1
|
Alaverdyan J, Celina SS, Jirků M, Golovchenko M, Italiya J, Grubhoffer L, Rudenko N, Černý J. A First Look at the Relationship Between Large Herbivore-Induced Landscape Modifications and Ixodes ricinus Tick Abundance in Rewilding Sites. Vector Borne Zoonotic Dis 2024; 24:666-672. [PMID: 38717050 DOI: 10.1089/vbz.2023.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background: While the influence of landscape and microclimatic conditions on tick populations is well-documented, there remains a gap in more specific data regarding their relationship to rewilding efforts with large herbivore activity. Objective: This pilot study, spanning from 2019 to 2021, explores the effects of naturalistic grazing by large semi-wild ungulates on tick abundance in the Milovice Reserve, Czechia. Methods: Tick collection was observed using flagging techniques at two distinct sites of rewilding area: one grazed, actively utilized by animals involved in the rewilding project, and one ungrazed, left fallow in neighboring areas utilized only by wild animals. Transects, each measuring 150 m in length and 5 m in width (750 m2), were established at these two sampling locations from March to September between 2019 and 2021. To minimize potential bias resulting from tick movement, a 300 m buffer zone separated the two sites. Data analysis employed a generalized estimating equations (GEE) model with negative binomial regression. The study assessed potential variations in tick abundance between selected transects, considering factors such as plant cover seasonality, temperature, and humidity. Results: During the collection periods, we gathered 586 live ticks, with 20% found in grazed areas and 80% in ungrazed areas. Notably, tick abundance was significantly higher in ungrazed areas. Peaks in tick abundance occurred in both grazed and ungrazed areas during spring, particularly in April. However, tick numbers declined more rapidly in grazed areas. Microclimatic variables like temperature and humidity did not significantly impact tick abundance compared to landscape management and seasonal factors. Conclusion: Rewilding efforts, particularly natural grazing by large ungulates, influence tick abundance and distribution. This study provides empirical data on tick ecology in rewilded areas, highlighting the importance of landscape management and environmental factors in tick management and conservation. Trophic rewilding plays a crucial role in shaping ecosystems and tick population dynamics in transformed landscapes.
Collapse
Affiliation(s)
- Johana Alaverdyan
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Seyma S Celina
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Miloslav Jirků
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Marina Golovchenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jignesh Italiya
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Natalie Rudenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jiří Černý
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Keesing F, Ostfeld RS. Emerging patterns in rodent-borne zoonotic diseases. Science 2024; 385:1305-1310. [PMID: 39298587 DOI: 10.1126/science.adq7993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Rodents are ubiquitous and typically unwelcome dwellers in human habitats worldwide, infesting homes, farm fields, and agricultural stores and potentially shedding disease-causing microbes into the most human-occupied of spaces. Of the vertebrate animal taxa that share pathogens with us, rodents are the most abundant and diverse, with hundreds of species of confirmed zoonotic hosts, some of which have nearly global distributions. However, only 12% of rodent species are known to be sources of pathogens that also infect people, and those rodents that do are now recognized as tending to share a suite of predictable traits. Here, we characterize those traits and explore them in the context of three emerging or reemerging rodent-borne zoonotic diseases of people: Lassa fever, Lyme disease, and plague.
Collapse
Affiliation(s)
- Felicia Keesing
- Program in Biology, Bard College, Annandale-on-Hudson, NY 12504, USA
| | | |
Collapse
|
3
|
Bell SS, McElmurray P, Creed RP, Brown BL. Impacts of invasion on a freshwater cleaning symbiosis. Oecologia 2024; 205:669-680. [PMID: 39097560 PMCID: PMC11358191 DOI: 10.1007/s00442-024-05600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Organismal invasions have repeatedly been cited as a driving force behind the loss of biodiversity. Unlike many other impacts of invasion, the effect of invasion on native symbiont communities has received less attention. The introduction of invasive hosts presents a potential opportunity to native symbionts; invasive hosts could benefit native symbionts through providing a novel host environment that improves symbiont fitness relative to their fitness on native hosts. Alternatively, invasive hosts could noncompetent hosts for native symbionts, resulting in negative impacts on native symbiont abundance and diversity. Crayfish in the northern hemisphere host diverse assemblages of obligate annelid symbionts (P: Anellida, O: Branchiobdellida). Two invasive crayfish hosts in the genus Faxonius have been introduced and are interacting with the native crayfish hosts and their symbionts in three watersheds in western Virginia, USA. Previous studies suggest that the invasive host F. cristavarius is a less competent host for symbionts compared to native hosts in the genus Cambarus. We carried out an extensive survey in these watersheds to determine impacts of varying degrees of invasion on branchiobdellidan abundance and diversity. We also conducted a complementary host replacement experiment to investigate how increases in the relative abundance of invasive hosts contributes to observed patterns of symbiont abundance and diversity in the field. In our survey, as the proportion of invasive hosts at a site increased, branchiobdellidan abundance and diversity declined significantly. In the experiment, the worms dispersed onto both native and invasive hosts. As the percentage of noncompetent F. cristavarius hosts increased, the survival of branchiobdellidans declined. Both symbiont survival and opportunities for successful dispersal are reduced as this noncompetent invasive host progressively displaces native hosts, which imperils the integrity of native host-symbiont systems. Given that many native hosts accrue significant fitness benefits from their relationships with native symbionts, including hosts in our study system, losses of beneficial symbionts may produce a positive feedback loop that decreases invasion resistance of native species, exacerbates the effects of invasions, and presents a major conservation issue in invaded systems.
Collapse
Affiliation(s)
- Spencer S Bell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Philip McElmurray
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert P Creed
- Department of Biology, Appalachian State University, Boone, NC, 28608, USA
| | - Bryan L Brown
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Middleton J, Cooper I, Rott AS. Tick hazard in the South Downs National Park (UK): species, distribution, key locations for future interventions, site density, habitats. PeerJ 2024; 12:e17483. [PMID: 38881864 PMCID: PMC11179636 DOI: 10.7717/peerj.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background South Downs National Park (SDNP) is UK's most visited National Park, and a focus of tick-borne Lyme disease. The first presumed UK autochthonous cases of tick-borne encephalitis and babesiosis were recorded in 2019-20. SDNP aims to conserve wildlife and encourage recreation, so interventions are needed that reduce hazard without negatively affecting ecosystem health. To be successful these require knowledge of site hazards. Methods British Deer Society members submitted ticks removed from deer. Key potential intervention sites were selected and six 50 m2 transects drag-sampled per site (mostly twice yearly for 2 years). Ticks were identified in-lab (sex, life stage, species), hazard measured as tick presence, density of ticks (all life stages, DOT), and density of nymphs (DON). Sites and habitat types were analysed for association with hazard. Distribution was mapped by combining our results with records from five other sources. Results A total of 87 Ixodes ricinus (all but one adults, 82% F) were removed from 14 deer (10 Dama dama; three Capreolus capreolus; one not recorded; tick burden, 1-35) at 12 locations (commonly woodland). Five key potential intervention sites were identified and drag-sampled 2015-16, collecting 623 ticks (238 on-transects): 53.8% nymphs, 42.5% larvae, 3.7% adults (13 M, 10 F). Ticks were present on-transects at all sites: I. ricinus at three (The Mens (TM); Queen Elizabeth Country Park (QECP); Cowdray Estate (CE)), Haemaphysalis punctata at two (Seven Sisters Country Park (SSCP); Ditchling Beacon Nature Reserve (DBNR)). TM had the highest DOT at 30/300 m2 (DON = 30/300 m2), followed by QECP 22/300 m2 (12/300 m2), CE 8/300 m2 (6/300 m2), and SSCP 1/300 m2 (1/300 m2). For I. ricinus, nymphs predominated in spring, larvae in the second half of summer and early autumn. The overall ranking of site hazard held for DON and DOT from both seasonal sampling periods. DBNR was sampled 2016 only (one adult H. punctata collected). Woodland had significantly greater hazard than downland, but ticks were present at all downland sites. I. ricinus has been identified in 33/37 of SDNPs 10 km2 grid squares, Ixodes hexagonus 10/37, H. punctata 7/37, Dermacentor reticulatus 1/37. Conclusions Mapping shows tick hazard broadly distributed across SDNP. I. ricinus was most common, but H. punctata's seeming range expansion is concerning. Recommendations: management of small heavily visited high hazard plots (QECP); post-visit precaution signage (all sites); repellent impregnated clothing for deerstalkers; flock trials to control H. punctata (SSCP, DBNR). Further research at TM may contribute to knowledge on ecological dynamics underlying infection density and predator re-introduction/protection as public health interventions. Ecological research on H. punctata would aid control. SDNP Authority is ideally placed to link and champion policies to reduce hazard, whilst avoiding or reducing conflict between public health and ecosystem health.
Collapse
Affiliation(s)
- Jo Middleton
- Ecology and Evolution, School of Life Sciences, University of Sussex, Falmer, United Kingdom
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, University of Sussex, Falmer, United Kingdom
| | - Ian Cooper
- Centre for Precision Health and Translational Medicine; Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Anja S Rott
- Ecology, Conservation and Society Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
5
|
Bamunuarachchi G, Najera F, Aziati ID, Palmer JL, Biro EG, Wang D, Deem SL, Boon ACM, Adalsteinsson SA. Serosurveillance and the first detection of Bourbon virus RNA in a wildlife host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597417. [PMID: 38895490 PMCID: PMC11185598 DOI: 10.1101/2024.06.04.597417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bourbon virus (BRBV) is an emerging pathogen that can cause severe and fatal disease in humans. BRBV is vectored by Amblyomma americanum (lone star ticks), which are widely distributed across the central, southern, and eastern United States. Wildlife species are potentially important for the maintenance and transmission of BRBV, but little is known about which species are involved, and what other factors play a role in the exposure to BRBV. To assess the exposure risk to BRBV among wildlife in the St. Louis area, we collected sera from 98 individuals, representing 6 different mammalian species from two locations in St. Louis County: Tyson Research Center (TRC) and WildCare Park (WCP) from fall 2021 to spring 2023. The sera were used in a BRBV neutralization assay to detect neutralizing antibodies and RT-qPCR for viral RNA analysis. We also sampled and compared the abundance of A. americanum ticks at the two locations and modeled which factors influenced BRBV seropositivity across species. In TRC, we observed a high rate of seropositivity in raccoons (Procyon lotor, 23/25), and white-tailed deer (Odocoileus virginianus, 18/27), but a low rate in opossums (Didelphis virginiana, 1/18). Neutralizing antibodies were also detected in sampled TRC bobcats (Lynx rufus, 4/4), coyotes (Canis latrans, 3/3), and a red fox (Vulpes vulpes, 1/1). The virological analysis identified BRBV RNA in one of the coyote serum samples. In contrast to TRC, all sera screened from WCP were negative for BRBV-specific neutralizing antibodies, and significantly fewer ticks were collected at WCP (31) compared to TRC (2,316). Collectively, these findings suggest that BRBV circulates in multiple wildlife species in the St. Louis area and that tick density and host community composition may be important factors in BRBV ecology.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Department of Medicine, at Washington University School of Medicine in St. Louis. USA
| | | | - Ishmael D. Aziati
- Department of Medicine, at Washington University School of Medicine in St. Louis. USA
| | | | | | - Dave Wang
- Department of Molecular Microbiology, at Washington University School of Medicine in St. Louis. USA
| | - Sharon L. Deem
- Institute for Conservation Medicine, Saint Louis Zoo. USA
| | - Adrianus C. M. Boon
- Department of Medicine, at Washington University School of Medicine in St. Louis. USA
- Department of Molecular Microbiology, at Washington University School of Medicine in St. Louis. USA
- Department of Pathology and Immunology, at Washington University School of Medicine in St. Louis. USA
| | | |
Collapse
|
6
|
Marcolin L, Tonelli A, Di Marco M. Early-stage loss of ecological integrity drives the risk of zoonotic disease emergence. J R Soc Interface 2024; 21:20230733. [PMID: 38863350 DOI: 10.1098/rsif.2023.0733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Anthropogenic pressures have increasingly disrupted the integrity of ecosystems worldwide, jeopardizing their capacity to provide essential contributions to human well-being. Recently, the role of natural ecosystems in reducing disease emergence risk has gained prominence in decision-making processes, as scientific evidence indicates that human-driven pressure, such as habitat destruction and deforestation, can trigger the emergence of zoonotic infectious diseases. However, the intricate relationship between biodiversity and emerging infectious diseases (EIDs) remains only partially understood. Here, we updated the most comprehensive zoonotic EID event database with the latest reported events to analyse the relationship between EIDs of wildlife origin (zoonoses) and various facets of ecological integrity. We found EID risk was strongly predicted by structural integrity metrics such as human footprint and ecoregion intactness, in addition to environmental variables such as tropical rainforest density and mammal species richness. EID events were more likely to occur in areas with intermediate levels of compositional and structural integrity, underscoring the risk posed by human encroachment into pristine, undisturbed lands. Our study highlights the need to identify novel indicators and targets that can effectively address EID risk alongside other pressing global challenges in sustainable development, ultimately informing strategies for preserving both human and environmental health.
Collapse
Affiliation(s)
- Lara Marcolin
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza Università di Roma , Rome, Italy
| | - Andrea Tonelli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza Università di Roma , Rome, Italy
| | - Moreno Di Marco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza Università di Roma , Rome, Italy
| |
Collapse
|
7
|
Savage JDT, Moore CM. How do host population dynamics impact Lyme disease risk dynamics in theoretical models? PLoS One 2024; 19:e0302874. [PMID: 38722910 PMCID: PMC11081252 DOI: 10.1371/journal.pone.0302874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.
Collapse
Affiliation(s)
- Joseph D. T. Savage
- Biology Department, Colby College, Waterville, Maine, United States of America
- Department of Geography, Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, New Hampshire, United States of America
| | | |
Collapse
|
8
|
Ostfeld RS, Adish S, Mowry S, Bremer W, Duerr S, Evans AS, Fischhoff IR, Keating F, Pendleton J, Pfister A, Teator M, Keesing F. Effects of residential acaricide treatments on patterns of pathogen coinfection in blacklegged ticks. Parasitology 2024:1-7. [PMID: 38494476 DOI: 10.1017/s0031182024000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Medically important ixodid ticks often carry multiple pathogens, with individual ticks frequently coinfected and capable of transmitting multiple infections to hosts, including humans. Acquisition of multiple zoonotic pathogens by immature blacklegged ticks (Ixodes scapularis) is facilitated when they feed on small mammals, which are the most competent reservoir hosts for Anaplasma phagocytophilum (which causes anaplasmosis in humans), Babesia microti (babesiosis) and Borrelia burgdorferi (Lyme disease). Here, we used data from a large-scale, long-term experiment to ask whether patterns of single and multiple infections in questing nymphal I. scapularis ticks from residential neighbourhoods differed from those predicted by independent assortment of pathogens, and whether patterns of coinfection were affected by residential application of commercial acaricidal products. Quantitative polymerase chain reaction was used for pathogen detection in multiplex reactions. In control neighbourhoods and those treated with a fungus-based biopesticide deployed against host-seeking ticks (Met52), ticks having only single infections of either B. microti or B. burgdorferi were significantly less common than expected, whereas coinfections with these 2 pathogens were significantly more common. However, use of tick control system bait boxes, which kill ticks attempting to feed on small mammals, eliminated the bias towards coinfection. Although aimed at reducing the abundance of host-seeking ticks, control methods directed at ticks attached to small mammals may influence human exposure to coinfected ticks and the probability of exposure to multiple tick-borne infections.
Collapse
Affiliation(s)
| | - Sahar Adish
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Stacy Mowry
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - William Bremer
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Shannon Duerr
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Andrew S Evans
- Department of Behavioral and Community Health, Dutchess County, NY 12601, USA
| | | | - Fiona Keating
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | | - Ashley Pfister
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Marissa Teator
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | |
Collapse
|
9
|
Yang H, Gould CA, Jones R, St Juliana A, Sarofim M, Rissing M, Hahn MB. By-degree Health and Economic Impacts of Lyme Disease, Eastern and Midwestern United States. ECOHEALTH 2024; 21:56-70. [PMID: 38478199 PMCID: PMC11127817 DOI: 10.1007/s10393-024-01676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/20/2024] [Indexed: 05/26/2024]
Abstract
Lyme disease (LD) is the most common vector-borne disease in the United States (U.S.). This paper assesses how climate change may influence LD incidence in the eastern and upper Midwestern U.S. and the associated economic burden. We estimated future Ixodes scapularis habitat suitability and LD incidence with a by-degree approach using variables from an ensemble of multiple climate models. We then applied estimates for present-day and projected habitat suitability for I. scapularis, present-day presence of Borrelia burgdorferi, and projected climatological variables to model reported LD incidence at the county level among adults, children, and the total population. Finally, we applied an estimate of healthcare expenses to project economic impacts. We show an overall increase in LD cases with regional variation. We estimate an increase in incidence in New England and the upper Midwestern U.S. and a concurrent decrease in incidence in Virginia and North Carolina. At 3°C of national warming from the 1986-2015 baseline climate, we project approximately 55,000 LD cases, a 38-percent increase from present-day estimates. At 6°C of warming, our most extreme scenario, we project approximately 92,000 LD cases in the region, an increase of 145 percent relative to current levels. Annual LD-related healthcare expenses at 3°C of warming are estimated to be $236 million (2021 dollars), approximately 38 percent greater than present-day. These results may inform decision-makers tasked with addressing climate risks, the public, and healthcare professionals preparing for treatment and prevention of LD.
Collapse
Affiliation(s)
- Haisheng Yang
- Abt Associates, 6130 Executive Boulevard, Rockville, MD, 2085, USA
| | - Caitlin A Gould
- Climate Change Division, Climate Science and Imapcts Branch, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave NW, 4226-G South, Washington, DC, 20460, USA.
| | - Russ Jones
- Abt Associates, 6130 Executive Boulevard, Rockville, MD, 2085, USA
| | | | - Marcus Sarofim
- Climate Change Division, Climate Science and Imapcts Branch, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave NW, 4226-G South, Washington, DC, 20460, USA
| | - Matt Rissing
- Abt Associates, 6130 Executive Boulevard, Rockville, MD, 2085, USA
| | - Micah B Hahn
- Institute for Circumpolar Health Studies, University of Alaska-Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA
| |
Collapse
|
10
|
Crandall KE, Millien V, Kerr JT. High-resolution environmental and host-related factors impacting questing Ixodes scapularis at their northern range edge. Ecol Evol 2024; 14:e10855. [PMID: 38384829 PMCID: PMC10879908 DOI: 10.1002/ece3.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
The geographic range of tick populations has expanded in Canada due to climate warming and the associated poleward range shifts of their vertebrate hosts. Abiotic factors, such as temperature, precipitation, and snow, are known to directly affect tick abundance. Yet, biotic factors, such as the abundance and diversity of mammal hosts, may also alter tick abundance and consequent tick-borne disease risk. Here, we incorporated host surveillance data with high-resolution environmental data to evaluate the combined impact of abiotic and biotic factors on questing Ixodes scapularis abundance in Ontario and Quebec, Canada. High-resolution abiotic factors were derived from remote sensing satellites and meteorological towers, while biotic factors related to mammal hosts were derived from active surveillance data that we collected in the field. Generalized additive models were used to determine the relative importance of abiotic and biotic factors on questing I. scapularis abundance. Combinations of abiotic and biotic factors were identified as important drivers of abundances of questing I. scapularis. Positive and negative linear relationships were found for questing I. scapularis abundance with monthly mean precipitation and accumulated snow, but no effect was found for the relative abundance of white-footed mice. Positive relationships were also identified between questing I. scapularis abundance with monthly mean precipitation and mammal species richness. Therefore, future studies that assess I. scapularis should incorporate host surveillance data with high-resolution environmental factors to determine the key drivers impacting the abundance and geographic spread of tick populations and tick-borne pathogens.
Collapse
Affiliation(s)
- Kirsten E. Crandall
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Department of BiologyMcGill UniversityMontréalQuébecCanada
- Redpath MuseumMcGill UniversityMontréalQuébecCanada
| | - Virginie Millien
- Department of BiologyMcGill UniversityMontréalQuébecCanada
- Redpath MuseumMcGill UniversityMontréalQuébecCanada
| | - Jeremy T. Kerr
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
11
|
Husar K, Pittman DC, Rajala J, Mostafa F, Allen LJS. Lyme Disease Models of Tick-Mouse Dynamics with Seasonal Variation in Births, Deaths, and Tick Feeding. Bull Math Biol 2024; 86:25. [PMID: 38294562 DOI: 10.1007/s11538-023-01248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Lyme disease is the most common vector-borne disease in the United States impacting the Northeast and Midwest at the highest rates. Recently, it has become established in southeastern and south-central regions of Canada. In these regions, Lyme disease is caused by Borrelia burgdorferi, which is transmitted to humans by an infected Ixodes scapularis tick. Understanding the parasite-host interaction is critical as the white-footed mouse is one of the most competent reservoir for B. burgdorferi. The cycle of infection is driven by tick larvae feeding on infected mice that molt into infected nymphs and then transmit the disease to another susceptible host such as mice or humans. Lyme disease in humans is generally caused by the bite of an infected nymph. The main aim of this investigation is to study how diapause delays and demographic and seasonal variability in tick births, deaths, and feedings impact the infection dynamics of the tick-mouse cycle. We model tick-mouse dynamics with fixed diapause delays and more realistic Erlang distributed delays through delay and ordinary differential equations (ODEs). To account for demographic and seasonal variability, the ODEs are generalized to a continuous-time Markov chain (CTMC). The basic reproduction number and parameter sensitivity analysis are computed for the ODEs. The CTMC is used to investigate the probability of Lyme disease emergence when ticks and mice are introduced, a few of which are infected. The probability of disease emergence is highly dependent on the time and the infected species introduced. Infected mice introduced during the summer season result in the highest probability of disease emergence.
Collapse
Affiliation(s)
- Kateryna Husar
- Department of Statistical Science, Duke University, Durham, NC, 27705, USA.
| | - Dana C Pittman
- Department of Epidemiology and Biostatistics, Texas A &M University, College Station, TX, 77843, USA
| | - Johnny Rajala
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Fahad Mostafa
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Linda J S Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
12
|
Lindsø LK, Viljugrein H, Mysterud A. Vector competence of Ixodes ricinus instars for the transmission of Borrelia burgdorferi sensu lato in different small mammalian hosts. Parasit Vectors 2024; 17:23. [PMID: 38238796 PMCID: PMC10797980 DOI: 10.1186/s13071-023-06110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Many pathogens and parasites can infect multiple host species, and the competence of different hosts as pathogen reservoirs is key to understanding their epidemiology. Small mammals are important hosts for the instar stages of Ixodes ricinus ticks, the principal vector of Lyme disease in Europe. Small mammals also act as reservoirs of Borrelia afzelii, the most common genospecies of the Borrelia burgdorferi sensu lato (s.l.) spirochetes causing Lyme disease in Europe. However, we lack quantitative estimates on whether different small mammal species are equally suitable hosts for feeding I. ricinus and whether they show differences in pathogen transmission from host to tick. METHODS Here, we analysed the feeding success and prevalence of B. burgdorferi s.l. infections in 12,987 instar I. ricinus found on captured small mammals with known infection status in Norway (2018-2022). RESULTS We found that larvae were more likely to acquire a blood meal from common shrews (Sorex araneus, 46%) compared to bank voles (Myodes glareolus, 36%) and wood mice (Apodemus sylvaticus, 31%). Nymphs tended to be more likely to acquire a blood meal from wood mice (66%) compared to bank voles (54%). Common shrews harboured few nymphs (n=19). Furthermore, we found that larvae feeding on infected bank voles (11%) were more likely to be infected with B. burgdorferi s.l. than larvae on infected common shrews (7%) or wood mice (4%). CONCLUSIONS Our study provides quantitative evidence of differences in suitability for the instar stages of I. ricinus across taxa of small mammals and highlights how even known small mammal host species can differ in their ability to feed ticks and infect larval ticks with the pathogen causing Lyme disease.
Collapse
Affiliation(s)
- Lars K Lindsø
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway.
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, NO-0316, Oslo, Norway
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, NO-7485, Trondheim, Norway
| |
Collapse
|
13
|
Sipari S, Kiljunen M, Nylund M, Kallio ER. Identifying breeding hosts of Ixodes ricinus ticks using stable isotope analysis of their larvae - Proof of concept. Ticks Tick Borne Dis 2024; 15:102252. [PMID: 37741086 DOI: 10.1016/j.ttbdis.2023.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Ticks are important vectors of zoonotic pathogens. Ticks are parasites that are dependent on their hosts for blood meal to develop and reproduce. The abundance of ticks is dependent on the availability of suitable breeding hosts, often medium- and large-sized mammals. So far there has been a shortage of direct methods identifying the breeding hosts for the female ticks. In this study, we introduce a stable isotope analysis (SIA) method that enables us to identify the trophic group of the breeding host, i.e. the host on which the tick mother fed, by sampling larval ticks from the field. We established a reference database on the stable isotope (SI) values (δ13C and δ15N) of the blood of potential tick host species, and of larvae from Ixodes ricinus females, which have fed on known hosts. By comparing the SI values from field collected larval ticks to our reference data, we can determine their most likely host species group. Our results show that the isotopic signatures of I. ricinus tick larvae reflect the diet of the breeding host of the mother tick. SIA proved reliable in categorizing the breeding hosts of I. ricinus into two distinguishable trophic groups; herbivores and carni-omnivores. To our knowledge, this is the first time that stable isotope analyses have been applied to detect transovarial (i.e. over-generational) traces of a blood meal in ticks. The method provides an efficient, novel tool for directly identifying tick breeding hosts by sampling field collected larvae. Ixodes ricinus is the most important vector of TBPs (tick-borne pathogens) in Europe, and to predict and mitigate against the future risks that TBPs pose, it is crucial to have detailed knowledge on the hosts that support tick reproduction in nature.
Collapse
Affiliation(s)
- Saana Sipari
- Department of Biological and Environmental Sciences, University of Jyväskylä, Republic of Finland.
| | - Mikko Kiljunen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Republic of Finland
| | - Minna Nylund
- Animal Health and Diagnostic Unit, Finnish Food Safety Authority, Republic of Finland
| | - Eva R Kallio
- Department of Biological and Environmental Sciences, University of Jyväskylä, Republic of Finland
| |
Collapse
|
14
|
Brown JE, Tiffin HS, Pagac A, Poh KC, Evans JR, Miller TM, Herrin BH, Tomlinson T, Sutherland C, Machtinger ET. Differential burdens of blacklegged ticks ( Ixodes scapularis) on sympatric rodent hosts. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 49:44-52. [PMID: 38147300 DOI: 10.52707/1081-1710-49.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 12/27/2023]
Abstract
In the United States, there has been a steady increase in diagnosed cases of tick-borne diseases in people, most notably Lyme disease. The pathogen that causes Lyme disease, Borrelia burgdorferi, is transmitted by the blacklegged tick (Ixodes scapularis). Several small mammals are considered key reservoirs of this pathogen and are frequently-used hosts by blacklegged ticks. However, limited studies have evaluated between-species host use by ticks. This study compared I. scapularis burdens and tick-associated pathogen presence in wild-caught Clethrionomys gapperi (southern red-backed voles) and Peromyscus spp. (white-footed mice) in forested areas where the habitat of both species overlapped. Rodent trapping data collected over two summers showed a significant difference in the average tick burden between species. Adult Peromyscus spp. had an overall mean of 4.03 ticks per capture, while adult C. gapperi had a mean of 0.47 ticks per capture. There was a significant association between B. burgdorferi infection and host species with more Peromyscus spp. positive samples than C. gapperi (65.8% and 10.2%, respectively). This work confirms significant differences in tick-host use and pathogen presence between sympatric rodent species. It is critical to understand tick-host interactions and tick distributions to develop effective and efficient tick control methods.
Collapse
Affiliation(s)
- Jessica E Brown
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A.,
| | - Hannah S Tiffin
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Alexandra Pagac
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Karen C Poh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Jesse R Evans
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Taylor M Miller
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Brian H Herrin
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Trey Tomlinson
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Cameron Sutherland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Erika T Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
15
|
Fenton A, Withenshaw SM, Devevey G, Morris A, Erazo D, Pedersen AB. Experimental assessment of cross-species transmission in a natural multihost-multivector-multipathogen community. Proc Biol Sci 2023; 290:20231900. [PMID: 37964529 PMCID: PMC10646469 DOI: 10.1098/rspb.2023.1900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Vector-borne pathogens, many of which cause major suffering worldwide, often circulate in diverse wildlife communities comprising multiple reservoir host and/or vector species. However, the complexities of these systems make it challenging to determine the contributions these different species make to transmission. We experimentally manipulated transmission within a natural multihost-multipathogen-multivector system, by blocking flea-borne pathogen transmission from either of two co-occurring host species (bank voles and wood mice). Through genetic analysis of the resulting infections in the hosts and vectors, we show that both host species likely act together to maintain the overall flea community, but cross-species pathogen transmission is relatively rare-most pathogens were predominantly found in only one host species, and there were few cases where targeted treatment affected pathogens in the other host species. However, we do provide experimental evidence of some reservoir-spillover dynamics whereby reductions of some infections in one host species are achieved by blocking transmission from the other host species. Overall, despite the apparent complexity of such systems, we show there can be 'covert simplicity', whereby pathogen transmission is primarily dominated by single host species, potentially facilitating the targeting of key hosts for control, even in diverse ecological communities.
Collapse
Affiliation(s)
- Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Susan M. Withenshaw
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Godefroy Devevey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alexandra Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- School of Biological Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Diana Erazo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
16
|
Goethert HK, Mather TN, O'Callahan A, Telford Iii SR. Host-utilization differences between larval and nymphal deer ticks in northeastern U.S. sites enzootic for Borrelia burgdorferi sensu stricto. Ticks Tick Borne Dis 2023; 14:102230. [PMID: 37481967 PMCID: PMC10578448 DOI: 10.1016/j.ttbdis.2023.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
In the northeastern U.S., Borrelia burgdorferi sensu stricto, the agent of Lyme disease, is maintained between vertebrate hosts and subadult deer ticks (the northern clade of Ixodes scapularis, formerly known as Ixodes dammini). Theoretical arguments suggest that the force of transmission would be greatest when infected nymphal ticks focus their bites on the same host as the uninfected larvae. Stage-specific differences in host utilization would reduce the force of transmission, but to date such differences remain understudied. We determined the host utilization differences of larval and nymphal deer ticks using bloodmeal analysis of host-seeking nymphs and adults collected from 5 field sites in New England. Matched cohorts of ticks (nymphs=506, adults=451), i.e. ticks that had fed during the same summer season, were used to control for yearly host population variations. Infection status of all ticks was determined by real time PCR. Nymphal deer ticks were more likely to have fed on birds and sciurids (13% vs 3%, and 41% vs 9%, respectively p<0.001) and larvae were more likely to have fed on shrews (26% vs 3%, p<0.001). Similarly, ticks that had fed on a mouse or a shrew as larvae were likely to become infected (OR= 3.195, 95% CI [1.9, 5.1] and OR=2.5[1.6,3.8] respectively), and they were positively associated with infection prevalence at our sites. However, very few nymphs fed on shrews, and they were not associated with infection, raising the question of how uninfected shrews acquire infection each year. Sciurids did not appear to contribute to the enzootic cycle at our sites, which may be due to the low numbers of larvae that fed on them. Sciurid-fed ticks of either stage were not associated with infection. Both stages of ticks were less likely to be infected if they had fed on deer (OR=0.08 [0.02.0.3] and OR=0.4 [0.2,0.7] tested as nymphs and adults, respectively) and thus deer likely served to reduce the force of transmission at our sites. Site-specific analysis of differential host utilization by subadult deer ticks may contribute to appropriate targeting of interventions and thereby promote reducing risk of acquiring Lyme disease and the other deer tick-transmitted infections.
Collapse
Affiliation(s)
- Heidi K Goethert
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd., Grafton, Massachusetts.
| | - Thomas N Mather
- Center for Vector-borne Disease, University of Rhode Island, Kingston, Rhode Island.
| | - Alanna O'Callahan
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd., Grafton, Massachusetts.
| | - Sam R Telford Iii
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd., Grafton, Massachusetts.
| |
Collapse
|
17
|
Thomas R, Santodomingo A, Parragué-Migone C, Portillo E, Barrios M, Venzal JM, Muñoz-Leal S. A novel Babesia sp. of the "Western Babesia group", detected in opossums from Guatemala. Ticks Tick Borne Dis 2023; 14:102248. [PMID: 37660526 DOI: 10.1016/j.ttbdis.2023.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Babesia spp. are tick-borne protozoans that involve birds and mammals in their transmission cycles and cause babesiosis, a severe hemolytic malaria-like disease. Opossums of the genus Didelphis are recognized hosts of tick-borne pathogens. Therefore, exploring tick-borne agents in Didelphis species is important to understand the circulation of pathogens in areas where opossums occur. In this study, we targeted Anaplasmataceae, Babesia, Borrelia and Hepatozoon DNA in ticks, blood and organ samples collected from three hunted Didelphis marsupialis specimens in eastern Guatemala. While the samples were negative for Hepatozoon and bacterial DNA, sequences of Babesia 18S rDNA, cox1 and cytb genes were retrieved from two opossums. Ticks collected on the animals included Amblyomma parvum and an undetermined Ornithodoros sp. The Babesia sp. detected in this study (Babesia sp. THB1-2) clusters phylogenetically within the "Western Babesia group", which includes pathogenic species such as Babesia conradae, Babesia duncani, and Babesia negevi. Our results represent the first record of a Babesia sp. in Guatemala and highlight the importance of D. marsupialis as potential spreaders of ticks and pathogens in Central America.
Collapse
Affiliation(s)
- Richard Thomas
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Adriana Santodomingo
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Catalina Parragué-Migone
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Emerio Portillo
- Facultad de Ciencias Ambientales y Agrícolas, Universidad Rafael Landívar, Zacapa, Guatemala
| | - Manuel Barrios
- Instituto de Investigaciones, Centro Universitario de Zacapa, Universidad de San Carlos de Guatemala, Zacapa, Guatemala
| | - José M Venzal
- Laboratorio de Vectores y enfermedades transmitidas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.
| |
Collapse
|
18
|
Meena P, Jha V. Environmental Change, Changing Biodiversity, and Infections-Lessons for Kidney Health Community. Kidney Int Rep 2023; 8:1714-1729. [PMID: 37705916 PMCID: PMC10496083 DOI: 10.1016/j.ekir.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
There is a direct and accelerating connection between ongoing environmental change, the unprecedented decline in biodiversity, and the increase in infectious disease epidemiology worldwide. Rising global temperatures are threatening the biodiversity that underpins the richness and diversity of flora and fauna species in our ecosystem. Anthropogenic activities such as burning fossil fuels, deforestation, rapid urbanization, and expanding population are the primary drivers of environmental change resulting in biodiversity collapse. Climate change is influencing the emergence, prevalence, and transmission of infectious diseases both directly and through its impact on biodiversity. The environment is gradually becoming more suitable for infectious diseases by affecting a variety of pathogens, hosts, and vectors and by favoring transmission rates in many parts of the world that were until recently free of these infections. The acute effects of these zoonotic, vector and waterborne diseases are well known; however, evidence is emerging about their role in the development of chronic kidney disease. The pathways linking environmental change and biodiversity loss to infections impacting kidney health are diverse and complex. Climate change and biodiversity loss disproportionately affect the vulnerable and limit their ability to access healthcare. The kidney health community needs to contribute to the issue of environmental change and biodiversity loss through multisectoral action alongside government, policymakers, advocates, businesses, and the general population. We describe various aspects of the environmental change effects on the transmission and emergence of infectious diseases particularly focusing on its potential impact on kidney health. We also discuss the adaptive and mitigation measures and the gaps in research and policy action.
Collapse
Affiliation(s)
- Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
- School of Public Health, Imperial College, London, UK
| |
Collapse
|
19
|
Taylor CL, Egan SL, Gofton AW, Irwin PJ, Oskam CL, Hochuli DF, Banks PB. An invasive human commensal and a native marsupial maintain tick populations at the urban fringe. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:460-471. [PMID: 36718907 DOI: 10.1111/mve.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Ticks (Acari: Ixodidae) are major disease vectors globally making it increasingly important to understand how altered vertebrate communities in urban areas shape tick population dynamics. In urban landscapes of Australia, little is known about which native and introduced small mammals maintain tick populations preventing host-targeted tick management and leading to human-wildlife conflict. Here, we determined (1) larval, nymphal, and adult tick burdens on host species and potential drivers, (2) the number of ticks supported by the different host populations, and (3) the proportion of medically significant tick species feeding on the different host species in Northern Sydney. We counted 3551 ticks on 241 mammals at 15 sites and found that long-nosed bandicoots (Perameles nasuta) hosted more ticks of all life stages than other small mammals but introduced black rats (Rattus rattus) were more abundant at most sites (33%-100%) and therefore important in supporting larval and nymphal ticks in our study areas. Black rats and bandicoots hosted a greater proportion of medically significant tick species including Ixodes holocyclus than other hosts. Our results show that an introduced human commensal contributes to maintaining urban tick populations and suggests ticks could be managed by controlling rat populations on urban fringes.
Collapse
Affiliation(s)
- Casey L Taylor
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Siobhon L Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Peter J Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Charlotte L Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dieter F Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
20
|
Gonzalez Daza W, Muylaert RL, Sobral-Souza T, Lemes Landeiro V. Malaria Risk Drivers in the Brazilian Amazon: Land Use-Land Cover Interactions and Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6497. [PMID: 37569037 PMCID: PMC10419050 DOI: 10.3390/ijerph20156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Malaria is a prevalent disease in several tropical and subtropical regions, including Brazil, where it remains a significant public health concern. Even though there have been substantial efforts to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of cases for many years presents a significant challenge. Due to the multifaceted factors that influence the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land use/cover interactions, species richness, and number of endemic birds and amphibians. Results showed that high amphibian and bird richness and endemism correlated with a reduction in malaria risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence alone, modulated malaria risk in the period. Areas with low endemic species diversity and high human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study underscores the importance of considering the broader ecological context in malaria control efforts.
Collapse
Affiliation(s)
- William Gonzalez Daza
- Programa do Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Biociências, Av. Fernando Corrêa da Costa, 2367, Cuiabá 78060-900, MT, Brazil
| | - Renata L. Muylaert
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North 4472, New Zealand;
| | - Thadeu Sobral-Souza
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (T.S.-S.); (V.L.L.)
| | - Victor Lemes Landeiro
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (T.S.-S.); (V.L.L.)
| |
Collapse
|
21
|
Tardy O, Acheson ES, Bouchard C, Chamberland É, Fortin A, Ogden NH, Leighton PA. Mechanistic movement models to predict geographic range expansions of ticks and tick-borne pathogens: Case studies with Ixodes scapularis and Amblyomma americanum in eastern North America. Ticks Tick Borne Dis 2023; 14:102161. [PMID: 36996508 DOI: 10.1016/j.ttbdis.2023.102161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
The geographic range of the blacklegged tick, Ixodes scapularis, is expanding northward from the United States into southern Canada, and studies suggest that the lone star tick, Amblyomma americanum, will follow suit. These tick species are vectors for many zoonotic pathogens, and their northward range expansion presents a serious threat to public health. Climate change (particularly increasing temperature) has been identified as an important driver permitting northward range expansion of blacklegged ticks, but the impacts of host movement, which is essential to tick dispersal into new climatically suitable regions, have received limited investigation. Here, a mechanistic movement model was applied to landscapes of eastern North America to explore 1) relationships between multiple ecological drivers and the speed of the northward invasion of blacklegged ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu stricto, and 2) its capacity to simulate the northward range expansion of infected blacklegged ticks and uninfected lone star ticks under theoretical scenarios of increasing temperature. Our results suggest that the attraction of migratory birds (long-distance tick dispersal hosts) to resource-rich areas during their spring migration and the mate-finding Allee effect in tick population dynamics are key drivers for the spread of infected blacklegged ticks. The modeled increases in temperature extended the climatically suitable areas of Canada for infected blacklegged ticks and uninfected lone star ticks towards higher latitudes by up to 31% and 1%, respectively, and with an average predicted speed of the range expansion reaching 61 km/year and 23 km/year, respectively. Differences in the projected spatial distribution patterns of these tick species were due to differences in climate envelopes of tick populations, as well as the availability and attractiveness of suitable habitats for migratory birds. Our results indicate that the northward invasion process of lone star ticks is primarily driven by local dispersal of resident terrestrial hosts, whereas that of blacklegged ticks is governed by long-distance migratory bird dispersal. The results also suggest that mechanistic movement models provide a powerful approach for predicting tick-borne disease risk patterns under complex scenarios of climate, socioeconomic and land use/land cover changes.
Collapse
|
22
|
Ostfeld RS, Keesing F. Does Experimental Reduction of Blacklegged Tick ( Ixodes scapularis) Abundance Reduce Lyme Disease Incidence? Pathogens 2023; 12:pathogens12050714. [PMID: 37242384 DOI: 10.3390/pathogens12050714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Controlling the abundance of blacklegged ticks is considered the foundation for the prevention of human exposure to pathogens transmitted by these vectors in eastern North America. The use of broadcast or host-targeted acaricides is generally found to be effective at reducing the local abundance of ticks. However, studies that incorporate randomization, placebo controls, and masking, i.e., "blinding", generally find lower efficacy. The few studies that include measurements of human-tick encounters and cases of tickborne disease have not shown impacts of acaricidal treatments. We compile literature on relevant studies from northeastern North America to address possible causes for discrepancies in study outcomes and suggest possible mechanisms that could underlie the diminished efficacy of tick control in reducing cases of tickborne disease in people.
Collapse
Affiliation(s)
| | - Felicia Keesing
- Department of Biology, Bard College, Annandale-on-Hudson, NY 12504, USA
| |
Collapse
|
23
|
Ostfeld RS, Adish S, Mowry S, Bremer W, Duerr S, Evans AS, Fischhoff IR, Keating F, Pendleton J, Pfister A, Teator M, Keesing F. Effects of Neighborhood-Scale Acaricidal Treatments on Infection Prevalence of Blacklegged Ticks ( Ixodes scapularis) with Three Zoonotic Pathogens. Pathogens 2023; 12:pathogens12020172. [PMID: 36839444 PMCID: PMC9960617 DOI: 10.3390/pathogens12020172] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Acaricides are hypothesized to reduce human risk of exposure to tick-borne pathogens by decreasing the abundance and/or infection prevalence of the ticks that serve as vectors for the pathogens. Acaricides targeted at reservoir hosts such as small mammals are expected to reduce infection prevalence in ticks by preventing their acquisition of zoonotic pathogens. By reducing tick abundance, reservoir-targeted or broadcast acaricides could reduce tick infection prevalence by interrupting transmission cycles between ticks and their hosts. Using an acaricide targeted at small-mammal hosts (TCS bait boxes) and one sprayed on low vegetation (Met52 fungal biocide), we tested the hypotheses that infection prevalence of blacklegged ticks with zoonotic pathogens would be more strongly diminished by TCS bait boxes, and that any effects of both acaricidal treatments would increase during the four years of deployment. We used a masked, placebo-controlled design in 24 residential neighborhoods in Dutchess County, New York. Analyzing prevalence of infection with Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti in 5380 nymphal Ixodes scapularis ticks, we found little support for either hypothesis. TCS bait boxes did not reduce infection prevalence with any of the three pathogens compared to placebo controls. Met52 was associated with lower infection prevalence with B. burgdorferi compared to placebo controls but had no effect on prevalence of infection with the other two pathogens. Although significant effects of year on infection prevalence of all three pathogens were detected, hypothesized cumulative reductions in prevalence were observed only for B. burgdorferi. We conclude that reservoir-targeted and broadcast acaricides might not generally disrupt pathogen transmission between reservoir hosts and tick vectors or reduce human risk of exposure to tick-borne pathogens.
Collapse
Affiliation(s)
- Richard S. Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
- Correspondence: ; Tel.: +1-845-677-7600 (ext. 136)
| | - Sahar Adish
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Stacy Mowry
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - William Bremer
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Shannon Duerr
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Andrew S. Evans
- Department of Behavioral and Community Health, Dutchess County, Poughkeepsie, NY 12601, USA
| | | | - Fiona Keating
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | | - Ashley Pfister
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Marissa Teator
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Felicia Keesing
- Department of Biology, Bard College, Annandale, NY 12504, USA
| |
Collapse
|
24
|
Wang YXG, Matson KD, Prins HHT, Xu Y, Huang ZYX, de Boer WF. Risk factors for Lyme disease: A scale-dependent effect of host species diversity and a consistent negative effect of host phylogenetic diversity. Ticks Tick Borne Dis 2023; 14:102073. [PMID: 36345067 DOI: 10.1016/j.ttbdis.2022.102073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Biodiversity can influence disease risk. One example of a diversity-disease relationship is the dilution effect, which suggests higher host species diversity (often indexed by species richness) reduces disease risk. While numerous studies support the dilution effect, its generality remains controversial. Most studies of diversity-disease relationships have overlooked the potential importance of phylogenetic diversity. Furthermore, most studies have tested diversity-disease relationships at one spatial scale, even though such relationships are likely scale dependent. Using Lyme disease as a model system, we investigated the effects of host species richness and phylogenetic relatedness on the number of reported Lyme disease cases in humans in the U.S.A. at two spatial scales (the county level and the state level) using piecewise structural equation modelling. We also accounted for relevant climatic and habitat-related factors and tested their correlations with the number of Lyme disease cases. We found that species assemblages with more related species (i.e., host species in the order Rodentia) were associated with more Lyme disease cases in humans. Host species richness correlated negatively with the number of Lyme disease cases at the state level (i.e., a dilution effect), a pattern that might be explained by the higher number of reservoir-incompetent species at high levels of species richness at this larger spatial scale. In contrast, a positive correlation was found between species richness and the number of Lyme disease cases at the county level, where a higher proportion of rodent species was associated with higher levels of species richness, potentially amplifying the disease risk. Our results highlight that analyse at a single spatial scale can miss some impacts of biodiversity on human health. Thus, multi-scale analyses with consideration of host phylogenetic diversity are critical for improving our understanding of diversity-disease relationships.
Collapse
Affiliation(s)
- Yingying X G Wang
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands; Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - Herbert H T Prins
- Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - Yanjie Xu
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands; Finnish Museum of Natural History, University of Helsinki, 17, 00014, Finland
| | - Zheng Y X Huang
- College of Life Sciences, Nanjing Normal University, 210046 Nanjing, China.
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| |
Collapse
|
25
|
Tiffin HS, Rajotte EG, Sakamoto JM, Machtinger ET. Tick Control in a Connected World: Challenges, Solutions, and Public Policy from a United States Border Perspective. Trop Med Infect Dis 2022; 7:388. [PMID: 36422939 PMCID: PMC9695313 DOI: 10.3390/tropicalmed7110388] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Ticks are able to transmit the highest number of pathogen species of any blood-feeding arthropod and represent a growing threat to public health and agricultural systems worldwide. While there are numerous and varied causes and effects of changes to tick-borne disease (re)emergence, three primary challenges to tick control were identified in this review from a U.S. borders perspective. (1) Climate change is implicated in current and future alterations to geographic ranges and population densities of tick species, pathogens they can transmit, and their host and reservoir species, as highlighted by Ixodes scapularis and its expansion across southern Canada. (2) Modern technological advances have created an increasingly interconnected world, contributing to an increase in invasive tick species introductions through the increased speed and frequency of trade and travel. The introduction of the invasive Haemaphysalis longicornis in the eastern U.S. exemplifies the challenges with control in a highly interconnected world. (3) Lastly, while not a new challenge, differences in disease surveillance, control, and management strategies in bordering countries remains a critical challenge in managing ticks and tick-borne diseases. International inter-agency collaborations along the U.S.-Mexico border have been critical in control and mitigation of cattle fever ticks (Rhipicephalus spp.) and highlight the need for continued collaboration and research into integrated tick management strategies. These case studies were used to identify challenges and opportunities for tick control and mitigation efforts through a One Health framework.
Collapse
|
26
|
Doi K, Tokuyoshi M, Morishima K, Kogi K, Watari Y. Differential Tick-Infestation Rate between Rattus norvegicus and R. rattus, with the First Records of the Ixodid Tick Ixodes granulatus and Its Infestation in Rodents, Free-Ranging Cats, and Humans from Mikura-Shima Island, Japan. MAMMAL STUDY 2022. [DOI: 10.3106/ms2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kandai Doi
- JSPS research fellow, Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Mikuni Tokuyoshi
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kaori Morishima
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Kazunobu Kogi
- Mikura Island Tourist Information Center, Mikura-shima village, Tokyo 100-1301, Japan
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
27
|
Król N, Obiegala A, Imholt C, Arz C, Schmidt E, Jeske K, Ulrich RG, Rentería-Solís Z, Jacob J, Pfeffer M. Diversity of Borrelia burgdorferi sensu lato in ticks and small mammals from different habitats. Parasit Vectors 2022; 15:195. [PMID: 35672762 PMCID: PMC9175456 DOI: 10.1186/s13071-022-05326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors for zoonotic pathogens, with Ixodes ricinus being the most important in Europe. Rodents are hosts of immature life stages of I. ricinus ticks and are considered main reservoirs for tick-borne pathogens, e.g. Borrelia burgdorferi. The aim of this study was to analyse the prevalence as well as genospecies and sequence type (ST) diversity of Borrelia burgdorferi sensu lato in ticks and small mammals from central Germany and to elaborate on the influence of environmental and/or individual host and vector factors on Borrelia prevalence. METHODS After species identification, 1167 small mammal skin samples and 1094 ticks from vegetation were screened by B. burgdorferi sensu lato real-time polymerase chain reaction, and positive samples were characterized by multilocus sequence typing. Generalized linear (mixed) models were used to estimate how seasonality, small mammal species/tick life stage and habitat affect individual infection status. RESULTS In total, 10 small mammal species and three tick species, Ixodes ricinus, Ixodes inopinatus (both considered members of the I. ricinus complex) and Dermacentor reticulatus, were investigated. Borrelia DNA was detected in eight host species, i.e. the striped field mouse (Apodemus agrarius), the yellow-necked field mouse (Apodemus flavicollis), the wood mouse (Apodemus sylvaticus), the water vole (Arvicola amphibius), the bank vole (Clethrionomys glareolus), the field vole (Microtus agrestis), the common vole (Microtus arvalis), and the common shrew (Sorex araneus). Two species were Borrelia negative, the greater white-toothed shrew (Crocidura russula) and the pygmy shrew (Sorex minutus). The average prevalence was 6.2%, with two genospecies detected, Borrelia afzelii and Borrelia garinii, and at least three STs that had not been previously reported in small mammals. Borrelia prevalence in small mammals did not differ between seasons. Six genospecies of Borrelia-Borrelia afzelii, Borrelia valaisiana, Borrelia garinii, Borrelia lusitaniae, Borrelia spielmanii, and Borrelia burgdorferi sensu stricto-and 25 STs of Borrelia, of which 12 have not been previously described at all and five have not been previously reported in Germany, were detected in 13% of I. ricinus complex ticks. Prevalence was highest in adult females (25.3%) and lowest in nymphs (11.4%). Prevalence was significantly higher in ticks from grassland (16.8%) compared to forests (11.4%). CONCLUSIONS The high level of small mammal diversity in this region of Germany seems to be reflected in a wide variety of genospecies and STs of B. burgdorferi.
Collapse
Affiliation(s)
- Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Christian Imholt
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161, Münster, Germany
| | - Charlotte Arz
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Elisabeth Schmidt
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Zaida Rentería-Solís
- Institute for Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Jens Jacob
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161, Münster, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| |
Collapse
|
28
|
The Utility of a Maximum Entropy Species Distribution Model for Ixodes scapularis in Predicting the Public Health Risk of Lyme Disease in Ontario, Canada. Ticks Tick Borne Dis 2022; 13:101969. [DOI: 10.1016/j.ttbdis.2022.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
|
29
|
Creed RP, Brown BL, Skelton J. The potential impacts of invasions on native symbionts. Ecology 2022; 103:e3726. [PMID: 35412657 PMCID: PMC9539604 DOI: 10.1002/ecy.3726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
Symbionts, including parasites, pathogens, and mutualists, can play important roles in determining whether or not invasions by host species will be successful. Loss of enemies from the native habitat, such as parasites and pathogens, can allow for higher invader fitness in the invaded habitat. The presence of mutualists (e.g., pollinators, seed dispersers, mycorrhizae, and rhizobial bacteria) in the invaded habitat can facilitate invasion success. Although there has been a great deal of research focusing on how invading hosts may benefit from enemy losses or mutualist gains, far less attention has focused on how native symbiont populations and communities respond to invasion by non‐indigenous hosts and symbionts. In this paper, we present a conceptual framework examining how symbionts such as parasites, pathogens, commensals, and mutualists can influence invader success and whether these native symbionts will benefit or decline during invasion. The first major factor in this framework is the competence of the invading host relative to the native hosts. Low‐ or non‐competent hosts that support few if any native symbionts could cause declines in native symbiont taxa. Competent invading hosts could potentially support native parasites, pathogens, commensals, and mutualists, especially if there is a closely related or similar host in the invaded range. These symbionts could inhibit or facilitate invasion or have no discernible effect on the invading host. An understanding of how native symbionts interact with competent versus non‐competent invading hosts as well as various invading symbionts is critical to our understanding of invasion success, its consequences for invaded communities and how native symbionts in these communities will fare in the face of invasion.
Collapse
Affiliation(s)
- Robert P Creed
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Bryan L Brown
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - James Skelton
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
30
|
Tardy O, Vincenot CE, Bouchard C, Ogden NH, Leighton PA. Context-dependent host dispersal and habitat fragmentation determine heterogeneity in infected tick burdens: an agent-based modelling study. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35360357 DOI: 10.5061/dryad.nzs7h44rx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As the incidence of tick-borne diseases has sharply increased over the past decade, with serious consequences for human and animal health, there is a need to identify ecological drivers contributing to heterogeneity in tick-borne disease risk. In particular, the relative importance of animal host dispersal behaviour in its three context-dependent phases of emigration, transfer and settlement is relatively unexplored. We built a spatially explicit agent-based model to investigate how the host dispersal process, in concert with the tick and host demographic processes, habitat fragmentation and the pathogen transmission process, affects infected tick distributions among hosts. A sensitivity analysis explored the impacts of different input parameters on infected tick burdens on hosts and infected tick distributions among hosts. Our simulations indicate that ecological predictors of infected tick burdens differed among the post-egg life stages of ticks, with tick attachment and detachment, tick questing activity and pathogen transmission dynamics identified as key processes, in a coherent way. We also found that the type of host settlement strategy and the proportion of habitat suitable for hosts determined super-spreading of infected ticks. We developed a theoretical mechanistic framework that can serve as a first step towards applied studies of on-the-ground public health intervention strategies.
Collapse
Affiliation(s)
- Olivia Tardy
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Christian E Vincenot
- Department of Social Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Catherine Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Nicholas H Ogden
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Patrick A Leighton
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| |
Collapse
|
31
|
Tardy O, Vincenot CE, Bouchard C, Ogden NH, Leighton PA. Context-dependent host dispersal and habitat fragmentation determine heterogeneity in infected tick burdens: an agent-based modelling study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220245. [PMID: 35360357 PMCID: PMC8965412 DOI: 10.1098/rsos.220245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
As the incidence of tick-borne diseases has sharply increased over the past decade, with serious consequences for human and animal health, there is a need to identify ecological drivers contributing to heterogeneity in tick-borne disease risk. In particular, the relative importance of animal host dispersal behaviour in its three context-dependent phases of emigration, transfer and settlement is relatively unexplored. We built a spatially explicit agent-based model to investigate how the host dispersal process, in concert with the tick and host demographic processes, habitat fragmentation and the pathogen transmission process, affects infected tick distributions among hosts. A sensitivity analysis explored the impacts of different input parameters on infected tick burdens on hosts and infected tick distributions among hosts. Our simulations indicate that ecological predictors of infected tick burdens differed among the post-egg life stages of ticks, with tick attachment and detachment, tick questing activity and pathogen transmission dynamics identified as key processes, in a coherent way. We also found that the type of host settlement strategy and the proportion of habitat suitable for hosts determined super-spreading of infected ticks. We developed a theoretical mechanistic framework that can serve as a first step towards applied studies of on-the-ground public health intervention strategies.
Collapse
Affiliation(s)
- Olivia Tardy
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Christian E. Vincenot
- Department of Social Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Catherine Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Nicholas H. Ogden
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Patrick A. Leighton
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| |
Collapse
|
32
|
Host contributions to the force of Borrelia burgdorferi and Babesia microti transmission differ at edges of and within a small habitat patch. Appl Environ Microbiol 2022; 88:e0239121. [PMID: 34985986 DOI: 10.1128/aem.02391-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the northeastern United States, the emergence of Lyme disease has been associated, in part, with the increase of small forest patches. Such disturbed habitat is exploited by generalist species, such as white-footed mice, which are considered the host with the greatest reservoir capacity for the agents of Lyme disease (Borrelia burgdorferi sensu stricto) and human babesiosis (Babesia microti). Spatial risk analyses have identified edge habitat as particularly risky. Using a retrotransposon-based quantitative PCR assay for host bloodmeal remnant identification, we directly measured whether the hosts upon which vector ticks fed differed at the edge or within the contiguous small habitat patch. Questing nymphal deer ticks, Ixodes dammini, the northern clade of Ixodes scapularis, were collected from either the edge or within a thicket on Nantucket Island over 3 transmission seasons and tested for evidence of infection as well as bloodmeal hosts. Tick bloodmeal hosts significantly differed by site as well as by year. Mice and deer were identified most often (49.9%), but shrews, rabbits and birds were also common. Ticks from the edge fed on a greater diversity of hosts than those from the thicket. Surprisingly, mice were not strongly associated with either infection at either sampling site (OR<2 for all). Although shrews were not the most common host utilized by ticks, they were highly associated with both infections at both sites (OR= 4.5 and 7.9 B. burgdorferi and 7.9 and 19.0 B. microti, edge and thicket). We conclude that reservoir hosts may differ in their contributions to infecting ticks between edge and contiguous vegetated patches. Importance Habitat fragmentation is thought to be a main factor in the emergence of Lyme disease and other of the deer tick-transmitted infections. The patchwork of forest and edges promotes altered biodiversity, favoring the abundance of generalist rodents such as white footed mice, heretofore considered a key tick and reservoir host in the northeastern U.S. We used tick bloodmeal analyses to directly identify the hosts from which nymphal deer ticks became infected. We demonstrate that there is considerable microfocality in host contributions to the cohort of infected ticks and that shrews, although they fed fewer ticks than mice, disproportionately influenced the force of pathogen transmission in our site. The venue of transmission of certain deer tick-transmitted agents may comprise a habitat scale of 10 meters or fewer and depend on alternative small mammal hosts such as shrews.
Collapse
|
33
|
Norte AC, Araújo PM, Augusto L, Guímaro H, Santos S, Lopes RJ, Núncio MS, Ramos JA, Lopes de Carvalho I. Effects of stress exposure in captivity on physiology and infection in avian hosts: no evidence of increased Borrelia burgdorferi s.l. infectivity to vector ticks. MICROBIAL ECOLOGY 2022; 83:202-215. [PMID: 33758979 DOI: 10.1007/s00248-021-01738-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Exposure to environmental stressors, an increasingly recurring event in natural communities due to anthropogenic-induced environmental change, profoundly impacts disease emergence and spread. One mechanism through which this occurs is through stress-induced immunosuppression increasing disease susceptibility, prevalence, intensity and reactivation in hosts. We experimentally evaluated how exposure to stressors affected both the physiology of avian hosts and the prevalence of the zoonotic bacteria Borrelia burgdorferi sensu lato (s.l.), in two model species-the blackbird Turdus merula and the robin Erithacus rubecula captured in the wild, using xenodiagnoses and analysis of skin biopsies and blood. Although exposure to stressors in captivity induced physiological stress in birds (increased the number of circulating heterophils), there was no evidence of increased infectivity to xenodiagnostic ticks. However, Borrelia detection in the blood for both experimental groups of blackbirds was higher by the end of the captivity period. The infectivity and efficiency of transmission were higher for blackbirds than robins. When comparing different methodologies to determine infection status, xenodiagnosis was a more sensitive method than skin biopsies and blood samples, which could be attributed to mild levels of infection in these avian hosts and/or dynamics and timing of Borrelia infection relapses and redistribution in tissues.
Collapse
Affiliation(s)
- A C Norte
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - P M Araújo
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Porto, Portugal
| | - L Augusto
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Department of Veterinary Sciences, University of Évora, Évora, Portugal
| | - H Guímaro
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - S Santos
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - R J Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Porto, Portugal
| | - M S Núncio
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - J A Ramos
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - I Lopes de Carvalho
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
34
|
Destoumieux-Garzón D, Matthies-Wiesler F, Bierne N, Binot A, Boissier J, Devouge A, Garric J, Gruetzmacher K, Grunau C, Guégan JF, Hurtrez-Boussès S, Huss A, Morand S, Palmer C, Sarigiannis D, Vermeulen R, Barouki R. Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. ENVIRONMENT INTERNATIONAL 2022; 158:106915. [PMID: 34634622 PMCID: PMC8500703 DOI: 10.1016/j.envint.2021.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change.
Collapse
Affiliation(s)
| | - Franziska Matthies-Wiesler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany.
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aurélie Binot
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France
| | - Jérôme Boissier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | | | - Jeanne Garric
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR Riverly, F-69625 Villeurbanne, France
| | - Kim Gruetzmacher
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin Germany
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Jean-François Guégan
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France; MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvie Hurtrez-Boussès
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France; Département de Biologie-Ecologie, Faculté des Sciences, Univ Montpellier, Montpellier, France
| | | | - Serge Morand
- Centre National de la Recherche Scientifique - UMR ASTRE, CIRAD, INRAE - Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Clare Palmer
- Department of Philosophy, YMCA Building, Texas A&M University, College Station, TX 77843, USA
| | - Denis Sarigiannis
- Aristotle University of Thessaloniki, Thessaloniki 54164, Greece; University School for Advanced Study IUSS, Pavia, Italy
| | | | | |
Collapse
|
35
|
Kottara A, Carrilero L, Harrison E, Hall JPJ, Brockhurst MA. The dilution effect limits plasmid horizontal transmission in multispecies bacterial communities. MICROBIOLOGY-SGM 2021; 167. [PMID: 34494951 PMCID: PMC8549239 DOI: 10.1099/mic.0.001086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By transferring ecologically important traits between species, plasmids drive genomic divergence and evolutionary innovation in their bacterial hosts. Bacterial communities are often diverse and contain multiple coexisting plasmids, but the dynamics of plasmids in multi-species communities are poorly understood. Here, we show, using experimental multi-species communities containing two plasmids, that bacterial diversity limits the horizontal transmission of plasmids due to the ‘dilution effect’; this is an epidemiological phenomenon whereby living alongside less proficient host species reduces the expected infection risk for a focal host species. In addition, plasmid horizontal transmission was also affected by plasmid diversity, such that the rate of plasmid conjugation was reduced from co-infected host cells carrying both plasmids. In diverse microbial communities, plasmid spread may be limited by the dilution effect and plasmid–plasmid interactions, reducing the rate of horizontal transmission.
Collapse
Affiliation(s)
- Anastasia Kottara
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Laura Carrilero
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Michael A Brockhurst
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
36
|
Keesing F, Ostfeld RS. Dilution effects in disease ecology. Ecol Lett 2021; 24:2490-2505. [PMID: 34482609 PMCID: PMC9291114 DOI: 10.1111/ele.13875] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023]
Abstract
For decades, people have reduced the transmission of pathogens by adding low‐quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar ‘dilution effects’ occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest‐quality hosts persist when diversity is lost, so that high‐quality hosts dominate low‐diversity communities, resulting in greater pathogen transmission. Meta‐analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.
Collapse
|
37
|
Haase D. COVID-19 pandemic observations as a trigger to reflect on urban forestry in European cities under climate change: Introducing nature-society-based solutions. URBAN FORESTRY & URBAN GREENING 2021; 64:127304. [PMID: 36568567 PMCID: PMC9761312 DOI: 10.1016/j.ufug.2021.127304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/01/2023]
Abstract
COVID-19 pandemic observations triggered a reflection by the author on urban forests in European cities under climate change as nature-society-based solutions. This commentary introduces a complementary triad of approaches that are all known but might lead to a novel view of urban nature, including forests, regarding changes in pandemic diseases and/or related to urbanization and climate change: Hybridity, succession, and flexibility: First, allowing for green spaces used by humans and nature but also those that are exclusively for ecosystems to provide space for undisturbed development and thus better control pests and diseases. Second, allow for succession at urban open spaces to let nature experiment on solutions for a drier and hotter climate that urban society can implement in urban forestry. And third, allow planning to set targets in efficiency assessment and monitoring that are matching time periods which natural ecosystems need to adapt to climate change acknowledging nature as a real 'partner' in nature-society-based solutions in one-health cities.
Collapse
Affiliation(s)
- Dagmar Haase
- Humboldt Universität zu Berlin, Rudower Chaussee 16, 12489, Berlin, Germany
- Helmholtz Centre for Environmental Research - UFZ, Department of Computational Landscape Ecology, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
38
|
Rataud A, Henry PY, Moutailler S, Marsot M. Research effort on birds' reservoir host potential for Lyme borreliosis: A systematic review and perspectives. Transbound Emerg Dis 2021; 69:2512-2522. [PMID: 34453490 DOI: 10.1111/tbed.14305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
Zoonotic tick-borne diseases threat human and animal health. Understanding the role of hosts in the production of infected ticks in an epidemiological system is essential to be able to design effective measures to reduce the exposure of humans and animals to infectious tick bites. The reservoir host potential, that is, number of infected ticks produced by a host species, depends on three components: tick production, realized reservoir competence and host density. The parameters and factors that determine the reservoir host potential need to be characterized to achieve a robust understanding of the dynamics of pathogen-tick-host systems, and thus to mitigate the acarological risk of emerging infections. Few studies have investigated the role of birds in the local spread of Lyme borreliosis Borrelia. Knowledge of the research effort on the reservoir host potential of birds in Lyme borreliosis Borrelia circulation is necessary to prioritize future research on this topic. We provide a systematic review of the research effort on components of the reservoir host potential of wild birds for Lyme borreliosis Borrelia circulation, and factors that modulate these components in the European epidemiological system. Our review of 242 selected publications showed that tick production has been 1.4 and 21 times more studied than realized reservoir competence and bird density respectively. Only one study achieved to characterize the global host reservoir potential of birds in a given epidemiological system. Investigated factors were mostly related to bird species identity, individual characteristics of birds and tick characteristics, whereas the influence of bird life-history traits have been largely under-investigated. Because simultaneous characterization of all parameters is notoriously complex, interdisciplinary research is needed to combine and accumulate independent field and laboratory investigations targeting each parameter on specific epidemiological system or host species. This can help gain an integrated appraisal of the functioning of the studied system at a local scale.
Collapse
Affiliation(s)
- Amalia Rataud
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Pierre-Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Brunoy, France.,Centre de Recherches sur la Biologie des Populations d'Oiseaux (CRBPO), Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Maud Marsot
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| |
Collapse
|
39
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
40
|
Benatti HR, Luz HR, Lima DM, Gonçalves VD, Costa FB, Ramos VN, Aguiar DM, Pacheco RC, Piovezan U, Szabó MPJ, Ferraz KMPMB, Labruna MB. Morphometric Patterns and Blood Biochemistry of Capybaras ( Hydrochoerus hydrochaeris) from Human-Modified Landscapes and Natural Landscapes in Brazil. Vet Sci 2021; 8:vetsci8080165. [PMID: 34437487 PMCID: PMC8402786 DOI: 10.3390/vetsci8080165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
The capybara, Hydrochoerus hydrochaeris, is the largest extant rodent of the world. To better understand the correlation between size and body mass, and biochemical parameters of capybaras from areas with different degrees of anthropization (i.e., different food supplies), we sampled free-ranging capybaras from areas of natural landscapes (NLs) and human-modified landscapes (HMLs) in Brazil. Analyses of biometrical and biochemical parameters of capybaras showed that animals from HMLs were heavier (higher body mass) than those from NL, a condition possibly related to fat deposit rather than body length, as indicated by Body Condition Index (BCI) analyses. Biochemical parameters indicated higher serum levels of albumin, creatine kinase, cholesterol, fructosamine and total protein among capybaras from HMLs than from NLs; however, when all adult capybaras were analyzed together only cholesterol and triglycerides were positively correlated with body mass. We propose that the biochemical profile differences between HMLs and NLs are related to the obesity condition of capybaras among HMLs. Considering that heavier animals might live longer and reproduce more often, our results could have important implications in the population dynamics of capybaras among HMLs, where this rodent species is frequently represented by overgrowth populations that generate several levels of conflicts with human beings.
Collapse
Affiliation(s)
- Hector R. Benatti
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Hermes R. Luz
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Programa de Pós-Graduação em Biotecnologia do Renorbio, Ponto Focal Maranhão, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Daniel M. Lima
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Vinicius D. Gonçalves
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Francisco B. Costa
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Faculdade de Medicina Veterinária, Universidade Estadual do Maranhão, São Luís 65055-970, MA, Brazil
| | - Vanessa N. Ramos
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil;
| | - Daniel M. Aguiar
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (D.M.A.); (R.C.P.)
| | - Richard C. Pacheco
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (D.M.A.); (R.C.P.)
| | | | - Matias P. J. Szabó
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil;
| | - Katia Maria P. M. B. Ferraz
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Marcelo B. Labruna
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Correspondence: ; Tel.: +55-11-3091-1394
| |
Collapse
|
41
|
Bikomeye JC, Namin S, Anyanwu C, Rublee CS, Ferschinger J, Leinbach K, Lindquist P, Hoppe A, Hoffman L, Hegarty J, Sperber D, Beyer KMM. Resilience and Equity in a Time of Crises: Investing in Public Urban Greenspace Is Now More Essential Than Ever in the US and Beyond. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8420. [PMID: 34444169 PMCID: PMC8392137 DOI: 10.3390/ijerph18168420] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 01/14/2023]
Abstract
The intersecting negative effects of structural racism, COVID-19, climate change, and chronic diseases disproportionately affect racial and ethnic minorities in the US and around the world. Urban populations of color are concentrated in historically redlined, segregated, disinvested, and marginalized neighborhoods with inadequate quality housing and limited access to resources, including quality greenspaces designed to support natural ecosystems and healthy outdoor activities while mitigating urban environmental challenges such as air pollution, heat island effects, combined sewer overflows and poor water quality. Disinvested urban environments thus contribute to health inequity via physical and social environmental exposures, resulting in disparities across numerous health outcomes, including COVID-19 and chronic diseases such as cancer and cardiovascular diseases (CVD). In this paper, we build off an existing conceptual framework and propose another conceptual framework for the role of greenspace in contributing to resilience and health equity in the US and beyond. We argue that strategic investments in public greenspaces in urban neighborhoods impacted by long term economic disinvestment are critically needed to adapt and build resilience in communities of color, with urgency due to immediate health threats of climate change, COVID-19, and endemic disparities in chronic diseases. We suggest that equity-focused investments in public urban greenspaces are needed to reduce social inequalities, expand economic opportunities with diversity in workforce initiatives, build resilient urban ecosystems, and improve health equity. We recommend key strategies and considerations to guide this investment, drawing upon a robust compilation of scientific literature along with decades of community-based work, using strategic partnerships from multiple efforts in Milwaukee Wisconsin as examples of success.
Collapse
Affiliation(s)
- Jean C. Bikomeye
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Sima Namin
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Chima Anyanwu
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Caitlin S. Rublee
- Department of Emergency Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;
| | - Jamie Ferschinger
- Sixteenth Street Community Health Centers, Environmental Health & Community Wellness, 1337 S Cesar Chavez Drive, Milwaukee, WI 53204, USA;
| | - Ken Leinbach
- The Urban Ecology Center, 1500 E. Park Place, Milwaukee, WI 53211, USA;
| | - Patricia Lindquist
- Wisconsin Department of Natural Resources, Division of Forestry, 101 S. Webster Street, P.O. Box 7921, Madison, WI 53707, USA;
| | - August Hoppe
- The Urban Wood Lab, Hoppe Tree Service, 1813 S. 73rd Street, West Allis, WI 53214, USA;
| | - Lawrence Hoffman
- Department of GIS, Groundwork Milwaukee, 227 West Pleasant Street, Milwaukee, WI 53212, USA;
| | - Justin Hegarty
- Reflo—Sustainable Water Solutions, 1100 S 5th Street, Milwaukee, WI 53204, USA;
| | - Dwayne Sperber
- Wudeward Urban Forest Products, N11W31868 Phyllis Parkway, Delafield, WI 53018, USA;
| | - Kirsten M. M. Beyer
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| |
Collapse
|
42
|
Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1565-1587. [PMID: 33885784 DOI: 10.1093/jme/tjab047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/09/2023]
Abstract
Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, and Schubot Center for Avian Health, Department of Veterinary Pathology, Texas A&M University, College Station, TX, USA
| | - Seungeun Han
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jennifer L Sidge
- Michigan Department of Agriculture and Rural Development, Lansing, MI, USA
| | - Graham J Hickling
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
43
|
Hennessy C, Hild K. Are Virginia opossums really ecological traps for ticks? Groundtruthing laboratory observations. Ticks Tick Borne Dis 2021; 12:101780. [PMID: 34298355 DOI: 10.1016/j.ttbdis.2021.101780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Virginia opossums (Didelphis virginiana) are a common synanthrope in North America, and serve as host to many species of ectoparasites. Research on captive Virginia opossums estimated that opossums eat, on average, 5500 larval ticks (Acari: Ixodidae) per week. To investigate this apparent preference exhibited by opossums for ingesting ticks, we comprehensively analyzed stomach contents of 32 Virginia opossums from central Illinois. Using a dissecting microscope, we searched the contents exhaustively for ticks and tick body parts, without sieving or pre-rinsing the stomach contents. We did not locate any ticks or tick parts in the stomach contents of Virginia opossums. We also performed a vigorous literature search for corroborating evidence of tick ingestion. Our search revealed 23 manuscripts that describe diet analyses of Virginia opossums, 19 of which were conducted on stomach or digestive tract contents and four of which were scat-based analyses. None of the studies identified ticks in their analyses of diet items. We conclude that ticks are not a preferred diet item for Virginia opossums. Considering that wildlife unconditioned to laboratory conditions may exhibit non-typical behaviors, we recommend that lab-based studies of wildlife behavior be groundtruthed with studies based in natural conditions.
Collapse
Affiliation(s)
- Cecilia Hennessy
- Division of Math and Sciences, Eureka College, Eureka, IL, United States.
| | - Kaitlyn Hild
- Division of Math and Sciences, Eureka College, Eureka, IL, United States
| |
Collapse
|
44
|
Mysterud A, Hügli C, Viljugrein H. Tick infestation on medium-large-sized mammalian hosts: are all equally suitable to Ixodes ricinus adults? Parasit Vectors 2021; 14:254. [PMID: 33985556 PMCID: PMC8120740 DOI: 10.1186/s13071-021-04775-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Background In Europe, the generalist tick, Ixodes ricinus, is the main vector of several tick-borne pathogens causing diseases in humans and livestock. Understanding how different species of hosts limit the tick population is crucial for management. In general, larger ectoparasites are expected to select hosts with larger body size. Consistent with this, larval and nymphal I. ricinus can feed on a wide range of different-sized vertebrates, while the adult female stage is expected to rely on a medium–large-sized host for reproduction. However, we still have a limited understanding of whether medium-sized hosts other than roe deer can serve as hosts to adult ticks, and other factors than size may also affect host selection. Methods To increase our understanding of the suitability of the different species of medium-sized hosts for adult ticks, we sampled mainly roadkill mammals from within the questing season of ticks. We counted life stages of ticks on roe deer (Capreolus capreolus) (n = 29), red fox (Vulpes vulpes) (n = 6), badger (Meles meles) (n = 14) and red squirrel (Sciurus vulgaris) (n = 17) from spatially overlapping populations in Norway, and analysed variation between species across different body parts with a mixed-effects negative binomial model (with and without zero-inflation). Results Red squirrel hosted a high density of larval and nymphal I. ricinus, but only one individual had adult female ticks. Roe deer hosted by far the largest number of adult ticks. Badgers had very few ticks, possibly due to their thick skin. Red foxes had intermediate numbers, but a high proportion of subcutaneous, dead ticks (69.3%), suggesting they are not very suitable hosts. Body mass predicted the presence of adult I. ricinus ticks. However, species was a better predictor than body mass for number of ticks, suggesting there was species variation in host suitability beyond body mass per se. Conclusions Our study provides evidence that roe deer are indeed the main suitable reproduction host to adult I. ricinus ticks, and are likely a key to host limitation of the tick population in this northern ecosystem. Graphic abstract ![]()
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.
| | - Christian Hügli
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.,Norwegian Veterinary Institute, Sentrum, P.O. Box 750, 0106, Oslo, Norway
| |
Collapse
|
45
|
Circulation of Babesia Species and Their Exposure to Humans through Ixodes Ricinus. Pathogens 2021; 10:pathogens10040386. [PMID: 33804875 PMCID: PMC8063829 DOI: 10.3390/pathogens10040386] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans through a bite of Ixodes ricinus. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. Moreover, part of the ticks were tested for co-infections with other tick borne pathogens. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia species in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting (RLB) and qPCR detection of Babesia species were used to test 25,849 questing I. ricinus. Fragments of the 18S rDNA and cytochrome c oxidase subunit I (COI) gene from PCR-positive isolates were sequenced for confirmation and species identification and species-specific PCR reactions were performed on samples with suspected mixed infections. Babesia microti was found in two widespread rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted Cervus elaphus and Bison bonasus, and occasionally in free-ranging Ovis aries. B. venatorum was detected in the ubiquitous Capreolus capreolus, and occasionally in free-ranging O. aries. Species-specific PCR revealed co-infections in C. capreolus and C. elaphus, resulting in higher prevalence of B. venatorum and B. divergens than disclosed by qPCR detection, followed by 18S rDNA and COI sequencing. The non-zoonotic Babesia species found were Babesia capreoli, Babesia vulpes, Babesia sp. deer clade, and badger-associated Babesia species. The infection rate of zoonotic Babesia species in questing I. ricinus ticks was higher for Babesia clade I (2.6%) than Babesia clade X (1.9%). Co-infection of B. microti with Borrelia burgdorferi sensu lato and Neoehrlichia mikurensis in questing nymphs occurred more than expected, which reflects their mutual reservoir hosts, and suggests the possibility of co-transmission of these three pathogens to humans during a tick bite. The ubiquitous spread and abundance of B. microti and B. venatorum in their reservoir hosts and questing ticks imply some level of human exposure through tick bites. The restricted distribution of the wild reservoir hosts for B. divergens and its low infection rate in ticks might contribute to the absence of reported autochthonous cases of human babesiosis in the Netherlands.
Collapse
|
46
|
Zhang L, Zhu X, Hou X, Li H, Yang X, Chen T, Fu X, Miao G, Hao Q, Li S. Prevalence and prediction of Lyme disease in Hainan province. PLoS Negl Trop Dis 2021; 15:e0009158. [PMID: 33735304 PMCID: PMC8009380 DOI: 10.1371/journal.pntd.0009158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2021] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
Lyme disease (LD) is one of the most important vector-borne diseases worldwide. However, there is limited information on the prevalence and risk analysis using correlated factors in the tropical areas. A total of 1583 serum samples, collected from five hospitals of Hainan Province, were tested by immunofluorescence assay (IFA) and western blot (WB) analyses using anti-Borrelia burgdorferi antibodies. Then, we mapped the distribution of positive rate (by IFA) and the spread of confirmed Lyme patients (by WB). Using ArcGIS, we compiled host-vector-human interactions and correlated data as risk factor layers to predict LD risk in Hainan Province. There are three LD hotspots, designated hotspot I, which is located in central Hainan, hotspot II, which contains Sanya district, and hotspot III, which lies in the Haikou-Qiongshan area. The positive rate (16.67% by IFA) of LD in Qiongzhong, located in hotspot I, was higher than that in four other areas. Of confirmed cases of LD, 80.77% of patients (42/52) whose results had been confirmed by WB were in hotspots I and III. Hotspot II, with unknowed prevalence of LD, need to be paid more attention considering human-vector interaction. Wuzhi and Limu mountains might be the most important areas for the prevalence of LD, as the severe host-vector and human-vector interactions lead to a potential origin site for LD. Qiongzhong is the riskiest area and is located to the east of Wuzhi Mountain. In the Sanya and Haikou-Qiongshan area, intervening in the human-vector interaction would help control the prevalence of LD.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiong Zhu
- People’s Hospital of Sanya, Hainan province, China
| | - Xuexia Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huan Li
- People’s Hospital of Sanya, Hainan province, China
| | - Xiaona Yang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Chen
- People’s Hospital of Sanya, Hainan province, China
| | - Xiaoying Fu
- People’s Hospital of Sanya, Hainan province, China
| | - Guangqing Miao
- Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qin Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sha Li
- People’s Hospital of Sanya, Hainan province, China
| |
Collapse
|
47
|
Ecological traps and boosters of ixodid ticks: The differing ecological roles of two sympatric introduced mammals. Ticks Tick Borne Dis 2021; 12:101687. [PMID: 33631488 DOI: 10.1016/j.ttbdis.2021.101687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
The raccoon (Procyon lotor) and masked palm civet (Paguma larvata) are introduced species in Japan and have become abundant in human-inhabited environments. We surveyed tick infestations and tick ingestion by introduced raccoons and masked palm civets captured in Hayama, Kanagawa Prefecture, Japan between November 2018 and January 2020. We collected ticks from the body surface of animals and tick capitula from the gastrointestinal contents. We collected 18,357 ticks identified as Haemaphysalis flava, Haemaphysalis megaspinosa, Haemaphysalis longicornis, Ixodes ovatus, Ixodes tanuki, and Amblyomma testudinarium from 58 of 60 raccoons and 152 ticks, identified as H. flava and I. tanuki, from 16 of 41 masked palm civets. Furthermore, we obtained 16 capitula from 12 % of raccoons and 106 capitula from 63 % of masked palm civets. Raccoons harbored a greater number of ticks (all stages of H. flava and adult I. tanuki) compared with masked palmed civets, whereas the latter species ingested a greater number of nymphal and larval ticks. The results of this study extend our understanding of the ecological roles of two introduced wildlife species. The raccoon may act as an ecological booster, thereby increasing the success rate of bloodmeals and reproduction in ticks. In contrast, the masked palm civet may act as an ecological trap by effectively grooming to remove ticks and prevent bloodmeals.
Collapse
|
48
|
Herrera DJ, Moore SM, Flockhart DTT, McShea WJ, Cove MV. Thinking outside the park: recommendations for camera trapping mammal communities in the urban matrix. JOURNAL OF URBAN ECOLOGY 2021. [DOI: 10.1093/jue/juaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Urbanization is increasing globally, fragmenting habitats and prompting human–wildlife conflict. Urban wildlife research is concurrently expanding, but sampling methods are often biased towards large and intact habitats in public green spaces, neglecting the far more abundant, but degraded, habitats in the urban matrix. Here, we introduce the Five P’s of Urban Ecology—Partnerships, Planning, Placements, Public participation and Processing—as a path to overcoming the logistical barriers often associated with camera-trapping in the urban matrix. Though the Five P’s can be applied to a variety of urban sampling methods, we showcase the camera-trapping efforts of the DC Cat Count project in Washington, DC, as a case study. We compared occupancy models for eight urban mammal species using broad categorizations of land cover and local land use to determine drivers of mammal occurrence within the urban matrix as compared with urban habitat patches. Many native species maintained a strong association with large, semi-natural green spaces, but occupancy was not limited to these locations, and in some cases, the use of private yards and the built environment were not notably different. Furthermore, some species exhibited higher occupancy probabilities in developed areas over green spaces. Though seemingly intuitive, we offer advice on how to greatly reduce habitat-biased sampling methods in urban wildlife research and illustrate the importance of doing so to ensure accurate results that support the formation of effective urban planning and policy.
Collapse
Affiliation(s)
- Daniel J Herrera
- Humane Rescue Alliance, 71 Oglethorpe Street NW, Washington, DC 20011, USA
| | - Sophie M Moore
- Humane Rescue Alliance, 71 Oglethorpe Street NW, Washington, DC 20011, USA
| | - D T Tyler Flockhart
- Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Rd, Frostburg, MD 21532, USA
| | - William J McShea
- Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Michael V Cove
- North Carolina Museum of Natural Sciences, 11 W Jones Street, Raleigh, NC, 27601, USA
| |
Collapse
|
49
|
Perrin A, Khimoun A, Faivre B, Ollivier A, de Pracontal N, Théron F, Loubon M, Leblond G, Duron O, Garnier S. Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species. Heredity (Edinb) 2021; 126:148-162. [PMID: 32934360 PMCID: PMC7853120 DOI: 10.1038/s41437-020-00366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023] Open
Abstract
Habitat fragmentation is a major cause of biodiversity loss, responsible for an alteration of intraspecific patterns of neutral genetic diversity and structure. Although neutral genetic variation can be informative for demographic inferences, it may be a poor predictor of adaptive genetic diversity and thus of the consequences of habitat fragmentation on selective evolutionary processes. In this context, we contrasted patterns of genetic diversity and structure of neutral loci (microsatellites) and immune genes (i.e., toll-like receptors) in an understorey bird species, the wedge-billed woodcreeper Glyphorynchus spirurus. The objectives were (1) to investigate forest fragmentation effects on population genetic diversity, (2) to disentangle the relative role of demography (genetic drift and migration) and selection, and (3) to assess whether immunogenetic patterns could be associated with variation of ectoparasite (i.e., ticks) pressures. Our results revealed an erosion of neutral genetic diversity and a substantial genetic differentiation among fragmented populations, resulting from a decrease in landscape connectivity and leading to the divergence of distinct genetic pools at a small spatial scale. Patterns of genetic diversity observed for TLR4 and TLR5 were concordant with neutral genetic patterns, whereas those observed for TLR3 and TLR21 were discordant. This result underlines that the dominant evolutionary force shaping immunogenetic diversity (genetic drift vs. selection) may be different depending on loci considered. Finally, tick prevalence was higher in fragmented environments. We discussed the hypothesis that pathogen selective pressures may contribute to maintain adaptive genetic diversity despite the negative demographic effect of habitat fragmentation on neutral genetic diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Nyls de Pracontal
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Franck Théron
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Maxime Loubon
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Gilles Leblond
- SARL BIOS, Route de Davidon, Duzer, 97115, Sainte-Rose, France
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
50
|
Josek T, Sperrazza J, Alleyne M, Syed Z. Neurophysiological and behavioral responses of blacklegged ticks to host odors. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104175. [PMID: 33253713 DOI: 10.1016/j.jinsphys.2020.104175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The blacklegged tick, Ixodes scapularis (Ixodida, Ixodidae), is one of the major disease vectors in the United States, and due to multiple human impact factors, such as decreasing forest size for land development and climate change, it has expanded its range and established across the United States. Throughout the life cycle, ticks locate hosts for their blood-meal, and although the ecologies of this tick and their hosts have been studied in depth, the sensory physiology behind host location largely remains unexplored. Here, we report establishing a robust paradigm to isolate and identify odors from the natural milieu for I. scapularis. We performed single sensillum recordings (SSR) from the olfactory sensilla on the tick tarsi, and used the SSR system as a biological detector to isolate natural compounds that elicited biological activity. The SSR setup was further tested in tandem with gas chromatography (GC) wherein the ticks' olfactory sensillum activity served as a biological detector. The GC-SSR recordings from the wall pore sensilla in the Haller's organ, and further identification of the biologically active deer gland constituents by GC-mass spectrometry (GC-MS) revealed methyl substituted phenols as strong chemostimuli, as compared to ethyl or propyl substitutions. The strongest electrophysiological activity was elicited by m- cresol followed by p- cresol. Ethyl- and propylphenols with any of the three substitutions (ortho, meta or para), did not induce any neurophysiological activity. Finally, a behavioral analysis in a dual-choice olfactometer of all these phenols at three different doses revealed no significant behavioral response, except for p- cresol at -3 dilution. Overall, this study contributes to our understanding of I. scapularis tick's neurophysiology and provides a robust platform to isolate and identify natural attractants and repellents.
Collapse
Affiliation(s)
- Tanya Josek
- Center of Mathematics, Science, and Technology, Illinois State University, Normal, IL 61790, USA
| | - Jared Sperrazza
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Marianne Alleyne
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|