1
|
Rodríguez-Navarro AB, Domínguez-Gasca N, Athanasiadou D, Le Roy N, González-Segura A, Reznikov N, Hincke MT, McKee MD, Checa AG, Nys Y, Gautron J. Guinea fowl eggshell structural analysis at different scales reveals how organic matrix induces microstructural shifts that enhance its mechanical properties. Acta Biomater 2024; 178:244-256. [PMID: 38460930 DOI: 10.1016/j.actbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Guinea fowl eggshells have an unusual structural arrangement that is different from that of most birds, consisting of two distinct layers with different microstructures. This bilayered organization, and distinct microstructural characteristics, provides it with exceptional mechanical properties. The inner layer, constituting about one third of the eggshell thickness, contains columnar calcite crystal units arranged vertically as in most bird shells. However, the thicker outer layer has a more complex microstructural arrangement formed by a switch to smaller calcite domains with diffuse/interlocking boundaries, partly resembling the interfaces seen in mollusk shell nacre. The switching process that leads to this remarkable second-layer microstructure is unknown. Our results indicate that the microstructural switching is triggered by changes in the inter- and intracrystalline organic matrix. During production of the outer microcrystalline layer in the later stages of eggshell formation, the interactions of organic matter with mineral induce an accumulation of defects that increase crystal mosaicity, instill anisotropic lattice distortions in the calcite structure, interrupt epitaxial growth, reduce crystallite size, and induce nucleation events which increase crystal misorientation. These structural changes, together with the transition between the layers and each layer having different microstructures, enhance the overall mechanical strength of the Guinea fowl eggshell. Additionally, our findings provide new insights into how biogenic calcite growth may be regulated to impart unique functional properties. STATEMENT OF SIGNIFICANCE: Avian eggshells are mineralized to protect the embryo and to provide calcium for embryonic chick skeletal development. Their thickness, structure and mechanical properties have evolved to resist external forces throughout brooding, yet ultimately allow them to crack open during chick hatching. One particular eggshell, that of the Guinea fowl, has structural features very different from other galliform birds - it is bilayered, with an inner columnar mineral structure (like in most birds), but it also has an outer layer with a complex microstructure which contributes to its superior mechanical properties. This work provides novel and new fundamental information about the processes and mechanisms that control and change crystal growth during the switch to microcrystalline domains when the second outer layer forms.
Collapse
Affiliation(s)
- A B Rodríguez-Navarro
- Departmento de Mineralogía y Petrología, Universidad de Granada, Granada 18071, Spain.
| | - N Domínguez-Gasca
- Departmento de Mineralogía y Petrología, Universidad de Granada, Granada 18071, Spain
| | - D Athanasiadou
- Faculty of Dental Medicine and Oral Health Sciences, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - N Le Roy
- INRAE, UMR BOA, Université de Tours, Nouzilly F-37380, France
| | - A González-Segura
- Centro de Instrumentación Científica, Universidad de Granada, Granada 18071, Spain
| | - N Reznikov
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - M T Hincke
- Departments of Innovation in Medical Education, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - M D McKee
- Faculty of Dental Medicine and Oral Health Sciences, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - A G Checa
- Departmento de Estratigrafía y Paleontología, Universidad de Granada, and Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18071 Armilla, Granada 18100, Spain
| | - Y Nys
- INRAE, UMR BOA, Université de Tours, Nouzilly F-37380, France
| | - J Gautron
- INRAE, UMR BOA, Université de Tours, Nouzilly F-37380, France
| |
Collapse
|
2
|
Gavryushkin PN, Rečnik A, Donskikh KG, Banaev MV, Sagatov NE, Rashchenko S, Volkov S, Aksenov S, Mikhailenko D, Korsakov A, Daneu N, Litasov KD. The intrinsic twinning and enigmatic twisting of aragonite crystals. Proc Natl Acad Sci U S A 2024; 121:e2311738121. [PMID: 38300859 PMCID: PMC10861921 DOI: 10.1073/pnas.2311738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/17/2023] [Indexed: 02/03/2024] Open
Abstract
It is generally accepted that aragonite crystals of biogenic origin are characterized by significantly higher twin densities compared to samples formed during geological processes. Based on our single crystal X-ray diffraction (SCXRD) and transmission electron microscopy (TEM) study of aragonite crystals from various localities, we show that in geological aragonites, the twin densities are comparable to those of the samples from crossed lamellar zones of molluscs shells. The high twin density is consistent with performed calculations, according to which the Gibbs free energy of twin-free aragonite is close to that of periodically twinned aragonite structure. In some cases, high twin densities result in the appearance of diffuse scattering in SCXRD patterns. The obtained TEM and optical micrographs show that besides the twin boundaries (TBs) of growth origin, there are also TBs and especially stacking faults that were likely formed as the result of local strain compensation. SCXRD patterns of the samples from Tazouta, in addition to diffuse scattering lines, show Debye arcs in the [Formula: see text] plane. These Debye arcs are present only on one side of the Bragg reflections and have an azimuthal extent of nearly 30°, making the whole symmetry of the diffraction pattern distinctly chiral, which has not yet been reported for aragonite. By analogy with biogenic calcite crystals, we associate these arcs with the presence of misoriented subgrains formed as a result of crystal twisting during growth.
Collapse
Affiliation(s)
- Pavel N. Gavryushkin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk630090, Russia
- Novosibirsk State University, Novosibirsk630090, Russia
| | - Aleksander Rečnik
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana1000, Slovenia
| | - Katerina G. Donskikh
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk630090, Russia
- Novosibirsk State University, Novosibirsk630090, Russia
| | - Maksim V. Banaev
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk630090, Russia
- Novosibirsk State University, Novosibirsk630090, Russia
| | - Nursultan E. Sagatov
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk630090, Russia
- Novosibirsk State University, Novosibirsk630090, Russia
| | - Sergey Rashchenko
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk630090, Russia
- Novosibirsk State University, Novosibirsk630090, Russia
| | - Sergey Volkov
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Center, Russian Academy of Sciences, Apatity184209, Russia
| | - Sergey Aksenov
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Center, Russian Academy of Sciences, Apatity184209, Russia
| | - Denis Mikhailenko
- Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg620002, Russian Federation
| | - Andrey Korsakov
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk630090, Russia
| | - Nina Daneu
- Advanced Materials Department, Jožef Stefan Institute, Ljubljana1000, Slovenia
| | - Konstantin D. Litasov
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Science, Moscow108840, Russia
| |
Collapse
|
3
|
Lensink AV, Swan GE, Myburg JG. The structure of the eggshell and eggshell membranes of Crocodylus niloticus. J Microsc 2023; 290:23-39. [PMID: 36717754 DOI: 10.1111/jmi.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
The macro- and microstructure, elemental composition, and crystallographic characteristics of the eggshell and eggshell membranes of the Crocodylus niloticus egg was investigated using optical and electron microscopy, energy-dispersive X-ray spectroscopy (EDS), electron backscatter diffraction (EBSD) and computerised tomography. The translucent ellipsoid egg is composed of two basic layers, the outer calcified layer referred to as the shell and an inner organic fibre layer, referred to as the shell membrane. The outer inorganic calcite shell is further divided into an external, palisade and mammillary layers with pore channels traversing the shell. The external layer is a thin layer of amorphous calcium and phosphorus, the underlying palisade layer consist of irregular wedge-shaped crystals composed calcite with traces of magnesium, sodium, sulphur and phosphorus. The crystals are mostly elongated, orientated perpendicular to the shell surface ending in cone-shaped knobs, which forms the inner mammillary layer. The elemental composition of the mammillae is like that of the palisade layer, but the crystal structure is much smaller and orientated randomly. The highest number of mammillae and shell pores are found at the equator of the egg, becoming fewer towards the egg poles. The shell thickness follows the same pattern, with the thickest area located at the equator. The eggshell membrane located right beneath and embedded in the mammillary layer of the shell; it is made up of unorganised fibre sheets roughly orientated at right angles to one another. Individual fibres consist of numerous smaller fibrils forming open channels that run longitudinally through the fibre.
Collapse
Affiliation(s)
- A V Lensink
- Electron Microscope Unit, Faculty of Veterinary Sciences, Department of Anatomy and Physiology, University of Pretoria, Pretoria, South Africa
| | - G E Swan
- Exotic Leather Research Centre, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - J G Myburg
- Exotic Leather Research Centre, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Lew AJ, Stifler CA, Tits A, Schmidt CA, Scholl A, Cantamessa A, Müller L, Delaunois Y, Compère P, Ruffoni D, Buehler MJ, Gilbert PUPA. A Molecular-Scale Understanding of Misorientation Toughening in Corals and Seashells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300373. [PMID: 36864010 DOI: 10.1002/adma.202300373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Biominerals are organic-mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano- and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO3 ) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO3 biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro- and nanoscales, using polarization-dependent imaging contrast mapping (PIC mapping), and the slight misorientations is consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single-crystalline geologic aragonite, and molecular dynamics (MD) simulations of bicrystals at the molecular scale reveals that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight-misorientation-toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top-down architecture, and are easily achieved by self-assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals.
Collapse
Affiliation(s)
- Andrew J Lew
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Astrid Cantamessa
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Laura Müller
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Yann Delaunois
- Laboratory of Functional and Evolutionary Morphology (FOCUS Research Unit) and Center for Applied Research and Education in Microscopy (CAREM), University of Liège, Liège, B-4000, Belgium
| | - Philippe Compère
- Laboratory of Functional and Evolutionary Morphology (FOCUS Research Unit) and Center for Applied Research and Education in Microscopy (CAREM), University of Liège, Liège, B-4000, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- Departments of Materials Science and Engineering, Geoscience, University of Wisconsin, Madison, WI, 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
5
|
Deng Z, Chen L, Li L. Comparative nanoindentation study of biogenic and geological calcite. J Mech Behav Biomed Mater 2023; 137:105538. [PMID: 36343519 DOI: 10.1016/j.jmbbm.2022.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Biogenic minerals are often reported to be harder and tougher than their geological counterparts. However, quantitative comparison of their mechanical properties, particularly fracture toughness, is still limited. Here we provide a systematic comparison of geological and biogenic calcite (mollusk shell Atrina rigida prisms and Placuna placenta laths) through nanoindentation under both dry and 90% relative humidity conditions. Berkovich nanoindentation is used to reveal the mechanical anisotropy of geological calcite when loaded on different crystallographic planes, i.e., reduced modulus Er{104} ≥ Er{108} > Er{001} and hardness H{001} ≥ H{104} ≥ H{108}, and biogenic calcite has comparable modulus but increased hardness than geological calcite. Based on conical nanoindentation, we elucidate that plastic deformation is activated in geological calcite at the low-load regime (<20 mN), involving r{104} and f{012} dislocation slips as well as e{018} twinning, while cleavage fracture dominates under higher loads by cracking along {104} planes. In comparison, biogenic calcite tends to undergo fracture, while the intercrystalline organic interfaces contribute to damage confinement. In addition, increased humidity does not show a significant influence on the properties of geological calcite and the single-crystal A. rigida prisms, however, the laminate composite of P. placenta laths (layer thickness, ∼250-300 nm) exhibits increased toughness and decreased hardness and modulus. We believe the results of this study can provide a benchmark for future investigations on biominerals and bio-inspired materials.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA
| | - Liuni Chen
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|
6
|
Schoeppler V, Cook PK, Detlefs C, Demichelis R, Zlotnikov I. Untangling the Mechanisms of Lattice Distortions in Biogenic Crystals across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200690. [PMID: 35460121 DOI: 10.1002/adma.202200690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Biomineralized structures are complex functional hierarchical assemblies composed of biomineral building blocks joined together by an organic phase. The formation of individual mineral units is governed by the cellular tissue component that orchestrates the process of biomineral nucleation, growth, and morphogenesis. These processes are imprinted in the structural, compositional, and crystallographic properties of the emerging biominerals on all scales. Measurement of these properties can provide crucial information on the mechanisms that are employed by the organism to form these complex 3D architectures and to unravel principles of their functionality. Nevertheless, so far, this has only been possible at the macroscopic scale, by averaging the properties of the entire composite assembly, or at the mesoscale, by looking at extremely small parts of the entire picture. In this study, the newly developed synchrotron-based dark-field X-ray microscopy method is employed to study the link between 3D crystallographic properties of relatively large calcitic prisms in the shell of the mollusc Pinna nobilis and their local lattice properties with extremely high angular resolution down to 0.001°. Mechanistic links between variations in local lattice parameters and spacing, crystal orientation, chemical composition, and the deposition process of the entire mineral unit are unraveled.
Collapse
Affiliation(s)
- Vanessa Schoeppler
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01069, Dresden, Germany
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Phil K Cook
- ESRF - The European Synchrotron, Grenoble, 38000, France
| | | | - Raffaella Demichelis
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, 6845, Australia
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
7
|
Deng Z, Jia Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103524. [PMID: 35315243 PMCID: PMC9108615 DOI: 10.1002/advs.202103524] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Indexed: 05/02/2023]
Abstract
Biomineralized composites, which are usually composed of microscopic mineral building blocks organized in 3D intercrystalline organic matrices, have evolved unique structural designs to fulfill mechanical and other biological functionalities. While it has been well recognized that the intricate architectural designs of biomineralized composites contribute to their remarkable mechanical performance, the structural features within and corresponding mechanical properties of individual mineral building blocks are often less appreciated in the context of bio-inspired structural composites. The mineral building blocks in biomineralized composites exhibit a variety of salient intracrystalline structural features, such as, organic inclusions, inorganic impurities (or trace elements), crystalline features (e.g., amorphous phases, single crystals, splitting crystals, polycrystals, and nanograins), residual stress/strain, and twinning, which significantly modify the mechanical properties of biogenic minerals. In this review, recent progress in elucidating the intracrystalline structural features of three most common biomineral systems (calcite, aragonite, and hydroxyapatite) and their corresponding mechanical significance are discussed. Future research directions and corresponding challenges are proposed and discussed, such as the advanced structural characterizations and formation mechanisms of intracrystalline structures in biominerals, amorphous biominerals, and bio-inspired synthesis.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Zian Jia
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Ling Li
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| |
Collapse
|
8
|
Duboisset J, Ferrand P, Baroni A, Grünewald TA, Dicko H, Grauby O, Vidal-Dupiol J, Saulnier D, Gilles LM, Rosenthal M, Burghammer M, Nouet J, Chevallard C, Baronnet A, Chamard V. Amorphous-to-crystal transition in the layer-by-layer growth of bivalve shell prisms. Acta Biomater 2022; 142:194-207. [PMID: 35041900 DOI: 10.1016/j.actbio.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Biomineralization integrates complex physical and chemical processes bio-controlled by the living organisms through ionic concentration regulation and organic molecules production. It allows tuning the structural, optical and mechanical properties of hard tissues during ambient-condition crystallisation, motivating a deeper understanding of the underlying processes. By combining state-of-the-art optical and X-ray microscopy methods, we investigated early-mineralized calcareous units from two bivalve species, Pinctada margaritifera and Pinna nobilis, revealing chemical and crystallographic structural insights. In these calcite units, we observed ring-like structural features correlated with a lack of calcite and an increase of amorphous calcium carbonate and proteins contents. The rings also correspond to a larger crystalline disorder and a larger strain level. Based on these observations, we propose a temporal biomineralization cycle, initiated by the production of an amorphous precursor layer, which further crystallizes with a transition front progressing radially from the unit centre, while the organics are expelled towards the prism edge. Simultaneously, along the shell thickness, the growth occurs following a layer-by-layer mode. These findings open biomimetic perspectives for the design of refined crystalline materials. STATEMENT OF SIGNIFICANCE: Calcareous biominerals are amongst the most present forms of biominerals. They exhibit astonishing structural, optical and mechanical properties while being formed at ambient synthesis conditions from ubiquitous ions, motivating the deep understanding of biomineralization. Here, we unveil the first formation steps involved in the biomineralization cycle of prismatic units of two bivalve species by applying a new multi-modal non-destructive characterization approach, sensitive to chemical and crystalline properties. The observations of structural features in mineralized units of different ages allowed the derivation of a temporal sequence for prism biomineralization, involving an amorphous precursor, a radial crystallisation front and a layer-by-layer sequence. Beyond these chemical and physical findings, the herein introduced multi-modal approach is highly relevant to other biominerals and bio-inspired studies.
Collapse
Affiliation(s)
- Julien Duboisset
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Patrick Ferrand
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Arthur Baroni
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Tilman A Grünewald
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Hamadou Dicko
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Olivier Grauby
- Aix-Marseille Univ, CNRS, CINaM, Campus Luminy, Case 913, 13288-Marseille cedex 9, France
| | - Jeremie Vidal-Dupiol
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier France
| | - Denis Saulnier
- Ifremer, UMR 241 Environnement Insulaire Océanien (EIO), Labex Corail, Centre du Pacifique, BP 49, Vairao 98719, French Polynesia
| | - Le Moullac Gilles
- Ifremer, UMR 241 Environnement Insulaire Océanien (EIO), Labex Corail, Centre du Pacifique, BP 49, Vairao 98719, French Polynesia
| | - Martin Rosenthal
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | | | - Julius Nouet
- GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Corinne Chevallard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Alain Baronnet
- Aix-Marseille Univ, CNRS, CINaM, Campus Luminy, Case 913, 13288-Marseille cedex 9, France
| | - Virginie Chamard
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
| |
Collapse
|
9
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
10
|
Synchrotron-Based HR-Fluorescence and Mineralogical Mapping of the Initial Growth Stages of Polynesian Cultivated Pearls Disprove the ‘Reversed Shell’ Concept. MINERALS 2022. [DOI: 10.3390/min12020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In a series of Polynesian pearls collected after short cultivation periods, early post-grafting mineral deposits were characterized by high resolution synchrotron-based X-ray fluorescence with unprecedented accuracy. Morphological patterns and elemental composition are correlated through simultaneous imaging processes. Evidence that aragonite and calcite occur in neighboring units during the earliest biomineralization stages reveals that the grafting process can result in a greater degradation than usually admitted in the widely shared ‘reversed shell’ concept. Compared with ultrastructure of the pristine nacreous tablets, this method enables a precise evaluation of the possible biological changes in the biomineralization mechanism during grafting.
Collapse
|
11
|
Schoeppler V, Stier D, Best RJ, Song C, Turner J, Savitzky BH, Ophus C, Marcus MA, Zhao S, Bustillo K, Zlotnikov I. Crystallization by Amorphous Particle Attachment: On the Evolution of Texture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101358. [PMID: 34337782 PMCID: PMC11468020 DOI: 10.1002/adma.202101358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Crystallization by particle attachment (CPA) is a gradual process where each step has its own thermodynamic and kinetic constrains defining a unique pathway of crystal growth. An important example is biomineralization of calcium carbonate through amorphous precursors that are morphed into shapes and textural patterns that cannot be envisioned by the classical monomer-by-monomer approach. Here, a mechanistic link between the collective kinetics of mineral deposition and the emergence of crystallographic texture is established. Using the prismatic ultrastructure in bivalve shells as a model, a fundamental leap is made in the ability to analytically describe the evolution of form and texture of biological mineralized tissues and to design the structure and crystallographic properties of synthetic materials formed by CPA.
Collapse
Affiliation(s)
- Vanessa Schoeppler
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
- Department of PhysicsUniversity of CaliforniaBerkeleyCA94720USA
| | - Deborah Stier
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Richard J. Best
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - John Turner
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Benjamin H. Savitzky
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Matthew A. Marcus
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Shiteng Zhao
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Karen Bustillo
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Igor Zlotnikov
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| |
Collapse
|
12
|
Microscopic origins of the crystallographically preferred growth in evaporation-induced colloidal crystals. Proc Natl Acad Sci U S A 2021; 118:2107588118. [PMID: 34341109 PMCID: PMC8364128 DOI: 10.1073/pnas.2107588118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Self-assembly is one of the central themes in biologically controlled synthesis, and it also plays a pivotal role in fabricating a variety of advanced engineering materials. In particular, evaporation-induced self-assembly of colloidal particles enables versatile fabrication of highly ordered two- or three-dimensional nanostructures for optical, sensing, catalytic, and other applications. While it is well known that this process results in the formation of the face-centered cubic (fcc) lattice with the close-packed {111} plane parallel to the substrate, the crystallographic texture development of colloidal crystals is less understood. In this study, we show that the preferred <110> growth in the fcc colloidal crystals synthesized through evaporation-induced assembly is achieved through a gradual crystallographic rotation facilitated by mechanical stress-induced geometrically necessary dislocations. Unlike crystalline atomic and ionic solids, texture development due to crystallographically preferred growth in colloidal crystals is less studied. Here we investigate the underlying mechanisms of the texture evolution in an evaporation-induced colloidal assembly process through experiments, modeling, and theoretical analysis. In this widely used approach to obtain large-area colloidal crystals, the colloidal particles are driven to the meniscus via the evaporation of a solvent or matrix precursor solution where they close-pack to form a face-centered cubic colloidal assembly. Via two-dimensional large-area crystallographic mapping, we show that the initial crystal orientation is dominated by the interaction of particles with the meniscus, resulting in the expected coalignment of the close-packed direction with the local meniscus geometry. By combining with crystal structure analysis at a single-particle level, we further reveal that, at the later stage of self-assembly, however, the colloidal crystal undergoes a gradual rotation facilitated by geometrically necessary dislocations (GNDs) and achieves a large-area uniform crystallographic orientation with the close-packed direction perpendicular to the meniscus and parallel to the growth direction. Classical slip analysis, finite element-based mechanical simulation, computational colloidal assembly modeling, and continuum theory unequivocally show that these GNDs result from the tensile stress field along the meniscus direction due to the constrained shrinkage of the colloidal crystal during drying. The generation of GNDs with specific slip systems within individual grains leads to crystallographic rotation to accommodate the mechanical stress. The mechanistic understanding reported here can be utilized to control crystallographic features of colloidal assemblies, and may provide further insights into crystallographically preferred growth in synthetic, biological, and geological crystals.
Collapse
|
13
|
Coccolith crystals: Pure calcite or organic-mineral composite structures? Acta Biomater 2021; 125:83-89. [PMID: 33631395 DOI: 10.1016/j.actbio.2021.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022]
Abstract
The localization of organic material within biominerals is central to developing biomineral formation mechanisms. Coccoliths, morphologically sophisticated calcite platelets of intracellularly calcifying coccolithophores, are not only eco-physiologically important, but also influence biogeochemical cycles through mass production. Despite their importance and over a century of research, the formation mechanism of coccoliths is still poorly understood. Crucial unsolved questions include the localization of organic material within coccoliths. In extracellular calcifiers the discovery of an organics-containing nano-structure within seemingly single crystals has led to the formulation of a two-step crystallization mechanism. Coccoliths are traditionally thought of as being formed by a different mechanism, but it is unclear whether coccolith crystals possess a nano-structure. Here we review the evidence for and against such a nano-structure. Current SXPD analyses suggest a nano-structure of some kind, while imaging methods (SEM, TEM, AFM) provide evidence against it. We suggest directions for future research which should help solve this puzzle. STATEMENT OF SIGNIFICANCE: Coccolithophores, unicellular calcifying algae, are important primary producers and contribute significantly to pelagic calcium carbonate export. Their calcite platelets, the coccoliths, are amongst the most sophisticated biomineral structures. Understanding the crystallization mechanism of coccolith crystals is not only central to coccolithophore cell biology but also lies at the heart of biomineralization research more generally. The crystallization mechanism of coccoliths has remained largely elusive, not least because it is still an open question whether the micron sized coccolith crystals are pure calcite, or contain organic material. Here we review the state of the art and suggest a way to solve this central problem.
Collapse
|
14
|
Anisotropy of Mechanical Properties of Pinctada margaritifera Mollusk Shell. NANOMATERIALS 2020; 10:nano10040634. [PMID: 32231143 PMCID: PMC7221746 DOI: 10.3390/nano10040634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/26/2022]
Abstract
The mechanical properties such as compressive strength and nanohardness were investigated for Pinctada margaritifera mollusk shells. The compressive strength was evaluated through a uniaxial static compression test performed along the load directions parallel and perpendicular to the shell axis, respectively, while the hardness and Young modulus were measured using nanoindentation. In order to observe the crack propagation, for the first time for such material, the in-situ X-ray microscopy (nano-XCT) imaging (together with 3D reconstruction based on the acquired images) during the indentation tests was performed. The results were compared with these obtained during the micro-indentation test done with the help of conventional Vickers indenter and subsequent scanning electron microscopy observations. The results revealed that the cracks formed during the indentation start to propagate in the calcite prism until they reach a ductile organic matrix where most of them are stopped. The obtained results confirm a strong anisotropy of both crack propagation and the mechanical strength caused by the formation of the prismatic structure in the outer layer of P. margaritifera shell.
Collapse
|
15
|
Böhm CF, Harris J, Schodder PI, Wolf SE. Bioinspired Materials: From Living Systems to New Concepts in Materials Chemistry. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2117. [PMID: 31266158 PMCID: PMC6651889 DOI: 10.3390/ma12132117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022]
Abstract
Nature successfully employs inorganic solid-state materials (i.e., biominerals) and hierarchical composites as sensing elements, weapons, tools, and shelters. Optimized over hundreds of millions of years under evolutionary pressure, these materials are exceptionally well adapted to the specifications of the functions that they perform. As such, they serve today as an extensive library of engineering solutions. Key to their design is the interplay between components across length scales. This hierarchical design-a hallmark of biogenic materials-creates emergent functionality not present in the individual constituents and, moreover, confers a distinctly increased functional density, i.e., less material is needed to provide the same performance. The latter aspect is of special importance today, as climate change drives the need for the sustainable and energy-efficient production of materials. Made from mundane materials, these bioceramics act as blueprints for new concepts in the synthesis and morphosynthesis of multifunctional hierarchical materials under mild conditions. In this review, which also may serve as an introductory guide for those entering this field, we demonstrate how the pursuit of studying biomineralization transforms and enlarges our view on solid-state material design and synthesis, and how bioinspiration may allow us to overcome both conceptual and technical boundaries.
Collapse
Affiliation(s)
- Corinna F Böhm
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Joe Harris
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Philipp I Schodder
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Stephan E Wolf
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
16
|
He J, Bismayer U. Polarized mapping Raman spectroscopy: identification of particle orientation in biominerals. Z KRIST-CRYST MATER 2019. [DOI: 10.1515/zkri-2019-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The identification of the texture of biominerals and the particle orientation in the bivalve shells of Anodonta cygnea was performed using polarized Raman spectroscopy mapping measurements. A single crystal of aragonite served as a reference to disclose orientational information on the mesoscopic scale. The relative intensities of different Raman modes combined with the determination of depolarization ratio of the Ag Raman mode at 1087 cm−1 of an aragonite single crystal was used to indicate the angular variation of aragonite crystallites in biominerals. The imaging technique shows that the a- and b-axis of aragonite crystallites in both, nacreous and prismatic layers do not only have one orientation but they are organized in a domain-type arrangement. The angular divergence in the prismatic layer of the shells is larger and hence, the crystallites in the nacreous layer have a higher degree of co-orientation. Results provide relevant textural information about aragonitic shells and indicate a sensitive technique to evaluate the crystal orientation in biominerals.
Collapse
Affiliation(s)
- Jianhan He
- Mineralogisch-Petrographisches Institut , Grindelallee 48 , D-20146 Hamburg , Germany
| | - Ulrich Bismayer
- Mineralogisch-Petrographisches Institut , Grindelallee 48 , D-20146 Hamburg , Germany
| |
Collapse
|
17
|
Breaking the long-standing morphological paradigm: Individual prisms in the pearl oyster shell grow perpendicular to the c-axis of calcite. J Struct Biol 2019; 205:121-132. [PMID: 30685338 DOI: 10.1016/j.jsb.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/20/2022]
Abstract
Cross-sections of calcitic prismatic layers in mollusk shells, cut perpendicular to growth direction, reveal well-defined polygonal shapes of individual "grains" clearly visible by light and electron microscopy. For several kinds of shells, it was shown that the average number of edges in an individual prism approaches six during the growth process. Taking into account the rhombohedral symmetry of calcite, often presented in hexagonal axes, all this led to the long-standing opinion that calcitic prisms grow along the c-axis of calcite. In this paper, using X-ray diffraction and electron backscatter diffraction (EBSD), we unambiguously show that calcitic prisms in pearl oyster Pinctada margaritifera predominantly grow perpendicular to the c-axis. The obtained results imply that the hexagon-like habitus of growing crystallites may be not necessarily connected to calcite crystallography and, therefore, other factors should be taken into consideration. We analyze this phenomenon by comparing the organic contents in Pinctada margaritifera and Pinna nobilis shells, the later revealing regular growth of calcitic prisms along the c-axis.
Collapse
|
18
|
Mastropietro F, Godard P, Burghammer M, Chevallard C, Daillant J, Duboisset J, Allain M, Guenoun P, Nouet J, Chamard V. Revealing crystalline domains in a mollusc shell single-crystalline prism. NATURE MATERIALS 2017; 16:946-952. [PMID: 28692039 DOI: 10.1038/nmat4937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/08/2017] [Indexed: 05/12/2023]
Abstract
Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the 'single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.
Collapse
Affiliation(s)
- F Mastropietro
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - P Godard
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - M Burghammer
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - C Chevallard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - J Daillant
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette Cedex, France
| | - J Duboisset
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - M Allain
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - P Guenoun
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - J Nouet
- GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - V Chamard
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| |
Collapse
|
19
|
Checa AG, Macías-Sánchez E, Harper EM, Cartwright JHE. Organic membranes determine the pattern of the columnar prismatic layer of mollusc shells. Proc Biol Sci 2017; 283:rspb.2016.0032. [PMID: 27147096 DOI: 10.1098/rspb.2016.0032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/11/2016] [Indexed: 11/12/2022] Open
Abstract
The degree to which biological control is exercised compared to physical control of the organization of biogenic materials is a central theme in biomineralization. We show that the outlines of biogenic calcite domains with organic membranes are always of simple geometries, while without they are much more complex. Moreover, the mineral prisms enclosed within the organic membranes are frequently polycrystalline. In the prismatic layer of the mollusc shell, organic membranes display a dynamics in accordance with the von Neumann-Mullins and Lewis Laws for two-dimensional foam, emulsion and grain growth. Taken together with the facts that we found instances in which the crystals do not obey such laws, and that the same organic membrane pattern can be found even without the mineral infilling, our work indicates that it is the membranes, not the mineral prisms, that control the pattern, and the mineral enclosed within the organic membranes passively adjusts to the dynamics dictated by the latter.
Collapse
Affiliation(s)
- Antonio G Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, 18100 Granada, Spain
| | - Elena Macías-Sánchez
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, 18100 Granada, Spain
| | - Elizabeth M Harper
- Department of Earth Sciences, Cambridge University, Cambridge CB2 3EQ, UK
| | - Julyan H E Cartwright
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, 18100 Granada, Spain
| |
Collapse
|
20
|
Harper EM, Checa A. Physical versus Biological Control in Bivalve Calcite Prisms: Comparison of Euheterodonts and Pteriomorphs. THE BIOLOGICAL BULLETIN 2017; 232:19-29. [PMID: 28445095 DOI: 10.1086/691382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multiple groups of bivalve molluscs produce calcitic shell layers, many of these broadly classified as "prismatic." Various pteriomorphian bivalves (such as oysters, pterioids, and mussels) secrete prismatic microstructures with high organic content and clear, strong biological control. However, we present the results of a detailed analysis by scanning electron microscopy (SEM), thermogravimetric analysis, and electron backscatter diffraction to characterize the calcitic prisms in two different clades within the euheterodont bivalves: the extant Chama arcana and the extinct rudists. These results show that the form of prisms constructed is both closely similar between the two taxa and significantly different from those of the pteriomorph bivalves. Most notably, C. arcana and the extinct rudists lack the clear organic outer envelopes and uniform polygonal, cross-sectional appearance. Instead, they form interdigitating crystals of very varied diameters, with some crystals encapsulating others. We advocate retaining the term "fibrillar prisms" to classify these euheterodont microstructures. These fibrillar prisms are more closely similar to abiotic speleothem deposits than to the calcitic prisms of pteriomorph bivalves. We argue that calcite prism growth in euheterodonts is dominated by abiotic constraints whereas, in pteriomorphs (such as oysters, pterioids, and mussels), it is under strong biological control.
Collapse
|
21
|
Wolf SE, Böhm CF, Harris J, Demmert B, Jacob DE, Mondeshki M, Ruiz-Agudo E, Rodríguez-Navarro C. Nonclassical crystallization in vivo et in vitro (I): Process-structure-property relationships of nanogranular biominerals. J Struct Biol 2016; 196:244-259. [DOI: 10.1016/j.jsb.2016.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/25/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
|
22
|
Gueguen Y, Czorlich Y, Mastail M, Le Tohic B, Defay D, Lyonnard P, Marigliano D, Gauthier JP, Bari H, Lo C, Chabrier S, Le Moullac G. Yes, it turns: experimental evidence of pearl rotation during its formation. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150144. [PMID: 26587271 PMCID: PMC4632584 DOI: 10.1098/rsos.150144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/15/2015] [Indexed: 06/05/2023]
Abstract
Cultured pearls are human creations formed by inserting a nucleus and a small piece of mantle tissue into a living shelled mollusc, usually a pearl oyster. Although many pearl observations intuitively suggest a possible rotation of the nucleated pearl inside the oyster, no experimental demonstration of such a movement has ever been done. This can be explained by the difficulty of observation of such a phenomenon in the tissues of a living animal. To investigate this question of pearl rotation, a magnetometer system was specifically engineered to register magnetic field variations with magnetic sensors from movements of a magnetic nucleus inserted in the pearl oyster. We demonstrated that a continuous movement of the nucleus inside the oyster starts after a minimum of 40 days post-grafting and continues until the pearl harvest. We measured a mean angular speed of 1.27° min(-1) calculated for four different oysters. Rotation variability was observed among oysters and may be correlated to pearl shape and defects. Nature's ability to generate so amazingly complex structures like a pearl has delivered one of its secrets.
Collapse
Affiliation(s)
- Yannick Gueguen
- Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, BP 7004, 98719 Taravao, French Polynesia
- Ifremer, UMR 5244 IHPE, UPVD, CNRS, Université de Montpellier, CC 80, 34095 Montpellier, France
| | - Yann Czorlich
- Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, BP 7004, 98719 Taravao, French Polynesia
| | - Max Mastail
- Ifremer, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Bruno Le Tohic
- Véga Industrie, 12 avenue Maurice Thorez, 94200 Ivry sur Seine, France
| | - Didier Defay
- Véga Industrie, 12 avenue Maurice Thorez, 94200 Ivry sur Seine, France
| | - Pierre Lyonnard
- Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, BP 7004, 98719 Taravao, French Polynesia
| | - Damien Marigliano
- Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, BP 7004, 98719 Taravao, French Polynesia
| | | | - Hubert Bari
- Pearl and Jewellery Museum, Qatar Museums, Doha, Qatar
| | - Cedrik Lo
- Direction des Ressources Marines et Minières, BP 20, 98713 Papeete, Tahiti, French Polynesia
| | - Sébastien Chabrier
- Université de Polynésie Française, laboratoire GEPASUD, BP 6570, 98702 Faa'a, Tahiti, French Polynesia
| | - Gilles Le Moullac
- Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, BP 7004, 98719 Taravao, French Polynesia
| |
Collapse
|
23
|
Evidence of a Biological Control over Origin, Growth and End of the Calcite Prisms in the Shells of Pinctada margaritifera (Pelecypod, Pterioidea). MINERALS 2014. [DOI: 10.3390/min4040815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Ocean acidification reduces the crystallographic control in juvenile mussel shells. J Struct Biol 2014; 188:39-45. [DOI: 10.1016/j.jsb.2014.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/17/2014] [Accepted: 08/24/2014] [Indexed: 11/17/2022]
|
25
|
Maier B, Griesshaber E, Alexa P, Ziegler A, Ubhi H, Schmahl W. Biological control of crystallographic architecture: hierarchy and co-alignment parameters. Acta Biomater 2014; 10:3866-74. [PMID: 24590164 DOI: 10.1016/j.actbio.2014.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/05/2014] [Accepted: 02/21/2014] [Indexed: 11/26/2022]
Abstract
Mytilus edulis prismatic calcite and nacre layers exhibit a crystallographic structural hierarchy which differs substantially from the morphological hierarchy. This makes these biomaterials fundamentally different from classical crystalline materials. Morphological building units are defined by their surrounding organic matrix membranes, e.g. calcite fibers or nacre tablets. The crystallographic building units are defined by crystallographic co-orientation. Electron backscatter diffraction quantitatively shows how crystallographic co-orientation propagates across matrix membranes to form highly co-oriented low-mosaic composite-crystal grains, i.e. calcite fiber bundles with an internal mosaic spread of 0.5° full width at half maximum (FWHM) or nacre towergrains with an internal mosaic spread of 2° FWHM. These low-mosaic composite crystals form much larger composite-crystal supergrains, which exhibit a high mosaicity due to misorientations of their constituting calcite fiber bundles or nacre towergrains. For the aragonite layer these supergrains nucleate in one of three aragonite {110} twin orientations; as a consequence the nacre layer exhibits a twin-domain structure, i.e. the boundaries of adjacent supergrains exhibit a high probability for misorientations around the aragonite c-axis with an angle near 63.8°. Within the supergrains, the constituting towergrains exhibit a high probability for misorientations around the aragonite a-axis with a geometric mean misorientation angle of 10.6°. The calcite layer is composed of a single composite-crystal supergrain on at least the submillimeter length scale. Mutual misorientations of adjacent fiber bundles within the calcite supergrain are mainly around the calcite c-axis with a geometric mean misorientation angle of 9.4°. The c-axis is not parallel to the long axis of the fibers but rather to the (107) plane normal. The frequency distribution for the occurrence of misorientation angles within supergrains reflects the ability of the organism to maintain homoepitaxial crystallization over a certain length scale. This probability density is distributed log-normally which can be described by a geometric mean and a multiplicative standard deviation. Hence, those parameters are suggested to be a numerical measure for the biological control over crystallographic texture.
Collapse
|
26
|
Olson IC, Metzler RA, Tamura N, Kunz M, Killian CE, Gilbert PUPA. Crystal lattice tilting in prismatic calcite. J Struct Biol 2013; 183:180-90. [PMID: 23806677 DOI: 10.1016/j.jsb.2013.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/26/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-μm wide single-crystalline prisms in Hi, HL and Hrf, 1-μm wide needle-shaped calcite prisms in Mc, 1-μm wide spherulitic aragonite prisms in Np, 20-μm wide single-crystalline calcite prisms in Ar, and 20-μm wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 μm, with an angle spread of crystal orientation of 10-20°. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms.
Collapse
Affiliation(s)
- Ian C Olson
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|