1
|
Villa S, Aasvang EK, Attal N, Baron R, Bourinet E, Calvo M, Finnerup NB, Galosi E, Hockley JRF, Karlsson P, Kemp H, Körner J, Kutafina E, Lampert A, Mürk M, Nochi Z, Price TJ, Rice ASC, Sommer C, Taba P, Themistocleous AC, Treede RD, Truini A, Üçeyler N, Bennett DL, Schmid AB, Denk F. Harmonizing neuropathic pain research: outcomes of the London consensus meeting on peripheral tissue studies. Pain 2024:00006396-990000000-00743. [PMID: 39432804 DOI: 10.1097/j.pain.0000000000003445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Neuropathic pain remains difficult to treat, with drug development hampered by an incomplete understanding of the pathogenesis of the condition, as well as a lack of biomarkers. The problem is compounded by the scarcity of relevant human peripheral tissues, including skin, nerves, and dorsal root ganglia. Efforts to obtain such samples are accelerating, increasing the need for standardisation across laboratories. In this white paper, we report on a consensus meeting attended by neuropathic pain experts, designed to accelerate protocol alignment and harmonization of studies involving relevant peripheral tissues. The meeting was held in London in March 2024 and attended by 28 networking partners, including industry and patient representatives. We achieved consensus on minimal recommended phenotyping, harmonised wet laboratory protocols, statistical design, reporting, and data sharing. Here, we also share a variety of relevant standard operating procedures as supplementary protocols. We envision that our recommendations will help unify human tissue research in the field and accelerate our understanding of how abnormal interactions between sensory neurons and their local peripheral environment contribute towards neuropathic pain.
Collapse
Affiliation(s)
- Sara Villa
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, United Kingdom
| | - Eske K Aasvang
- Anesthesiological Department, Center for Cancer and Organ Dysfunction, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Nadine Attal
- INSERM U987, APHP, UVSQ Paris SACLAY University, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Emmanuel Bourinet
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, Montpellier, France
- CNRS UMR5203, Montpellier, France
- INSERM, U661, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Margarita Calvo
- Biological Sciences Faculty and Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, CL, United States
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Eleonora Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Harriet Kemp
- Pain Research Group, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jannis Körner
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Anesthesiology, Uniklinik RWTH Aachen University
- Intensive and Intermediate Care, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Ekaterina Kutafina
- Institute for Biomedical Informatics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Research Aachen, SCN, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Margarita Mürk
- Pathology Department, Tartu University Hospital, Tartu, Estonia
| | - Zahra Nochi
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Andrew S C Rice
- Pain Research Group, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia
| | | | - Rolf-Detlef Treede
- Department of Psychiatry and Psychotherapy, Central Institute for Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Franziska Denk
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, United Kingdom
| |
Collapse
|
2
|
Schild H, Bopp T. [Immunological foundations of neurological diseases]. DER NERVENARZT 2024; 95:894-908. [PMID: 38953921 DOI: 10.1007/s00115-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.
Collapse
Affiliation(s)
- Hansjörg Schild
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Tobias Bopp
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| |
Collapse
|
3
|
Nakajima KI, Inagaki T, Espera JM, Izumiya Y. Kaposi's sarcoma-associated herpesvirus (KSHV) LANA prevents KSHV episomes from degradation. J Virol 2024; 98:e0126823. [PMID: 38240588 PMCID: PMC10878079 DOI: 10.1128/jvi.01268-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Protein knockdown with an inducible degradation system is a powerful tool for studying proteins of interest in living cells. Here, we adopted the auxin-inducible degron (AID) approach to detail Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) function in latency maintenance and inducible viral lytic gene expression. We fused the mini-auxin-inducible degron (mAID) tag at the LANA N-terminus with KSHV bacterial artificial chromosome 16 recombination, and iSLK cells were stably infected with the recombinant KSHV encoding mAID-LANA. Incubation with 5-phenyl-indole-3-acetic acid, a derivative of natural auxin, rapidly degraded LANA within 1.5 h. In contrast to our hypothesis, depletion of LANA alone did not trigger lytic reactivation but rather decreased inducible lytic gene expression when we stimulated reactivation with a combination of ORF50 protein expression and sodium butyrate. Decreased overall lytic gene induction seemed to be associated with a rapid loss of KSHV genomes in the absence of LANA. The rapid loss of viral genomic DNA was blocked by a lysosomal inhibitor, chloroquine. Furthermore, siRNA-mediated knockdown of cellular innate immune proteins, cyclic AMP-GMP synthase (cGAS) and simulator of interferon genes (STING), and other autophagy-related genes rescued the degradation of viral genomic DNA upon LANA depletion. Reduction of the viral genome was not observed in 293FT cells that lack the expression of cGAS. These results suggest that LANA actively prevents viral genomic DNA from sensing by cGAS-STING signaling axis, adding novel insights into the role of LANA in latent genome maintenance.IMPORTANCESensing of pathogens' components is a fundamental cellular immune response. Pathogens have therefore evolved strategies to evade such cellular immune responses. KSHV LANA is a multifunctional protein and plays an essential role in maintaining the latent infection by tethering viral genomic DNA to the host chromosome. We adopted the inducible protein knockdown approach and found that depletion of LANA induced rapid degradation of viral genomic DNA, which is mediated by innate immune DNA sensors and autophagy pathway. These observations suggest that LANA may play a role in hiding KSHV episome from innate immune DNA sensors. Our study thus provides new insights into the role of LANA in latency maintenance.
Collapse
Affiliation(s)
- Ken-ichi Nakajima
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Jonna Magdallene Espera
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
4
|
Borjabad A, Dong B, Chao W, Volsky DJ, Potash MJ. Innate immune responses reverse HIV cognitive disease in mice: Profile by RNAseq in the brain. Virology 2024; 589:109917. [PMID: 37951088 PMCID: PMC10841696 DOI: 10.1016/j.virol.2023.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Antiretroviral therapy controls immunodeficiency in people with HIV but many develop mild neurocognitive disorder. Here we investigated HIV brain disease by infecting mice with the chimeric HIV, EcoHIV, and probing changes in brain gene expression during infection and reversal with polyinosinic-polycytidylic acid (poly I:C). EcoHIV-infected C57BL/6 mice were treated with poly I:C and monitored by assay of learning in radial arm water maze, RNAseq of striatum, and QPCR of virus burden and brain transcripts. Poly I:C reversed EcoHIV-associated cognitive impairment and reduced virus burden. Major pathways downregulated by infection involved neuronal function, these transcriptional changes were normalized by poly I:C treatment. Innate immune responses were the major pathways induced in EcoHIV-infected, poly I:C treated mice. Our findings provide a framework to identify brain cell genes dysregulated by HIV infection and identify a set of innate immune response genes that can block systemic infection and its associated dysfunction in the brain.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Baojun Dong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David J Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Si Q, Min X, Dai X, Gao Q, Jiang Q, Ren Q. Diversity of MrTolls and their regulation of antimicrobial peptides expression during Enterobacter cloacae infection in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109279. [PMID: 38072137 DOI: 10.1016/j.fsi.2023.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Toll/Toll-like receptor (TLR) is an important pattern recognition receptor that plays an important role in the immunity of animals. Six Toll genes were identified in Macrobrachium rosenbergii, namely, MrToll, MrToll1, MrToll2, MrToll3, MrToll4, and MrToll5. SMART analysis showed that all six Tolls have a transmembrane domain, a TIR domain, and different number of LRR domains. The phylogenetic tree showed that six Tolls were located in six different branches. Among these six Tolls, only MrToll4 contains the QHR motif, which is similar to insect Toll9. MrToll4 belongs to V-type/scc Toll with only one LRRCT domain. MrToll1 and MrToll5 are classical P-type/mcc Toll with two LRRCT domains and an LRRNT. MrTolls were distributed in the hemocytes, heart, hepatopancreas, gills, stomach, and intestine. During the infection of Enterobacter cloacae, the expression level of MrToll and MrToll1-4 was upregulated in the intestine of M. rosenbergii. RNA interference experiments showed that the expression of most antimicrobial peptide (AMP) genes was negatively regulated by MrTolls during E. cloacae infection. On the contrary, crustin (Cru) 3 and Cru4 were inhibited after the knockdown of MrToll, and Cru1 and Cru4 were significantly downregulated with the knockdown of MrToll4 during E. cloacae challenge. These results suggest that MrTolls may be involved in the regulation of AMP expression in the intestine during E. cloacae infection.
Collapse
Affiliation(s)
- Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu, 211100, China
| | - Xiuwen Min
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qiang Gao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, 210044, China.
| |
Collapse
|
6
|
Brickey WJ, Caudell DL, Macintyre AN, Olson JD, Dai Y, Li S, Dugan GO, Bourland JD, O’Donnell LM, Tooze JA, Huang G, Yang S, Guo H, French MN, Schorzman AN, Zamboni WC, Sempowski GD, Li Z, Owzar K, Chao NJ, Cline JM, Ting JPY. The TLR2/TLR6 ligand FSL-1 mitigates radiation-induced hematopoietic injury in mice and nonhuman primates. Proc Natl Acad Sci U S A 2023; 120:e2122178120. [PMID: 38051771 PMCID: PMC10723152 DOI: 10.1073/pnas.2122178120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.
Collapse
Affiliation(s)
- W. June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - David L. Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - John D. Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Yanwan Dai
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory O. Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Lisa M. O’Donnell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Janet A. Tooze
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Shuangshuang Yang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hao Guo
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew N. French
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Allison N. Schorzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - William C. Zamboni
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Nelson J. Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC27705
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Jenny P. Y. Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
7
|
van Dijk RA, Kleemann R, Schaapherder AF, van den Bogaerdt A, Hedin U, Matic L, Lindeman JH. Validating human and mouse tissues commonly used in atherosclerosis research with coronary and aortic reference tissue: similarities but profound differences in disease initiation and plaque stability. JVS Vasc Sci 2023; 4:100118. [PMID: 37810738 PMCID: PMC10551657 DOI: 10.1016/j.jvssci.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Characterization of the atherosclerotic process fully relies on histological evaluation and staging through a consensus grading system. So far, a head-to-head comparison of atherosclerotic process in experimental models and tissue resources commonly applied in atherosclerosis research with the actual human atherosclerotic process is missing. Material and Methods Aspects of the atherosclerotic process present in established murine atherosclerosis models and human carotid endarterectomy specimen were systematically graded using the modified American Heart Association histological classification (Virmani classification). Aspects were aligned with the atherosclerotic process observed in human coronary artery and aortic atherosclerosis reference tissues that were available through biobanks based on human tissue/organ donor material. Results Apart from absent intraplaque hemorrhages in aortic lesions, the histological characteristics of the different stages of human coronary and aortic atherosclerosis are similar. Carotid endarterectomy samples all represent end-stage "fibrous calcified plaque" lesions, although secondary, progressive, and vulnerable lesions with gross morphologies similar to coronary/aortic lesions occasionally present along the primary lesions. For the murine lesions, clear histological parallels were observed for the intermediate lesion types ("pathological intimal thickening," and "early fibroatheroma"). However, none of the murine lesions studied progressed to an equivalent of late fibroatheroma or beyond. Notable contrasts were observed for disease initiation: whereas disease initiation in humans is characterized by a mesenchymal cell influx in the intima, the earliest murine lesions are exclusively intimal, with subendothelial accumulation foam cells. A mesenchymal (and medial) response are absent. In fact, it is concluded that the stage of "adaptive intimal thickening" is absent in all mouse models included in this study. Conclusions The Virmani classification for coronary atherosclerosis can be applied for systematically grading experimental and clinical atherosclerosis. Application of this histological grading tool shows clear parallels for intermediate human and murine atherosclerotic lesions. However, clear contrasts are observed for disease initiation, and late stage atherosclerotic lesions. Carotid endarterectomy all represent end-stage fibrous calcified plaque lesions, although secondary earlier lesions may present in a subset of samples.
Collapse
Affiliation(s)
- Rogier A. van Dijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Kleemann
- The Netherlands Organization for Applied Scientific Research (TNO), Department of Metabolic Health Research, TNO Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Ljubica Matic
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Jan H.N. Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Kim JY, Rosenberger MG, Rutledge NS, Esser-Kahn AP. Next-Generation Adjuvants: Applying Engineering Methods to Create and Evaluate Novel Immunological Responses. Pharmaceutics 2023; 15:1687. [PMID: 37376133 PMCID: PMC10300703 DOI: 10.3390/pharmaceutics15061687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Adjuvants are a critical component of vaccines. Adjuvants typically target receptors that activate innate immune signaling pathways. Historically, adjuvant development has been laborious and slow, but has begun to accelerate over the past decade. Current adjuvant development consists of screening for an activating molecule, formulating lead molecules with an antigen, and testing this combination in an animal model. There are very few adjuvants approved for use in vaccines, however, as new candidates often fail due to poor clinical efficacy, intolerable side effects, or formulation limitations. Here, we consider new approaches using tools from engineering to improve next-generation adjuvant discovery and development. These approaches will create new immunological outcomes that will be evaluated with novel diagnostic tools. Potential improved immunological outcomes include reduced vaccine reactogenicity, tunable adaptive responses, and enhanced adjuvant delivery. Evaluations of these outcomes can leverage computational approaches to interpret "big data" obtained from experimentation. Applying engineering concepts and solutions will provide alternative perspectives, further accelerating the field of adjuvant discovery.
Collapse
Affiliation(s)
| | | | | | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA; (J.Y.K.); (M.G.R.); (N.S.R.)
| |
Collapse
|
9
|
Yang J, Jiao J, Draheim KM, Yang G, Yang H, Yao LC, Shultz LD, Greiner DL, Rajagopal D, Vessillier S, Maier CC, Mohanan S, Cai D, Cheng M, Brehm MA, Keck JG. Simultaneous evaluation of treatment efficacy and toxicity for bispecific T-cell engager therapeutics in a humanized mouse model. FASEB J 2023; 37:e22995. [PMID: 37219526 PMCID: PMC10242584 DOI: 10.1096/fj.202300040r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.
Collapse
Affiliation(s)
- Jiwon Yang
- The Jackson Laboratory; Sacramento, CA, USA
| | - Jing Jiao
- The Jackson Laboratory; Sacramento, CA, USA
| | | | | | | | | | | | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Deepa Rajagopal
- National Institute for Biological Standards and Control, Biotherapeutics Division; Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Sandrine Vessillier
- National Institute for Biological Standards and Control, Biotherapeutics Division; Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Curtis C. Maier
- Non Clinical Safety, GlaxoSmithKline plc; Collegeville, PA, USA
| | - Sunish Mohanan
- NonClinical Safety and Pathobiology, Gilead Sciences Inc’ Foster City, CA, USA
| | | | | | - Michael A. Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | | |
Collapse
|
10
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
11
|
Liu M, Liu K, Cheng D, Zheng B, Li S, Mo Z. The regulatory role of NLRX1 in innate immunity and human disease. Cytokine 2022; 160:156055. [DOI: 10.1016/j.cyto.2022.156055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
|
12
|
Forst CV, Martin-Sancho L, Tripathi S, Wang G, Dos Anjos Borges LG, Wang M, Geber A, Lashua L, Ding T, Zhou X, Carter CE, Metreveli G, Rodriguez-Frandsen A, Urbanowski MD, White KM, Stein DA, Moulton H, Chanda SK, Pache L, Shaw ML, Ross TM, Ghedin E, García-Sastre A, Zhang B. Common and species-specific molecular signatures, networks, and regulators of influenza virus infection in mice, ferrets, and humans. SCIENCE ADVANCES 2022; 8:eabm5859. [PMID: 36197970 PMCID: PMC9534503 DOI: 10.1126/sciadv.abm5859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/11/2022] [Indexed: 05/04/2023]
Abstract
Molecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular responses in the human host have unique functions such as antigen processing that are not observed in mice or ferrets. Highly conserved gene coexpression modules across the three species are enriched for IAV infection-induced pathways including cell cycle and interferon (IFN) signaling. TDRD7 is predicted as an IFN-inducible host factor that is up-regulated upon IAV infection in the three species. TDRD7 is required for antiviral IFN response, potentially modulating IFN signaling via the JAK/STAT/IRF9 pathway. Identification of the common and species-specific molecular signatures, networks, and regulators of IAV infection provides insights into host-defense mechanisms and will facilitate the development of novel therapeutic interventions against IAV infection.
Collapse
Affiliation(s)
- Christian V. Forst
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Laura Martin-Sancho
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shashank Tripathi
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Guojun Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | | | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Adam Geber
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Lauren Lashua
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Tao Ding
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Chalise E. Carter
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Ariel Rodriguez-Frandsen
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Matthew D. Urbanowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - David A. Stein
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megan L. Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Ted M. Ross
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
13
|
Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 2022; 70:102172. [PMID: 35785601 DOI: 10.1016/j.cbpa.2022.102172] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 01/06/2023]
Abstract
Until recently, the development of new human adjuvants was held back by a poor understanding of their mechanisms of action. The field was revolutionized by the discovery of the toll-like receptors (TLRs), innate immune receptors that directly or indirectly are responsible for detecting pathogen-associated molecular patterns (PAMPs) and respond to them by activating innate and adaptive immune pathways. Hundreds of ligands targeting various TLRs have since been identified and characterized as vaccine adjuvants. This work has important implications not only for the development of vaccines against infectious diseases but also for immuno-therapies against cancer, allergy, Alzheimer's disease, drug addiction and other diseases. Each TLR has its own specific tissue localization and downstream gene signalling pathways, providing researchers the opportunity to precisely tailor adjuvants with specific immune effects. TLR agonists can be combined with other TLR or alternative adjuvants to create combination adjuvants with synergistic or modulatory effects. This review provides an introduction to the various classes of TLR adjuvants and their respective signalling pathways. It provides an overview of recent advancements in the TLR field in the past 2-3 years and discusses criteria for selecting specific TLR adjuvants based on considerations, such as disease mechanisms and correlates of protection, TLR immune biasing capabilities, route of administration, antigen compatibility, new vaccine technology platforms, and age- and species-specific effects.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Deshkanwar Brar
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
14
|
Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT. Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 2022; 41:469-478. [PMID: 35363060 DOI: 10.1089/dna.2022.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), NOD-like receptor X1 (NLRX1) is the only known NLR family member that is targeted to the mitochondria, which contains a C-terminal leucine-rich repeat domain, a central conserved nucleotide-binding domain, and an unconventional N-terminal effector domain. It is unique due to several atypical features, such as mitochondrial localization, noninflammasome forming, and relatively undefined N-terminal domain. NLRX1 has multiple functions, including negative regulation of type-I interferon signaling, attenuation of proinflammatory nuclear factor kappa B (NF-κB) signaling, autophagy induction, modulation of reactive oxygen species production, cell death regulation, and participating in cellular senescence. In addition, due to its diverse functions, NLRX1 has been associated with various human diseases, including respiratory, circulatory, motor, urinary, nervous, and digestive systems, to name but a few. However, the exact regulatory mechanisms of NLRX1 are still unclear in many related diseases since conflicting and controversial topics on NLRX1 in the previous studies remain. In this review, we review recent research advances on the underlying mechanisms and related disorders behind the complex regulatory role of NLRX1, which may provide a promising target to prevent and/or treat the corresponding diseases.
Collapse
Affiliation(s)
- Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2022; 434:167374. [PMID: 34863779 PMCID: PMC8940657 DOI: 10.1016/j.jmb.2021.167374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.
Collapse
Affiliation(s)
- Monty E Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
Jeon D, McNeel DG. Toll-like receptor agonist combinations augment mouse T-cell anti-tumor immunity via IL-12- and interferon ß-mediated suppression of immune checkpoint receptor expression. Oncoimmunology 2022; 11:2054758. [PMID: 35340661 PMCID: PMC8942433 DOI: 10.1080/2162402x.2022.2054758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
We previously found that activated CD8+ T-cells increase expression of PD-1, which can be attenuated in the presence of specific Toll-like receptor (TLR) agonists, mediated by IL-12 secreted by professional antigen-presenting cells. While these CD8+ T-cells had greater anti-tumor activity, T-cells stimulated by different TLR had different gene expression profiles. Consequently, we sought to determine whether combinations of TLR agonists might further affect the expression of T-cell checkpoint receptors and improve T-cell anti-tumor immunity. Activation of CD8+ T-cells in the presence of specific TLR ligands resulted in decreased expression of PD-1, LAG-3, and CD160, notably with combinations of TLR1/2, TLR3, and TLR9 agonists. Immunization of E.G7-OVA or TRAMP-C1 tumor-bearing mice with peptide or DNA vaccines, co-administered with combination of TLR3 and TLR9 agonists, showed greater suppression of tumor growth. The anti-tumor effect of TLR1/2 and/or TLR9, but not TLR3, was abrogated in IL-12KO mice. RNA sequencing of TLR-conditioned CD8+ T-cells revealed IL-12 pathway activation, and type 1 IFN pathway activation following TLR3 stimulation. Our results provide a mechanistic rationale for the choice of optimal combinations of TLR ligands to use as adjuvants to improve the efficacy of anti-tumor vaccines.
Collapse
Affiliation(s)
- Donghwan Jeon
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | |
Collapse
|
17
|
Asrani P, Tiwari K, Eapen MS, Hassan MI, Sohal SS. Containment strategies for COVID-19 in India: lessons from the second wave. Expert Rev Anti Infect Ther 2022; 20:829-835. [DOI: 10.1080/14787210.2022.2036605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Purva Asrani
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Keshav Tiwari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India-110012
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7248, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7248, Australia
| |
Collapse
|
18
|
Novel probiotic yeast from Miso promotes regulatory dendritic cell IL-10 production and attenuates DSS-induced colitis in mice. J Gastroenterol 2021; 56:829-842. [PMID: 34213612 DOI: 10.1007/s00535-021-01804-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Yeasts are a type of fungi thought to have probiotic functions. In this study, we isolated a novel probiotic yeast (Zygosaccharomyces sapae strain I-6) from Miso (a traditional Japanese fermented food). We examined its effects on phenotypic changes in intestinal dendritic cells (DCs), and evaluated its anti-inflammatory effects in dextran sulfate sodium (DSS)-induced colitis. METHODS A single colony was selected from homogenized Miso, based on its ability to produce interleukin (IL)-10 in CD11c+ bone marrow DCs (BMDCs) in vitro. The anti-inflammatory effects of strain I-6 on CD11c+ BMDCs and CD11c+ CD103+ DCs were analyzed in mouse mesenteric lymph nodes in vitro and in a DSS mouse model. RESULTS The IL-10 concentrations in the co-culture BMDC supernatants treated with I-6 were dramatically higher than in those treated with Saccharomyces cerevisiae (Sc). IL-10 production is mediated by both TLR2 and Dectin-1. β-Glucan extracted from I-6 also induced higher levels of IL-10 production in BMDCs than β-glucan from Sc. The number of mesenteric lymph node CD11c+ CD103+ DCs was significantly increased by I-6 administration, compared with Sc administration. Strain I-6 showed strong anti-inflammatory effects on DSS-induced colitis compared to Sc. Moreover, the adoptive transfer of I-6-treated BMDCs showed anti-inflammatory effects on DSS-induced colitis in mice without oral administration of I-6 cells. CONCLUSIONS Strain I-6 induced phenotypic changes in intestinal CD11c+ DCs characterized by high IL-10 production and exerted strong anti-inflammatory effects on DSS-induced colitis. Traditional Japanese fermented foods may be a valuable source of probiotic yeasts for effective IBD therapy and treatment.
Collapse
|
19
|
Skelton JK, Purcell R. Preclinical models for studying immune responses to traumatic injury. Immunology 2021; 162:377-388. [PMID: 32986856 PMCID: PMC7968398 DOI: 10.1111/imm.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic injury initiates a large and complex immune response in the minutes after the initial insult, comprising of simultaneous pro- and anti-inflammatory responses. In patients that survive the initial injury, these immune responses are believed to contribute towards complications such as the development of sepsis and multiple organ dysfunction syndrome. These post-traumatic complications affect a significant proportion of patients and are a major contributing factor for poor outcomes and an increased burden on healthcare systems. Therefore, understanding the immune responses to trauma is crucial for improving patient outcomes through the development of novel therapeutics and refining resuscitation strategies. In order to do this, preclinical animal models must mimic human immune responses as much as possible, and as such, we need to understand the constraints of each species in the context of trauma. A number of species have been used in this field; however, these models are limited by their genetic background and their capacity for recapitulating human immune function. This review provides a brief overview of the immune response in critically injured human patients and discusses the most commonly used species for modelling trauma, focusing on how their immune response to serious injury and haemorrhage compares to that of humans.
Collapse
Affiliation(s)
| | - Robert Purcell
- CBR DivisionDefence Science and Technology LaboratorySalisburyUK
| |
Collapse
|
20
|
Jacquet A. Characterization of Innate Immune Responses to House Dust Mite Allergens: Pitfalls and Limitations. FRONTIERS IN ALLERGY 2021; 2:662378. [PMID: 35386970 PMCID: PMC8974781 DOI: 10.3389/falgy.2021.662378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
Whereas house dust mite (HDM) allergy results from a dysregulated Th2-biased adaptive immune response, activation of innate immune signaling pathways is a critical prerequisite for the initiation of HDM sensitizations. Such innate sensing is mainly controlled by the airway epithelium and the skin. The resulting release of epithelial-derived proinflammatory cytokines and innate alarmins such as GM-CSF, IL-25, IL-33 and TSLP mediates the activation of ILC2 cells and cDCs to promote Th2-biased inflammation. Significant progress in the elucidation of HDM innate immune activation has been made in the past decade and highlighted key roles of the LPS/TLR4 axis, chitin-dependent pathways together with HDM protease allergens. However, the precise mechanisms by which HDM allergens are sensed by the innate immune system remain largely unknown. Such investigations are made difficult for several reasons. Among these are (1) the natural association of HDM allergens with immunostimulators from the mite exoskeleton as well as from environmental microorganisms/pollutants or endosymbiotic bacteria; (2) the purification of individual HDM allergens from extracts in sufficient amounts and devoid of any microbial and protein impurities; (3) the production of correctly folded recombinant HDM allergens which could display the same biological activity than their natural counterparts; (4) the accessibility to human epithelial samples with cellular heterogeneities and inter-donor variations; (5) the translation of experimental data from mouse models to humans is almost missing. The goal of the present mini-review is to emphasize some important limitations and pitfalls in the elucidation of innate immunostimulatory properties of HDM allergens.
Collapse
Affiliation(s)
- Alain Jacquet
- *Correspondence: Alain Jacquet ; orcid.org/0000-0002-0980-9741
| |
Collapse
|
21
|
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. Int J Mol Sci 2021; 22:ijms22031316. [PMID: 33525671 PMCID: PMC7865811 DOI: 10.3390/ijms22031316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Collapse
|
22
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
23
|
Leishmaniasis immunopathology-impact on design and use of vaccines, diagnostics and drugs. Semin Immunopathol 2020; 42:247-264. [PMID: 32152715 DOI: 10.1007/s00281-020-00788-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a disease complex caused by 20 species of protozoan parasites belonging to the genus Leishmania. In humans, it has two main clinical forms, visceral leishmaniasis (VL) and cutaneous or tegumentary leishmaniasis (CL), as well as several other cutaneous manifestations in a minority of cases. In the mammalian host Leishmania parasites infect different populations of macrophages where they multiply and survive in the phagolysosomal compartment. The progression of both VL and CL depends on the maintenance of a parasite-specific immunosuppressive state based around this host macrophage infection. The complexity and variation of immune responses and immunopathology in humans and the different host interactions of the different Leishmania species has an impact upon the effectiveness of vaccines, diagnostics and drugs.
Collapse
|
24
|
Guo M, Zhang C, Zhang C, Zhang X, Wu Y. Functional characterization of NLRX1 in rabbit during enterohemorrhagic Escherichia coli infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103612. [PMID: 31962226 DOI: 10.1016/j.dci.2020.103612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Nucleotide oligomerization domain (NOD) like receptor X1 (NLRX1) is a member of pattern recognition receptor, which has been linked to viral response, cancer, and inflammatory diseases. In this study, rabbit NLRX1 (rNLRX1) was firstly cloned from RK-13 cells, which protein contained a NACHT domain and seven LRRs. rNLRX1 was widely expressed in tissues of rabbits, and highly increased in liver, spleen, kidney, and colon after infected with enterohemorrhagic Escherichia coli (EHEC). Overexpression of rNLRX1 negatively regulated NF-κB signaling, and impaired the expression of pro-inflammatory cytokines and defensins. Moreover, deficient of rNLRX1 in RK-13 cells was performed to investigate the possible roles of rNLRX1. Upon EHEC stimulation, knockdown of rNLRX1 markedly enhanced NF-κB activation and downstream responsive cytokines (IL1β and TNFα) and β-defensins (DEFB114, DEFB124, and DEFB125). Furthermore, overexpression of rNLRX1 promoted the proliferation of EHEC, whereas knockdown of rNLRX1 inhibited its growth. Our study identified that rNLRX1 acts as a negative regulatory in anti-microbial responses after EHEC infection.
Collapse
Affiliation(s)
- Mengjiao Guo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congyue Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, Jiangsu, China.
| |
Collapse
|
25
|
McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers 2020; 111:e23348. [PMID: 32031681 DOI: 10.1002/bip.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule. Like other repeat proteins, these proteins can be very stable and have a monomeric mode of binding, with elongated and highly variable binding surfaces. The ability to target glycans and glycoproteins fill an important gap in current tools for research and biomedical applications.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A
| | - Tijana Z Grove
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.,Zarkovic Grove Consulting, LLC, Blacksburg, VA, U.S.A
| |
Collapse
|
26
|
Schmidt ST, Pedersen GK, Christensen D. Rational Design and In Vivo Characterization of Vaccine Adjuvants. ILAR J 2019; 59:309-322. [PMID: 30624655 DOI: 10.1093/ilar/ily018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Many different adjuvants are currently being developed for subunit vaccines against a number of pathogens and diseases. Rational design is increasingly used to develop novel vaccine adjuvants, which requires extensive knowledge of, for example, the desired immune responses, target antigen-presenting cell subsets, their localization, and expression of relevant pattern-recognition receptors. The adjuvant mechanism of action and efficacy are usually evaluated in animal models, where mice are by far the most used. In this review, we present methods for assessing adjuvant efficacy and function in animal models: (1) whole-body biodistribution evaluated by using fluorescently and radioactively labeled vaccine components; (2) association and activation of immune cell subsets at the injection site, in the draining lymph node, and the spleen; (4) adaptive immune responses, such as cytotoxic T-lymphocytes, various T-helper cell subsets, and antibody responses, which may be quantitatively evaluated using ELISA, ELISPOT, and immunoplex assays and qualitatively evaluated using flow cytometric and single cell sequencing assays; and (5) effector responses, for example, antigen-specific cytotoxic potential of CD8+ T cells and antibody neutralization assays. While the vaccine-induced immune responses in mice often correlate with the responses induced in humans, there are instances where immune responses detected in mice are not translated to the human situation. We discuss some examples of correlation and discrepancy between mouse and human immune responses and how to understand them.
Collapse
Affiliation(s)
- Signe Tandrup Schmidt
- Statens Serum Institut, Center for Vaccine Research, Department of Infectious Disease Immunology, Copenhagen S, Denmark
| | - Gabriel Kristian Pedersen
- Statens Serum Institut, Center for Vaccine Research, Department of Infectious Disease Immunology, Copenhagen S, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Center for Vaccine Research, Department of Infectious Disease Immunology, Copenhagen S, Denmark
| |
Collapse
|
27
|
Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. Int Rev Immunol 2018; 37:217-228. [DOI: 10.1080/08830185.2018.1506780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
28
|
Toonen LJA, Casaca-Carreira J, Pellisé-Tintoré M, Mei H, Temel Y, Jahanshahi A, van Roon-Mom WMC. Intracerebroventricular Administration of a 2'-O-Methyl Phosphorothioate Antisense Oligonucleotide Results in Activation of the Innate Immune System in Mouse Brain. Nucleic Acid Ther 2018; 28:63-73. [PMID: 29565739 PMCID: PMC5899290 DOI: 10.1089/nat.2017.0705] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antisense oligonucleotides (AONs) are versatile molecules that can be used to modulate gene expression by binding to RNA. The therapeutic potential of AONs appears particularly high in the central nervous system, due to excellent distribution and uptake in brain cells, as well as good tolerability in clinical trials thus far. Nonetheless, immune stimulation in response to AON treatment in the brain remains a concern. For this reason we performed RNA sequencing analysis of brain tissue from mice treated intracerebroventricularly with phosphorothioate, 2′-O-methyl modified AONs. A significant upregulation of immune system associated genes was observed in brains of AON treated mice, with the striatum showing largest transcriptional changes. Strongest upregulation was seen for the antiviral enzyme 2′-5′-oligoadenylate synthase-like protein 2 (Oasl2) and Bone marrow stromal antigen 2 (Bst2). Histological analysis confirmed activation of microglia and astrocytes in striatum. The upregulation of immune system associated genes was detectable for at least 2 months after the last AON administration, consistent with a continuous immune response to the AON.
Collapse
Affiliation(s)
- Lodewijk J A Toonen
- 1 Department of Human Genetics, Leiden University Medical Center , Leiden, the Netherlands
| | - João Casaca-Carreira
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,3 European Graduate School of Neuroscience (EURON) , Maastricht, the Netherlands .,4 Department of Physiotherapy, Portuguese Red Cross Health School , Lisbon, Portugal .,5 Department of Physiotherapy, School of Health Care , Setubal Polytechnic Institute, Setubal, Portugal
| | - Maria Pellisé-Tintoré
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,6 Department of Medical Science, Faculty of Medicine, University of Girona (UdG) , Girona, Spain
| | - Hailiang Mei
- 7 Sequencing Analysis Support Core, Leiden University Medical Center , Leiden, the Netherlands
| | - Yasin Temel
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,3 European Graduate School of Neuroscience (EURON) , Maastricht, the Netherlands
| | - Ali Jahanshahi
- 2 Department of Neurosurgery, Maastricht University Medical Center , Maastricht, the Netherlands .,3 European Graduate School of Neuroscience (EURON) , Maastricht, the Netherlands
| | | |
Collapse
|
29
|
Malone KM, Rue-Albrecht K, Magee DA, Conlon K, Schubert OT, Nalpas NC, Browne JA, Smyth A, Gormley E, Aebersold R, MacHugh DE, Gordon SV. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli. Microb Genom 2018; 4:e000163. [PMID: 29557774 PMCID: PMC5885015 DOI: 10.1099/mgen.0.000163] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 01/30/2023] Open
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.
Collapse
Affiliation(s)
- Kerri M. Malone
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kévin Rue-Albrecht
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, UK
| | - David A. Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin Conlon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Olga T. Schubert
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
- Present address: Department of Human Genetics, University of California, Los Angeles, USA
| | - Nicolas C. Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Quantitative Proteomics and Proteome Centre Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - John A. Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alicia Smyth
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
30
|
Coutermarsh-Ott S, Simmons A, Capria V, LeRoith T, Wilson JE, Heid B, Philipson CW, Qin Q, Hontecillas-Magarzo R, Bassaganya-Riera J, Ting JPY, Dervisis N, Allen IC. NLRX1 suppresses tumorigenesis and attenuates histiocytic sarcoma through the negative regulation of NF-κB signaling. Oncotarget 2018; 7:33096-110. [PMID: 27105514 PMCID: PMC5078078 DOI: 10.18632/oncotarget.8861] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Histiocytic sarcoma is an uncommon malignancy in both humans and veterinary species. Research exploring the pathogenesis of this disease is scarce; thus, diagnostic and therapeutic options for patients are limited. Recent publications have suggested a role for the NLR, NLRX1, in acting as a tumor suppressor. Based on these prior findings, we hypothesized that NLRX1 would function to inhibit tumorigenesis and thus the development of histiocytic sarcoma. To test this, we utilized Nlrx1-/- mice and a model of urethane-induced tumorigenesis. Nlrx1-/- mice exposed to urethane developed splenic histiocytic sarcoma that was associated with significant up-regulation of the NF-κB signaling pathway. Additionally, development of these tumors was also significantly associated with the increased regulation of genes associated with AKT signaling, cell death and autophagy. Together, these data show that NLRX1 suppresses tumorigenesis and reveals new genetic pathways involved in the pathobiology of histiocytic sarcoma.
Collapse
Affiliation(s)
- Sheryl Coutermarsh-Ott
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Alysha Simmons
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Vittoria Capria
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Justin E Wilson
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bettina Heid
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Casandra W Philipson
- Virginia Tech, Virginia Bioinformatics Institute, Nutritional Immunology and Molecular Medicine Laboratory, Blacksburg, VA, USA
| | - Qizhi Qin
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Raquel Hontecillas-Magarzo
- Virginia Tech, Virginia Bioinformatics Institute, Nutritional Immunology and Molecular Medicine Laboratory, Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Virginia Tech, Virginia Bioinformatics Institute, Nutritional Immunology and Molecular Medicine Laboratory, Blacksburg, VA, USA
| | - Jenny P-Y Ting
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| |
Collapse
|
31
|
Lam D, Lively S, Schlichter LC. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K + channels and migration. J Neuroinflammation 2017; 14:166. [PMID: 28830445 PMCID: PMC5567442 DOI: 10.1186/s12974-017-0941-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair. However, in assessing potential therapeutic targets for controlling inflammation, it is crucial to determine whether rat and mouse microglia respond the same. METHODS Primary microglia from Sprague-Dawley rats and C57BL/6 mice were cultured, then stimulated with interferon-γ + tumor necrosis factor-α (I + T; M1 activation), interleukin (IL)-4 (M2a, alternative activation), or IL-10 (M2c, acquired deactivation). To profile their activation responses, NanoString was used to monitor messenger RNA (mRNA) expression of numerous pro- and anti-inflammatory mediators, microglial markers, immunomodulators, and other molecules. Western analysis was used to measure selected proteins. Two potential targets for controlling inflammation-inward- and outward-rectifier K+ channels (Kir2.1, Kv1.3)-were examined (mRNA, currents) and specific channel blockers were applied to determine their contributions to microglial migration in the different activation states. RESULTS Pro-inflammatory molecules increased after I + T treatment but there were several qualitative and quantitative differences between the species (e.g., iNOS and nitric oxide, COX-2). Several molecules commonly associated with an M2a state differed between species or they were induced in additional activation states (e.g., CD206, ARG1). Resting levels and/or responses of several microglial markers (Iba1, CD11b, CD68) differed with the activation state, species, or both. Transcripts for several Kir2 and Kv1 family members were detected in both species. However, the current amplitudes (mainly Kir2.1 and Kv1.3) depended on activation state and species. Treatment-induced changes in morphology and migratory capacity were similar between the species (migration reduced by I + T, increased by IL-4 or IL-10). In both species, Kir2.1 block reduced migration and Kv1.3 block increased it, regardless of activation state; thus, these channels might affect microglial migration to damage sites. CONCLUSIONS Caution is recommended in generalizing molecular and functional responses of microglia to activating stimuli between species.
Collapse
Affiliation(s)
- Doris Lam
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Starlee Lively
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Lyanne C Schlichter
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Lele DS, Kaur G, Thiruvikraman M, Kaur KJ. Comparing naturally occurring glycosylated forms of proline rich antibacterial peptide, Drosocin. Glycoconj J 2017; 34:613-624. [PMID: 28656506 DOI: 10.1007/s10719-017-9781-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 01/22/2023]
Abstract
Antimicrobial peptides (AMPs) are key players of innate immunity. Amongst various classes of AMPs, proline rich AMPs from insects enjoy special attention with few members of this class bearing O-glycosylation as post-translational modification. Drosocin, a 19 amino acid glycosylated AMP is a member of proline rich class, synthesized in the haemolymph of Drosophila melanogaster upon bacterial challenge. We report herein the chemical synthesis of drosocin carrying disaccharide (β-Gal(1 → 3)α-GalNAc) and comparison of its structural and functional properties with another naturally occurring monoglycosylated form of drosocin i.e. α-GalNAc-drosocin as well as with non-glycosylated drosocin. The disaccharide containing drosocin exhibited lower potency compared to monoglycosylated drosocin against all the tested Gram negative bacteria, suggesting the role of the distal sugar or increase in the sugar chain length on the activity. Circular dichroism studies failed to demonstrate the differential effect of sugars on the overall peptide conformation. Haemolytic and cytotoxic properties of drosocin were not altered due to an increase in the sugar chain length. In addition, we have also evaluated the effect of differentially glycosylated drosocins on two pro-inflammatory cytokines secreted by murine macrophages or LPS stimulated macrophages. All the drosocin forms tested, neither could stimulate the secretion of TNF-α and IL-6 nor could modulate LPS-induced levels of TNF-α and IL-6 in murine macrophages. This study provides insights about naturally occurring two different glycosylated forms of drosocin.
Collapse
Affiliation(s)
- Deepti S Lele
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gagandeep Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Kanwal J Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
33
|
Colby LA, Quenee LE, Zitzow LA. Considerations for Infectious Disease Research Studies Using Animals. Comp Med 2017; 67:222-231. [PMID: 28662751 PMCID: PMC5482514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Animal models are vital in understanding the transmission and pathogenesis of infectious organisms and the host immune response to infection. In addition, animal models are essential in vaccine and therapeutic drug development and testing. Prior to selecting an animal model to use when studying an infectious agent, the scientific team must determine that sufficient in vitro and ex vivo data are available to justify performing research in an animal model, that ethical considerations are addressed, and that the data generated from animal work will add useful information to the body of scientific knowledge. Once it is established that an animal should be used, the questions become 'Which animal model is most suitable?' and 'Which experimental design issues should be considered?' The answers to these questions take into account numerous factors, including scientific, practical, welfare, and regulatory considerations, which are the focus of this article.
Collapse
Affiliation(s)
- Lesley A Colby
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Lauriane E Quenee
- Environment, Health, and Safety Office, California Institute of Technology, Pasadena, California
| | - Lois A Zitzow
- University Research Animal Resources, Office of Research, University of Georgia, Athens, Georgia;,
| |
Collapse
|
34
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
35
|
Baxter RHG, Contet A, Krueger K. Arthropod Innate Immune Systems and Vector-Borne Diseases. Biochemistry 2017; 56:907-918. [PMID: 28072517 DOI: 10.1021/acs.biochem.6b00870] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.
Collapse
Affiliation(s)
- Richard H G Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Alicia Contet
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Kathryn Krueger
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
36
|
Abstract
Polymorphisms in leucine-rich repeat kinase 2 (LRRK2) have been linked to familial Parkinson's disease, increased risk of sporadic Parkinson's disease, increased risk of Crohn's inflammatory bowel disease, and increased susceptibility to leprosy. As well as LRRK2 mutations, these diseases share in common immune dysfunction and inflammation. LRRK2 is highly expressed in particular immune cells and has been biochemically linked to the intertwined pathways regulating inflammation, mitochondrial function, and autophagy/lysosomal function. This review outlines what is currently understood about LRRK2 function in the immune system and the potential implications of LRRK2 dysfunction for diseases genetically linked to this enigmatic enzyme.
Collapse
Affiliation(s)
- Nicolas L Dzamko
- School of Medical Sciences, University of NSW, Kensington, NSW, 2052, Australia.
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
| |
Collapse
|
37
|
Gasteiger G, D'Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular Innate Immunity: An Old Game with New Players. J Innate Immun 2016; 9:111-125. [PMID: 28006777 DOI: 10.1159/000453397] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Georg Gasteiger
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Severson DW, Behura SK. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches. INSECTS 2016; 7:insects7040058. [PMID: 27809220 PMCID: PMC5198206 DOI: 10.3390/insects7040058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/16/2022]
Abstract
Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.
Collapse
Affiliation(s)
- David W Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
39
|
Zakharova VV, Pletjushkina OY, Zinovkin RA, Popova EN, Chernyak BV. Mitochondria-Targeted Antioxidants and Uncouplers of Oxidative Phosphorylation in Treatment of the Systemic Inflammatory Response Syndrome (SIRS). J Cell Physiol 2016; 232:904-912. [DOI: 10.1002/jcp.25626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Vlada V. Zakharova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
- Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow Russia
| | - Olga Yu. Pletjushkina
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Ekaterina N. Popova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
40
|
Stephenson E, Savvatis K, Mohiddin SA, Marelli-Berg FM. T-cell immunity in myocardial inflammation: pathogenic role and therapeutic manipulation. Br J Pharmacol 2016; 174:3914-3925. [PMID: 27590129 DOI: 10.1111/bph.13613] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell-mediated immunity has been linked not only to a variety of heart diseases, including classic inflammatory diseases such as myocarditis and post-myocardial infarction (Dressler's) syndrome, but also to conditions without an obvious inflammatory component such as idiopathic dilated cardiomyopathy and hypertensive cardiomyopathy. It has been recently proposed that in all these conditions, the heart becomes the focus of T-cell-mediated autoimmune inflammation following ischaemic or infectious injury. For example, in acute myocarditis, an inflammatory disease of heart muscle, T-cell responses are thought to arise as a consequence of a viral infection. In a number of patients, persistent T-cell-mediated responses in acute viral myocarditis can lead to autoimmunity and chronic cardiac inflammation resulting in dilated cardiomyopathy. In spite of the major progress made in understanding the mechanisms of pathogenic T-cell responses, effective and safe therapeutic targeting of the immune system in chronic inflammatory diseases of the heart has not yet been developed due to the lack of specific diagnostic and prognostic biomarkers at an early stage. This has also prevented the identification of targets for patient-tailored immunomodulatory therapies that are both disease- and organ-selective. In this review, we discuss current knowledge of the development and functional characteristics of pathogenic T-cell-mediated immune responses in the heart, and, in particular, in myocarditis, as well as recent advances in experimental models which have the potential to translate into heart-selective immunomodulation. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- E Stephenson
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| | - K Savvatis
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - S A Mohiddin
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - F M Marelli-Berg
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| |
Collapse
|
41
|
Baird A, Deng C, Eliceiri MH, Haghi F, Dang X, Coimbra R, Costantini TW, Torbett BE, Eliceiri BP. Mice engrafted with human hematopoietic stem cells support a human myeloid cell inflammatory response in vivo. Wound Repair Regen 2016; 24:1004-1014. [PMID: 27663454 DOI: 10.1111/wrr.12471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Mice engrafted with human CD34+ hematopoietic stem and progenitor cells (CD34+ -HSPCs) have been used to study human infection, diabetes, sepsis, and burn, suggesting that they could be highly amenable to characterizing the human inflammatory response to injury. To this end, human leukocytes infiltrating subcutaneous implants of polyvinyl alcohol (PVA) sponges were analyzed in immunodeficient NSG mice reconstituted with CD34+ -HSPCs. It was reported that human CD45+ (hCD45+ ) leukocytes were present in PVA sponges 3 and 7 days postimplantation and could be localized within the sponges by immunohistochemistry. The different CD45+ subtypes were characterized by flow cytometry and the profile of human cytokines they secreted into PVA wound fluid was assessed using a human-specific multiplex bead analyses of human IL-12p70, TNFα, IL-10, IL-6, IL1β, and IL-8. This enabled tracking the functional contributions of HLA-DR+ , CD33+ , CD19+ , CD62L+ , CD11b+ , or CX3CR1+ hCD45+ infiltrating inflammatory leukocytes. PCR of cDNA prepared from these cells enabled the assessment and differentiation of human, mouse, and uniquely human genes. These findings support the hypothesis that mice engrafted with CD34+ -HSPCs can be deployed as precision avatars to study the human inflammatory response to injury.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Chenliang Deng
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Matthew H Eliceiri
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Fatima Haghi
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Xitong Dang
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California.,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Todd W Costantini
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
42
|
Werners AH. Treatment of endotoxaemia and septicaemia in the equine patient. J Vet Pharmacol Ther 2016; 40:1-15. [PMID: 27452161 DOI: 10.1111/jvp.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/02/2016] [Indexed: 12/27/2022]
Abstract
Endotoxins, constituents of the cell wall of gram-positive and gram-negative bacteria, regularly result in severe illness and death in horses. In endotoxaemia, these constituents are present in the systemic circulation; in septicaemia, whole microbes invade normally sterile parts of the body. Interaction of these endotoxins with pathogen recognition receptors leads to an inflammatory response that cannot always be sufficiently contained and hence needs direct treatment. Over the last decennia, our understanding of the pathophysiology of endotoxaemia and septicaemia has significantly increased. Based on improved understanding of the interaction between receptors and endotoxins as well as the subsequent downstream signalling pathways, new therapeutic targets have been identified in laboratory animal species and humans. Important species differences in the recognition of endotoxins and pathogens by their receptors as well as the inflammatory response to receptor activation hamper extrapolation of this information to the horse (and other species). Historically, horses with endotoxaemia and septicaemia have been treated mainly symptomatically and supportively. Based on the identified therapeutic targets, this review describes the current knowledge of the treatment for endotoxaemia and septicaemia in the horse with reference to the findings in other animal species and humans.
Collapse
Affiliation(s)
- A H Werners
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True Blue Campus, St. George's, Grenada, West-Indies
| |
Collapse
|
43
|
Wilson-Welder JH, Frank AT, Hornsby RL, Olsen SC, Alt DP. Interaction of Bovine Peripheral Blood Polymorphonuclear Cells and Leptospira Species; Innate Responses in the Natural Bovine Reservoir Host. Front Microbiol 2016; 7:1110. [PMID: 27486445 PMCID: PMC4949235 DOI: 10.3389/fmicb.2016.01110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 01/04/2023] Open
Abstract
Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and Leptospira interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia, and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs) and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2) was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of Leptospira strains with bovine PMNs did not affect Leptospira viability as measured by limiting dilution culture. This is in contrast to previously reported results of innate inflammatory activation by Leptospira in human and other animal models, or the activation and interaction of bovine PMNs with Escherichia coli and other bacterial pathogens. While it could be hypothesized that variations in innate receptor recognition, specifically variance in toll-like receptor 2, could underlie the observed reduction of activation in bovine PMNs, additional studies would be needed to explore this possibility. Reduction in neutrophil responses may help to establish nearly asymptomatic chronic Leptospira infection of cattle. This study emphasizes the importance of studying host-pathogen relationships in the appropriate species as extrapolation from other animal models may be incorrect and confounded by differences in the host responses.
Collapse
Affiliation(s)
| | - Ami T Frank
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center Ames, IA, USA
| | - Richard L Hornsby
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center Ames, IA, USA
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center Ames, IA, USA
| | - David P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center Ames, IA, USA
| |
Collapse
|
44
|
Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JDG, Sarris PF. Pathogen perception by NLRs in plants and animals: Parallel worlds. Bioessays 2016; 38:769-81. [PMID: 27339076 DOI: 10.1002/bies.201600046] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intracellular NLR (Nucleotide-binding domain and Leucine-rich Repeat-containing) receptors are sensitive monitors that detect pathogen invasion of both plant and animal cells. NLRs confer recognition of diverse molecules associated with pathogen invasion. NLRs must exhibit strict intramolecular controls to avoid harmful ectopic activation in the absence of pathogens. Recent discoveries have elucidated the assembly and structure of oligomeric NLR signalling complexes in animals, and provided insights into how these complexes act as scaffolds for signal transduction. In plants, recent advances have provided novel insights into signalling-competent NLRs, and into the myriad strategies that diverse plant NLRs use to recognise pathogens. Here, we review recent insights into the NLR biology of both animals and plants. By assessing commonalities and differences between kingdoms, we are able to develop a more complete understanding of NLR function.
Collapse
Affiliation(s)
- Zane Duxbury
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Yan Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Oliver J Furzer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Sung Un Huh
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Panagiotis F Sarris
- Division of Plant and Microbial Sciences, School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
45
|
van Dijk RA, Rijs K, Wezel A, Hamming JF, Kolodgie FD, Virmani R, Schaapherder AF, Lindeman JHN. Systematic Evaluation of the Cellular Innate Immune Response During the Process of Human Atherosclerosis. J Am Heart Assoc 2016; 5:JAHA.115.002860. [PMID: 27312803 PMCID: PMC4937250 DOI: 10.1161/jaha.115.002860] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The concept of innate immunity is well recognized within the spectrum of atherosclerosis, which is primarily dictated by macrophages. Although current insights to this process are largely based on murine models, there are fundamental differences in the atherosclerotic microenvironment and associated inflammatory response relative to humans. In this light, we characterized the cellular aspects of innate immune response in normal, nonprogressive, and progressive human atherosclerotic plaques. Methods and Results A systematic analysis of innate immune response was performed on 110 well‐characterized human perirenal aortic plaques with immunostaining for specific macrophage subtypes (M1 and M2 lineage) and their activation markers, neopterin and human leukocyte antigen–antigen D related (HLA‐DR), together with dendritic cells (DCs), natural killer (NK) cells, mast cells, neutrophils, and eosinophils. Normal aortae were devoid of low‐density lipoprotein, macrophages, DCs, NK cells, mast cells, eosinophils, and neutrophils. Early, atherosclerotic lesions exhibited heterogeneous populations of (CD68+) macrophages, whereby 25% were double positive “M1” (CD68+/ inducible nitric oxide synthase [iNOS]+/CD163−), 13% “M2” double positive (CD68+/iNOS−/CD163+), and 17% triple positive for (M1) iNOS (M2)/CD163 and CD68, with the remaining (≈40%) only stained for CD68. Progressive fibroatheromatous lesions, including vulnerable plaques, showed increasing numbers of NK cells and fascin‐positive cells mainly localized to the media and adventitia whereas the M1/M2 ratio and level of macrophage activation (HLA‐DR and neopterin) remained unchanged. On the contrary, stabilized (fibrotic) plaques showed a marked reduction in macrophages and cell activation with a concomitant decrease in NK cells, DCs, and neutrophils. Conclusions Macrophage “M1” and “M2” subsets, together with fascin‐positive DCs, are strongly associated with progressive and vulnerable atherosclerotic disease of human aorta. The observations here support a more complex theory of macrophage heterogeneity than the existing paradigm predicated on murine data and further indicate the involvement of (poorly defined) macrophage subtypes or greater dynamic range of macrophage plasticity than previously considered.
Collapse
Affiliation(s)
- Rogier A van Dijk
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Kevin Rijs
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk Wezel
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap F Hamming
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Alexander F Schaapherder
- Department of Transplantation Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands Department of Transplantation Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Dawson HD, Smith AD, Chen C, Urban JF. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. Vet Microbiol 2016; 202:2-15. [PMID: 27321134 DOI: 10.1016/j.vetmic.2016.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been published. Herein we provide an expanded in silico analysis using an improved assembly of the porcine transcriptome that provides an in depth analysis of genes that are related to inflammasomes, responses to Toll-like receptor ligands, and M1 macrophage polarization and Escherichia coli as a model organism. Comparisons of the expansion or contraction of orthologous gene families indicated more similar rates and classes of genes in humans and pigs than in mice; however several novel porcine or artiodactyl-specific paralogs or pseudogenes were identified. Conservation of homology and structural motifs of orthologs revealed that the overall similarity to human proteins was significantly higher for pigs compared to mouse. Despite these similarities, two out of four canonical inflammasome pathways, Absent in melanoma 2 (AIM2) and NLR family and CARD domain containing 4 (NLRC4), were found to be missing in pigs. Pig M1 Mφ polarization in response to interferon-γ (IFN-γ) and lipopolysaccharide (LPS) was assessed, via the transcriptome, using next generation sequencing. Our analysis revealed predominantly human-like responses however some, mouse-like responses were observed, as well as induction of numerous pig or artiodactyl-specific genes. This work supports using swine to model both human immunological and inflammatory responses to infection. However, caution must be exercised as pigs differ from humans in several fundamental pathways.
Collapse
Affiliation(s)
- Harry D Dawson
- Rm 224, Bld 307C, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA; U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA.
| | - Allen D Smith
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Celine Chen
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
47
|
Shao L, Fischer DD, Kandasamy S, Saif LJ, Vlasova AN. Tissue-specific mRNA expression profiles of porcine Toll-like receptors at different ages in germ-free and conventional pigs. Vet Immunol Immunopathol 2016; 171:7-16. [PMID: 26964712 PMCID: PMC4788813 DOI: 10.1016/j.vetimm.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
Toll-like receptors (TLRs), key initiators of innate immune responses, recognize antigens and are essential in linking innate and adaptive immune responses. Misrecognition and over-stimulation/expression of TLRs may contribute to the development of chronic inflammatory diseases and autoimmune diseases. However, appropriate and mature TLR responses are associated with the establishment of resistance against some infectious diseases. In this study, we assessed the mRNA expression profile of TLRs 1-10 in splenic and ileal mononuclear cells (MNCs) and dendritic cells (DCs) of germ-free (GF) and conventional pigs at different ages. We found that the TLR mRNA expression profiles were distinct between GF and conventional pigs. The expression profiles were also significantly different between splenic and ileal MNCs/DCs. Comparison of the TLR expression profiles in GF and conventional newborn and young pigs demonstrated that exposure to commensal microbiota may play a more important role than age in TLR mRNA expression profiles. To our knowledge, this is the first report that systematically assesses porcine TLRs 1-10 mRNA expression profiles in MNCs and DCs from GF and conventional pigs at different ages. These results further highlighted that the commensal microbiota of neonates play a critical role through TLR signaling in the development of systemic and mucosal immune systems.
Collapse
Affiliation(s)
- Lulu Shao
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - David D Fischer
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Sukumar Kandasamy
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
48
|
Abstract
Alphaherpesviruses infect a variety of species from sea turtles to man and can cause significant disease in mammals including humans and livestock. These viruses are characterized by a lytic and latent state in nerve ganglia, with the ability to establish a lifelong latent infection that is interrupted by periodic reactivation. Previously, it was accepted that latency was a dominant state and that only during relatively infrequent reactivation episodes did latent genomes within ganglia become transcriptionally active. Here, we review recent data, focusing mainly on Herpes Simplex Virus type 1 which indicate that the latent state is more dynamic than recently appreciated.
Collapse
Affiliation(s)
- David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
49
|
Abstract
For many years innate immunity was regarded as a relatively nonspecific set of mechanisms serving as a first line of defence to contain infections while the more refined adaptive immune response was developing. The discovery of pattern recognition receptors (PRRs) revolutionised the prevailing view of innate immunity, revealing its intimate connection with adaptive immunity and generation of effector and memory T- and B-cell responses. Among the PRRs, families of Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding domain, leucine-rich repeat-containing protein receptors (NLRs), along with a number of cytosolic DNA sensors and the family of absent in melanoma (AIM)-like receptors (ALRs), have been characterised. NLR sensors have been a particular focus of attention, and some NLRs have emerged as key orchestrators of the inflammatory response through the formation of large multiprotein complexes termed inflammasomes. However, several other functions not related to inflammasomes have also been described for NLRs. This chapter introduces the different families of PRRs, their signalling pathways, cross-regulation and their roles in immunosurveillance. The structure and function of NLRs is also discussed with particular focus on the non-inflammasome NLRs.
Collapse
|
50
|
Lonez C, Irvine KL, Pizzuto M, Schmidt BI, Gay NJ, Ruysschaert JM, Gangloff M, Bryant CE. Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Cell Mol Life Sci 2015; 72:3971-82. [PMID: 25956320 PMCID: PMC4575701 DOI: 10.1007/s00018-015-1915-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/31/2015] [Accepted: 04/23/2015] [Indexed: 12/05/2022]
Abstract
DiC14-amidine is a cationic lipid that was originally designed as a lipid nanocarrier for nucleic acid transport, and turned out to be a Toll-like receptor 4 (TLR4) agonist as well. We found that while E. coli lipopolysaccharide (LPS) is a TLR4 agonist in all species, diC14-amidine nanoliposomes are full agonists for human, mouse and cat receptors but weak horse agonists. Taking advantage of this unusual species specificity, we used chimeric constructs based on the human and horse sequences and identified two regions in the human TLR4 that modulate the agonist activity of diC14-amidine. Interestingly, these regions lie outside the known LPS-binding domain. Competition experiments also support our hypothesis that diC14-amidine interacts primarily with TLR4 hydrophobic crevices located at the edges of the TLR4/TLR4* dimerization interface. We have characterized potential binding modes using molecular docking analysis and suggest that diC14-amidine nanoliposomes activate TLR4 by facilitating its dimerization in a process that is myeloid differentiation 2 (MD-2)-dependent and cluster of differentiation 14 (CD14)-independent. Our data suggest that TLR4 may be activated through binding at different anchoring points, expanding the repertoire of TLR4 ligands to non-MD-2-binding lipids.
Collapse
Affiliation(s)
- Caroline Lonez
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium.
| | - Kate L Irvine
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malvina Pizzuto
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium
| | - Boris I Schmidt
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium
| | - Nick J Gay
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|