1
|
Dial TR, Collins LA, Liao JC, Tobalske BW. Body length determines flow refuging for rainbow trout (Oncorhynchus mykiss) behind wing dams. J Exp Biol 2024; 227:jeb247829. [PMID: 39022908 PMCID: PMC11418164 DOI: 10.1242/jeb.247829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Complex hydrodynamics abound in natural streams, yet the selective pressures these impose upon different size classes of fish are not well understood. Attached vortices are produced by relatively large objects that block freestream flow, which fish routinely utilize for flow refuging. To test how flow refuging and the potential harvesting of energy (as seen in Kármán gaiting) vary across size classes in rainbow trout (Oncorhynchus mykiss; fingerling, 8 cm; parr, 14 cm; adult, 22 cm; n=4 per size class), we used a water flume (4100 l; freestream flow at 65 cm s-1) and created vortices using 45 deg wing dams of varying size (small, 15 cm; medium, 31 cm; large, 48 cm). We monitored microhabitat selection and swimming kinematics of individual trout and measured the flow field in the wake of wing dams using time-resolved particle image velocimetry (PIV). Trout of each size class preferentially swam in vortices rather than the freestream, but the capacity to flow refuge varied according to the ratio of vortex width to fish length (WV:LF). Consistent refuging behavior was exhibited when WV:LF≥1.5. All size classes exhibited increased wavelength and Strouhal number and decreased tailbeat frequency within vortices compared with freestream, suggesting that swimming in vortices requires less power output. In 17% of the trials, fish preferentially swam in a manner that suggests energy harvesting from the shear layer. Our results can inform efforts toward riparian restoration and fishway design to improve salmonid conservation.
Collapse
Affiliation(s)
- Terry R. Dial
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Utah State University Moab, Moab, UT 84532, USA
| | - Laura A. Collins
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Bret W. Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Bovier M, Camenzind DW, Brown AF, Jeker L, Retschnig G, Neumann P, Straub L. Colony environment and absence of brood enhance tolerance to a neonicotinoid in winter honey bee workers, Apis mellifera. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:608-621. [PMID: 38780664 PMCID: PMC11252217 DOI: 10.1007/s10646-024-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Manon Bovier
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic W Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew F Brown
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- University of Freiburg, Freiburg, Switzerland
| | - Lukas Jeker
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, Thailand.
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
3
|
Lowe WH, Addis BR, Cochrane MM. Outbreeding reduces survival during metamorphosis in a headwater stream salamander. Mol Ecol 2024; 33:e17375. [PMID: 38699973 DOI: 10.1111/mec.17375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long-term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco-evolutionary processes. We used 8 years of capture-recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage-specific survival probabilities in the salamander Gyrinophilus porphyriticus. The life cycle of G. porphyriticus includes an aquatic larval stage followed by metamorphosis into a semi-aquatic adult stage. In our study populations, the larval stage lasts 6-10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi-locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre-metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection.
Collapse
Affiliation(s)
- Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brett R Addis
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Madaline M Cochrane
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
4
|
Relyea R, Mattes B, Schermerhorn C, Shepard I. Freshwater salinization and the evolved tolerance of amphibians. Ecol Evol 2024; 14:e11069. [PMID: 38481759 PMCID: PMC10933534 DOI: 10.1002/ece3.11069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 11/02/2024] Open
Abstract
The increasing salinization of freshwaters is a growing environmental issue as a result of mining, agriculture, climate change, and the application of de-icing salts in regions that experience ice and snow. Due to narrow osmotic limits, many freshwater species are particularly susceptible to salinization, but it is possible that repeated exposures over time could favor the evolution of increased salt tolerance. Using collected nine populations of larval wood frogs (Rana sylvatica) as eggs from ponds and wetlands with close proximity to roads and spanning a wide gradient of salt concentrations. In the first experiment, we used a time-to-death experiment to examine the salt tolerance. In a second experiment, we examined whether population differences in salt tolerance were associated with trade-offs in growth, development, or behavior in the presence of control water or a sublethal salt concentration. We found that populations collected from ponds with low and intermediate salt concentrations exhibited similar tolerance curves over a 96-h exposure. However, the population from a pond with the highest salt concentration exhibited a much higher tolerance. We also found population differences in growth, development, and activity level among the populations, but these were not associated with population differences in tolerance. In addition, the sublethal concentration of salt had no impact on growth and development, but it did cause a reduction in tadpole activity across the populations. Collectively, these results provide further evidence that some species of freshwater organisms can evolve tolerance to increasing salinization, although it may only occur under relatively high concentrations and without trade-offs in growth, development, or behavior.
Collapse
Affiliation(s)
- Rick Relyea
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Brian Mattes
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Candace Schermerhorn
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Isaac Shepard
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| |
Collapse
|
5
|
James ME, Ortiz-Barrientos D. The genomic consequences of selection across development. Mol Ecol 2024; 33:e17280. [PMID: 38247305 DOI: 10.1111/mec.17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.
Collapse
Affiliation(s)
- Maddie E James
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Sanghvi K, Vega-Trejo R, Nakagawa S, Gascoigne SJL, Johnson SL, Salguero-Gómez R, Pizzari T, Sepil I. Meta-analysis shows no consistent evidence for senescence in ejaculate traits across animals. Nat Commun 2024; 15:558. [PMID: 38228708 PMCID: PMC10791739 DOI: 10.1038/s41467-024-44768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Male reproductive traits such as ejaculate size and quality, are expected to decline with advancing age due to senescence. It is however unclear whether this expectation is upheld across taxa. We perform a meta-analysis on 379 studies, to quantify the effects of advancing male age on ejaculate traits across 157 species of non-human animals. Contrary to predictions, we find no consistent pattern of age-dependent changes in ejaculate traits. This result partly reflects methodological limitations, such as studies sampling a low proportion of adult lifespan, or the inability of meta-analytical approaches to document non-linear ageing trajectories of ejaculate traits; which could potentially lead to an underestimation of senescence. Yet, we find taxon-specific differences in patterns of ejaculate senescence. For instance, older males produce less motile and slower sperm in ray-finned fishes, but larger ejaculates in insects, compared to younger males. Notably, lab rodents show senescence in most ejaculate traits measured. Our study challenges the notion of universal reproductive senescence, highlighting the need for controlled methodologies and a more nuanced understanding of reproductive senescence, cognisant of taxon-specific biology, experimental design, selection pressures, and life-history.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, UK.
| | | | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Westergren M, Archambeau J, Bajc M, Damjanić R, Theraroz A, Kraigher H, Oddou-Muratorio S, González-Martínez SC. Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech. Mol Ecol 2023. [PMID: 37962106 DOI: 10.1111/mec.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.
Collapse
Affiliation(s)
| | | | - Marko Bajc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Rok Damjanić
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | | | | | - Sylvie Oddou-Muratorio
- INRAE, URFM, Avignon, France
- INRAE, Univ. de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | | |
Collapse
|
8
|
Griffen BD, Bolander M, Blakeslee A, Crane LC, Repetto MF, Tepolt CK, Toscano BJ. Past energy allocation overwhelms current energy stresses in determining energy allocation trade-offs. Ecol Evol 2023; 13:e10402. [PMID: 37560183 PMCID: PMC10408252 DOI: 10.1002/ece3.10402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Regeneration of lost appendages is a gradual process in many species, spreading energetic costs of regeneration through time. Energy allocated to the regeneration of lost appendages cannot be used for other purposes and, therefore, commonly elicits energetic trade-offs in biological processes. We used limb loss in the Asian shore crab Hemigrapsus sanguineus to compare the strength of energetic trade-offs resulting from historic limb losses that have been partially regenerated versus current injuries that have not yet been repaired. Consistent with previous studies, we show that limb loss and regeneration results in trade-offs that reduce reproduction, energy storage, and growth. As may be expected, we show that trade-offs in these metrics from historic limb losses far outweigh trade-offs from current limb losses, and correlate directly with the degree of historic limb loss that has been regenerated. As regenerating limbs get closer to their normal size, these historical injuries get harder to detect, despite the continued allocation of additional resources to limb development. Our results demonstrate the importance of and a method for identifying historic appendage losses and of quantifying the amount of regeneration that has already occurred, as opposed to assessing only current injury, to accurately assess the strength of energetic trade-offs in animals recovering from nonlethal injury.
Collapse
Affiliation(s)
| | | | - April Blakeslee
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | | | - Carolyn K. Tepolt
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | |
Collapse
|
9
|
Palacio FX, Cataudela JF, Montalti D, Ordano M. On the adequacy of fruit removal as a proxy for fitness in studies of bird-mediated phenotypic selection. AMERICAN JOURNAL OF BOTANY 2023; 110:1-12. [PMID: 36706269 DOI: 10.1002/ajb2.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 05/11/2023]
Abstract
PREMISE In fleshy-fruited plants, fruit removal is widely used as a proxy for plant reproductive success. Nevertheless, this proxy may not accurately reflect the number of seeds dispersed, an assumed better proxy for total fitness (fruit removal × mean number of seeds dispersed per fruit). METHODS We examined under what circumstances fruit removal can be reliable as a proxy for total fitness when assessing bird-mediated selection on fruit traits. In three populations of the Blue Passionflower (Passiflora caerulea), we used the number of fruits pecked per plant as a surrogate for fruit removal to estimate phenotypic selection on fruit and seed traits, and simulations of the effect of the fruit-seed number trade-off on the number of fruits removed. RESULTS Fruit removal was a good indicator of fitness, accounting for 55 to 68% of the variability in total fitness, measured as total number of seeds removed. Moreover, multivariate selection analyses on fruit crop size, mean fruit diameter and mean seed number using fruit removal as a fitness proxy yielded similar selection regimes to those using total fitness. Simulations showed that producing more fruits, a lower number of seeds per fruit, and a higher variability in seed number can result in a negative relationship between fruit removal and total fitness. CONCLUSIONS Our results suggest that fruit removal can be reliably used as a proxy for total fitness when (1) there is a weak fruit number-seed number trade-off, (2) fruit crop size and fruit removal correlate positively, and (3) seed number variability does not largely exceed fruit number variability.
Collapse
Affiliation(s)
- Facundo X Palacio
- Sección Ornitología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Juan Francisco Cataudela
- Laboratorio de Biología de la Conservación, Centro de Ecología Aplicada del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Diego Montalti
- Sección Ornitología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Yerba Buena, Argentina
| |
Collapse
|
10
|
Hankison S, Gangloff EJ, Fry B, Arnold A, Lashway AJ, Betts JM, Otap SD, Walter K, Juergens MY, Crawford A. Effects of reliance on stored sperm on reproduction in the sailfin molly Poecilia latipinna. JOURNAL OF FISH BIOLOGY 2022; 101:1628-1633. [PMID: 36134581 PMCID: PMC10091790 DOI: 10.1111/jfb.15228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The impacts of relying on stored sperm were evaluated in the sailfin molly, Poecilia latipinna. Females reliant on stored sperm had fewer offspring compared to remated females, but offspring size and short-term growth rate did not differ. Thus, females may use stored sperm in cases such as previous mating with a preferred male, lack of access to mating opportunities during a reproductive cycle, or to maximize egg fertilization. Females do not compensate for producing fewer offspring however, by allocating more resources to offspring relative to their size or initial growth.
Collapse
Affiliation(s)
- Shala Hankison
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | - Eric J. Gangloff
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | - Breanna Fry
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | - Alena Arnold
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | - A. J. Lashway
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | - Jenell M. Betts
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | - Sandra D. Otap
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | - Katherine Walter
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| | | | - Alax Crawford
- Department of Biological Sciences, Ohio Wesleyan UniversityDelawareOhioUSA
| |
Collapse
|
11
|
Snyder MN, Schumaker NH, Dunham JB, Ebersole JL, Keefer ML, Halama J, Comeleo RL, Leinenbach P, Brookes A, Cope B, Wu J, Palmer J. Tough places and safe spaces: Can refuges save salmon from a warming climate? Ecosphere 2022; 13:10.1002/ecs2.4265. [PMID: 36505090 PMCID: PMC9728623 DOI: 10.1002/ecs2.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
The importance of thermal refuges in a rapidly warming world is particularly evident for migratory species, where individuals encounter a wide range of conditions throughout their lives. In this study, we used a spatially explicit, individual-based simulation model to evaluate the buffering potential of cold-water thermal refuges for anadromous salmon and trout (Oncorhynchus spp.) migrating upstream through a warm river corridor that can expose individuals to physiologically stressful temperatures. We considered upstream migration in relation to migratory phenotypes that were defined in terms of migration timing, spawn timing, swim speed, and use of cold-water thermal refuges. Individuals with different migratory phenotypes migrated upstream through riverine corridors with variable availability of cold-water thermal refuges and mainstem temperatures. Use of cold-water refuges (CWRs) decreased accumulated sublethal exposures to physiologically stressful temperatures when measured in degree-days above 20, 21, and 22°C. The availability of CWRs was an order of magnitude more effective in lowering accumulated sublethal exposures under current and future mainstem temperatures for summer steelhead than fall Chinook Salmon. We considered two emergent model outcomes, survival and percent of available energy used, in relation to thermal heterogeneity and migratory phenotype. Mean percent energy loss attributed to future warmer mainstem temperatures was at least two times larger than the difference in energy used in simulations without CWRs for steelhead and salmon. We also found that loss of CWRs reduced the diversity of energy-conserving migratory phenotypes when we examined the variability in entry timing and travel time outside of CWRs in relation to energy loss. Energy-conserving phenotypic space contracted by 7%-23% when CWRs were unavailable under the current thermal regime. Our simulations suggest that, while CWRs do not entirely mitigate for stressful thermal exposures in mainstem rivers, these features are important for maintaining a diversity of migration phenotypes. Our study suggests that the maintenance of diverse portfolios of migratory phenotypes and cool- and cold-water refuges might be added to the suite of policies and management actions presently being deployed to improve the likelihood of Pacific salmonid persistence into a future characterized by climate change.
Collapse
Affiliation(s)
- Marcía N. Snyder
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Nathan H. Schumaker
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Jason B. Dunham
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA
| | - Joseph L. Ebersole
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Matthew L. Keefer
- University of Idaho, Department of Fish and Wildlife Sciences, College of Natural Resources, Moscow, Idaho, USA
| | - Jonathan Halama
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
- Oak Ridge Institute for Science and Education/US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Randy L. Comeleo
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | | | - Allen Brookes
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Ben Cope
- US Environmental Protection Agency, Seattle, Washington, USA
| | - Jennifer Wu
- US Environmental Protection Agency, Seattle, Washington, USA
| | - John Palmer
- US Environmental Protection Agency, Seattle, Washington, USA
| |
Collapse
|
12
|
Pereira Martins AR, Martins LP, Ho W, McMillan WO, Ready JS, Barrett R. Scale-dependent environmental effects on phenotypic distributions in Heliconius butterflies. Ecol Evol 2022; 12:e9286. [PMID: 36177141 PMCID: PMC9471044 DOI: 10.1002/ece3.9286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Identifying the relative importance of different mechanisms responsible for the emergence and maintenance of phenotypic diversity can be challenging, as multiple selective pressures and stochastic events are involved in these processes. Therefore, testing how environmental conditions shape the distribution of phenotypes can offer important insights on local adaptation, divergence, and speciation. The red-yellow Müllerian mimicry ring of Heliconius butterflies exhibits a wide diversity of color patterns across the Neotropics and is involved in multiple hybrid zones, making it a powerful system to investigate environmental drivers of phenotypic distributions. Using the distantly related Heliconius erato and Heliconius melpomene co-mimics and a multiscale distribution approach, we investigated whether distinct phenotypes of these species are associated with different environmental conditions. We show that Heliconius red-yellow phenotypic distribution is strongly driven by environmental gradients (especially thermal and precipitation variables), but that phenotype and environment associations vary with spatial scale. While co-mimics are usually predicted to occur in similar environments at large spatial scales, patterns at local scales are not always consistent (i.e., different variables are best predictors of phenotypic occurrence in different locations) or congruent (i.e., co-mimics show distinct associations with environment). We suggest that large-scale analyses are important for identifying how environmental factors shape broad mimetic phenotypic distributions, but that local studies are essential to understand the context-dependent biotic, abiotic, and historical mechanisms driving finer-scale phenotypic transitions.
Collapse
Affiliation(s)
- Ananda R. Pereira Martins
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Lucas P. Martins
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | | | - Jonathan S. Ready
- Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
| | | |
Collapse
|
13
|
Byer NW, Reid BN. The emergence of imperfect philopatry and fidelity in spatially and temporally heterogeneous environments. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, González-Tokman D. Contamination effects on sexual selection in wild dung beetles. J Evol Biol 2022; 35:905-918. [PMID: 35647730 DOI: 10.1111/jeb.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Sexual selection influences the expression of secondary sexual traits, which are costly to produce and maintain and are thus considered honest indicators of individual condition. Therefore, sexual selection could select for high-quality individuals able to respond to stressful conditions, with impacts on population-level fitness. We sampled dung beetles from 19 pastures and investigated if contamination by herbicides and veterinary drugs modifies male investment in sexually selected traits and has associated population-level effects. We measured horn size, condition dependence (i.e. size-corrected body mass) and allometry, besides abundance and sexual size dimorphism in three species: Copris incertus, Euoniticellus intermedius and Digitonthophagus gazella. In contrary to our expectations, horn size was independent of contamination and individual condition. However, strong positive allometric relationships were reduced by herbicide contamination for C. incertus and D. gazella and were increased by ivermectin for C. incertus, revealing differential investment in horn production according to body size in contaminated habitats. At the population level, large-horned C. incertus males were more abundant in contaminated pastures, potentially revealing a case of evolutionary rescue by sexual selection or a plastic response to higher population densities. Finally, chemical compounds affected the sexual size dimorphism of all three species, with potential effects on female fecundity or intrasexual selection. Together, our findings indicate that contamination interferes with sexual selection processes in the wild, opening new questions regarding the role of sexual selection in favouring species persistence in contaminated environments.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología A.C, Xalapa, Mexico.,CONACYT, Mexico City, Mexico
| |
Collapse
|
15
|
Freda PJ, Toxopeus J, Dowle EJ, Ali ZM, Heter N, Collier RL, Sower I, Tucker JC, Morgan TJ, Ragland GJ. Transcriptomic and functional genetic evidence for distinct ecophysiological responses across complex life cycle stages. J Exp Biol 2022; 225:275641. [PMID: 35578907 DOI: 10.1242/jeb.244063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022]
Abstract
Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved Cellular Stress Response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNAi (RNA interference) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to -5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially-expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages.
Collapse
Affiliation(s)
- Philip J Freda
- Department of Entomology, Kansas State University, 1603 Old Claflin Place, Manhattan, KS 66506, USA
| | - Jantina Toxopeus
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Zainab M Ali
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Nicholas Heter
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rebekah L Collier
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Isaiah Sower
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Joseph C Tucker
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| |
Collapse
|
16
|
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. THE NEW PHYTOLOGIST 2022; 233:1051-1066. [PMID: 34614214 DOI: 10.1111/nph.17773] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plant resource allocation patterns often reveal tradeoffs that favor growth (G) over defense (D), or vice versa. Ecologists most often explain G-D tradeoffs through principles of economic optimality, in which negative trait correlations are attributed to the reconciliation of fitness costs. Recently, researchers in molecular biology have developed 'big data' resources including multi-omic (e.g. transcriptomic, proteomic and metabolomic) studies that describe the cellular processes controlling gene expression in model species. In this synthesis, we bridge ecological theory with discoveries in multi-omics biology to better understand how selection has shaped the mechanisms of G-D tradeoffs. Multi-omic studies reveal strategically coordinated patterns in resource allocation that are enabled by phytohormone crosstalk and transcriptional signal cascades. Coordinated resource allocation justifies the framework of optimality theory, while providing mechanistic insight into the feedbacks and control hubs that calibrate G-D tradeoff commitments. We use the existing literature to describe the coordinated resource allocation hypothesis (CoRAH) that accounts for balanced cellular controls during the expression of G-D tradeoffs, while sustaining stored resource pools to buffer the impacts of future stresses. The integrative mechanisms of the CoRAH unify the supply- and demand-side perspectives of previous G-D tradeoff theories.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
17
|
Gunderson AR, Riddell EA, Sears MW, Rosenblum EB. Thermal costs and benefits of replicated color evolution in the White Sands Desert lizard community. Am Nat 2022; 199:666-678. [DOI: 10.1086/719027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Albecker MA, Wilkins LGE, Krueger-Hadfield SA, Bashevkin SM, Hahn MW, Hare MP, Kindsvater HK, Sewell MA, Lotterhos KE, Reitzel AM. Does a complex life cycle affect adaptation to environmental change? Genome-informed insights for characterizing selection across complex life cycle. Proc Biol Sci 2021; 288:20212122. [PMID: 34847763 PMCID: PMC8634620 DOI: 10.1098/rspb.2021.2122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex life cycles, in which discrete life stages of the same organism differ in form or function and often occupy different ecological niches, are common in nature. Because stages share the same genome, selective effects on one stage may have cascading consequences through the entire life cycle. Theoretical and empirical studies have not yet generated clear predictions about how life cycle complexity will influence patterns of adaptation in response to rapidly changing environments or tested theoretical predictions for fitness trade-offs (or lack thereof) across life stages. We discuss complex life cycle evolution and outline three hypotheses—ontogenetic decoupling, antagonistic ontogenetic pleiotropy and synergistic ontogenetic pleiotropy—for how selection may operate on organisms with complex life cycles. We suggest a within-generation experimental design that promises significant insight into composite selection across life cycle stages. As part of this design, we conducted simulations to determine the power needed to detect selection across a life cycle using a population genetic framework. This analysis demonstrated that recently published studies reporting within-generation selection were underpowered to detect small allele frequency changes (approx. 0.1). The power analysis indicates challenging but attainable sampling requirements for many systems, though plants and marine invertebrates with high fecundity are excellent systems for exploring how organisms with complex life cycles may adapt to climate change.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology, Utah State University, Logan, UT 84321, USA
| | - Laetitia G E Wilkins
- Max Planck Institute for Marine Microbiology (MPIMM), Celsiusstrasse 1, 28209 Bremen, Germany
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA
| | - Samuel M Bashevkin
- Delta Science Program, Delta Stewardship Council, 715 P Street 15-300, Sacramento, CA 95814, USA
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405, USA
| | - Matthew P Hare
- Department of Natural Resources and the Environment, Cornell University, 205 Fernow Hall, Ithaca, NY 14853, USA
| | - Holly K Kindsvater
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Katie E Lotterhos
- Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA 01918, USA
| | - Adam M Reitzel
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
19
|
Adams AE, Besozzi EM, Shahrokhi G, Patten MA. A case for associational resistance: Apparent support for the stress gradient hypothesis varies with study system. Ecol Lett 2021; 25:202-217. [PMID: 34775662 DOI: 10.1111/ele.13917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
According to the stress gradient hypothesis (SGH), ecological interactions between organisms shift positively as environmental stress increases. In the case of associational resistance, habitat is modified to ameliorate stress, benefitting other organisms. The SGH is contentious due to conflicting evidence and theoretical perspectives, so we adopted a meta-analytic approach to determine if it is widely supported across a variety of contexts, including different kingdoms, ecosystems, habitats, interactions, stressors, and life history stages. We developed an extensive list of Boolean search criteria to search the published ecological literature and successfully detect studies that both directly tested the hypothesis, and those that were relevant but never mentioned it. We found that the SGH is well supported by studies that feature bacteria, plants, terrestrial ecosystems, interspecific negative interactions, adults, survival instead of growth or reproduction, and drought, fire, and nutrient stress. We conclude that the SGH is indeed a broadly relevant ecological hypothesis that is currently held back by cross-disciplinary communication barriers. More SGH research is needed beyond the scope of interspecific plant competition, and more SGH research should feature multifactor stress. There remains a need to account for positive interactions in scientific pursuits, such as associational resistance in tests of the SGH.
Collapse
Affiliation(s)
- Amy E Adams
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | | | - Golya Shahrokhi
- Oklahoma Biological Survey, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael A Patten
- Ecology Research Group, Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| |
Collapse
|
20
|
Xuereb A, Rougemont Q, Tiffin P, Xue H, Phifer-Rixey M. Individual-based eco-evolutionary models for understanding adaptation in changing seas. Proc Biol Sci 2021; 288:20212006. [PMID: 34753353 PMCID: PMC8580472 DOI: 10.1098/rspb.2021.2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 01/09/2023] Open
Abstract
As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas.
Collapse
Affiliation(s)
- Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, 3050 Avenue de la Médecine, Québec, Quebec, Canada G1 V 0A6
| | - Quentin Rougemont
- CEFE, Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Huijie Xue
- School of Marine Sciences, University of Maine, 5706 Aubert Hall, Orono, ME 04469-5706, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, 400 Cedar Avenue, West Long Branch, NJ, USA
| |
Collapse
|
21
|
Benatti HR, Luz HR, Lima DM, Gonçalves VD, Costa FB, Ramos VN, Aguiar DM, Pacheco RC, Piovezan U, Szabó MPJ, Ferraz KMPMB, Labruna MB. Morphometric Patterns and Blood Biochemistry of Capybaras ( Hydrochoerus hydrochaeris) from Human-Modified Landscapes and Natural Landscapes in Brazil. Vet Sci 2021; 8:vetsci8080165. [PMID: 34437487 PMCID: PMC8402786 DOI: 10.3390/vetsci8080165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
The capybara, Hydrochoerus hydrochaeris, is the largest extant rodent of the world. To better understand the correlation between size and body mass, and biochemical parameters of capybaras from areas with different degrees of anthropization (i.e., different food supplies), we sampled free-ranging capybaras from areas of natural landscapes (NLs) and human-modified landscapes (HMLs) in Brazil. Analyses of biometrical and biochemical parameters of capybaras showed that animals from HMLs were heavier (higher body mass) than those from NL, a condition possibly related to fat deposit rather than body length, as indicated by Body Condition Index (BCI) analyses. Biochemical parameters indicated higher serum levels of albumin, creatine kinase, cholesterol, fructosamine and total protein among capybaras from HMLs than from NLs; however, when all adult capybaras were analyzed together only cholesterol and triglycerides were positively correlated with body mass. We propose that the biochemical profile differences between HMLs and NLs are related to the obesity condition of capybaras among HMLs. Considering that heavier animals might live longer and reproduce more often, our results could have important implications in the population dynamics of capybaras among HMLs, where this rodent species is frequently represented by overgrowth populations that generate several levels of conflicts with human beings.
Collapse
Affiliation(s)
- Hector R. Benatti
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Hermes R. Luz
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Programa de Pós-Graduação em Biotecnologia do Renorbio, Ponto Focal Maranhão, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Daniel M. Lima
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Vinicius D. Gonçalves
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Francisco B. Costa
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Faculdade de Medicina Veterinária, Universidade Estadual do Maranhão, São Luís 65055-970, MA, Brazil
| | - Vanessa N. Ramos
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil;
| | - Daniel M. Aguiar
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (D.M.A.); (R.C.P.)
| | - Richard C. Pacheco
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (D.M.A.); (R.C.P.)
| | | | - Matias P. J. Szabó
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil;
| | - Katia Maria P. M. B. Ferraz
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Marcelo B. Labruna
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Correspondence: ; Tel.: +55-11-3091-1394
| |
Collapse
|
22
|
Mapping of quantitative trait loci underlying a magic trait in ongoing ecological speciation. BMC Genomics 2021; 22:615. [PMID: 34384356 PMCID: PMC8361645 DOI: 10.1186/s12864-021-07908-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Telmatochromis temporalis is a cichlid fish endemic to Lake Tanganyika. The normal and dwarf morphs of this fish are a clear example of ongoing ecological speciation, and body size plays an important role in this speciation event as a magic trait. However, the genetic basis underlying this trait has not been studied. Results Based on double-digested restriction-site associated DNA (ddRAD) sequencing of a hybrid cross between the morphs that includes F0 male, F0 female, and 206 F2 individuals, we obtained a linkage map consisting of 708 ddRAD markers in 22 linkage groups, which corresponded to the previously reported Oreochromis niloticus chromosomes, and identified one significant and five suggestive quantitative trait loci (QTL) for body size. From the body-size distribution pattern, the significant and three of the five suggestive QTL are possibly associated with genes responsible for the difference in body size between the morphs. Conclusions The QTL analysis presented here suggests that multiple genes, rather than a single gene, control morph-specific body size. The present results provide further insights about the genes underlying the morph specific body size and evolution of the magic trait during ecological speciation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07908-4.
Collapse
|
23
|
Ellis TJ, Postma FM, Oakley CG, Ågren J. Life-history trade-offs and the genetic basis of fitness in Arabidopsis thaliana. Mol Ecol 2021; 30:2846-2858. [PMID: 33938082 DOI: 10.1111/mec.15941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Resources allocated to survival cannot be used to increase fecundity, but the extent to which this trade-off constrains adaptation depends on overall resource status. Adaptation to local environmental conditions may therefore entail the evolution of traits that increase the amount of resources available to individuals (their resource status or 'condition'). We examined the relative contribution of trade-offs and increased condition to adaptive evolution in a recombinant inbred line population of Arabidopsis thaliana planted at the native sites of the parental ecotypes in Italy and Sweden in 2 years. We estimated genetic correlations among fitness components based on genotypic means and explored their causes with QTL mapping. The local ecotype produced more seeds per fruit than did the non-local ecotype, reflected in stronger adaptive differentiation than was previously shown based on survival and fruit number only. Genetic correlations between survival and overall fecundity, and between number of fruits and number of seeds per fruit, were positive, and there was little evidence of a trade-off between seed size and number. Quantitative trait loci for these traits tended to map to the same regions of the genome and showed positive pleiotropic effects. The results indicate that adaptive differentiation between the two focal populations largely reflects the evolution of increased ability to acquire resources in the local environment, rather than shifts in the relative allocation to different life-history traits. Differentiation both in phenology and in tolerance to cold is likely to contribute to the advantage of the local genotype at the two sites.
Collapse
Affiliation(s)
- Thomas James Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden.,Gregor Mendel Institute of Molecular Plant Sciences, Vienna, Austria
| | - Froukje M Postma
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Christopher G Oakley
- Department of Botany and Plant Pathology & the Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Fetter KC, Nelson DM, Keller SR. Growth-defense trade-offs masked in unadmixed populations are revealed by hybridization. Evolution 2021; 75:1450-1465. [PMID: 33914360 DOI: 10.1111/evo.14227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Organisms are constantly challenged by pathogens and pests, which can drive the evolution of growth-defense strategies. Plant stomata are essential for gas exchange during photosynthesis and conceptually lie at the intersection of the physiological demands of growth and exposure to foliar fungal pathogens. Generations of natural selection for locally adapted growth-defense strategies can eliminate variation between traits, potentially masking trade-offs and selection conflicts that may have existed in the past. Hybrid populations offer a unique opportunity to reset the clock on selection and to study potentially maladaptive trait variation before selection removes it. We study the interactions of growth, stomatal, ecopysiological, and disease resistance traits in poplars (Populus) after infection by the leaf rust Melampsora medusae. Phenotypes were measured in a common garden and genotyped at 227K SNPs. We isolate the effects of hybridization on trait variance, discover correlations between stomatal, ecophysiology, and disease resistance, examine trade-offs and selection conflicts, and explore the evolution of growth-defense strategies potentially mediated by selection for stomatal traits on the upper leaf surface. These results suggest an important role for stomata in determining growth-defense strategies in organisms susceptible to foliar pathogens, and reinforces the contribution of hybridization studies toward our understanding of trait evolution.
Collapse
Affiliation(s)
- Karl C Fetter
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA.,Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| | - David M Nelson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, 21532, USA
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
25
|
Bonett RM, Ledbetter NM, Hess AJ, Herrboldt MA, Denoël M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Dev Dyn 2021; 251:957-972. [PMID: 33991029 DOI: 10.1002/dvdy.373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Abstract
Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo-devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco-evo-devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine-based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | | | - Alexander J Hess
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Madison A Herrboldt
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Moore MP, Martin RA. Natural Selection on Adults Has Trait-Dependent Consequences for Juvenile Evolution in Dragonflies. Am Nat 2021; 197:677-689. [PMID: 33989138 DOI: 10.1086/714048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAlthough natural selection often fluctuates across ontogeny, it remains unclear what conditions enable selection in one life-cycle stage to shape evolution in others. Organisms that undergo metamorphosis are useful for addressing this topic because their highly specialized life-cycle stages cannot always evolve independently despite their dramatic life-history transition. Using a comparative study of dragonflies, we examined three conditions that are hypothesized to allow selection in one stage to affect evolution in others. First, we tested whether lineages with less dramatic metamorphosis (e.g., hemimetabolous insects) lack the capacity for stage-specific evolution. Rejecting this hypothesis, we found that larval body shape evolves independently from selection on adult shape. Next, we evaluated whether stage-specific evolution is limited for homologous and/or coadapted structures. Indeed, we found that selection for larger wings is associated with the evolution of coadapted larval sheaths that store developing wing tissue. Finally, we assessed whether stage-specific evolution is restricted for traits linked to a single biochemical pathway. Supporting this hypothesis, we found that species with more wing melanization in the adult stage have evolved weaker melanin immune defenses in the larval stage. Thus, our results collectively show that natural selection in one stage imposes trait-dependent constraints on evolution in others.
Collapse
|
27
|
Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The Importance of Eco-evolutionary Potential in the Anthropocene. Bioscience 2021. [DOI: 10.1093/biosci/biab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Brian J Olsen
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Michael T Kinnison
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| |
Collapse
|
28
|
Punzalan D, Fang JT, Chen W, Rowe L. Divergence in life history and behaviour between hybridizing Phymata ambush bugs (Heteroptera: Reduviidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Life-history variation plays a central role in evolutionary and ecological processes and might be especially pertinent to divergence in closely related species. We investigated differences in life history in a pair of parapatric species of ambush bugs (Phymata) and a putative hybrid population. Despite the evidence of gene flow among these species, we found clear divergence between these parapatric populations for a suite of juvenile and adult life-history traits, including components of fitness. The higher latitude species was also less active, suggestive of potential divergence in dispersal. Increased melanism was correlated with longevity in one species, although it was unclear whether this relationship was causal. Observed differences in the life history between species were consistent with expectations of high-latitude species putting a premium on early or rapid development and increased reproductive rates. However, these results were not consistent with ‘pace-of-life syndromes’ at the species level. Individuals from the putative hybrid zone exhibited intermediate values for most traits, although they had slower development and reduced mobility, consistent with some previous work suggesting natural selection via hybrid breakdown.
Collapse
Affiliation(s)
- David Punzalan
- Department of Biology, University of Victoria, Victoria, BC, Canada
- Department of Ecology and Evolution, University of Toronto, Toronto, ON, Canada
| | - Julia T Fang
- Department of Ecology and Evolution, University of Toronto, Toronto, ON, Canada
| | - William Chen
- Department of Ecology and Evolution, University of Toronto, Toronto, ON, Canada
| | - Locke Rowe
- Department of Ecology and Evolution, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
de Villemereuil P, Charmantier A, Arlt D, Bize P, Brekke P, Brouwer L, Cockburn A, Côté SD, Dobson FS, Evans SR, Festa-Bianchet M, Gamelon M, Hamel S, Hegelbach J, Jerstad K, Kempenaers B, Kruuk LEB, Kumpula J, Kvalnes T, McAdam AG, McFarlane SE, Morrissey MB, Pärt T, Pemberton JM, Qvarnström A, Røstad OW, Schroeder J, Senar JC, Sheldon BC, van de Pol M, Visser ME, Wheelwright NT, Tufto J, Chevin LM. Fluctuating optimum and temporally variable selection on breeding date in birds and mammals. Proc Natl Acad Sci U S A 2020; 117:31969-31978. [PMID: 33257553 PMCID: PMC7116484 DOI: 10.1073/pnas.2009003117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.
Collapse
Affiliation(s)
- Pierre de Villemereuil
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, École Pratique des Hautes Études | Paris Science et Lettres, Institut de Recherche pour le Développement, 34000 Montpellier, France;
- Institut de Systématique, Évolution, Biodiversité, École Pratique des Hautes Études | Paris Sciences et Lettres, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, Université des Antilles, 75005 Paris, France
| | - Anne Charmantier
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, École Pratique des Hautes Études | Paris Science et Lettres, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Debora Arlt
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, NW1 4RY London, United Kingdom
| | - Lyanne Brouwer
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600 Australia
- Department of Animal Ecology, Netherlands Institute of Ecology, 6700 AB Wageningen, The Netherlands
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Andrew Cockburn
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600 Australia
| | - Steeve D Côté
- Département de Biologie and Centre d'Études Nordiques, Université Laval, Québec, G1V 0A6 QC, Canada
| | - F Stephen Dobson
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | - Simon R Evans
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, United Kingdom
| | - Marco Festa-Bianchet
- Département de biologie, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec, Canada
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600 Australia
| | - Marlène Gamelon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sandra Hamel
- Département de Biologie, Université Laval, Québec, G1V 0A6 QC, Canada
| | - Johann Hegelbach
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Loeske E B Kruuk
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600 Australia
| | - Jouko Kumpula
- Terrestrial Population Dynamics, Natural Resources Institute Finland, FIN-999870, Inari, Finland
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Michael B Morrissey
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, United Kingdom
| | - Tomas Pärt
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
| | - Ole Wiggo Røstad
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London, SL5 7PY Ascot, Berks,
| | - Juan Carlos Senar
- Behavioural and Evolutionary Ecology Research Unit, Museu de Ciències Naturals de Barcelona, E-08003 Barcelona, Spain
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Martijn van de Pol
- Department of Animal Ecology, Netherlands Institute of Ecology, 6700 AB Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology, 6700 AB Wageningen, The Netherlands
| | | | - Jarle Tufto
- Centre for Biodiversity Dynamics, Department of Mathematics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Luis-Miguel Chevin
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, École Pratique des Hautes Études | Paris Science et Lettres, Institut de Recherche pour le Développement, 34000 Montpellier, France;
| |
Collapse
|
30
|
Lasky JR, Hooten MB, Adler PB. What processes must we understand to forecast regional-scale population dynamics? Proc Biol Sci 2020; 287:20202219. [PMID: 33290672 PMCID: PMC7739927 DOI: 10.1098/rspb.2020.2219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.
Collapse
Affiliation(s)
- Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Mevin B. Hooten
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
31
|
Lehtinen SO. Ecological and evolutionary consequences of predator-prey role reversal: Allee effect and catastrophic predator extinction. J Theor Biol 2020; 510:110542. [PMID: 33242490 DOI: 10.1016/j.jtbi.2020.110542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022]
Abstract
In many terrestrial, marine, and freshwater predator-prey communities, young predators can be vulnerable to attacks by large prey. Frequent prey counter-attacks may hinder the persistence of predators. Despite the commonness of such role reversals in nature, they have rarely been addressed in evolutionary modelling. To understand how role reversals affect ecological and evolutionary dynamics of a predator-prey community, we derived an ecological model from individual-level processes using ordinary differential equations. The model reveals complex ecological dynamics, with possible bistability between alternative coexistence states and an Allee effect for the predators. We find that when prey counter-attacks are frequent, cannibalism is necessary for predator persistence. Using numerical analysis, we also find that a sudden ecological shift from coexistence to predator extinction can occur through several catastrophic bifurcations, including 'saddle-node', 'homoclinic', and 'subcritical Hopf'. The analysis of single-species evolution reveals that predator selection towards increasing or decreasing cannibalism triggers a catastrophic shift towards an extinction state of the predators. Such an evolutionary extinction of the predators may also be caused by prey selection towards increasing foraging activity because it facilitates encounters with vulnerable, young predators. The analysis of predator-prey coevolution further demonstrates that predator's catastrophic extinction becomes an even more likely outcome than in single-species evolution. Our results suggest that when young predators are vulnerable to prey attacks, a sudden extinction of the predators may be more common than currently understood.
Collapse
Affiliation(s)
- Sami O Lehtinen
- Department of Mathematics and Statistics, University of Helsinki, FIN-00014, Finland.
| |
Collapse
|
32
|
Koch EL, Sbilordo SH, Guillaume F. Genetic variance in fitness and its cross‐sex covariance predict adaptation during experimental evolution. Evolution 2020; 74:2725-2740. [DOI: 10.1111/evo.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
- Department of Animal and Plant Science University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| |
Collapse
|
33
|
Pei 裴一凡 Y, Forstmeier W, Wang 王代平 D, Martin K, Rutkowska J, Kempenaers B. Proximate Causes of Infertility and Embryo Mortality in Captive Zebra Finches. Am Nat 2020; 196:577-596. [PMID: 33064590 DOI: 10.1086/710956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSome species show high rates of reproductive failure, which is puzzling because natural selection works against such failure in every generation. Hatching failure is common in both captive and wild zebra finches (Taeniopygia guttata), yet little is known about its proximate causes. Here we analyze data on reproductive performance (the fate of >23,000 eggs) based on up to 14 years of breeding of four captive zebra finch populations. We find that virtually all aspects of reproductive performance are negatively affected by inbreeding (mean r=-0.117); by an early-starting, age-related decline (mean r=-0.132); and by poor early-life nutrition (mean r=-0.058). However, these effects together explain only about 3% of the variance in infertility, offspring mortality, fecundity, and fitness. In contrast, individual repeatability of different fitness components varied between 15% and 50%. As expected, we found relatively low heritability in fitness components (median: 7% of phenotypic variation and 29% of individually repeatable variation). Yet some of the heritable variation in fitness appears to be maintained by antagonistic pleiotropy (negative genetic correlations) between male fitness traits and female and offspring fitness traits. The large amount of unexplained variation suggests a potentially important role of local dominance and epistasis, including the possibility of segregating genetic incompatibilities.
Collapse
|
34
|
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, Thompson L, Vose J, Weltzin JF, Whyte KP. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:137782. [PMID: 32209235 DOI: 10.1016/j.scitotenv.2020.137782] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/22/2023]
Abstract
Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA.
| | | | - Lisa G Crozier
- NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Sarah Gaichas
- NOAA Northeast Fisheries Science Center, Woods Hole, MA, USA
| | - Roger Griffis
- NOAA National Marine Fisheries Service, Silver Spring, MD, USA
| | - Jessica E Halofsky
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Toni Lyn Morelli
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Jeffrey T Morisette
- U.S. Department of the Interior, National Invasive Species Council Secretariat, Fort Collins, CO, USA
| | - Roldan C Muñoz
- NOAA Southeast Fisheries Science Center, Beaufort, NC, USA
| | | | - David L Peterson
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Michelle D Staudinger
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Ariana E Sutton-Grier
- University of Maryland Earth System Science Interdisciplinary Center, College Park, MD, USA
| | - Laura Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA
| | - James Vose
- U.S. Forest Service Southern Research Station, Raleigh, NC, USA
| | | | | |
Collapse
|
35
|
Ulaski ME, Finkle H, Westley PAH. Direction and magnitude of natural selection on body size differ among age-classes of seaward-migrating Pacific salmon. Evol Appl 2020; 13:2000-2013. [PMID: 32908600 PMCID: PMC7463379 DOI: 10.1111/eva.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/29/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022] Open
Abstract
Due to the mediating role of body size in determining fitness, the "bigger-is-better" hypothesis still pervades evolutionary ecology despite evidence that natural selection on phenotypic traits varies in time and space. For Pacific salmon (genus Oncorhynchus), most individual studies quantify selection across a narrow range of sizes and ages; therefore, uncertainties remain concerning how selection on size may differ among diverse life histories. Here, we quantify the direction and magnitude of natural selection on body size among age-classes of multiple marine cohorts of O. nerka (sockeye salmon). Across four cohorts of seaward migrants, we calculated standardized selection differentials by comparing observed size distributions of out-migrating juvenile salmon to back-calculated smolt length from the scales of surviving, returning adults. Results reveal the magnitude of selection on size was very strong (>90th percentile compared to a database of 3,759 linear selection differentials) and consistent among years. However, the direction of selection on size consistently varied among age-classes. Selection was positive for fish migrating to sea after two years in freshwater (age 2) and in their first year of life (age 0), but negative for fish migrating after 1 year in freshwater (age 1). The absolute magnitude of selection was negatively correlated to mean ocean-entry timing, which may underpin negative selection favoring small age-1 fish, given associations between size and timing of seaward migration. Collectively, these results indicate that "bigger is not always better" in terms of survival and emphasize trade-offs that may exist between fitness components for organisms with similarly diverse migratory life histories.
Collapse
Affiliation(s)
- Marta E. Ulaski
- Department of FisheriesCollege of Fisheries and Ocean SciencesUniversity of Alaska FairbanksFairbanksAlaska
| | | | - Peter A. H. Westley
- Department of FisheriesCollege of Fisheries and Ocean SciencesUniversity of Alaska FairbanksFairbanksAlaska
| |
Collapse
|
36
|
Plaza PI, Blanco G, Wiemeyer G, López-Rull I, Hornero-Méndez D, Donázar JA, Hiraldo F, Lambertucci SA. Plasma carotenoids and immunity in a despotic avian scavenger. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:569-578. [PMID: 32649061 DOI: 10.1002/jez.2397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
Carotenoids are pigmented compounds acquired through diet that have important functions as antioxidants and immune modulators. We studied the association between immunity and circulating carotenoids in Andean condors (Vultur gryphus). We evaluated the relationship between α-, β-, and γ-globulin blood concentrations and different circulating carotenoids in two groups of Andean condors that differ in their mean health status, rehabilitating (suffering different pathologies), and wild individuals (trapped when displaying their physiological behavior). In rehabilitating individuals, α-, β-, and γ-globulin concentrations were higher than in wild individuals. This shows that rehabilitating individuals were developing an immune response associated with the pathologies that they were suffering at the time of sampling. In addition, circulating carotenoids were lower in rehabilitating than in wild individuals. We found negative correlations between α-, β-, and γ-globulins and different circulating carotenoids in rehabilitating individuals, but not in wild condors. Xanthophylls were strongly related to α-, β-, and γ-globulin blood concentrations in rehabilitating, but not in wild condors. Our results suggest that there is a potential relationship between circulating carotenoids and immunity in the Andean condor. Given that this species may display a carotenoid-based pigmentation, our results could suggest that a trade-off between the immune system and external coloration could operate in this species, which may have implications in their access to food resources and mate selection and, thus, in their conservation.
Collapse
Affiliation(s)
- Pablo I Plaza
- Grupo de Investigaciones en Biología de la Conservación, Laboratorio Ecotono, INIBIOMA (Universidad Nacional del Comahue-CONICET), San Carlos de Bariloche, Argentina
| | - Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Guillermo Wiemeyer
- Grupo de Investigaciones en Biología de la Conservación, Laboratorio Ecotono, INIBIOMA (Universidad Nacional del Comahue-CONICET), San Carlos de Bariloche, Argentina.,The Peregrine Fund, Boise, Idaho.,Ecoparque Buenos Aires-Argentina, Buenos Aires, Argentina
| | - Isabel López-Rull
- Departamento Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Madrid, Móstoles, Spain
| | - Dámaso Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Sevilla, Spain
| | - José A Donázar
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Fernando Hiraldo
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Sergio A Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, Laboratorio Ecotono, INIBIOMA (Universidad Nacional del Comahue-CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
37
|
Thompson KA. Experimental Hybridization Studies Suggest That Pleiotropic Alleles Commonly Underlie Adaptive Divergence between Natural Populations. Am Nat 2020; 196:E16-E22. [PMID: 32552104 DOI: 10.1086/708722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The alleles used for adaptation can pleiotropically affect traits under stabilizing selection. The fixation of alleles with deleterious pleiotropic side effects causes compensatory alleles to be favored by selection. Such compensatory alleles might segregate in interpopulation hybrids, resulting in segregation variance for traits where parents have indistinguishable phenotypes. If adaptation typically involves pleiotropy and compensation, then the segregation variance for traits under stabilizing selection is expected to increase with the magnitude of adaptive phenotypic divergence between parents. This prediction has not been tested empirically, and I gathered data from experimental hybridization studies to evaluate it. I found that pairs of parents that are more phenotypically divergent beget hybrids with more segregation variance in traits for which the parents are statistically indistinguishable. This result suggests that adaptive divergence between pairs of natural populations proceeds via pleiotropy and compensation and that deleterious transgressive segregation variance accumulates systematically as populations diverge.
Collapse
|
38
|
Zhou J, Reynolds RJ, Zimmer EA, Dudash MR, Fenster CB. Variable and sexually conflicting selection on
Silene stellata
floral traits by a putative moth pollinator selective agent. Evolution 2020; 74:1321-1334. [DOI: 10.1111/evo.13965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Juannan Zhou
- Simons Center for Quantitative Biology Cold Spring Harbor Laboratory Cold Spring Harbor NY 11724 USA
| | - Richard J. Reynolds
- Division of Clinical Immunology and Rheumatology, Department of Medicine University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Elizabeth A. Zimmer
- Department of Botany National Museum of Natural History, MRC 166 Smithsonian Institution Washington DC 20013–7012 USA
| | - Michele R. Dudash
- Department of Natural Resource Management South Dakota State University Brookings SD 57007 USA
| | - Charles B. Fenster
- Department of Biology and Microbiology South Dakota State University Brookings SD 57007 USA
| |
Collapse
|
39
|
Blanckenhorn WU, Baur J, Busso JP, Giesen A, Gourgoulianni N, van Koppenhagen N, Roy J, Schäfer MA, Wegmann A, Rohner PT. Sexual size dimorphism is associated with reproductive life history trait differentiation in coexisting sepsid flies. OIKOS 2020. [DOI: 10.1111/oik.07036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wolf U. Blanckenhorn
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Julian Baur
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Juan Pablo Busso
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Athene Giesen
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Natalia Gourgoulianni
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Nicola van Koppenhagen
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Jeannine Roy
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Martin A. Schäfer
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Alexandra Wegmann
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Patrick T. Rohner
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| |
Collapse
|
40
|
Collet J, Fellous S. Do traits separated by metamorphosis evolve independently? Concepts and methods. Proc Biol Sci 2020; 286:20190445. [PMID: 30966980 DOI: 10.1098/rspb.2019.0445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the ubiquity of complex life cycles, we know little of the evolutionary constraints exerted by metamorphosis. Here, we present pitfalls and methods to answer whether animals with a complex life cycle can independently adapt to the environments encountered at each life stage, with a specific focus on the microevolution of quantitative characters. We first discuss challenges associated with study traits and populations. We further emphasize the benefits of using a combination of approaches. We then develop how multivariate methods can limit several issues by revealing genetic patterns that are invisible when only considering trait-by-trait genetic correlations. Finally, we detail how Lande's work on sexual dimorphism can be applied in measuring G matrices across life stages. The methods and tools described here will contribute towards building a predictive framework for trait evolution across life stages.
Collapse
Affiliation(s)
- Julie Collet
- 1 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier , Montpellier , France.,2 CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD , Montpellier , France
| | - Simon Fellous
- 1 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier , Montpellier , France
| |
Collapse
|
41
|
Park JS. Cyclical environments drive variation in life-history strategies: a general theory of cyclical phenology. Proc Biol Sci 2020; 286:20190214. [PMID: 30862286 DOI: 10.1098/rspb.2019.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cycles, such as seasons or tides, characterize many systems in nature. Overwhelming evidence shows that climate change-driven alterations to environmental cycles-such as longer seasons-are associated with phenological shifts around the world, suggesting a deep link between environmental cycles and life cycles. However, general mechanisms of life-history evolution in cyclical environments are still not well understood. Here, I build a demographic framework and ask how life-history strategies optimize fitness when the environment perturbs a structured population cyclically and how strategies should change as cyclicality changes. I show that cycle periodicity alters optimality predictions of classic life-history theory because repeated cycles have rippling selective consequences over time and generations. Notably, fitness landscapes that relate environmental cyclicality and life-history optimality vary dramatically depending on which trade-offs govern a given species. The model tuned with known life-history trade-offs in a marine intertidal copepod Tigriopus californicus successfully predicted the shape of life-history variation across natural populations spanning a gradient of tidal periodicities. This framework shows how environmental cycles can drive life-history variation-without complex assumptions of individual responses to cues such as temperature-thus expanding the range of life-history diversity explained by theory and providing a basis for adaptive phenology.
Collapse
Affiliation(s)
- John S Park
- Committee on Evolutionary Biology, University of Chicago , 1025 E. 57th Street, Culver Hall 402, Chicago, IL 60637 , USA
| |
Collapse
|
42
|
Agrawal AA. A scale‐dependent framework for trade‐offs, syndromes, and specialization in organismal biology. Ecology 2020; 101:e02924. [DOI: 10.1002/ecy.2924] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853 USA
- Department of Entomology Cornell University Ithaca New York 14853 USA
| |
Collapse
|
43
|
Friedman NR, Miller ET, Ball JR, Kasuga H, Remeš V, Economo EP. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc Biol Sci 2019; 286:20192474. [PMID: 31847778 PMCID: PMC6939928 DOI: 10.1098/rspb.2019.2474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While morphological traits are often associated with multiple functions, it remains unclear how evolution balances the selective effects of different functions. Birds' beaks function not only in foraging but also in thermoregulating and singing, among other behaviours. Studies of beak evolution abound, however, most focus on a single function. Hence, we quantified relative contributions of different functions over an evolutionary timescale. We measured beak shape using geometric morphometrics and compared this trait with foraging behaviour, climatic variables and song characteristics in a phylogenetic comparative study of an Australasian radiation of songbirds (Meliphagidae). We found that both climate and foraging behaviour were significantly correlated with the beak shape and size. However, foraging ecology had a greater effect on shape, and climate had a nearly equal effect on size. We also found that evolutionary changes in beak morphology had significant consequences for vocal performance: species with elongate-shaped beaks sang at higher frequencies, while species with large beaks sang at a slower pace. The evolution of the avian beak exemplifies how morphological traits can be an evolutionary compromise among functions, and suggests that specialization along any functional axis may increase ecological divergence or reproductive isolation along others.
Collapse
Affiliation(s)
- Nicholas R Friedman
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.,Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eliot T Miller
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA
| | - Jason R Ball
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Haruka Kasuga
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.,Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Vladimír Remeš
- Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University, Olomouc, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
44
|
Svensson EI, Willink B, Duryea MC, Lancaster LT. Temperature drives pre‐reproductive selection and shapes the biogeography of a female polymorphism. Ecol Lett 2019; 23:149-159. [DOI: 10.1111/ele.13417] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023]
|
45
|
Cotto O, Sandell L, Chevin LM, Ronce O. Maladaptive Shifts in Life History in a Changing Environment. Am Nat 2019; 194:558-573. [DOI: 10.1086/702716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
47
|
Svensson EI, Connallon T. How frequency-dependent selection affects population fitness, maladaptation and evolutionary rescue. Evol Appl 2019; 12:1243-1258. [PMID: 31417612 PMCID: PMC6691226 DOI: 10.1111/eva.12714] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023] Open
Abstract
Frequency-dependent (FD) selection is a central process maintaining genetic variation and mediating evolution of population fitness. FD selection has attracted interest from researchers in a wide range of biological subdisciplines, including evolutionary genetics, behavioural ecology and, more recently, community ecology. However, the implications of frequency dependence for applied biological problems, particularly maladaptation, biological conservation and evolutionary rescue remain underexplored. The neglect of FD selection in conservation is particularly unfortunate. Classical theory, dating back to the 1940s, demonstrated that frequency dependence can either increase or decrease population fitness. These evolutionary consequences of FD selection are relevant to modern concerns about population persistence and the capacity of evolution to alleviate extinction risks. But exactly when should we expect FD selection to increase versus decrease absolute fitness and population growth? And how much of an impact is FD selection expected to have on population persistence versus extinction in changing environments? The answers to these questions have implications for evolutionary rescue under climate change and may inform strategies for managing threatened populations. Here, we revisit the core theory of FD selection, reviewing classical single-locus models of population genetic change and outlining short- and long-run consequences of FD selection for the evolution of population fitness. We then develop a quantitative genetic model of evolutionary rescue in a deteriorating environment, with population persistence hinging upon the evolution of a quantitative trait subject to both frequency-dependent and frequency-independent natural selection. We discuss the empirical literature pertinent to this theory, which supports key assumptions of our model. We show that FD selection can promote population persistence when it aligns with the direction of frequency-independent selection imposed by abiotic environmental conditions. However, under most scenarios of environmental change, FD selection limits a population's evolutionary responsiveness to changing conditions and narrows the rate of environmental change that is evolutionarily tolerable.
Collapse
Affiliation(s)
- Erik I. Svensson
- Evolutionary Ecology UnitDepartment of BiologyLund UniversityLundSweden
| | - Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
48
|
Lackey ACR, Moore MP, Doyle J, Gerlanc N, Hagan A, Geile M, Eden C, Whiteman HH. Lifetime Fitness, Sex-Specific Life History, and the Maintenance of a Polyphenism. Am Nat 2019; 194:230-245. [DOI: 10.1086/704156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Brady SP, Bolnick DI, Angert AL, Gonzalez A, Barrett RD, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Guichard F, Lamy T, McAdam AG, Newman AE, Paccard A, Rolshausen G, Simons AM, Hendry AP. Causes of maladaptation. Evol Appl 2019; 12:1229-1242. [PMID: 31417611 PMCID: PMC6691215 DOI: 10.1111/eva.12844] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evolutionary biologists tend to approach the study of the natural world within a framework of adaptation, inspired perhaps by the power of natural selection to produce fitness advantages that drive population persistence and biological diversity. In contrast, evolution has rarely been studied through the lens of adaptation's complement, maladaptation. This contrast is surprising because maladaptation is a prevalent feature of evolution: population trait values are rarely distributed optimally; local populations often have lower fitness than imported ones; populations decline; and local and global extinctions are common. Yet we lack a general framework for understanding maladaptation; for instance in terms of distribution, severity, and dynamics. Similar uncertainties apply to the causes of maladaptation. We suggest that incorporating maladaptation-based perspectives into evolutionary biology would facilitate better understanding of the natural world. Approaches within a maladaptation framework might be especially profitable in applied evolution contexts - where reductions in fitness are common. Toward advancing a more balanced study of evolution, here we present a conceptual framework describing causes of maladaptation. As the introductory article for a Special Feature on maladaptation, we also summarize the studies in this Issue, highlighting the causes of maladaptation in each study. We hope that our framework and the papers in this Special Issue will help catalyze the study of maladaptation in applied evolution, supporting greater understanding of evolutionary dynamics in our rapidly changing world.
Collapse
Affiliation(s)
- Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenCTUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutMansfieldCTUSA
| | - Amy L. Angert
- Departments of Botany and ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Andrew Gonzalez
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Rowan D.H. Barrett
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Redpath MuseumMcGill UniversityMontréalQCCanada
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNYUSA
| | - Alison M. Derry
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Département des sciences biologiquesUniversité du Québec à MontréalMontréalQCCanada
| | | | | | - Gregor F. Fussmann
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Frederic Guichard
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Thomas Lamy
- Département de sciences biologiquesUniversité de MontréalMontréalQCCanada
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCAUSA
| | - Andrew G. McAdam
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Amy E.M. Newman
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | | | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
| | | | - Andrew P. Hendry
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Redpath MuseumMcGill UniversityMontréalQCCanada
| |
Collapse
|
50
|
Murray RL, Gwynne DT, Bussière LF. The role of functional constraints in nonrandom mating patterns for a dance fly with female ornaments. J Evol Biol 2019; 32:984-993. [DOI: 10.1111/jeb.13500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Rosalind L. Murray
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
- Biology Department University of Toronto at Mississauga Mississauga Ontario Canada
- Biological and Environmental Sciences University of Stirling Stirling UK
| | - Darryl T. Gwynne
- Biology Department University of Toronto at Mississauga Mississauga Ontario Canada
| | - Luc F. Bussière
- Biological and Environmental Sciences University of Stirling Stirling UK
| |
Collapse
|