1
|
Dugourd-Camus C, Ferreira CP, Adimy M. Modelling the mechanisms of antibody mixtures in viral infections: the cases of sequential homologous and heterologous dengue infections. J R Soc Interface 2024; 21:20240182. [PMID: 39406340 PMCID: PMC11523103 DOI: 10.1098/rsif.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 11/01/2024] Open
Abstract
Antibodies play an essential role in the immune response to viral infections, vaccination or antibody therapy. Nevertheless, they can be either protective or harmful during the immune response. Moreover, competition or cooperation between mixed antibodies can enhance or reduce this protective or harmful effect. Using the laws of chemical reactions, we propose a new approach to modelling the antigen-antibody complex activity. The resulting expression covers not only purely competitive or purely independent binding but also synergistic binding which, depending on the antibodies, can promote either neutralization or enhancement of viral activity. We then integrate this expression of viral activity in a within-host model and investigate the existence of steady-states and their asymptotic stability. We complete our study with numerical simulations to illustrate different scenarios: firstly, where both antibodies are neutralizing and secondly, where one antibody is neutralizing and the other enhancing. The results indicate that efficient viral neutralization is associated with purely independent antibody binding, whereas strong viral activity enhancement is expected in the case of purely competitive antibody binding. Finally, data collected during a secondary dengue infection were used to validate the model. The dataset includes sequential measurements of virus and antibody titres during viremia in patients. Data fitting shows that the two antibodies are in strong competition, as the synergistic binding is low. This contributes to the high levels of virus titres and may explain the antibody-dependent enhancement phenomenon. Besides, the mortality of infected cells is almost twice as high as that of susceptible cells, and the heterogeneity of viral kinetics in patients is associated with variability in antibody responses between individuals. Other applications of the model may be considered, such as the efficacy of vaccines and antibody-based therapies.
Collapse
Affiliation(s)
- Charlotte Dugourd-Camus
- Inria, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, Villeurbanne69603, France
| | - Claudia P. Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo18618-689, Brazil
| | - Mostafa Adimy
- Inria, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, Villeurbanne69603, France
| |
Collapse
|
2
|
Vuong NL, Quyen NTH, Tien NTH, Duong Thi Hue K, Duyen HTL, Lam PK, Tam DTH, Van Ngoc T, Jaenisch T, Simmons CP, Yacoub S, Wills BA, Geskus R. Dengue viremia kinetics and effects on platelet count and clinical outcomes: An analysis of 2340 patients from Vietnam. eLife 2024; 13:RP92606. [PMID: 38904662 PMCID: PMC11192532 DOI: 10.7554/elife.92606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Background Viremia is a critical factor in understanding the pathogenesis of dengue infection, but limited data exist on viremia kinetics. This study aimed to investigate the kinetics of viremia and its effects on subsequent platelet count, severe dengue, and plasma leakage. Methods We pooled data from three studies conducted in Vietnam between 2000 and 2016, involving 2340 dengue patients with daily viremia measurements and platelet counts after symptom onset. Viremia kinetics were assessed using a random effects model that accounted for left-censored data. The effects of viremia on subsequent platelet count and clinical outcomes were examined using a landmark approach with a random effects model and logistic regression model with generalized estimating equations, respectively. The rate of viremia decline was derived from the model of viremia kinetics. Its effect on the clinical outcomes was assessed by logistic regression models. Results Viremia levels rapidly decreased following symptom onset, with variations observed depending on the infecting serotype. DENV-1 exhibited the highest mean viremia levels during the first 5-6 days, while DENV-4 demonstrated the shortest clearance time. Higher viremia levels were associated with decreased subsequent platelet counts from day 6 onwards. Elevated viremia levels on each illness day increased the risk of developing severe dengue and plasma leakage. However, the effect size decreased with later illness days. A more rapid decline in viremia is associated with a reduced risk of the clinical outcomes. Conclusions This study provides comprehensive insights into viremia kinetics and its effect on subsequent platelet count and clinical outcomes in dengue patients. Our findings underscore the importance of measuring viremia levels during the early febrile phase for dengue studies and support the use of viremia kinetics as outcome for phase-2 dengue therapeutic trials. Funding Wellcome Trust and European Union Seventh Framework Programme.
Collapse
Affiliation(s)
- Nguyen Lam Vuong
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityViet Nam
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | | | | | | | | | - Phung Khanh Lam
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityViet Nam
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | | | - Tran Van Ngoc
- Hospital for Tropical DiseasesHo Chi Minh CityViet Nam
| | - Thomas Jaenisch
- Center for Global Health, Colorado School of Public HealthAuroraUnited States
- Heidelberg Institute of Global Health (HIGH), Heidelberg University HospitalHeidelbergGermany
| | - Cameron P Simmons
- Centre for Tropical Medicine and Global health, Nuffield Department of Clinical Medicine, University of OxfordOxfordUnited Kingdom
- World Mosquito Program, Monash UniversityClaytonAustralia
| | - Sophie Yacoub
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global health, Nuffield Department of Clinical Medicine, University of OxfordOxfordUnited Kingdom
| | - Bridget A Wills
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global health, Nuffield Department of Clinical Medicine, University of OxfordOxfordUnited Kingdom
| | - Ronald Geskus
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global health, Nuffield Department of Clinical Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
3
|
Anelone AJN, Clapham HE. Measles Infection Dose Responses: Insights from Mathematical Modeling. Bull Math Biol 2024; 86:85. [PMID: 38853189 PMCID: PMC11162976 DOI: 10.1007/s11538-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.
Collapse
Affiliation(s)
- Anet J N Anelone
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| | - Hannah E Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
4
|
Anam V, Guerrero BV, Srivastav AK, Stollenwerk N, Aguiar M. Within-host models unravelling the dynamics of dengue reinfections. Infect Dis Model 2024; 9:458-473. [PMID: 38385021 PMCID: PMC10879676 DOI: 10.1016/j.idm.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024] Open
Abstract
Caused by four serotypes, dengue fever is a major public health concern worldwide. Current modeling efforts have mostly focused on primary and heterologous secondary infections, assuming that lifelong immunity prevents reinfections by the same serotype. However, recent findings challenge this assumption, prompting a reevaluation of dengue immunity dynamics. In this study, we develop a within-host modeling framework to explore different scenarios of dengue infections. Unlike previous studies, we go beyond a deterministic framework, considering individual immunological variability. Both deterministic and stochastic models are calibrated using empirical data on viral load and antibody (IgM and IgG) concentrations for all dengue serotypes, incorporating confidence intervals derived from stochastic realizations. With good agreement between the mean of the stochastic realizations and the mean field solution for each model, our approach not only successfully captures primary and heterologous secondary infection dynamics facilitated by antibody-dependent enhancement (ADE) but also provides, for the first time, insights into homotypic reinfection dynamics. Our study discusses the relevance of homotypic reinfections in dengue transmission at the population level, highlighting potential implications for disease prevention and control strategies.
Collapse
Affiliation(s)
- Vizda Anam
- Basque Center for Applied Mathematics, Basque Country, Spain
- Department of Mathematics and Statistics, University of Basque Country, Basque Country, Spain
| | | | | | | | - Maíra Aguiar
- Basque Center for Applied Mathematics, Basque Country, Spain
- Ikerbasque, Basque Foundation for Science, Basque Country, Spain
| |
Collapse
|
5
|
Ciupe SM, Conway JM. Incorporating Intracellular Processes in Virus Dynamics Models. Microorganisms 2024; 12:900. [PMID: 38792730 PMCID: PMC11124127 DOI: 10.3390/microorganisms12050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
| |
Collapse
|
6
|
Zitzmann C, Ke R, Ribeiro RM, Perelson AS. How robust are estimates of key parameters in standard viral dynamic models? PLoS Comput Biol 2024; 20:e1011437. [PMID: 38626190 PMCID: PMC11051641 DOI: 10.1371/journal.pcbi.1011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/26/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Mathematical models of viral infection have been developed, fitted to data, and provide insight into disease pathogenesis for multiple agents that cause chronic infection, including HIV, hepatitis C, and B virus. However, for agents that cause acute infections or during the acute stage of agents that cause chronic infections, viral load data are often collected after symptoms develop, usually around or after the peak viral load. Consequently, we frequently lack data in the initial phase of viral growth, i.e., when pre-symptomatic transmission events occur. Missing data may make estimating the time of infection, the infectious period, and parameters in viral dynamic models, such as the cell infection rate, difficult. However, having extra information, such as the average time to peak viral load, may improve the robustness of the estimation. Here, we evaluated the robustness of estimates of key model parameters when viral load data prior to the viral load peak is missing, when we know the values of some parameters and/or the time from infection to peak viral load. Although estimates of the time of infection are sensitive to the quality and amount of available data, particularly pre-peak, other parameters important in understanding disease pathogenesis, such as the loss rate of infected cells, are less sensitive. Viral infectivity and the viral production rate are key parameters affecting the robustness of data fits. Fixing their values to literature values can help estimate the remaining model parameters when pre-peak data is missing or limited. We find a lack of data in the pre-peak growth phase underestimates the time to peak viral load by several days, leading to a shorter predicted growth phase. On the other hand, knowing the time of infection (e.g., from epidemiological data) and fixing it results in good estimates of dynamical parameters even in the absence of early data. While we provide ways to approximate model parameters in the absence of early viral load data, our results also suggest that these data, when available, are needed to estimate model parameters more precisely.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| |
Collapse
|
7
|
Raezah AA, Elaiw A, Alshaikh M. Global stability of secondary DENV infection models with non-specific and strain-specific CTLs. Heliyon 2024; 10:e25391. [PMID: 38352732 PMCID: PMC10862684 DOI: 10.1016/j.heliyon.2024.e25391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Dengue virus (DENV) is a highly perilous virus that is transmitted to humans through mosquito bites and causes dengue fever. Consequently, extensive efforts are being made to develop effective treatments and vaccines. Mathematical modeling plays a significant role in comprehending the dynamics of DENV within a host in the presence of cytotoxic T lymphocytes (CTL) immune response. This study examines two models for secondary DENV infections that elucidate the dynamics of DENV under the influence of two types of CTL responses, namely non-specific and strain-specific responses. The first model encompasses five compartments, which consist of uninfected monocytes, infected monocytes, free DENV particles, non-specific CTLs, and strain-specific CTLs. In the second model, latently infected cells are introduced into the model. We posit that the CTL responsiveness is determined by a combination of self-regulating CTL response and a predator-prey-like CTL response. The model's solutions are verified to be nonnegativity and bounded and the model possesses two equilibrium states: the uninfected equilibrium EQ 0 and the infected equilibrium EQ ⁎ . Furthermore, we calculate the basic reproduction number R 0 , which determines the existence and stability of the model's equilibria. We examine the global stability by constructing suitable Lyapunov functions. Our analysis reveals that if R 0 ≤ 1 , then EQ 0 is globally asymptotically stable (G.A.S), and if R 0 > 1 , then EQ 0 is unstable while EQ ⁎ is G.A.S. To illustrate our findings analytically, we conduct numerical simulations for each model. Additionally, we perform sensitivity analysis to demonstrate how the parameter values of the proposed model impact R 0 given a set of data. Finally, we discuss the implications of including the CTL immune response and latently infected cells in the secondary DENV infection model. Our study demonstrates that incorporating the CTL immune response and latently infected cells diminishes R 0 and enhances the system's stability around EQ 0 .
Collapse
Affiliation(s)
- Aeshah A. Raezah
- Department of Mathematics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - A.M. Elaiw
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - M.A. Alshaikh
- Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Heitzman-Breen N, Liyanage YR, Duggal N, Tuncer N, Ciupe SM. The effect of model structure and data availability on Usutu virus dynamics at three biological scales. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231146. [PMID: 38328567 PMCID: PMC10846940 DOI: 10.1098/rsos.231146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Understanding the epidemiology of emerging pathogens, such as Usutu virus (USUV) infections, requires systems investigation at each scale involved in the host-virus transmission cycle, from individual bird infections, to bird-to-vector transmissions, and to USUV incidence in bird and vector populations. For new pathogens field data are sparse, and predictions can be aided by the use of laboratory-type inoculation and transmission experiments combined with dynamical mathematical modelling. In this study, we investigated the dynamics of two strains of USUV by constructing mathematical models for the within-host scale, bird-to-vector transmission scale and vector-borne epidemiological scale. We used individual within-host infectious virus data and per cent mosquito infection data to predict USUV incidence in birds and mosquitoes. We addressed the dependence of predictions on model structure, data uncertainty and experimental design. We found that uncertainty in predictions at one scale change predicted results at another scale. We proposed in silico experiments that showed that sampling every 12 hours ensures practical identifiability of the within-host scale model. At the same time, we showed that practical identifiability of the transmission scale functions can only be improved under unrealistically high sampling regimes. Instead, we proposed optimal experimental designs and suggested the types of experiments that can ensure identifiability at the transmission scale and, hence, induce robustness in predictions at the epidemiological scale.
Collapse
Affiliation(s)
- Nora Heitzman-Breen
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Yuganthi R. Liyanage
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Nisha Duggal
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Necibe Tuncer
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
9
|
Recker M, Fleischmann WA, Nghia TH, Truong NV, Nam LV, Duc Anh D, Song LH, The NT, Anh CX, Hoang NV, My Truong N, Toan NL, Kremsner PG, Velavan TP. Markers of prolonged hospitalisation in severe dengue. PLoS Negl Trop Dis 2024; 18:e0011922. [PMID: 38289968 PMCID: PMC10857710 DOI: 10.1371/journal.pntd.0011922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/09/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Dengue is one of the most common diseases in the tropics and subtropics. Whilst mortality is a rare event when adequate supportive care can be provided, a large number of patients get hospitalised with dengue every year that places a heavy burden on local health systems. A better understanding of the support required at the time of hospitalisation is therefore of critical importance for healthcare planning, especially when resources are limited during major outbreaks. METHODS Here we performed a retrospective analysis of clinical data from over 1500 individuals hospitalised with dengue in Vietnam between 2017 and 2019. Using a broad panel of potential biomarkers, we sought to evaluate robust predictors of prolonged hospitalisation periods. RESULTS Our analyses revealed a lead-time bias, whereby early admission to hospital correlates with longer hospital stays - irrespective of disease severity. Importantly, taking into account the symptom duration prior to hospitalisation significantly affects observed associations between hospitalisation length and previously reported risk markers of prolonged stays, which themselves showed marked inter-annual variations. Once corrected for symptom duration, age, temperature at admission and elevated neutrophil-to-lymphocyte ratio were found predictive of longer hospitalisation periods. CONCLUSION This study demonstrates that the time since dengue symptom onset is one of the most significant predictors for the length of hospital stays, independent of the assigned severity score. Pre-hospital symptom durations need to be accounted for to evaluate clinically relevant biomarkers of dengue hospitalisation trajectories.
Collapse
Affiliation(s)
- Mario Recker
- Institute for Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Wim A. Fleischmann
- Institute for Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Trinh Huu Nghia
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Van Truong
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Van Nam
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Duc Anh
- Institute for Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Le Huu Song
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Nguyen Trong The
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | | | | | - Nhat My Truong
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Peter G. Kremsner
- Institute for Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | - Thirumalaisamy P. Velavan
- Institute for Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
10
|
McCormack CP, Goethals O, Goeyvaerts N, Woot de Trixhe XD, Geluykens P, Borrenberghs D, Ferguson NM, Ackaert O, Dorigatti I. Modelling the impact of JNJ-1802, a first-in-class dengue inhibitor blocking the NS3-NS4B interaction, on in-vitro DENV-2 dynamics. PLoS Comput Biol 2023; 19:e1011662. [PMID: 38055683 PMCID: PMC10699615 DOI: 10.1371/journal.pcbi.1011662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
Dengue virus (DENV) is a public health challenge across the tropics and subtropics. Currently, there is no licensed prophylactic or antiviral treatment for dengue. The novel DENV inhibitor JNJ-1802 can significantly reduce viral load in mice and non-human primates. Here, using a mechanistic viral kinetic model calibrated against viral RNA data from experimental in-vitro infection studies, we assess the in-vitro inhibitory effect of JNJ-1802 by characterising infection dynamics of two DENV-2 strains in the absence and presence of different JNJ-1802 concentrations. Viral RNA suppression to below the limit of detection was achieved at concentrations of >1.6 nM, with a median concentration exhibiting 50% of maximal inhibitory effect (IC50) of 1.23x10-02 nM and 1.28x10-02 nM for the DENV-2/RL and DENV-2/16681 strains, respectively. This work provides important insight into the in-vitro inhibitory effect of JNJ-1802 and presents a first step towards a modelling framework to support characterization of viral kinetics and drug effect across different host systems.
Collapse
Affiliation(s)
- Clare P. McCormack
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nele Goeyvaerts
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Peggy Geluykens
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
- Discovery, Charles River Beerse, Beerse, Belgium
| | | | - Neil M. Ferguson
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver Ackaert
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
D’Orso I, Forst CV. Mathematical Models of HIV-1 Dynamics, Transcription, and Latency. Viruses 2023; 15:2119. [PMID: 37896896 PMCID: PMC10612035 DOI: 10.3390/v15102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
HIV-1 latency is a major barrier to curing infections with antiretroviral therapy and, consequently, to eliminating the disease globally. The establishment, maintenance, and potential clearance of latent infection are complex dynamic processes and can be best described with the help of mathematical models followed by experimental validation. Here, we review the use of viral dynamics models for HIV-1, with a focus on applications to the latent reservoir. Such models have been used to explain the multi-phasic decay of viral load during antiretroviral therapy, the early seeding of the latent reservoir during acute infection and the limited inflow during treatment, the dynamics of viral blips, and the phenomenon of post-treatment control. Finally, we discuss that mathematical models have been used to predict the efficacy of potential HIV-1 cure strategies, such as latency-reversing agents, early treatment initiation, or gene therapies, and to provide guidance for designing trials of these novel interventions.
Collapse
Affiliation(s)
- Iván D’Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Christian V. Forst
- Department of Genetics and Genomic Sciences, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Jagtap S, Pattabiraman C, Sankaradoss A, Krishna S, Roy R. Evolutionary dynamics of dengue virus in India. PLoS Pathog 2023; 19:e1010862. [PMID: 37011104 PMCID: PMC10101646 DOI: 10.1371/journal.ppat.1010862] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
More than a hundred thousand dengue cases are diagnosed in India annually, and about half of the country's population carries dengue virus-specific antibodies. Dengue propagates and adapts to the selection pressures imposed by a multitude of factors that can lead to the emergence of new variants. Yet, there has been no systematic analysis of the evolution of the dengue virus in the country. Here, we present a comprehensive analysis of all DENV gene sequences collected between 1956 and 2018 from India. We examine the spatio-temporal dynamics of India-specific genotypes, their evolutionary relationship with global and local dengue virus strains, interserotype dynamics and their divergence from the vaccine strains. Our analysis highlights the co-circulation of all DENV serotypes in India with cyclical outbreaks every 3-4 years. Since 2000, genotype III of DENV-1, cosmopolitan genotype of DENV-2, genotype III of DENV-3 and genotype I of DENV-4 have been dominating across the country. Substitution rates are comparable across the serotypes, suggesting a lack of serotype-specific evolutionary divergence. Yet, the envelope (E) protein displays strong signatures of evolution under immune selection. Apart from drifting away from its ancestors and other contemporary serotypes in general, we find evidence for recurring interserotype drift towards each other, suggesting selection via cross-reactive antibody-dependent enhancement. We identify the emergence of the highly divergent DENV-4-Id lineage in South India, which has acquired half of all E gene mutations in the antigenic sites. Moreover, the DENV-4-Id is drifting towards DENV-1 and DENV-3 clades, suggesting the role of cross-reactive antibodies in its evolution. Due to the regional restriction of the Indian genotypes and immunity-driven virus evolution in the country, ~50% of all E gene differences with the current vaccines are focused on the antigenic sites. Our study shows how the dengue virus evolution in India is being shaped in complex ways.
Collapse
Affiliation(s)
- Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
13
|
Cecilia H, Vriens R, Wichgers Schreur PJ, de Wit MM, Métras R, Ezanno P, ten Bosch QA. Heterogeneity of Rift Valley fever virus transmission potential across livestock hosts, quantified through a model-based analysis of host viral load and vector infection. PLoS Comput Biol 2022; 18:e1010314. [PMID: 35867712 PMCID: PMC9348665 DOI: 10.1371/journal.pcbi.1010314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/03/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Quantifying the variation of pathogens’ life history traits in multiple host systems is crucial to understand their transmission dynamics. It is particularly important for arthropod-borne viruses (arboviruses), which are prone to infecting several species of vertebrate hosts. Here, we focus on how host-pathogen interactions determine the ability of host species to transmit a virus to susceptible vectors upon a potentially infectious contact. Rift Valley fever (RVF) is a viral, vector-borne, zoonotic disease, chosen as a case study. The relative contributions of livestock species to RVFV transmission has not been previously quantified. To estimate their potential to transmit the virus over the course of their infection, we 1) fitted a within-host model to viral RNA and infectious virus measures, obtained daily from infected lambs, calves, and young goats, 2) estimated the relationship between vertebrate host infectious titers and probability to infect mosquitoes, and 3) estimated the net infectiousness of each host species over the duration of their infectious periods, taking into account different survival outcomes for lambs. Our results indicate that the efficiency of viral replication, along with the lifespan of infectious particles, could be sources of heterogeneity between hosts. Given available data on RVFV competent vectors, we found that, for similar infectious titers, infection rates in the Aedes genus were on average higher than in the Culex genus. Consequently, for Aedes-mediated infections, we estimated the net infectiousness of lambs to be 2.93 (median) and 3.65 times higher than that of calves and goats, respectively. In lambs, we estimated the overall infectiousness to be 1.93 times higher in individuals which eventually died from the infection than in those recovering. Beyond infectiousness, the relative contributions of host species to transmission depend on local ecological factors, including relative abundances and vector host-feeding preferences. Quantifying these contributions will ultimately help design efficient, targeted, surveillance and vaccination strategies. Viruses spread by mosquitoes present a major threat to animal and public health worldwide. When these pathogenic viruses can infect multiple species, controlling their spread becomes difficult. Rift Valley fever virus (RVFV) is such a virus. It spreads predominantly among ruminant livestock but can also spill over and cause severe disease in humans. Understanding which of these ruminant species are most important for the transmission of RVFV can help for effective control. One piece of this puzzle is to assess how effective infected animals are at transmitting RVFV to mosquitoes. To answer this question, we combine mathematical models with observations from experimental infections in cattle, sheep, and goats, and model changes in viremia over time within individuals. We then quantify the relationship between hosts’ viremia and the probability to infect mosquitoes. In combining these two analyses, we estimate the overall transmission potential of sheep, when in contact with mosquitoes, to be 3 to 5 times higher than that of goats and cattle. Further, sheep that experience a lethal infection have an even larger overall transmission potential. Once applied at the level of populations, with setting-specific herd composition and exposure to mosquitoes, these results will help unravel species’ role in RVF outbreaks.
Collapse
Affiliation(s)
- Hélène Cecilia
- INRAE, Oniris, BIOEPAR, Nantes, France
- * E-mail: (HC); (QAtB)
| | - Roosmarie Vriens
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Mariken M. de Wit
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raphaëlle Métras
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | | | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- * E-mail: (HC); (QAtB)
| |
Collapse
|
14
|
Aguiar M, Anam V, Blyuss KB, Estadilla CDS, Guerrero BV, Knopoff D, Kooi BW, Srivastav AK, Steindorf V, Stollenwerk N. Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys Life Rev 2022; 40:65-92. [PMID: 35219611 PMCID: PMC8845267 DOI: 10.1016/j.plrev.2022.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Mathematical models have a long history in epidemiological research, and as the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. Mathematical models describing dengue fever epidemiological dynamics are found back from 1970. Dengue fever is a viral mosquito-borne infection caused by four antigenically related but distinct serotypes (DENV-1 to DENV-4). With 2.5 billion people at risk of acquiring the infection, it is a major international public health concern. Although most of the cases are asymptomatic or mild, the disease immunological response is complex, with severe disease linked to the antibody-dependent enhancement (ADE) - a disease augmentation phenomenon where pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection. Here, we present a 10-year systematic review on mathematical models for dengue fever epidemiology. Specifically, we review multi-strain frameworks describing host-to-host and vector-host transmission models and within-host models describing viral replication and the respective immune response. Following a detailed literature search in standard scientific databases, different mathematical models in terms of their scope, analytical approach and structural form, including model validation and parameter estimation using empirical data, are described and analyzed. Aiming to identify a consensus on infectious diseases modeling aspects that can contribute to public health authorities for disease control, we revise the current understanding of epidemiological and immunological factors influencing the transmission dynamics of dengue. This review provide insights on general features to be considered to model aspects of real-world public health problems, such as the current epidemiological scenario we are living in.
Collapse
Affiliation(s)
- Maíra Aguiar
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Vizda Anam
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Konstantin B Blyuss
- VU University, Faculty of Science, De Boelelaan 1085, NL 1081, HV Amsterdam, the Netherlands
| | - Carlo Delfin S Estadilla
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Bruno V Guerrero
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Damián Knopoff
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Centro de Investigaciones y Estudios de Matemática CIEM, CONICET, Medina Allende s/n, Córdoba, 5000, Argentina
| | - Bob W Kooi
- University of Sussex, Department of Mathematics, Falmer, Brighton, UK
| | - Akhil Kumar Srivastav
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Vanessa Steindorf
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Nico Stollenwerk
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy
| |
Collapse
|
15
|
Kopanke J, Carpenter M, Lee J, Reed K, Rodgers C, Burton M, Lovett K, Westrich JA, McNulty E, McDermott E, Barbera C, Cavany S, Rohr JR, Perkins TA, Mathiason CK, Stenglein M, Mayo C. Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annu Rev Anim Biosci 2022; 10:303-324. [PMID: 35167317 DOI: 10.1146/annurev-animal-051721-023724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, Washington, USA;
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Justin Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Kierra Lovett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Erin McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Emily McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| |
Collapse
|
16
|
Rana P, Chauhan S, Mubayi A. Burden of cytokines storm on prognosis of SARS-CoV-2 infection through immune response: dynamic analysis and optimal control with immunomodulatory therapy. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:3297-3315. [PMID: 35103099 PMCID: PMC8792534 DOI: 10.1140/epjs/s11734-022-00435-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Immune responses have a crucial role to play against SARS-CoV-2 virus as the adaptive and innate immune systems of the human body help restoring the body to a healthy stage by annihilating this deadly viral infection. Cytokines also play a significant role in modulating a balance between innate and adaptive immune responses but excess of it can have a detrimental affect on critically ill patients. Therefore, this paper is a novel attempt to formulate a within-host mathematical model showing the impact of cytokines storm on healthy cells. The dynamics of the system is analysed which involves basic reproduction number, steady state solutions and global dynamics for disease-free point and endemic equilibrium using geometric approach. Further, an optimal control problem is discussed considering immunomodulatory therapy (targeting cytokines signaling) as control using linear feedback control method to increase the level of healthy cells, which provides vitality for our system. Through numerical simulations, analytic solutions are validated followed by the curve-fit for the cytokines using real data and an optimization algorithm for optimal fit. Finally, sensitivity analysis for the basic reproduction number and the rate of change of healthy cells using Latin Hypercube Sampling method (LHS) is performed. Our finding suggests that immunomodulatory therapy (tocilizumab) can act as a key component to control cytokines storm for critically ill patients to restore the body to a healthy state.
Collapse
Affiliation(s)
- Payal Rana
- Department of Mathematics, Amity Institute of Applied Science, Amity University, Sector-125, Noida, UP India
| | - Sudipa Chauhan
- Department of Mathematics, Amity Institute of Applied Science, Amity University, Sector-125, Noida, UP India
| | - Anuj Mubayi
- PRECISIONheor, Los Angeles, CA USA
- Department of Mathematics, Illinois State University, Normal, IL USA
- College of Health Solutions, Arizona State University, Tempe, AZ USA
| |
Collapse
|
17
|
Heitzman-Breen N, Golden J, Vazquez A, Kuchinsky SC, Duggal NK, Ciupe SM. Modeling the dynamics of Usutu virus infection in birds. J Theor Biol 2021; 531:110896. [PMID: 34506809 DOI: 10.1016/j.jtbi.2021.110896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
Usutu virus is an emerging zoonotic flavivirus causing high avian mortality rates and occasional severe neurological disorders in humans. Several virus strains are co-circulating and the differences in their characteristics and avian pathogenesis levels are still unknown. In this study, we use within-host mathematical models to characterize the mechanisms responsible for virus expansion and clearance in juvenile chickens challenged with four Usutu virus strains. We find heterogeneity between the virus strains, with the time between cell infection and viral production varying between 16 h and 23 h, the infected cell lifespan varying between 48 min and 9.5 h, and the basic reproductive number R0 varying between 12.05 and 19.49. The strains with high basic reproductive number have short infected cell lifespan, indicative of immune responses. The virus strains with low basic reproductive number have lower viral peaks and longer lasting viremia, due to lower infection rates and high infected cell lifespan. We discuss how the host and virus heterogeneities may differently impact the public health threat presented by these virus strains.
Collapse
Affiliation(s)
- Nora Heitzman-Breen
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jacob Golden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ana Vazquez
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Epidemiology and Public Health Network of Biomedical Research Centre (CIBERESP), Madrid, Spain
| | - Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
18
|
Wang H, Tian X. Dynamics of a delayed within host model for dengue infection with immune response and Beddington–DeAngelis incidence. INT J BIOMATH 2021. [DOI: 10.1142/s1793524522500024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, a new delayed within host model for dengue fever with immune response and Beddington–DeAngelis incidence is investigated. The basic reproduction number is computed. In addition, a detailed analysis on the local and global dynamics of the model is conducted. Finally, sensitivity analysis is carried out on basic reproduction number and numerical simulations are given to elucidate our theoretical results.
Collapse
Affiliation(s)
- Haifeng Wang
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiaohong Tian
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
19
|
Rox K, Heyner M, Krull J, Harmrolfs K, Rinne V, Hokkanen J, Perez Vilaro G, Díez J, Müller R, Kröger A, Sugiyama Y, Brönstrup M. Physiologically Based Pharmacokinetic/Pharmacodynamic Model for the Treatment of Dengue Infections Applied to the Broad Spectrum Antiviral Soraphen A. ACS Pharmacol Transl Sci 2021; 4:1499-1513. [PMID: 34661071 DOI: 10.1021/acsptsci.1c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/22/2022]
Abstract
While a drug treatment is unavailable, the global incidence of Dengue virus (DENV) infections and its associated severe manifestations continues to rise. We report the construction of the first physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that predicts viremia levels in relevant target organs based on preclinical data with the broad spectrum antiviral soraphen A (SorA), an inhibitor of the host cell target acetyl-CoA-carboxylase. SorA was highly effective against DENV in vitro (EC50 = 4.7 nM) and showed in vivo efficacy by inducing a significant reduction of viral load in the spleen and liver of IFNAR-/- mice infected with DENV-2. PBPK/PD predictions for SorA matched well with the experimental infection data. Transfer to a human PBPK/PD model for DENV to mimic a clinical scenario predicted a reduction in viremia by more than one log10 unit for an intravenous infusion regimen of SorA. The PBPK/PD model is applicable to any DENV drug lead and, thus, represents a valuable tool to accelerate and facilitate DENV drug discovery and development.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maxi Heyner
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Krull
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | | | | | - Gemma Perez Vilaro
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Juana Díez
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Rolf Müller
- German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Andrea Kröger
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
20
|
A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction. Nature 2021; 598:504-509. [PMID: 34616043 DOI: 10.1038/s41586-021-03990-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Dengue virus causes approximately 96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue1,2. There are no antiviral agents available to prevent or treat dengue. Here, we describe a highly potent dengue virus inhibitor (JNJ-A07) that exerts nanomolar to picomolar activity against a panel of 21 clinical isolates that represent the natural genetic diversity of known genotypes and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus revealing a previously undescribed mechanism of antiviral action. JNJ-A07 has a favourable pharmacokinetic profile that results in outstanding efficacy against dengue virus infection in mouse infection models. Delaying start of treatment until peak viraemia results in a rapid and significant reduction in viral load. An analogue is currently in further development.
Collapse
|
21
|
Sebayang AA, Fahlena H, Anam V, Knopoff D, Stollenwerk N, Aguiar M, Soewono E. Modeling Dengue Immune Responses Mediated by Antibodies: A Qualitative Study. BIOLOGY 2021; 10:biology10090941. [PMID: 34571818 PMCID: PMC8464952 DOI: 10.3390/biology10090941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary With more than one-third of the world population at risk of acquiring the disease, dengue fever is a major public health problem. Caused by four antigenically distinct but related serotypes, disease severity is associated with the immunological status of the individual, seronegative or seropositive, prior to a natural dengue infection. While a primary natural dengue infection is often asymptomatic or mild, individuals experiencing a secondary dengue infection with a heterologous serotype have higher risk of developing the severe form of the disease, linked to the antibody-dependent enhancement (ADE) process. We develop a modeling framework to describe the dengue immune responses mediated by antibodies. Our model framework can describe qualitatively the dynamic of the viral load and antibodies production for scenarios of primary and secondary infections, as found in the empirical immunology literature. Studies such as the one described here serve as a baseline to further model extensions. Future refinements of our framework will be of use to evaluate the impact of imperfect dengue vaccines. Abstract Dengue fever is a viral mosquito-borne infection and a major international public health concern. With 2.5 billion people at risk of acquiring the infection around the world, disease severity is influenced by the immunological status of the individual, seronegative or seropositive, prior to natural infection. Caused by four antigenically related but distinct serotypes, DENV-1 to DENV-4, infection by one serotype confers life-long immunity to that serotype and a period of temporary cross-immunity (TCI) to other serotypes. The clinical response on exposure to a second serotype is complex with the so-called antibody-dependent enhancement (ADE) process, a disease augmentation phenomenon when pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection, used to explain the etiology of severe disease. In this paper, we present a minimalistic mathematical model framework developed to describe qualitatively the dengue immunological response mediated by antibodies. Three models are analyzed and compared: (i) primary dengue infection, (ii) secondary dengue infection with the same (homologous) dengue virus and (iii) secondary dengue infection with a different (heterologous) dengue virus. We explore the features of viral replication, antibody production and infection clearance over time. The model is developed based on body cells and free virus interactions resulting in infected cells activating antibody production. Our mathematical results are qualitatively similar to the ones described in the empiric immunology literature, providing insights into the immunopathogenesis of severe disease. Results presented here are of use for future research directions to evaluate the impact of dengue vaccines.
Collapse
Affiliation(s)
- Afrina Andriani Sebayang
- Department of Mathematics, Institut Teknologi Bandung, Bandung 40132, Indonesia; (A.A.S.); (H.F.)
| | - Hilda Fahlena
- Department of Mathematics, Institut Teknologi Bandung, Bandung 40132, Indonesia; (A.A.S.); (H.F.)
| | - Vizda Anam
- Basque Centre for Applied Mathematics (BCAM), Alameda Mazarredo, 14, 48009 Bilbao, Spain; (V.A.); (D.K.); (N.S.)
| | - Damián Knopoff
- Basque Centre for Applied Mathematics (BCAM), Alameda Mazarredo, 14, 48009 Bilbao, Spain; (V.A.); (D.K.); (N.S.)
| | - Nico Stollenwerk
- Basque Centre for Applied Mathematics (BCAM), Alameda Mazarredo, 14, 48009 Bilbao, Spain; (V.A.); (D.K.); (N.S.)
- Dipartimento di Matematica, Universita degli Studi di Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Maíra Aguiar
- Basque Centre for Applied Mathematics (BCAM), Alameda Mazarredo, 14, 48009 Bilbao, Spain; (V.A.); (D.K.); (N.S.)
- Dipartimento di Matematica, Universita degli Studi di Trento, Via Sommarive 14, 38123 Trento, Italy
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza, 5, 48009 Bilbo, Spain
- Correspondence: (M.A.); (E.S.)
| | - Edy Soewono
- Department of Mathematics, Institut Teknologi Bandung, Bandung 40132, Indonesia; (A.A.S.); (H.F.)
- Center for Mathematical Modeling and Simulation, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Correspondence: (M.A.); (E.S.)
| |
Collapse
|
22
|
A Study of Within-Host Dynamics of Dengue Infection incorporating both Humoral and Cellular Response with a Time Delay for Production of Antibodies. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2021. [DOI: 10.1515/cmb-2020-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
a. Background: Dengue is an acute illness caused by a virus. The complex behaviour of the virus in human body can be captured using mathematical models. These models helps us to enhance our understanding on the dynamics of the virus.
b. Objectives: We propose to study the dynamics of within-host epidemic model of dengue infection which incorporates both innate immune response and adaptive immune response (Cellular and Humoral). The proposed model also incorporates the time delay for production of antibodies from B cells. We propose to understand the dynamics of the this model using the dynamical systems approach by performing the stability and sensitivity analysis.
c. Methods used: The basic reproduction number (R0) has been computed using the next generation matrix method. The standard stability analysis and sensitivity analysis were performed on the proposed model.
d. Results: The critical level of the antibody recruitment rate(q) was found to be responsible for the existence and stability of various steady states. The stability of endemic state was found to be dependent on time delay(τ). The sensitivity analysis identified the production rate of antibodies (q) to be highly sensitive parameter.
e. Conclusions: The existence and stability conditions for the equilibrium points have been obtained. The threshold value of time delay (τ0) has been computed which is critical for change in stability of the endemic state. Sensitivity analysis was performed to identify the crucial and sensitive parameters of the model.
Collapse
|
23
|
de A Camargo F, Adimy M, Esteva L, Métayer C, Ferreira CP. Modeling the Relationship Between Antibody-Dependent Enhancement and Disease Severity in Secondary Dengue Infection. Bull Math Biol 2021; 83:85. [PMID: 34142264 DOI: 10.1007/s11538-021-00919-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/05/2021] [Indexed: 11/25/2022]
Abstract
Sequential infections with different dengue serotypes (DENV-1, 4) significantly increase the risk of a severe disease outcome (fever, shock, and hemorrhagic disorders). Two hypotheses have been proposed to explain the severity of the disease: (1) antibody-dependent enhancement (ADE) and (2) original T cell antigenic sin. In this work, we explored the first hypothesis through mathematical modeling. The proposed model reproduces the dynamic of susceptible and infected target cells and dengue virus in scenarios of infection-neutralizing and infection-enhancing antibody competition induced by two distinct serotypes of the dengue virus during secondary infection. The enhancement and neutralization functions are derived from basic concepts of chemical reactions and used to mimic binding to the virus by two distinct populations of antibodies. The analytic study of the model showed the existence of two equilibriums: a disease-free equilibrium and an endemic one. Using the concept of the basic reproduction number [Formula: see text], we performed the asymptotic stability analysis for the two equilibriums. To measure the severity of the disease, we considered the maximum value of infected cells as well as the time when this maximum is reached. We observed that it corresponds to the time when the maximum enhancing activity for the infection occurs. This critical time was calculated from the model to be a few days after the occurrence of the infection, which corresponds to what is observed in the literature. Finally, using as output [Formula: see text], we were able to rank the contribution of each parameter of the model. In particular, we highlighted that the cross-reactive antibody responses may be responsible for the disease enhancement during secondary heterologous dengue infection.
Collapse
Affiliation(s)
- Felipe de A Camargo
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Mostafa Adimy
- Inria, Institut Camille Jordan, Université de Lyon, Université Lyon 1, 43 Bd. du 11 novembre 1918, 69200, Villeurbanne Cedex, France
| | - Lourdes Esteva
- Departamento de Matemáticas, Facultad de Ciencias, UNAM, 04510, Mexico, D.F., Mexico
| | - Clémence Métayer
- Inria, Institut Camille Jordan, Université de Lyon, Université Lyon 1, 43 Bd. du 11 novembre 1918, 69200, Villeurbanne Cedex, France
| | - Cláudia P Ferreira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
24
|
Antibody-dependent enhancement representing in vitro infective progeny virus titer correlates with the viremia level in dengue patients. Sci Rep 2021; 11:12354. [PMID: 34117329 PMCID: PMC8196181 DOI: 10.1038/s41598-021-91793-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) causes dengue fever (DF) and dengue hemorrhagic fever in humans. Some DF patients suddenly develop severe symptoms around the defervescent period. Although the pathogenic mechanism of the severe symptoms has not been fully elucidated, the viremia level in the early phase has been shown to correlate with the disease severity. One of the hypotheses is that a phenomenon called antibody-dependent enhancement (ADE) of infection leads to high level of viremia. To examine the plausibility of this hypothesis, we examined the relationship between in vitro ADE activity and in vivo viral load quantity in six patients with dengue diseases. Blood samples were collected at multiple time points between the acute and defervescent phases, and the balance between neutralizing and enhancing activities against the autologous and prototype viruses was examined. As the antibody levels against DENV were rapidly increased, ADE activity was decreased over time or partially maintained against some viruses at low serum dilution. In addition, positive correlations were observed between ADE activity representing in vitro progeny virus production and viremia levels in patient plasma samples. The measurement of ADE activity in dengue-seropositive samples may help to predict the level of viral load in the subsequent DENV infection.
Collapse
|
25
|
Ciupe SM, Vaidya NK, Forde JE. Early events in hepatitis B infection: the role of inoculum dose. Proc Biol Sci 2021; 288:20202715. [PMID: 33563115 DOI: 10.1098/rspb.2020.2715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relationship between the inoculum dose and the ability of the pathogen to invade the host is poorly understood. Experimental studies in non-human primates infected with different inoculum doses of hepatitis B virus have shown a non-monotonic relationship between dose magnitude and infection outcome, with high and low doses leading to 100% liver infection and intermediate doses leading to less than 0.1% liver infection, corresponding to CD4 T-cell priming. Since hepatitis B clearance is CD8 T-cell mediated, the question of whether the inoculum dose influences CD8 T-cell dynamics arises. To help answer this question, we developed a mathematical model of virus-host interaction following hepatitis B virus infection. Our model explains the experimental data well, and predicts that the inoculum dose affects both the timing of the CD8 T-cell expansion and the quality of its response, especially the non-cytotoxic function. We find that a low-dose challenge leads to slow CD8 T-cell expansion, weak non-cytotoxic functions, and virus persistence; high- and medium-dose challenges lead to fast CD8 T-cell expansion, strong cytotoxic and non-cytotoxic function, and virus clearance; while a super-low-dose challenge leads to delayed CD8 T-cell expansion, strong cytotoxic and non-cytotoxic function, and virus clearance. These results are useful for designing immune cell-based interventions.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, 24060 VA, USA
| | - Naveen K Vaidya
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA.,Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA.,Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Jonathan E Forde
- Department of Mathematics and Computer Science, Hobart and William Smith Colleges, Geneva, New York 14456, USA
| |
Collapse
|
26
|
Best K, Barouch DH, Guedj J, Ribeiro RM, Perelson AS. Zika virus dynamics: Effects of inoculum dose, the innate immune response and viral interference. PLoS Comput Biol 2021; 17:e1008564. [PMID: 33471814 PMCID: PMC7817008 DOI: 10.1371/journal.pcbi.1008564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental Zika virus infection in non-human primates results in acute viral load dynamics that can be well-described by mathematical models. The inoculum dose that would be received in a natural infection setting is likely lower than the experimental infections and how this difference affects the viral dynamics and immune response is unclear. Here we study a dataset of experimental infection of non-human primates with a range of doses of Zika virus. We develop new models of infection incorporating both an innate immune response and viral interference with that response. We find that such a model explains the data better than models with no interaction between virus and the immune response. We also find that larger inoculum doses lead to faster dynamics of infection, but approximately the same total amount of viral production. The relationship between the infecting dose of a pathogen and the subsequent viral dynamics is unclear in many disease settings, and this relationship has implications for both the timing and the required efficacy of antiviral therapy. Since experimental challenge studies often employ higher doses of virus than would generally be present in natural infection assessment of this relationship is particularly important for translation of findings. In this study we used mathematical modelling of viral load data from a multi-dose study of Zika virus infection in a macaque model to describe the impact of varying the dose of Zika virus on model parameters, and developed a novel mathematical model incorporating viral interference with the innate immune response.
Collapse
Affiliation(s)
- Katharine Best
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Laboratório de Biomatemática, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
27
|
Schaber KL, Perkins TA, Lloyd AL, Waller LA, Kitron U, Paz-Soldan VA, Elder JP, Rothman AL, Civitello DJ, Elson WH, Morrison AC, Scott TW, Vazquez-Prokopec GM. Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Comput Biol 2021; 17:e1008627. [PMID: 33465065 PMCID: PMC7845972 DOI: 10.1371/journal.pcbi.1008627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/29/2021] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
Heterogeneous exposure to mosquitoes determines an individual’s contribution to vector-borne pathogen transmission. Particularly for dengue virus (DENV), there is a major difficulty in quantifying human-vector contacts due to the unknown coupled effect of key heterogeneities. To test the hypothesis that the reduction of human out-of-home mobility due to dengue illness will significantly influence population-level dynamics and the structure of DENV transmission chains, we extended an existing modeling framework to include social structure, disease-driven mobility reductions, and heterogeneous transmissibility from different infectious groups. Compared to a baseline model, naïve to human pre-symptomatic infectiousness and disease-driven mobility changes, a model including both parameters predicted an increase of 37% in the probability of a DENV outbreak occurring; a model including mobility change alone predicted a 15.5% increase compared to the baseline model. At the individual level, models including mobility change led to a reduction of the importance of out-of-home onward transmission (R, the fraction of secondary cases predicted to be generated by an individual) by symptomatic individuals (up to -62%) at the expense of an increase in the relevance of their home (up to +40%). An individual’s positive contribution to R could be predicted by a GAM including a non-linear interaction between an individual’s biting suitability and the number of mosquitoes in their home (>10 mosquitoes and 0.6 individual attractiveness significantly increased R). We conclude that the complex fabric of social relationships and differential behavioral response to dengue illness cause the fraction of symptomatic DENV infections to concentrate transmission in specific locations, whereas asymptomatic carriers (including individuals in their pre-symptomatic period) move the virus throughout the landscape. Our findings point to the difficulty of focusing vector control interventions reactively on the home of symptomatic individuals, as this approach will fail to contain virus propagation by visitors to their house and asymptomatic carriers. Human mobility patterns can play an integral role in vector-borne disease dynamics by characterizing an individual’s potential contacts with disease-transmitting vectors. Dengue virus is transmitted by a sedentary vector, but human mobility allows individuals to have contact with mosquitoes at their home and other houses they frequent (their activity space). When accounting for the decreased mobility of symptomatic dengue cases in an agent-based simulation model, however, we found a severely diminished role of the activity space in onward transmission. Those who received the majority of their mosquito contacts outside their home experienced decreases in expected bites and onward transmission when mobility changes were accounted for. Onward transmission was driven by a synergistic relationship between the number of mosquitoes in an individual’s home and their biting suitability, where even those with the highest biting suitability would have limited contribution to transmission given a low number of household mosquitoes. Reactive vector control, which often targets symptomatic cases, could be effective for slowing onward transmission from these cases, but will fail to control virus transmission due to the disproportionate contribution of asymptomatic infections.
Collapse
Affiliation(s)
- Kathryn L. Schaber
- Program of Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Valerie A. Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - John P. Elder
- Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Alan L. Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, United States of America
| | - David J. Civitello
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - William H. Elson
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Gonzalo M. Vazquez-Prokopec
- Program of Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia, United States of America
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Thibodeaux JJ, Nuñez D, Rivera A. A generalized within-host model of dengue infection with a non-constant monocyte production rate. JOURNAL OF BIOLOGICAL DYNAMICS 2020; 14:143-161. [PMID: 32122254 DOI: 10.1080/17513758.2020.1733678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In this paper, we generalize a previous model of within-host dengue infection with a nonconstant monocyte production rate. We establish the existence of three equilibria and give some local stability results. We then estimate three parameters in the model from clinical data for dengue virus serotype 2. It is then shown that the model can exhibit behaviours that are not possible under the assumption of constant monocyte production. Lastly, we perform a sensitivity analysis of the model in two contexts, antiviral treatment and immunostimulatory treatment. The results predict that antiviral treatments that reduce the viral replication rate in infected monocytes are the most effective, while immunostimulatory treatments that increase the rate at which infected monocytes are removed are best.
Collapse
Affiliation(s)
- Jeremy J Thibodeaux
- Department of Mathematics and Computer Science, Loyola University New Orleans, New Orleans, LA, USA
| | - Daniel Nuñez
- Department of Natural Sciences and Mathematics, Javeriana University Cali, Cali, Colombia
| | - Andres Rivera
- Department of Natural Sciences and Mathematics, Javeriana University Cali, Cali, Colombia
| |
Collapse
|
29
|
Castaño-Arcila M, Aguilera LU, Rodríguez-González J. Modeling the intracellular dynamics of the dengue viral infection and the innate immune response. J Theor Biol 2020; 509:110529. [PMID: 33129952 DOI: 10.1016/j.jtbi.2020.110529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
The interplay between the dengue virus and the innate immune response is not fully understood. Here, we use deterministic and stochastic approaches to investigate the dynamics of the interaction between the interferon-mediated innate immune response and the dengue virus. We aim to develop a quantitative representation of these complex interactions and predict their system-level dynamics. Our simulation results predict bimodal and bistable dynamics that represent viral clearance and virus-producing states. Under normal conditions, we determined that the viral infection outcome is modulated by the innate immune response and the positive-strand viral RNA concentration. Additionally, we tested system perturbations by external stimulation, such as the direct induction of the innate immune response by interferon, and a therapeutic intervention consisting of the direct application of mRNA encoding for several interferon-stimulated genes. Our simulation results suggest optimal regimes for the studied intervention approaches.
Collapse
Affiliation(s)
- Mauricio Castaño-Arcila
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, CP 66600 Apodaca, NL, Mexico
| | - Luis U Aguilera
- Department of Chemical and Biological Engineering, Colorado State University Fort Collins, CO 80523, USA
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, CP 66600 Apodaca, NL, Mexico.
| |
Collapse
|
30
|
Benedum CM, Shea KM, Jenkins HE, Kim LY, Markuzon N. Weekly dengue forecasts in Iquitos, Peru; San Juan, Puerto Rico; and Singapore. PLoS Negl Trop Dis 2020; 14:e0008710. [PMID: 33064770 PMCID: PMC7567393 DOI: 10.1371/journal.pntd.0008710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/13/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Predictive models can serve as early warning systems and can be used to forecast future risk of various infectious diseases. Conventionally, regression and time series models are used to forecast dengue incidence, using dengue surveillance (e.g., case counts) and weather data. However, these models may be limited in terms of model assumptions and the number of predictors that can be included. Machine learning (ML) methods are designed to work with a large number of predictors and thus offer an appealing alternative. Here, we compared the performance of ML algorithms with that of regression models in predicting dengue cases and outbreaks from 4 to up to 12 weeks in advance. Many countries lack sufficient health surveillance infrastructure, as such we evaluated the contribution of dengue surveillance and weather data on the predictive power of these models. METHODS We developed ML, regression, and time series models to forecast weekly dengue case counts and outbreaks in Iquitos, Peru; San Juan, Puerto Rico; and Singapore from 1990-2016. Forecasts were generated using available weekly dengue surveillance, and weather data. We evaluated the agreement between model forecasts and actual dengue observations using Mean Absolute Error and Matthew's Correlation Coefficient (MCC). RESULTS For near term predictions of weekly case counts and when using surveillance data, ML models had 21% and 33% less error than regression and time series models respectively. However, using weather data only, ML models did not demonstrate a practical advantage. When forecasting weekly dengue outbreaks 12 weeks in advance, ML models achieved a maximum MCC of 0.61. CONCLUSIONS Our results identified 2 scenarios when ML models are advantageous over regression model: 1) predicting dengue weekly case counts 4 weeks ahead when dengue surveillance data are available and 2) predicting weekly dengue outbreaks 12 weeks ahead when dengue surveillance data are unavailable. Given the advantages of ML models, dengue early warning systems may be improved by the inclusion of these models.
Collapse
Affiliation(s)
- Corey M. Benedum
- Draper, Cambridge, Massachusetts, United States of America
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Kimberly M. Shea
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Helen E. Jenkins
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Louis Y. Kim
- Draper, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
31
|
Morsy S, Hashan MR, Hieu TH, Mohammed AT, Elawady SS, Ghosh P, Elgendy MA, Le HH, Hamad WMA, Iqtadar S, Dumre SP, Hirayama K, Huy NT. The association between dengue viremia kinetics and dengue severity: A systemic review and meta-analysis. Rev Med Virol 2020; 30:1-10. [PMID: 32856357 DOI: 10.1002/rmv.2121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/29/2022]
Abstract
In this study, we aim to assess the association of dengue viremia with dengue severity. The study protocol was developed and registered in PROSPERO (CRD42016039864). We searched nine databases to find potential papers. Studies meeting the inclusion criteria were included. We, based our analysis on three outcomes which are disease severity, dengue serotype and disease infection type. Thirty studies with 3316 patients were included. Our analysis revealed that viremia is significantly higher in dengue hemorrhagic fever patients than dengue fever in days 5 to 6. Regarding the serotype of dengue, the maximum viremia titre of serotype 1 was significantly higher than serotype 3 and the viremia in dengue serotype 2 was significantly higher than serotype 4 in days 2 to 4. However, comparison of the daily viremia level between the primary and secondary dengue infection revealed that secondary infection was significantly higher than the primary infection on seventh day and on the eighth day. Viremia is strongly associated with disease severity and type of infection which gave viremia a high indicative power to be used as a clinical predictor. Dengue serotype is also associated with viral load with higher viremia in DENV-2/1.
Collapse
Affiliation(s)
- Sara Morsy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan
| | - Mohammad Rashidul Hashan
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Respiratory and Enteric Infections Department, Infectious Disease Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Truong Hong Hieu
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Abdelrahman Tarek Mohammed
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sameh Samir Elawady
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Prithwish Ghosh
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,College Medicine and Sagore Dutta Hospital, West Bengal University of Health Science, West Bengal, India
| | - Manal A Elgendy
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Biochemistry and Molecular Biology, Ain Shams University, Cairo, Egypt
| | - Huu-Hoai Le
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Saigon General Hospital, Ho Chi Minh City, Vietnam
| | - Walid Mohamed Attiah Hamad
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Internal Medicine Department Infectious Diseases Unit, Zagazig University, Zagazig, Egypt
| | - Somia Iqtadar
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
32
|
Andraud M, Rose N. Modelling infectious viral diseases in swine populations: a state of the art. Porcine Health Manag 2020; 6:22. [PMID: 32843990 PMCID: PMC7439688 DOI: 10.1186/s40813-020-00160-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mathematical modelling is nowadays a pivotal tool for infectious diseases studies, completing regular biological investigations. The rapid growth of computer technology allowed for development of computational tools to address biological issues that could not be unravelled in the past. The global understanding of viral disease dynamics requires to account for all interactions at all levels, from within-host to between-herd, to have all the keys for development of control measures. A literature review was performed to disentangle modelling frameworks according to their major objectives and methodologies. One hundred and seventeen articles published between 1994 and 2020 were found to meet our inclusion criteria, which were defined to target papers representative of studies dealing with models of viral infection dynamics in pigs. A first descriptive analysis, using bibliometric indexes, permitted to identify keywords strongly related to the study scopes. Modelling studies were focused on particular infectious agents, with a shared objective: to better understand the viral dynamics for appropriate control measure adaptation. In a second step, selected papers were analysed to disentangle the modelling structures according to the objectives of the studies. The system representation was highly dependent on the nature of the pathogens. Enzootic viruses, such as swine influenza or porcine reproductive and respiratory syndrome, were generally investigated at the herd scale to analyse the impact of husbandry practices and prophylactic measures on infection dynamics. Epizootic agents (classical swine fever, foot-and-mouth disease or African swine fever viruses) were mostly studied using spatio-temporal simulation tools, to investigate the efficiency of surveillance and control protocols, which are predetermined for regulated diseases. A huge effort was made on model parameterization through the development of specific studies and methodologies insuring the robustness of parameter values to feed simulation tools. Integrative modelling frameworks, from within-host to spatio-temporal models, is clearly on the way. This would allow to capture the complexity of individual biological variabilities and to assess their consequences on the whole system at the population level. This would offer the opportunity to test and evaluate in silico the efficiency of possible control measures targeting specific epidemiological units, from hosts to herds, either individually or through their contact networks. Such decision support tools represent a strength for stakeholders to help mitigating infectious diseases dynamics and limiting economic consequences.
Collapse
Affiliation(s)
- M. Andraud
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, F22440 Ploufragan, France
| | - N. Rose
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, F22440 Ploufragan, France
| |
Collapse
|
33
|
Schmid H, Dobrovolny HM. An approximate solution of the interferon-dependent viral kinetics model of influenza. J Theor Biol 2020; 498:110266. [PMID: 32339545 DOI: 10.1016/j.jtbi.2020.110266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/10/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
The analysis of viral kinetics models is mostly achieved by numerical methods. We present an approach via a Magnus expansion that allows us to give an approximate solution to the interferon-dependent viral infection model of influenza which is compared with numerical results. The time of peak viral load is calculated from the approximation and stays within 10% in the studied range of interferon (IFN) efficacy ϵ ∈ [0, 1000]. We utilize our solution to interpret the effect of varying IFN efficacy, suggesting a competition between virions and interferon that can cause an additional peak in the usually exponential increase in the viral load.
Collapse
Affiliation(s)
- Harald Schmid
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
34
|
Madelain V, Mentré F, Baize S, Anglaret X, Laouénan C, Oestereich L, Nguyen THT, Malvy D, Piorkowski G, Graw F, Günther S, Raoul H, de Lamballerie X, Guedj J. Modeling Favipiravir Antiviral Efficacy Against Emerging Viruses: From Animal Studies to Clinical Trials. CPT Pharmacometrics Syst Pharmacol 2020; 9:258-271. [PMID: 32198838 PMCID: PMC7239338 DOI: 10.1002/psp4.12510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
In 2014, our research network was involved in the evaluation of favipiravir, an anti-influenza polymerase inhibitor, against Ebola virus. In this review, we discuss how mathematical modeling was used, first to propose a relevant dosing regimen in humans, and then to optimize its antiviral efficacy in a nonhuman primate (NHP) model. The data collected in NHPs were finally used to develop a model of Ebola pathogenesis integrating the interactions among the virus, the innate and adaptive immune response, and the action of favipiravir. We conclude the review of this work by discussing how these results are of relevance for future human studies in the context of Ebola virus, but also for other emerging viral diseases for which no therapeutics are available.
Collapse
Affiliation(s)
| | | | - Sylvain Baize
- UBIVEInstitut PasteurCentre International de Recherche en InfectiologieLyonFrance
| | - Xavier Anglaret
- INSERMUMR 1219Université de BordeauxBordeauxFrance
- Programme PACCI/site ANRS de Côte d’IvoireAbidjanCôte d’Ivoire
| | | | - Lisa Oestereich
- Bernhard‐Nocht‐Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF)Partner Site HamburgGermany
| | | | - Denis Malvy
- INSERMUMR 1219Université de BordeauxBordeauxFrance
- Centre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Géraldine Piorkowski
- UMR "Emergence des Pathologies Virales" (EPV: Aix‐Marseille University – IRD 190 – Inserm 1207 – EHESP) – Institut Hospitalo‐Universitaire Méditerranée InfectionMarseilleFrance
| | - Frederik Graw
- Center for Modeling and Simulation in the Biosciences (BIOMS)BioQuant‐CenterHeidelberg UniversityHeidelbergGermany
| | - Stephan Günther
- Bernhard‐Nocht‐Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF)Partner Site HamburgGermany
| | - Hervé Raoul
- Laboratoire P4 Inserm‐Jean MérieuxUS003 InsermLyonFrance
| | - Xavier de Lamballerie
- UMR "Emergence des Pathologies Virales" (EPV: Aix‐Marseille University – IRD 190 – Inserm 1207 – EHESP) – Institut Hospitalo‐Universitaire Méditerranée InfectionMarseilleFrance
| | | |
Collapse
|
35
|
Zitzmann C, Schmid B, Ruggieri A, Perelson AS, Binder M, Bartenschlager R, Kaderali L. A Coupled Mathematical Model of the Intracellular Replication of Dengue Virus and the Host Cell Immune Response to Infection. Front Microbiol 2020; 11:725. [PMID: 32411105 PMCID: PMC7200986 DOI: 10.3389/fmicb.2020.00725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DV) is a positive-strand RNA virus of the Flavivirus genus. It is one of the most prevalent mosquito-borne viruses, infecting globally 390 million individuals per year. The clinical spectrum of DV infection ranges from an asymptomatic course to severe complications such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), the latter because of severe plasma leakage. Given that the outcome of infection is likely determined by the kinetics of viral replication and the antiviral host cell immune response (HIR) it is of importance to understand the interaction between these two parameters. In this study, we use mathematical modeling to characterize and understand the complex interplay between intracellular DV replication and the host cells' defense mechanisms. We first measured viral RNA, viral protein, and virus particle production in Huh7 cells, which exhibit a notoriously weak intrinsic antiviral response. Based on these measurements, we developed a detailed intracellular DV replication model. We then measured replication in IFN competent A549 cells and used this data to couple the replication model with a model describing IFN activation and production of IFN stimulated genes (ISGs), as well as their interplay with DV replication. By comparing the cell line specific DV replication, we found that host factors involved in replication complex formation and virus particle production are crucial for replication efficiency. Regarding possible modes of action of the HIR, our model fits suggest that the HIR mainly affects DV RNA translation initiation, cytosolic DV RNA degradation, and naïve cell infection. We further analyzed the potential of direct acting antiviral drugs targeting different processes of the DV lifecycle in silico and found that targeting RNA synthesis and virus assembly and release are the most promising anti-DV drug targets.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Center for Functional Genomics of Microbes, Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Bianca Schmid
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- Center for Functional Genomics of Microbes, Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
36
|
Tang B, Xiao Y, Sander B, Kulkarni MA, RADAM-LAC Research Team, Wu J. Modelling the impact of antibody-dependent enhancement on disease severity of Zika virus and dengue virus sequential and co-infection. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191749. [PMID: 32431874 PMCID: PMC7211844 DOI: 10.1098/rsos.191749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 05/22/2023]
Abstract
Human infections with viruses of the genus Flavivirus, including dengue virus (DENV) and Zika virus (ZIKV), are of increasing global importance. Owing to antibody-dependent enhancement (ADE), secondary infection with one Flavivirus following primary infection with another Flavivirus can result in a significantly larger peak viral load with a much higher risk of severe disease. Although several mathematical models have been developed to quantify the virus dynamics in the primary and secondary infections of DENV, little progress has been made regarding secondary infection of DENV after a primary infection of ZIKV, or DENV-ZIKV co-infection. Here, we address this critical gap by developing compartmental models of virus dynamics. We first fitted the models to published data on dengue viral loads of the primary and secondary infections with the observation that the primary infection reaches its peak much more gradually than the secondary infection. We then quantitatively show that ADE is the key factor determining a sharp increase/decrease of viral load near the peak time in the secondary infection. In comparison, our simulations of DENV and ZIKV co-infection (simultaneous rather than sequential) show that ADE has very limited influence on the peak DENV viral load. This indicates pre-existing immunity to ZIKV is the determinant of a high level of ADE effect. Our numerical simulations show that (i) in the absence of ADE effect, a subsequent co-infection is beneficial to the second virus; and (ii) if ADE is feasible, then a subsequent co-infection can induce greater damage to the host with a higher peak viral load and a much earlier peak time for the second virus, and for the second peak for the first virus.
Collapse
Affiliation(s)
- Biao Tang
- Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
- Toronto Health Economics and Technology Assessment, Toronto, Ontario, Canada
| | - Yanni Xiao
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Beate Sander
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
- Toronto Health Economics and Technology Assessment, Toronto, Ontario, Canada
| | - Manisha A. Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | | | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, Canada
| |
Collapse
|
37
|
Moore JR, Ahmed H, Manicassamy B, Garcia-Sastre A, Handel A, Antia R. Varying Inoculum Dose to Assess the Roles of the Immune Response and Target Cell Depletion by the Pathogen in Control of Acute Viral Infections. Bull Math Biol 2020; 82:35. [PMID: 32125535 DOI: 10.1007/s11538-020-00711-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2020] [Indexed: 02/05/2023]
Abstract
It is difficult to determine whether an immune response or target cell depletion by the infectious agent is most responsible for the control of acute primary infection. Both mechanisms can explain the basic dynamics of an acute infection-exponential growth of the pathogen followed by control and clearance-and can also be represented by many different differential equation models. Consequently, traditional model comparison techniques using time series data can be ambiguous or inconclusive. We propose that varying the inoculum dose and measuring the subsequent infectious load can rule out target cell depletion by the pathogen as the main control mechanism. Infectious load can be any measure that is proportional to the number of infected cells, such as viraemia. We show that a twofold or greater change in infectious load is unlikely when target cell depletion controls infection, regardless of the model details. Analyzing previously published data from mice infected with influenza, we find the proportion of lung epithelial cells infected was 21-fold greater (95% confidence interval 14-32) in the highest dose group than in the lowest. This provides evidence in favor of an alternative to target cell depletion, such as innate immunity, in controlling influenza infections in this experimental system. Data from other experimental animal models of acute primary infection have a similar pattern.
Collapse
Affiliation(s)
- James R Moore
- Division of Vaccines and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, USA.
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa School College of Medicine, Iowa City, USA
| | | | - Andreas Handel
- Epidemiology and Biostatistics, University of Georgia, Athens, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, USA
| |
Collapse
|
38
|
Adimy M, Mancera PFA, Rodrigues DS, Santos FLP, Ferreira CP. Maternal Passive Immunity and Dengue Hemorrhagic Fever in Infants. Bull Math Biol 2020; 82:24. [DOI: 10.1007/s11538-020-00699-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
|
39
|
Mapder T, Clifford S, Aaskov J, Burrage K. A population of bang-bang switches of defective interfering particles makes within-host dynamics of dengue virus controllable. PLoS Comput Biol 2019; 15:e1006668. [PMID: 31710599 PMCID: PMC6872170 DOI: 10.1371/journal.pcbi.1006668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/21/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
The titre of virus in a dengue patient and the duration of this viraemia has a profound effect on whether or not a mosquito will become infected when it feeds on the patient and this, in turn, is a key driver of the magnitude of a dengue outbreak. The assessment of the heterogeneity of viral dynamics in dengue-infected patients and its precise treatment are still uncertain. Infection onset, patient physiology and immune response are thought to play major roles in the development of the viral load. Research has explored the interference and spontaneous generation of defective virus particles, but have not examined both the antibody and defective particles during natural infection. We explore the intrinsic variability in the within-host dynamics of viraemias for a population of patients using the method of population of models (POMs). A dataset from 208 patients is used to initially calibrate 20,000 models for the infection kinetics for each of the four dengue virus serotypes. The calibrated POMs suggests that naturally generated defective particles may interfere with the viraemia, but the generated defective virus particles are not adequate to reduce high fever and viraemia duration. The effect of adding excess defective dengue virus interfering particles to patients as a therapeutic is evaluated using the calibrated POMs in a bang-bang (on-off or two-step) optimal control setting. Bang-bang control is a class of binary feedback control that turns either 'ON' or 'OFF' at different time points, determined by the system feedback. Here, the bang-bang control estimates the mathematically optimal dose and duration of the intervention for each model in the POM set.
Collapse
Affiliation(s)
- Tarunendu Mapder
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail: , (TM); (KB)
| | - Sam Clifford
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- * E-mail: , (TM); (KB)
| |
Collapse
|
40
|
Perera S, Perera SSN. Mathematical modeling and analysis of innate and humoral immune responses to dengue infections. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dengue is an acute arthropode-borne virus, belonging to the family Flaviviridae. Currently, there are no vaccines or treatments available against dengue. Thus it is important to understand the dynamics of dengue in order to control the infection. In this paper, we study the long-term dynamics of the model that is presented in [S. D. Perera and S. S. N. Perera, Simulation model for dynamics of dengue with innate and humoral immune responses, Comput. Math. Methods Med. 2018 (2018) 8798057, 18 pp. https://doi.org/10.1155/2018/8798057 ] which describes the interaction of virus with infected and uninfected cells in the presence of innate and humoral immune responses. It was found the model has three equilibria, namely: infection free equilibrium, no immune equilibrium and endemic equilibrium, then analyzed its stability analytically. The analytical findings of each model have been exemplified by numerical simulations. Given the fact that intensity of dengue virus replication at early times of infection could determine clinical outcomes, it is important to understand the impact of innate immunity, which is believed to be the first line of defense against an invading pathogen. For this we carry out a simulation case study to investigate the importance of innate immune response on dengue virus dynamics. A comparison was done assuming that innate immunity was active; innate immunity was in quasi-steady state and innate immunity was inactive during the virus replication process. By a further analysis of the qualitative behavior of the quasi-steady state, it was observed that innate immune response plays a pivotal role in dengue virus dynamics. It can change the dynamical behavior of the system and is essential for the virus clearance.
Collapse
Affiliation(s)
- Sulanie Perera
- Research and Development Center for Mathematical Modeling, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka
| | - S. S. N. Perera
- Research and Development Center for Mathematical Modeling, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka
| |
Collapse
|
41
|
Schaber KL, Paz-Soldan VA, Morrison AC, Elson WHD, Rothman AL, Mores CN, Astete-Vega H, Scott TW, Waller LA, Kitron U, Elder JP, Barker CM, Perkins TA, Vazquez-Prokopec GM. Dengue illness impacts daily human mobility patterns in Iquitos, Peru. PLoS Negl Trop Dis 2019; 13:e0007756. [PMID: 31545804 PMCID: PMC6776364 DOI: 10.1371/journal.pntd.0007756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/03/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022] Open
Abstract
Background Human mobility plays a central role in shaping pathogen transmission by generating spatial and/or individual variability in potential pathogen-transmitting contacts. Recent research has shown that symptomatic infection can influence human mobility and pathogen transmission dynamics. Better understanding the complex relationship between symptom severity, infectiousness, and human mobility requires quantification of movement patterns throughout infectiousness. For dengue virus (DENV), human infectiousness peaks 0–2 days after symptom onset, making it paramount to understand human movement patterns from the beginning of illness. Methodology and principal findings Through community-based febrile surveillance and RT-PCR assays, we identified a cohort of DENV+ residents of the city of Iquitos, Peru (n = 63). Using retrospective interviews, we measured the movements of these individuals when healthy and during each day of symptomatic illness. The most dramatic changes in mobility occurred during the first three days after symptom onset; individuals visited significantly fewer locations (Wilcoxon test, p = 0.017) and spent significantly more time at home (Wilcoxon test, p = 0.005), compared to when healthy. By 7–9 days after symptom onset, mobility measures had returned to healthy levels. Throughout an individual’s symptomatic period, the day of illness and their subjective sense of well-being were the most significant predictors for the number of locations and houses they visited. Conclusions/Significance Our study is one of the first to collect and analyze human mobility data at a daily scale during symptomatic infection. Accounting for the observed changes in human mobility throughout illness will improve understanding of the impact of disease on DENV transmission dynamics and the interpretation of public health-based surveillance data. Dengue is the most important mosquito-borne viral disease of humans worldwide. Due to the limited mobility of the mosquitoes that transmit dengue virus, human mobility can be a key to both understanding an individual’s exposure to the virus and explaining the spread of dengue throughout a population. Accurate disease models should include human mobility; however, changes in human movement patterns due to the presence of symptoms need to be taken into account. We quantified the impact of symptom presence on human mobility throughout the infectious period by analyzing a dataset on the daily movements of dengue virus infected individuals. Accounting for these changing patterns of mobility will improve understanding of the complex relationship between symptom severity, human movement, and dengue virus transmission. Furthermore, dengue transmission models that incorporate symptom-driven mobility changes can be used to evaluate scenarios and strategies for disease prevention.
Collapse
Affiliation(s)
- Kathryn L. Schaber
- Program of Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia, United States of America
| | - Valerie A. Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Amy C. Morrison
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - William H. D. Elson
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Alan L. Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Christopher N. Mores
- Department of Virology and Emerging Infections, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Helvio Astete-Vega
- Department of Virology and Emerging Infections, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - John P. Elder
- Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gonzalo M. Vazquez-Prokopec
- Program of Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia, United States of America
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Modelling the Host Immune Response to Mature and Immature Dengue Viruses. Bull Math Biol 2019; 81:4951-4976. [PMID: 31541383 DOI: 10.1007/s11538-019-00664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
Abstract
Immature dengue virions contained in patient blood samples are essentially not infectious because the uncleaved surface protein prM renders them incompetent for membrane fusion. However, the immature virions regain full infectivity when they interact with anti-prM antibodies, and once opsonised virion fusion into Fc receptor-expressing cells is facilitated. We propose a within-host mathematical model for the immune response which takes into account the dichotomy between mature infectious and immature noninfectious dengue virions. The model accounts for experimental observations on the different interactions of plasmacytoid dendritic cells with infected cells producing virions with different infectivity. We compute the basic reproduction number as a function of the proportion of infected cells producing noninfectious virions and use numerical simulations to compare the host's immune response in a primary and a secondary dengue infections. The results can be placed in the immunoregulatory framework with plasmacytoid dendritic cells serving as a bridge between the innate and adaptive immune response, and pose questions for potential experimental work to validate hypothesis about the evolutionary context whereby the virus strives to maximise its chance for transmission from the human host to the mosquito vector.
Collapse
|
43
|
Koelle K, Farrell AP, Brooke CB, Ke R. Within-host infectious disease models accommodating cellular coinfection, with an application to influenza. Virus Evol 2019; 5:vez018. [PMID: 31304043 PMCID: PMC6613536 DOI: 10.1093/ve/vez018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Within-host models are useful tools for understanding the processes regulating viral load dynamics. While existing models have considered a wide range of within-host processes, at their core these models have shown remarkable structural similarity. Specifically, the structure of these models generally consider target cells to be either uninfected or infected, with the possibility of accommodating further resolution (e.g. cells that are in an eclipse phase). Recent findings, however, indicate that cellular coinfection is the norm rather than the exception for many viral infectious diseases, and that cells with high multiplicity of infection are present over at least some duration of an infection. The reality of these cellular coinfection dynamics is not accommodated in current within-host models although it may be critical for understanding within-host dynamics. This is particularly the case if multiplicity of infection impacts infected cell phenotypes such as their death rate and their viral production rates. Here, we present a new class of within-host disease models that allow for cellular coinfection in a scalable manner by retaining the low-dimensionality that is a desirable feature of many current within-host models. The models we propose adopt the general structure of epidemiological ‘macroparasite’ models that allow hosts to be variably infected by parasites such as nematodes and host phenotypes to flexibly depend on parasite burden. Specifically, our within-host models consider target cells as ‘hosts’ and viral particles as ‘macroparasites’, and allow viral output and infected cell lifespans, among other phenotypes, to depend on a cell’s multiplicity of infection. We show with an application to influenza that these models can be statistically fit to viral load and other within-host data, and demonstrate using model selection approaches that they have the ability to outperform traditional within-host viral dynamic models. Important in vivo quantities such as the mean multiplicity of cellular infection and time-evolving reassortant frequencies can also be quantified in a straightforward manner once these macroparasite models have been parameterized. The within-host model structure we develop here provides a mathematical way forward to address questions related to the roles of cellular coinfection, collective viral interactions, and viral complementation in within-host viral dynamics and evolution.
Collapse
Affiliation(s)
- Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA, USA
| | - Alex P Farrell
- Department of Mathematics, North Carolina State University, 2311 Stinson Dr, Raleigh, NC, USA.,Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, IL, USA
| | - Ruian Ke
- Department of Mathematics, North Carolina State University, 2311 Stinson Dr, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
44
|
Sasmal SK, Takeuchi Y, Nakaoka S. T-Cell mediated adaptive immunity and antibody-dependent enhancement in secondary dengue infection. J Theor Biol 2019; 470:50-63. [DOI: 10.1016/j.jtbi.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 11/26/2022]
|
45
|
España G, Hogea C, Guignard A, ten Bosch QA, Morrison AC, Smith DL, Scott TW, Schmidt A, Perkins TA. Biased efficacy estimates in phase-III dengue vaccine trials due to heterogeneous exposure and differential detectability of primary infections across trial arms. PLoS One 2019; 14:e0210041. [PMID: 30682037 PMCID: PMC6347271 DOI: 10.1371/journal.pone.0210041] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/14/2018] [Indexed: 01/20/2023] Open
Abstract
Vaccine efficacy (VE) estimates are crucial for assessing the suitability of dengue vaccine candidates for public health implementation, but efficacy trials are subject to a known bias to estimate VE toward the null if heterogeneous exposure is not accounted for in the analysis of trial data. In light of many well-characterized sources of heterogeneity in dengue virus (DENV) transmission, our goal was to estimate the potential magnitude of this bias in VE estimates for a hypothetical dengue vaccine. To ensure that we realistically modeled heterogeneous exposure, we simulated city-wide DENV transmission and vaccine trial protocols using an agent-based model calibrated with entomological and epidemiological data from long-term field studies in Iquitos, Peru. By simulating a vaccine with a true VE of 0.8 in 1,000 replicate trials each designed to attain 90% power, we found that conventional methods underestimated VE by as much as 21% due to heterogeneous exposure. Accounting for the number of exposures in the vaccine and placebo arms eliminated this bias completely, and the more realistic option of including a frailty term to model exposure as a random effect reduced this bias partially. We also discovered a distinct bias in VE estimates away from the null due to lower detectability of primary DENV infections among seronegative individuals in the vaccinated group. This difference in detectability resulted from our assumption that primary infections in vaccinees who are seronegative at baseline resemble secondary infections, which experience a shorter window of detectable viremia due to a quicker immune response. This resulted in an artefactual finding that VE estimates for the seronegative group were approximately 1% greater than for the seropositive group. Simulation models of vaccine trials that account for these factors can be used to anticipate the extent of bias in field trials and to aid in their interpretation.
Collapse
Affiliation(s)
- Guido España
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Cosmina Hogea
- GlaxoSmithKline, Rockville, MD, United States of America
| | | | - Quirine A. ten Bosch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Amy C. Morrison
- United States Naval Medical Research Unit No. 6, Lima, Peru
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - David L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | | | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
46
|
Cerón Gómez M, Yang HM. A simple mathematical model to describe antibody-dependent enhancement in heterologous secondary infection in dengue. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 36:411-438. [DOI: 10.1093/imammb/dqy016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 11/14/2022]
Abstract
Abstract
We develop a mathematical model to describe the role of antibody-dependent enhancement (ADE) in heterologous secondary infections, assuming that antibodies specific to primary dengue virus (DENV) infection are being produced by immunological memory. The model has a virus-free equilibrium (VFE) and a unique virus-presence equilibrium (VPE). VFE is asymptotically stable when VPE is unstable; and unstable, otherwise. Additionally, there is an asymptotic attractor (not a fixed point) due to the fact that the model assumes unbounded increase in memory cells. In the analysis of the model, ADE must be accounted in the initial stage of infection (a window of time of few days), period of time elapsed from the heterologous infection until the immune system mounting an effective response against the secondary infection. We apply the results yielded by model to evaluate ADE phenomonon in heterologous DENV infection. We also associate the possible occurrence of severe dengue with huge viremia mediated by ADE phenomenon.
Collapse
Affiliation(s)
| | - Hyun Mo Yang
- Departamento de Matemática Aplicada, IMECC, UNICAMP, Praça Sérgio Buarque de Holanda, CEP, Campinas, SP, Brazil
| |
Collapse
|
47
|
Madelain V, Baize S, Jacquot F, Reynard S, Fizet A, Barron S, Solas C, Lacarelle B, Carbonnelle C, Mentré F, Raoul H, de Lamballerie X, Guedj J. Ebola viral dynamics in nonhuman primates provides insights into virus immuno-pathogenesis and antiviral strategies. Nat Commun 2018; 9:4013. [PMID: 30275474 PMCID: PMC6167368 DOI: 10.1038/s41467-018-06215-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023] Open
Abstract
Despite several clinical trials implemented, no antiviral drug could demonstrate efficacy against Ebola virus. In non-human primates, early initiation of polymerase inhibitors favipiravir and remdesivir improves survival, but whether they could be effective in patients is unknown. Here we analyze the impact of antiviral therapy by using a mathematical model that integrates virological and immunological data of 44 cynomolgus macaques, left untreated or treated with favipiravir. We estimate that favipiravir has a ~50% efficacy in blocking viral production, which results in reducing virus growth and cytokine storm while IFNα reduces cell susceptibility to infection. Simulating the effect of delayed initiations of treatment, our model predicts survival rates of 60% for favipiravir and 100% for remdesivir when treatment is initiated within 3 and 4 days post infection, respectively. These results improve the understanding of Ebola immuno-pathogenesis and can help optimize antiviral evaluation in future outbreaks.
Collapse
Affiliation(s)
- Vincent Madelain
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité Paris, 75018, Paris, France.
| | - Sylvain Baize
- UBIVE, Institut Pasteur, Centre International de Recherche en Infectiologie, 69007, Lyon, France
| | - Frédéric Jacquot
- Laboratoire P4 Inserm-Jean Mérieux, US003 Inserm, 69365, Lyon, France
| | - Stéphanie Reynard
- UBIVE, Institut Pasteur, Centre International de Recherche en Infectiologie, 69007, Lyon, France
| | - Alexandra Fizet
- UBIVE, Institut Pasteur, Centre International de Recherche en Infectiologie, 69007, Lyon, France
| | - Stephane Barron
- Laboratoire P4 Inserm-Jean Mérieux, US003 Inserm, 69365, Lyon, France
| | - Caroline Solas
- Aix-Marseille Univ U105, APHM, SMARTc CRCM Inserm UMR1068 CNRS UMR7258, Hôpital La Timone, Laboratoire de Pharmacocinétique et Toxicologie, 13005, Marseille, France
| | - Bruno Lacarelle
- Aix-Marseille Univ U105, APHM, SMARTc CRCM Inserm UMR1068 CNRS UMR7258, Hôpital La Timone, Laboratoire de Pharmacocinétique et Toxicologie, 13005, Marseille, France
| | | | - France Mentré
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité Paris, 75018, Paris, France
| | - Hervé Raoul
- Laboratoire P4 Inserm-Jean Mérieux, US003 Inserm, 69365, Lyon, France
| | - Xavier de Lamballerie
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille university - IRD 190 - Inserm 1207 - EHESP) - Institut Hospitalo-Universitaire Méditerranée Infection, 13385, Marseille, France
| | - Jérémie Guedj
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité Paris, 75018, Paris, France
| |
Collapse
|
48
|
Cheng YH, Lin YJ, Chen SC, You SH, Chen WY, Hsieh NH, Yang YF, Liao CM. Assessing health burden risk and control effect on dengue fever infection in the southern region of Taiwan. Infect Drug Resist 2018; 11:1423-1435. [PMID: 30233221 PMCID: PMC6132233 DOI: 10.2147/idr.s169820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The high prevalence of dengue in Taiwan and the consecutive large dengue outbreaks in the period 2014-2015 suggest that current control interventions are suboptimal. Understanding the effect of control effort is crucial to inform future control strategies. OBJECTIVES We developed a framework to measure season-based health burden risk from 2001 to 2014. We reconstructed various intervention coverage to assess the attributable effect of dengue infection control efforts. MATERIALS AND METHODS A dengue-mosquito-human transmission dynamic was used to quantify the vector-host interactions and to estimate the disease epidemics. We used disability-adjusted life years (DALYs) to assess health burden risk. A temperature-basic reproduction number (R0)-DALYs relationship was constructed to examine the potential impacts of temperature on health burden. Finally, a health burden risk model linked a control measure model to evaluate the effect of dengue control interventions. RESULTS We showed that R0 and DALYs peaked at 25°C with estimates of 2.37 and 1387, respectively. Results indicated that most dengue cases occurred in fall with estimated DALYs of 323 (267-379, 95% CI) at 50% risk probability. We found that repellent spray had by far the largest control effect with an effectiveness of ~71% in all seasons. Pesticide spray and container clean-up have both made important contributions to reducing prevalence/incidence. Repellent, pesticide spray, container clean-up together with Wolbachia infection suppress dengue outbreak by ~90%. CONCLUSION Our presented modeling framework provides a useful tool to measure dengue health burden risk and to quantify the effect of dengue control on dengue infection prevalence and disease incidence in the southern region of Taiwan.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan, Republic of China,
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, Republic of China,
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, Republic of China,
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, Republic of China,
| |
Collapse
|
49
|
Abstract
Recent Zika virus outbreaks have been associated with severe outcomes, especially during pregnancy. A great deal of effort has been put toward understanding this virus, particularly the immune mechanisms responsible for rapid viral control in the majority of infections. Identifying and understanding the key mechanisms of immune control will provide the foundation for the development of effective vaccines and antiviral therapy. Here, we outline a mathematical modeling approach for analyzing the within-host dynamics of Zika virus, and we describe how these models can be used to understand key aspects of the viral life cycle and to predict antiviral efficacy.
Collapse
Affiliation(s)
- Katharine Best
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
50
|
Sánchez-González G, Condé R, Noguez Moreno R, López Vázquez PC. Prediction of dengue outbreaks in Mexico based on entomological, meteorological and demographic data. PLoS One 2018; 13:e0196047. [PMID: 30080868 PMCID: PMC6078291 DOI: 10.1371/journal.pone.0196047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 11/25/2022] Open
Abstract
Dengue virus has shown a complex pattern of transmission across Latin America over the last two decades. In an attempt to explain the permanence of the disease in regions subjected to drought seasons lasting over six months, various hypotheses have been proposed. These include transovarial transmission, forest reservoirs and asymptomatic human virus carriers. Dengue virus is endemic in Mexico, a country in which half of the population is seropositive. Seropositivity is a risk factor for Dengue Hemorrhagic Fever upon a second encounter with the dengue virus. Since Dengue Hemorrhagic Fever can cause death, it is important to develop epidemiological mathematical tools that enable policy makers to predict regions potentially at risk for a dengue epidemic. We formulated a mathematical model of dengue transmission, considering both human behavior and environmental conditions pertinent to the transmission of the disease. When data on past human population density, temperature and rainfall were entered into this model, it provided an accurate picture of the actual spread of dengue over recent years in four states (representing two climactic conditions) in Mexico.
Collapse
Affiliation(s)
- Gilberto Sánchez-González
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- * E-mail:
| | - Renaud Condé
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Raúl Noguez Moreno
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - P. C. López Vázquez
- Departamento de Ciencias Naturales y Exactas, Universidad de Guadalajara, Ameca, Jalisco, México
| |
Collapse
|