce beneficial results. Recent work has demonstrated that modification of GIC powder with nano-particles has many beneficial effects on the properties of the material. This is due to the increase in surface area and surface energy, along with better particle distribution of the nano-particle. Therefore, more focus should be given on nano-particle having greater chemical affinity for GIC matrix as well as the tooth structure that will enhance the physicochemical properties of GIC.
Collapse
Affiliation(s)
- Imran Alam Moheet
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhayati Luddin
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ismail Ab Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | | | - Saman Malik Masudi
- Department of Restorative Dentistry, Lincoln University College, Selangor, Malaysia
| |
Collapse
|
26
|
Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front Bioeng Biotechnol 2019; 7:161. [PMID: 31334228 PMCID: PMC6625228 DOI: 10.3389/fbioe.2019.00161] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Improving and accelerating bone repair still are partially unmet needs in bone regenerative therapies. In this regard, strontium (Sr)-containing bioactive glasses (BGs) are highly-promising materials to tackle this challenge. The positive impacts of Sr on the osteogenesis makes it routinely used in the form of strontium ranelate (SR) in the clinical setting, especially for patients suffering from osteoporosis. Therefore, a large number of silicate-, borate-, and phosphate-based BGs doped with Sr and produced in different shapes have been developed and characterized, in order to be used in the most advanced therapeutic strategies designed for the management of bone defects and injuries. Although the influence of Sr incorporation in the glass is debated regarding the obtained physicochemical and mechanical properties, the biological improvements have been found to be substantial both in vitro and in vivo. In the present study, we provide a comprehensive overview of Sr-containing glasses along with the current state of their clinical use. For this purpose, different types of Sr-doped BG systems are described, including composites, coatings and porous scaffolds, and their applications are discussed in the light of existing experimental data along with the significant challenges ahead.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Montazerian
- Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, Brazil
| | - Elisa Fiume
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| |
Collapse
|
27
|
Rahmati M, Mozafari M. Selective Contribution of Bioactive Glasses to Molecular and Cellular Pathways. ACS Biomater Sci Eng 2019; 6:4-20. [PMID: 33463236 DOI: 10.1021/acsbiomaterials.8b01078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past few decades, biomedical scientists and surgeons have given substantial attention to bioactive glasses as promising, long-lasting biomaterials that can make chemical connections with the neighboring hard and soft tissues. Several studies have examined the cellular and molecular responses to bioactive glasses to determine if they are suitable biomaterials for tissue engineering and regenerative medicine. In this regard, different ions and additives have been used recently to induce specific characteristics for selective cellular and molecular responses. This Review briefly describes foreign-body response mechanisms and the role of adsorbed proteins as the key players in starting interactions between cells and biomaterials. It then explains the physicochemical properties of the most common bioactive glasses, which have a significant impact on their cellular and molecular responses. It is expected that, with the development of novel strategies, the physiochemical properties of bioactive glasses can be engineered to precisely control proteins' adsorption and cellular functions after implantation.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 144961-4535, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 144961-4535 Tehran, Iran
| |
Collapse
|
28
|
Lee S, Matsugaki A, Kasuga T, Nakano T. Development of bifunctional oriented bioactive glass/poly(lactic acid) composite scaffolds to control osteoblast alignment and proliferation. J Biomed Mater Res A 2019; 107:1031-1041. [PMID: 30675975 PMCID: PMC6593822 DOI: 10.1002/jbm.a.36619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 11/06/2018] [Indexed: 01/27/2023]
Abstract
During the bone regeneration process, the anisotropic microstructure of bone tissue (bone quality) recovers much later than bone mass (bone quantity), resulting in severe mechanical dysfunction in the bone. Hence, restoration of bone microstructure in parallel with bone mass is necessary for ideal bone tissue regeneration; for this, development of advanced bifunctional biomaterials, which control both the quality and quantity in regenerated bone, is required. We developed novel oriented bioactive glass/poly(lactic acid) composite scaffolds by introducing an effective methodology for controlling cell alignment and proliferation, which play important roles for achieving bone anisotropy and bone mass, respectively. Our strategy is to manipulate the cell alignment and proliferation by the morphological control of the scaffolds in combination with controlled ion release from bioactive glasses. We quantitatively controlled the morphology of fibermats containing bioactive glasses by electrospinning, which successfully induced cell alignment along the fibermats. Also, the substitution of CaO in Bioglass®(45S5) with MgO and SrO improved osteoblast proliferation, indicating that dissolved Mg2+ and Sr2+ ions promoted cell adhesion and proliferation. Our results indicate that the fibermats developed in this work are candidates for the scaffolds to bone tissue regeneration that enable recovery of both bone quality and bone quantity. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1031–1041, 2019.
Collapse
Affiliation(s)
- Sungho Lee
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Toshihiro Kasuga
- Division of Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Durgalakshmi D, Ajay Rakkesh R, Kesavan M, Ganapathy S, Ajithkumar TG, Karthikeyan S, Balakumar S. Highly reactive crystalline-phase-embedded strontium-bioactive nanorods for multimodal bioactive applications. Biomater Sci 2018; 6:1764-1776. [PMID: 29808842 DOI: 10.1039/c8bm00362a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present work, a crystallization-induced strontium-bioactive material, with a composition similar to Bioglass 45S5 system, was obtained using a sol-gel-assisted microwave method with nanorod morphologies of 30-80 nm in size. The effect of crystallization induced in the glass network, and its influence on the bioactivity and mechanical properties of bone and dentin regeneration, were the main novel findings of this work. Rietveld analysis of X-ray diffraction spectra showed the best fit with sodium (combeite, Na2Ca2Si3O9) and calcium (clinophosinaite, Ca2Na6O14P2Si2; calcium strontium silicate, Ca1.5O4SiSr0.5; and calcium carbonate, CaCO3) enriched crystal systems. Multinuclear solid-state NMR studies provided detailed atomistic insight into the presence of crystalline mineral phases in the bioactive material. The dentin matrix and antibacterial studies showed good results for 5% strontium-substituted calcium compared with basic 45S5 composition due to its smaller particle size (30 nm), which suggested applications to dentin regeneration. Simulation studies have been demonstrated with clinophosinaite crystal data from the XRD spectra, with the glycoprotein salivary metabolites also showing that 5% strontium-substituted calcium has a higher binding affinity for the salivary compound, which is suitable for dentin regeneration applications. In vitro apatite formation studies showed that this material is suitable for bone regeneration applications.
Collapse
Affiliation(s)
- D Durgalakshmi
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bizelli-Silveira C, Pullisaar H, Abildtrup LA, Andersen OZ, Spin-Neto R, Foss M, Kraft DCE. Strontium enhances proliferation and osteogenic behavior of periodontal ligament cells in vitro. J Periodontal Res 2018; 53:1020-1028. [PMID: 30207394 DOI: 10.1111/jre.12601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Strontium (Sr) enhances osteogenic differentiation of certain multipotent cells. Periodontal ligament cells (PDLCs) are known to be multipotent, and Sr might be useful in periodontal bone tissue engineering. This study investigates the effect of high concentration of Sr on the proliferation and osteogenic behavior of PDLCs in vitro. MATERIAL AND METHODS Primary human PDLCs were cultured in MEM + 10% FBS without (Ctrl) or with Sr in four diverse concentrations: Sr1, 11.3 × 10-3 mg/L, human serum physiological level; Sr2, 13 mg/L, typical human serum level after strontium ranelate treatment; Sr3, 130 mg/L, and Sr4, 360 mg/L. The spreading area (2, 4, 6, 24 hours), proliferation rate (1, 3, 7 days), osteogenic behavior (alkaline phosphatase - ALP activity, 7 and 14 days; expression of osteogenic genes, ALP, Runt-related transcription factor 2 - RUNX2, osteopontin - OPN, osteocalcin - OCN, and osteoprotegerin -OPG, 1, 3, 7, 14, 21 days), and formation of mineralized nodules (14 and 21 days) of the PDLCs were assessed. Data were compared group- and period-wise using ANOVA tests. RESULTS Periodontal ligament cells cultured with Sr4 showed increased spreading area (after 4 hours), proliferation rate (from 3 days), and OCN and OPN (from 7 days) gene expression as compared to Ctrl, Sr1, Sr2, and Sr3. Sr4 also led to lower ALP activity (from 7 days), ALP (from 3 days), and RUNX2 (at 7 and 14 days) gene expression, together with more evident formation of mineralized nodules, compared to Ctrl, Sr1, Sr2, and Sr3. CONCLUSION Periodontal ligament cells responded to Sr4 with increased cellular proliferation and osteogenic behavior in vitro.
Collapse
Affiliation(s)
- Carolina Bizelli-Silveira
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Helen Pullisaar
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Lisbeth A Abildtrup
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ole Z Andersen
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Morten Foss
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - David C E Kraft
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
New Insight into Mixing Fluoride and Chloride in Bioactive Silicate Glasses. Sci Rep 2018; 8:1316. [PMID: 29358590 PMCID: PMC5778077 DOI: 10.1038/s41598-018-19544-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/21/2017] [Indexed: 11/18/2022] Open
Abstract
Adding fluoride into bioactive glasses leads to fluorapatite formation and a decrease in glass transition temperature. Recently, chloride has been introduced into glasses as an alternative to fluoride. The presence of the large chloride ion lowers glass crystallisation tendency and increases glass molar volume, which effectively facilitates glass degradation and bone-bonding apatite-like layer formation. However, there is no information regarding the effect of mixing fluoride and chloride on the glass structure and properties. This study aims to synthesize mixed fluoride and chloride containing bioactive glasses; investigate the structural role of fluoride and chloride and their effects on glass properties. The chloride content measurements reveal that 77–90% of chloride was retained in these Q2 type glasses. Glass transition temperature reduced markedly with an increase in CaX2 (X = F + Cl) content, while the glass molar volume increased. 29Si MAS-NMR results show that the incorporation of mixed fluoride and chloride did not cause significant change in the polymerization of the silicate network and no detectable concentration of Si-F/Cl bands were present. This agrees with 19F NMR spectra showing that F existed as F-Ca(n) species.
Collapse
|
32
|
Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater 2017; 59:2-11. [PMID: 28676434 DOI: 10.1016/j.actbio.2017.06.046] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023]
Abstract
Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag+, Cu+, and Sr2+, are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. STATEMENT OF SIGNIFICANCE In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic, craniofacial and dental surgery.
Collapse
|
33
|
Jayasree R, Kumar TSS, Mahalaxmi S, Abburi S, Rubaiya Y, Doble M. Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:95. [PMID: 28502026 DOI: 10.1007/s10856-017-5903-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Dental caries is an infection of the mineralized tooth structures that advances when acid secreted by bacterial action on dietary carbohydrates diffuses and dissolves the tooth mineral leading to demineralization. During treatment, clinicians often remove only the superficial infected tooth structures and retain a part of affected carious dentin to prevent excessive dentin loss and pulp exposure. Calcium hydroxide is used to treat the affected dentin because it is alkaline, induces pulp-dentin remineralization and decreases bacterial infection. Presence of strontium ions has also been reported to exhibit anticariogenic activity, and promote enamel and dentin remineralization. The objective of the present study was to develop novel hydroxyapatite cement from tetracalcium phosphate which gradually releases hydroxyl and strontium ions to exhibit antibacterial activity. Its potential to remineralize the dentin sections collected from extracted human molar tooth was studied in detail. The pH of all the experimental cements exhibited a gradual increase to ~10.5 in 10 days with 10% strontium substituted tetracalcium phosphate cement (10SC) showing the highest pH value which was sustained for 6 weeks. 10SC showed better antibacterial property against S. aureus and E. coli at the end of 1 week compared to other cements studied. It also exhibited the highest radiopacity equivalent to 4.8 mm of Al standard. 10SC treated dentin section showed better remineralization ability and highest elastic modulus. We can conclude that the hydroxyl and strontium ions releasing tetracalcium phosphate cement exhibits good antibacterial property, radiopacity and has the potential to encourage dentin remineralization.
Collapse
Affiliation(s)
- R Jayasree
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - S Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, Chennai, 600089, India
| | - Sireesha Abburi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, Chennai, 600089, India
| | - Y Rubaiya
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
34
|
Christie JK, de Leeuw NH. Effect of strontium inclusion on the bioactivity of phosphate-based glasses. JOURNAL OF MATERIALS SCIENCE 2017; 52:9014-9022. [PMID: 32055076 PMCID: PMC6991965 DOI: 10.1007/s10853-017-1155-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/27/2017] [Indexed: 05/30/2023]
Abstract
We have conducted first-principles and classical molecular dynamics simulations of various compositions of strontium-containing phosphate glasses, to understand how strontium incorporation will change the glasses' activity when implanted into the body (bioactivity). To perform the classical simulations, we have developed a new interatomic potential, which takes account of the polarizability of the oxygen ions. The Sr-O bond length is ∼2.44-2.49 Å, and the coordination number is 7.5-7.8. The Q n distribution and network connectivity were roughly constant for these compositions. Sr bonds to a similar number of phosphate chains as Ca does; based on our previous work (Christie et al. in J Phys Chem B 117:10652, 2013), this implies that SrO ↔ CaO substitution will barely change the dissolution rate of these glasses and that the bioactivity will remain essentially constant. Strontium could therefore be incorporated into phosphate glass for biomedical applications.
Collapse
Affiliation(s)
- J. K. Christie
- Department of Materials, Loughborough University, Loughborough, LE11 3TU UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - N. H. de Leeuw
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| |
Collapse
|
35
|
Lee S, Ueda K, Narushima T, Nakano T, Kasuga T. Preparation of orthophosphate glasses in the MgO-CaO-SiO2-Nb2O5-P2O5 system. Biomed Mater Eng 2017; 28:23-30. [PMID: 28269741 DOI: 10.3233/bme-171652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Niobia/magnesia-containing orthophosphate invert glasses were successfully prepared in our earlier work. Orthophosphate groups in the glasses were cross-linked by tetrahedral niobia (NbO4) and magnesia. OBJECTIVE The aim of this work is to prepare calcium orthophosphate invert glasses containing magnesia and niobia, incorporating silica, and to evaluate their structures and releasing behaviors. METHOD The glasses were prepared by melt-quenching, and their structures and ion-releasing behaviors were evaluated. RESULTS 31P solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies showed the glasses consist of orthophosphate (PO4), orthosilicate (SiO4), and NbO4 tetrahedra. NbO4 and MgO in the glasses act as network formers. By incorporating SiO2 into the glasses, the chemical durability of the glasses was slightly improved. The glasses reheated at 800°C formed the orthophosphate crystalline phases, such as β-Ca3(PO4)2, Mg3(PO4)2 and Mg3Ca3(PO4)4 in the glasses. The chemical durability of the crystallized glasses was slightly improved. CONCLUSIONS Orthosilicate groups and NbO4 in the glasses coordinated with each other to form Si-O-Nb bonds. The chemical durability of the glasses was slightly improved by addition of SiO2, since the field strength of Si is larger than that of Ca or Mg.
Collapse
Affiliation(s)
- Sungho Lee
- Division of Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.,Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyosuke Ueda
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takayuki Narushima
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Kasuga
- Division of Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
36
|
da Silva JG, Babb R, Salzlechner C, Sharpe PT, Brauer DS, Gentleman E. Optimisation of lithium-substituted bioactive glasses to tailor cell response for hard tissue repair. JOURNAL OF MATERIALS SCIENCE 2017; 52:8832-8844. [PMID: 29056759 PMCID: PMC5644509 DOI: 10.1007/s10853-017-0838-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/24/2017] [Indexed: 06/07/2023]
Abstract
Bioactive glasses (BG) are used clinically because they can both bond to hard tissue and release therapeutic ions that can stimulate nearby cells. Lithium has been shown to regulate the Wnt/β-catenin cell signalling pathway, which plays important roles in the formation and repair of bone and teeth. Lithium-releasing BG, therefore, have the potential to locally regulate hard tissue formation; however, their design must be tailored to induce an appropriate biological response. Here, we optimised the release of lithium from lithium-substituted BG by varying BG composition, particle size and concentration to minimise toxicity and maximise upregulation of the Wnt target gene Axin2 in in vitro cell cultures. Our results show that we can tailor lithium release from BG over a wide therapeutic and non-toxic range. Increasing the concentration of BG in cell culture medium can induce toxicity, likely due to modulations in pH. Nevertheless, at sub-toxic concentrations, lithium released from BG can upregulate the Wnt pathway in 17IA4 cells, similarly to treatment with LiCl. Taken together, these data demonstrate that ion release from lithium-substituted BG can be tailored to maximise biological response. These data may be important in the design of BG that can regulate the Wnt/β-catenin pathway to promote hard tissue repair or regeneration.
Collapse
Affiliation(s)
- Jeison Gabriel da Silva
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Rebecca Babb
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Christoph Salzlechner
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Paul T. Sharpe
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Delia S. Brauer
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eileen Gentleman
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| |
Collapse
|
37
|
Echezarreta-López MM, de Miguel T, Quintero F, Pou J, Landín M. Fabrication of Zn-Sr-doped laser-spinning glass nanofibers with antibacterial properties. J Biomater Appl 2016; 31:819-831. [PMID: 30208807 DOI: 10.1177/0885328216684652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The morphology and dimensions of bioactive materials are essential attributes to promote tissue culture. Bioactive materials with nanofibrous structure have excellent potential to be used as bone-defect fillers, since they mimic the collagen in the extracellular matrix. On the other hand, bioactive glasses with applications in regenerative medicine may present antibacterial properties, which depend on glass composition, concentration and the microorganisms tested. Likewise, their morphology may influence their antibacterial activity too. In the present work, the laser-spinning technique was used to produce bioactive glass nanofibers of two different compositions: 45S5 Bioglass® and ICIE16M, bioactive glass doped with zinc and strontium. Their antibacterial activity against Staphylococcus aureus was tested by culturing them in dynamic conditions. Bacterial growth index profiles during the first days of experiment can be explained by the variations in the pH values of the media. The bactericidal effect of the doped nanofibers at longer times is justified by the release of zinc and strontium ions. Cytotoxicity was analyzed by means of cell viability tests performed with BALB/3T3 cell line.
Collapse
Affiliation(s)
- María Magdalena Echezarreta-López
- 1 Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Trinidad de Miguel
- 1 Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela 15782, Spain.,2 Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Quintero
- 3 Applied Physics Department, EE Industrial, University of Vigo, 36310, Spain
| | - Juan Pou
- 3 Applied Physics Department, EE Industrial, University of Vigo, 36310, Spain
| | - Mariana Landín
- 1 Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
38
|
Huang M, Hill RG, Rawlinson SC. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): A therapeutic role for Sr in dentine repair? Acta Biomater 2016; 38:201-11. [PMID: 27131573 DOI: 10.1016/j.actbio.2016.04.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Strontium (Sr) forms a significant component of dental restorative materials and although it is widely used in toothpastes, the biological effects of Sr on the dentine-pulp complex have not been investigated. In this first study, we characterise the Sr elicited effects on human dental pulp stem cells (hDPSC) in vitro using exogenously Sr added to culture medium, and bioavailable Sr derived from a novel bioactive glass (BG). The related mechanisms were also investigated. Our results indicate that low dose Sr (between 0.1 and 2.5mM) induces proliferation and alkaline phosphatase (ALP) activity of hDPSCs, but has no effect on colony formation or cell migration. Sr at specific concentrations (1 and 2.5mM) stimulated collagen formation and mineralisation of the hDPSC generated matrix. In addition, qRT-PCR, Western blotting and immunocytochemistry revealed that Sr regulates gene expression and the protein secretion of the odontogenic markers: dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP-1) and protein localisation (DSPP was localised to the Golgi, while no apparent changes occur in DMP-1 distribution which remains in both cytosol and the nucleus). Additionally, the calcium sensing receptor (CaSR) and downstream pathway MAPK/ERK signalling pathway in hDPSCs were activated by Sr. Bioavailable Sr from the BG revealed novel biological insights of regulating metabolic and ALP activities in hDPSCs. Taken together, these results suggest that Sr at specific doses significantly influences proliferation, odontogenic differentiation and mineralisation of hDPSCs in vitro via the CaSR using a pathway with similarities to osteoblast differentiation. These are the first such studies and indicate that Sr treatment of hDPSCs could be a promising therapeutic agent in dental applications. In conclusion, we propose that Sr from a substituted BG could be used more effectively in biomaterials designed for dental applications. STATEMENT OF SIGNIFICANCE Despite the fact that strontium (Sr) is used widely in dental practise, its potential effects on odontoblasts have been ignored. Our study provides the first evidence that Sr (exogenous and that derived from a bioglass (BG)) can stimulate dentinogenesis in human dental pulp stem cells (hDPSCs) by promoting their proliferation, differentiation and mineralisation in vitro. Therefore, while previously unrecognised, Sr BG is likely to be beneficial in atraumatic dentistry practise and maintenance of a competent tooth in conditions such as caries. Repair of defected dentine is still one of the main challenges in dental research and annually untreated caries results in the loss of productivity equivalent to US$ 27 billion. Advances in tissue engineering technology, alongside the use of dental pulp stem cells provide an approach to achieve dentine regeneration. Understanding the actions of Sr will permit a more controlled application of Sr in the clinic. These data are thus likely to be of great interest to the material scientists, biological researchers, clinicians and manufacturers of dental products.
Collapse
|
39
|
Evidence of a complex species controlling the setting reaction of glass ionomer cements. Dent Mater 2016; 32:596-605. [PMID: 26891672 DOI: 10.1016/j.dental.2016.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To elucidate the mechanism(s) responsible for the profound impact germanium has on the setting reaction of zinc silicate glass ionomer cements (GICs). METHODS Five <45μm glass powder compositions (0.48-xSiO2, xGeO2, 0.36 ZnO, 0.16 CaO; where x=0.12, 0.24, 0.36, 0.48mol. fraction) were synthesized. Glass degradation was assessed under simulated setting conditions using acetic acid from 0.5 to 60min, monitoring the concentrations of ions released using ICP-OES. Subsequently, GICs were prepared by mixing fresh glass powders with polyacrylic acid (PAA, Mw=12,500g/mol, 50wt% aq. solution) at a 1:0.75 ratio. Cement structure and properties were evaluated using ATR-FTIR and rheology (for 60min), as well as 24h biaxial flexural strength. RESULTS Reduced Si:Ge ratios yielded faster degrading glasses, yet contrary to expectation, the corresponding ATR-FTIR spectra indicated slower crosslinking within the GIC matrix. Rheology testing found the initial viscosity cement pastes reduced with decreased Si:Ge, and Ge containing cements all set significantly slower than the Si based GIC. Interestingly, biaxial flexural strength remained consistent regardless of setting behavior. SIGNIFICANCE This counter-intuitive combination of behaviors is attributed to the presence of a chemical complex species specific to Ge-containing glasses that delays, but does not hinder, the formation of the GIC matrix. These findings embody chemical complex species as a mechanism to decouple glass reactivity from cement setting rate, a mechanism with the potential to enhance the utility of GICs in both dental and orthopaedic applications.
Collapse
|
40
|
Sriranganathan D, Kanwal N, Hing KA, Hill RG. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:39. [PMID: 26704556 PMCID: PMC4690837 DOI: 10.1007/s10856-015-5653-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Porous bioactive glasses are attractive for use as bone scaffolds. There is increasing interest in strontium containing bone grafts, since strontium ions are known to up-regulate osteoblasts and down regulate osteoclasts. This paper investigates the influence of partial to full substitution of strontium for calcium on the dissolution and phase formation of a multicomponent high phosphate content bioactive glass. The glasses were synthesised by a high temperature melt quench route and ground to a powder of <38 microns. The dissolution of this powder and its ability to form apatite like phases after immersion in Tris buffer (pH 7.4) and simulated body fluid (SBF) was followed by inductively coupled plasma optical emission spectroscopy (ICP), Fourier transform infra red spectroscopy (FTIR), X-ray powder diffraction (XRD) and (31)P solid state nuclear magnetic resonance spectroscopy up to 42 days of immersion. ICP indicated that all three glasses dissolved at approximately the same rate. The all calcium (SP-0Sr-35Ca) glass showed evidence of apatite like phase formation in both Tris buffer and SBF, as demonstrated after 3 days by FTIR and XRD analysis of the precipitate that formed during the acellular dissolution bioactivity studies. The strontium substituted SP-17Sr-17Ca glass showed no clear evidence of apatite like phase formation in Tris, but evidence of an apatite like phase was observed after 7 days incubation in SBF. The SP-35Sr-0Ca glass formed a new crystalline phase termed "X Phase" in Tris buffer which FTIR indicated was a form of crystalline orthophosphate. The SP-35Sr-0Ca glass appeared to support apatite like phase formation in SBF by 28 days incubation. The results indicate that strontium substitution for calcium in high phosphate content bioactive glasses can retard apatite like phase formation. It is proposed that apatite formation with high phosphate bioactive glasses occurs via an octacalcium phosphate (OCP) precursor phase that subsequently transforms to apatite. The equivalent octa-strontium phosphate does not exist and consequently in the absence of calcium, apatite formation does not occur. The amount of strontium that can be substituted for calcium in OCP probably determines the amount of strontium in the final apatite phase and the speed with which it forms.
Collapse
Affiliation(s)
- Danujan Sriranganathan
- School of Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.
| | - Nasima Kanwal
- Dental Physical Sciences, Dental Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Karin A Hing
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Robert G Hill
- Dental Physical Sciences, Dental Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
41
|
He G, Wu Y, Zhang Y, Zhu Y, Liu Y, Li N, Li M, Zheng G, He B, Yin Q, Zheng Y, Mao C. Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property. J Mater Chem B 2015; 3:6676-6689. [PMID: 26693010 PMCID: PMC4675164 DOI: 10.1039/c5tb01319d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most of the magnesium (Mg) alloys possess excellent biocompatibility, mechanical property and biodegradability in orthopedic applications. However, these alloys may suffer from bacterial infections due to their insufficient antibacterial capability. In order to reduce the post-surgical infections, a series of biocompatible Mg-1Ca-0.5Sr-xZn (x=0, 2, 4, 6) alloys were fabricated with the addition of antibacterial Zn with variable content and evaluated in terms of their biocompatibility and antibacterial property. The in vitro corrosion study showed that Mg-1Ca-0.5Sr-6Zn alloys exhibited a higher hydrogen evolution volume after 100 h immersion and resulted in a higher pH value of the immersion solution. Our work indicated that Zn-containing Mg alloys exhibited good biocompatibility with high cell viability. The antibacterial studies reveal that the number of bacteria adhered on all of these Mg alloy samples diminished remarkably compared to the Ti-6Al-4V control group. We also found that the proliferation of the bacteria was inhibited by these Mg alloys extracts. Among the prepared alloys, Mg-1Ca-0.5Sr-6Zn alloy not only exhibited a strong antibacterial effect, but also promoted the proliferation of MC3T3-E1 osteoblasts, suggesting that it is a promising alloy with both good antibacterial property and good biocompatibility for use as an orthopedic implant.
Collapse
Affiliation(s)
- Guanping He
- Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yuanhao Wu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK73019, USA
| | - Yang Liu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Nan Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Mei Li
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Guan Zheng
- Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Baohua He
- Department of Orthopedics, China Meitan General Hospital, No.29 Xibahe South street, Chaoyang District, Beijing, 100028, china
| | - Qingshui Yin
- Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yufeng Zheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK73019, USA
| |
Collapse
|
42
|
Blochberger M, Hupa L, Brauer DS. Influence of zinc and magnesium substitution on ion release from Bioglass 45S5 at physiological and acidic pH. BIOMEDICAL GLASSES 2015. [DOI: 10.1515/bglass-2015-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIon release of Mg- and Zn-substituted Bioglass 45S5 (46.1 SiO2-2.6 P2O5-26.9 CaO-24.3Na2O; mol%; with 0, 25, 50, 75 or 100% of calcium replaced bymagnesium/zinc) was investigated at pH 7.4 (Tris buffer) and pH 4 (acetic acid/sodium acetate buffer) in static and dynamic dissolution experiments. Despite Mg2+ and Zn2+ having the same charge and comparable ionic radii, they influenced the dissolution behaviour in very different ways. In Tris, Mgsubstituted glasses showed similar ion release as 45S5, while Zn-substituted glasses showed negligible ion release. At low pH, however, release behaviour was similar, with all glasses releasing large percentages of ions within a few minutes. Precipitation of crystalline phases also varied, as Mg- and Zn-substitution inhibited apatite formation, and Zn-substitution resulted in formation of zinc phosphate phases at low pH. These results are relevant for glasses used in aluminium-free glass ionomer bone cements, as they show that Zn/Mg-substituted glasses release ions similarly fast as glasses containing no Zn/Mg, suggesting that these ions are no prerequisite for ionomer glasses. Zn-substituted glasses may potentially be used as controlled-release materials, which release antibacterial zinc ions when needed only, i.e. at low pH conditions (e.g. bacterial infection), but not at normal physiological pH conditions.
Collapse
|
43
|
Evaluate of Different Bioactive Glass on Mechanical Properties of Nanocomposites Prepared Using Electrospinning Method. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.mspro.2015.11.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Zhang Y, Wei L, Wu C, Miron RJ. Periodontal regeneration using strontium-loaded mesoporous bioactive glass scaffolds in osteoporotic rats. PLoS One 2014; 9:e104527. [PMID: 25116811 PMCID: PMC4130544 DOI: 10.1371/journal.pone.0104527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022] Open
Abstract
Recent studies demonstrate that the rate of periodontal breakdown significantly increased in patients compromised from both periodontal disease and osteoporosis. One pharmacological agent used for their treatment is strontium renalate due to its simultaneous ability to increase bone formation and halt bone resorption. The aim of the present study was to achieve periodontal regeneration of strontium-incorporated mesoporous bioactive glass (Sr-MBG) scaffolds in an osteoporotic animal model carried out by bilateral ovariectomy (OVX). 15 female Wistar rats were randomly assigned to three groups: control unfilled periodontal defects, 2) MBG alone and 3) Sr-MBG scaffolds. 10 weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar and assessed by micro-CT and histomorphometric analysis after 28 days. Periodontal fenestration defects treated with Sr-MBG scaffolds showed greater new bone formation (46.67%) when compared to MBG scaffolds (39.33%) and control unfilled samples (17.50%). The number of TRAP-positive osteoclasts was also significantly reduced in defects receiving Sr-MBG scaffolds. The results from the present study suggest that Sr-MBG scaffolds may provide greater periondontal regeneration. Clinical studies are required to fully characterize the possible beneficial effect of Sr-releasing scaffolds for patients suffering from a combination of both periodontal disease and osteoporosis.
Collapse
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Lingfei Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, People's Republic of China
| | - Richard J. Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, People's Republic of China
- Faculté de medecine dentaire, Université Laval, Québec, Canada
| |
Collapse
|
45
|
He S, Zhou P, Wang L, Xiong X, Zhang Y, Deng Y, Wei S. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant. J R Soc Interface 2014; 11:20140169. [PMID: 24647910 PMCID: PMC4006258 DOI: 10.1098/rsif.2014.0169] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine followed by immobilization of the antibiotic cefotaxime sodium (CS) onto the polydopamine-coated Ti through catechol chemistry. Contact angle measurement and X-ray photoelectron spectroscopy confirmed the presence of CS grafted on the Ti surface. Our results demonstrated that the antibiotic-grafted Ti substrate showed good biocompatibility and well-behaved haemocompatibility. In addition, the antibiotic-grafted Ti could effectively prevent adhesion and proliferation of Escherichia coli (Gram-negative) and Streptococcus mutans (Gram-positive). Moreover, the inhibition of biofilm formation on the antibiotic-decorated Ti indicated that the grafted CS could maintain its long-term antibacterial activity. This modified Ti substrate with enhanced antibacterial activity holds great potential as implant material for applications in dental and bone graft substitutes.
Collapse
Affiliation(s)
- Shu He
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University, Beijing 100081, People's Republic of China
| | - Ping Zhou
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Linxin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xiaoling Xiong
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University, Beijing 100081, People's Republic of China
| | - Yifei Zhang
- Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, People's Republic of China
| | - Yi Deng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University, Beijing 100081, People's Republic of China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
46
|
Kolmas J, Groszyk E, Kwiatkowska-Różycka D. Substituted hydroxyapatites with antibacterial properties. BIOMED RESEARCH INTERNATIONAL 2014; 2014:178123. [PMID: 24949423 PMCID: PMC4037608 DOI: 10.1155/2014/178123] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/14/2014] [Indexed: 02/06/2023]
Abstract
Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency.
Collapse
Affiliation(s)
- Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland
| | - Ewa Groszyk
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland
| | - Dagmara Kwiatkowska-Różycka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|