1
|
Charles FE, Reside AE, Smith AL. The influence of changing fire regimes on specialized plant-animal interactions. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230448. [PMID: 40241458 PMCID: PMC12004102 DOI: 10.1098/rstb.2023.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 04/18/2025] Open
Abstract
Ecological effects of changing fire regimes are well documented for plant and animal populations, but less is known about how fire influences, and is influenced by, specialized plant-animal interactions. In this review, we identified mutualistic (pollination, seed dispersal and food provision), commensal (habitat provision) and antagonistic (seed predation, herbivory and parasitism) plant-animal interactions from fire-prone ecosystems. We focused on specialized interactions where a single genus depended on one to two genera in a single family of plant or animal. We categorized the plant partner's post-fire reproductive mode to assess the likely outcome of changing fire regimes on ecological functions provided by these interactions. Traits underlying specialization in fire-prone ecosystems for plants were: post-fire reproductive mode, time to maturity, morphology and phenology; and, for animals: dispersal, specialized organs, nesting and egg deposition substrates, plant consumption behaviours and pollinator behaviours. Finally, we identified a number of cases where stabilizing feedbacks maintained plant-animal interactions under natural fire regimes. Potential reinforcing feedbacks were also identified, but were more likely to happen abruptly and result in collapse of the plant-animal partnership, or partner switching. Our synthesis reveals how fire regime changes impact fire-dependent specialist plant-animal interactions and potentially drive eco-evolutionary dynamics in fire-prone ecosystems globally.This article is part of the theme issue 'Novel fire regimes under climate changes and human influences: impacts, ecosystem responses and feedbacks'.
Collapse
Affiliation(s)
- Felicity E. Charles
- School of the Environment, Faculty of Science, The University of Queensland, Saint Lucia 4072, Queensland, Australia
| | - April E. Reside
- School of the Environment, Faculty of Science, The University of Queensland, Saint Lucia 4072, Queensland, Australia
| | - Annabel L. Smith
- School of the Environment, Faculty of Science, The University of Queensland, Saint Lucia 4072, Queensland, Australia
| |
Collapse
|
2
|
Bénitière F, Lefébure T, Duret L. Variation in the fitness impact of translationally optimal codons among animals. Genome Res 2025; 35:446-458. [PMID: 39929724 PMCID: PMC11960461 DOI: 10.1101/gr.279837.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Early studies in invertebrate model organisms (fruit flies, nematodes) showed that their synonymous codon usage is under selective pressure to optimize translation efficiency in highly expressed genes (a process called translational selection). In contrast, mammals show little evidence of selection for translationally optimal codons. To understand this difference, we examined the use of synonymous codons in 223 metazoan species, covering a wide range of animal clades. For each species, we predicted the set of optimal codons based on the pool of tRNA genes present in its genome, and we analyzed how the frequency of optimal codons correlates with gene expression to quantify the intensity of translational selection (S). We observed that few metazoans show clear signs of translational selection. As predicted by the nearly neutral theory, the highest values of S are observed in species with large effective population sizes (N e). Overall, however, N e appears to be a poor predictor of the intensity of translational selection, suggesting important differences in the fitness effect of synonymous codon usage across taxa. We propose that the few animal taxa that are clearly affected by translational selection correspond to organisms with strong constraints for a very rapid growth rate.
Collapse
Affiliation(s)
- Florian Bénitière
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Tristan Lefébure
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France;
| |
Collapse
|
3
|
Burgarella C, Brémaud MF, Von Hirschheydt G, Viader V, Ardisson M, Santoni S, Ranwez V, de Navascués M, David J, Glémin S. Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives. Evol Lett 2024; 8:866-880. [PMID: 39677571 PMCID: PMC11637685 DOI: 10.1093/evlett/qrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 12/17/2024] Open
Abstract
How and why genetic diversity varies among species is a long-standing question in evolutionary biology. Life history traits have been shown to explain a large part of observed diversity. Among them, mating systems have one of the strongest impacts on genetic diversity, with selfing species usually exhibiting much lower diversity than outcrossing relatives. Theory predicts that a high rate of selfing amplifies selection at linked sites, reducing genetic diversity genome-wide, but frequent bottlenecks and rapid population turn-over could also explain low genetic diversity in selfers. However, how linked selection varies with mating systems and whether it is sufficient to explain the observed difference between selfers and outcrossers has never been tested. Here, we used the Aegilops/Triticum grass species, a group characterized by contrasted mating systems (from obligate outcrossing to high selfing) and marked recombination rate variation across the genome, to quantify the effects of mating system and linked selection on patterns of neutral and selected polymorphism. By analyzing phenotypic and transcriptomic data of 13 species, we show that selfing strongly affects genetic diversity and the efficacy of selection by amplifying the intensity of linked selection genome-wide. In particular, signatures of adaptation were only found in the highly recombining regions in outcrossing species. These results bear implications for the evolution of mating systems and, more generally, for our understanding of the fundamental drivers of genetic diversity.
Collapse
Affiliation(s)
- Concetta Burgarella
- CNRS, Univ. Montpellier, ISEM – UMR 5554, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Marie-Fleur Brémaud
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Veronique Viader
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Morgane Ardisson
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Santoni
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Ranwez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Miguel de Navascués
- UMR CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jacques David
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Heeren S, Sanders M, Shaw JJ, Pinto Brandão-Filho S, Côrtes Boité M, Motta Cantanhêde L, Chourabi K, Maes I, Llanos-Cuentas A, Arevalo J, Marco JD, Lemey P, Cotton JA, Dujardin JC, Cupolillo E, Van den Broeck F. Evolutionary genomics of Leishmania braziliensis across the neotropical realm. Commun Biol 2024; 7:1587. [PMID: 39609617 PMCID: PMC11605123 DOI: 10.1038/s42003-024-07278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
The Neotropical realm, one of the most biodiverse regions on Earth, houses a broad range of zoonoses that pose serious public health threats. Protozoan parasites of the Leishmania (Viannia) braziliensis clade cause zoonotic leishmaniasis in Latin America with clinical symptoms ranging from simple cutaneous to destructive, disfiguring mucosal lesions. We present the first comprehensive genome-wide continental study including 257 cultivated isolates representing most of the geographical distribution of this major human pathogen. The L. braziliensis clade is genetically highly heterogeneous, consisting of divergent parasite groups that are associated with different environments and vary greatly in diversity. Apart from several small ecologically isolated groups with little diversity, our sampling identifies two major parasite groups, one associated with the Amazon and the other with the Atlantic Forest biomes. These groups show different recombination histories, as suggested by high levels of heterozygosity and effective population sizes in the Amazonian group in contrast to high levels of linkage and clonality in the Atlantic group. We argue that these differences are linked to strong eco-epidemiological differences between the two regions. In contrast to geographically focused studies, our study provides a broad understanding of the molecular epidemiology of zoonotic parasites circulating in tropical America.
Collapse
Affiliation(s)
- Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | - Jeffrey Jon Shaw
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Mariana Côrtes Boité
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lilian Motta Cantanhêde
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho, Brazil
| | - Khaled Chourabi
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge D Marco
- Instituto de Patología Experimental, Universidad Nacional de Salta-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - James A Cotton
- Welcome Sanger Institute, Hinxton, United Kingdom
- School of Biodiversity, One Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisa Cupolillo
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho, Brazil.
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Maxwell LM, Clark JD, Walsh J, Conway M, Olsen BJ, Kovach AI. Ecological characteristics explain neutral genetic variation of three coastal sparrow species. Mol Ecol 2024; 33:e17316. [PMID: 38481075 DOI: 10.1111/mec.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Eco-phylogeographic approaches to comparative population genetic analyses allow for the inclusion of intrinsic influences as drivers of intraspecific genetic structure. This insight into microevolutionary processes, including changes within a species or lineage, provides better mechanistic understanding of species-specific interactions and enables predictions of evolutionary responses to environmental change. In this study, we used single nucleotide polymorphisms (SNPs) identified from reduced representation sequencing to compare neutral population structure, isolation by distance (IBD), genetic diversity and effective population size (Ne) across three closely related and co-distributed saltmarsh sparrow species differing along a specialization gradient-Nelson's (Ammospiza nelsoni subvirgata), saltmarsh (A. caudacuta) and seaside sparrows (A. maritima maritima). Using an eco-phylogeographic lens within a conservation management context, we tested predictions about species' degree of evolutionary history and ecological specialization to tidal marshes, habitat, current distribution and population status on population genetic metrics. Population structure differed among the species consistent with their current distribution and habitat factors, rather than degree of ecological specialization: seaside sparrows were panmictic, saltmarsh sparrows showed hierarchical structure and Nelson's sparrows were differentiated into multiple, genetically distinct populations. Neutral population genetic theory and demographic/evolutionary history predicted patterns of genetic diversity and Ne rather than degree of ecological specialization. Patterns of population variation and evolutionary distinctiveness (Shapely metric) suggest different conservation measures for long-term persistence and evolutionary potential in each species. Our findings contribute to a broader understanding of the complex factors influencing genetic variation, beyond specialist-generalist status and support the role of an eco-phylogeographic approach in population and conservation genetics.
Collapse
Affiliation(s)
- Logan M Maxwell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jonathan D Clark
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jennifer Walsh
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, New York, USA
| | - Meaghan Conway
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Brian J Olsen
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
7
|
Woodruff GC, Willis JH, Phillips PC. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae020. [PMID: 38302111 PMCID: PMC10883733 DOI: 10.1093/gbe/evae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Present address: Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
8
|
Qiu T, Liu Z, Li H, Yang J, Liu B, Yang Y. Contrasting patterns of genetic and phenotypic divergence of two sympatric congeners, Phragmites australis and P. hirsuta, in heterogeneous habitats. FRONTIERS IN PLANT SCIENCE 2023; 14:1299128. [PMID: 38162310 PMCID: PMC10756910 DOI: 10.3389/fpls.2023.1299128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Habitat heterogeneity leads to genome-wide differentiation and morphological and ecological differentiation, which will progress along the speciation continuum, eventually leading to speciation. Phragmites hirsuta and Phragmites australis are sympatric congeners that coexist in saline-alkaline meadow soil (SAS) and sandy soil (SS) habitats of the Songnen Meadow. The results provided genetic evidence for two separate species of reeds. Genetic diversity and spatial genetic structure supported the specialist-generalist variation hypothesis (SGVH) in these two sympatric reed species, suggesting that P. australis is a generalist and P. hirsuta is a habitat specialist. When we compared these different species with respect to phenotypic and genetic variation patterns in different habitats, we found that the phenotypic differentiation of P. australis between the two habitats was higher than that of P. hirsuta. Multiple subtle differences in morphology, genetic background, and habitat use collectively contribute to ecological success for similar congeners. This study provided evidence of the two reed congeners, which should contribute to their success in harsh environments.
Collapse
Affiliation(s)
- Tian Qiu
- School of Life Sciences, Changchun Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Zhiyuan Liu
- College of Computer Science and Technology, Changchun University, Changchun, China
| | - Haiyan Li
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, China
| | - Yunfei Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
9
|
Matthews AE, Boves TJ, Sweet AD, Ames EM, Bulluck LP, Johnson EI, Johnson M, Lipshutz SE, Percy KL, Raybuck DW, Schelsky WM, Tonra CM, Viverette CB, Wijeratne AJ. Novel insights into symbiont population structure: Globe-trotting avian feather mites contradict the specialist-generalist variation hypothesis. Mol Ecol 2023; 32:5260-5275. [PMID: 37635403 DOI: 10.1111/mec.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Researchers often examine symbiont host specificity as a species-level pattern, but it can also be key to understanding processes occurring at the population level, which are not as well understood. The specialist-generalist variation hypothesis (SGVH) attempts to explain how host specificity influences population-level processes, stating that single-host symbionts (specialists) exhibit stronger population genetic structure than multi-host symbionts (generalists) because of fewer opportunities for dispersal and more restricted gene flow between populations. However, this hypothesis has not been tested in systems with highly mobile hosts, in which population connectivity may vary temporally and spatially. To address this gap, we tested the SGVH on proctophyllodid feather mites found on migratory warblers (family Parulidae) with contrasting host specificities, Amerodectes protonotaria (a host specialist of Protonotaria citrea) and A. ischyros (a host generalist of 17 parulid species). We used a pooled-sequencing approach and a novel workflow to analyse genetic variants obtained from whole genome data. Both mite species exhibited fairly weak population structure overall, and contrary to predictions of the SGVH, the generalist was more strongly structured than the specialist. These results may suggest that specialists disperse more freely among conspecifics, whereas generalists sort according to geography. Furthermore, our results may reflect an unexpected period for mite transmission - during the nonbreeding season of migratory hosts - as mite population structure more closely reflects the distributions of hosts during the nonbreeding season. Our findings alter our current understanding of feather mite biology and highlight the potential for studies to explore factors driving symbiont diversification at multiple evolutionary scales.
Collapse
Affiliation(s)
- Alix E Matthews
- College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Than J Boves
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Andrew D Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Elizabeth M Ames
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Lesley P Bulluck
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Erik I Johnson
- Audubon Delta, National Audubon Society, New Orleans, Louisiana, USA
| | - Matthew Johnson
- Audubon South Carolina, National Audubon Society, Harleyville, South Carolina, USA
| | - Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katie L Percy
- Audubon Delta, National Audubon Society, New Orleans, Louisiana, USA
- United States Department of Agriculture, Natural Resources Conservation Service, Addis, Louisiana, USA
| | - Douglas W Raybuck
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, Tennessee, USA
| | - Wendy M Schelsky
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Christopher M Tonra
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Catherine B Viverette
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Asela J Wijeratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
10
|
García-Varela M, López-Jiménez A, González-García MT, Sereno-Uribe AL, Andrade-Gómez L. Contrasting the population genetic structure of a specialist ( Hexaglandula corynosoma: Acanthocephala: Polymorphidae) and a generalist parasite ( Southwellina hispida) distributed sympatrically in Mexico. Parasitology 2023; 150:348-358. [PMID: 36748352 PMCID: PMC10090582 DOI: 10.1017/s0031182023000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
Polymorphidae is a monophyletic group of acanthocephalans distributed worldwide. Within this family, Hexaglandula corynosoma is a specialist species that uses a single bird species as a definitive host. Southwellina hispida is a generalist species that uses a broad spectrum of definitive hosts to complete its life cycle. In the current research, sequences of cytochrome c oxidase subunit 1 (cox1) from mitochondrial DNA were generated from 44 specimens of H. corynosoma and 76 of S. hispida distributed sympatrically in 6 biogeographic provinces of Mexico with the objective of characterizing and comparing the population genetic structure of 2 acanthocephalan species with opposing life strategies. The phylogeographic studies indicated that the populations of both species lacked a phylogeographic structure and exhibited high haplotype diversity, low nucleotide diversity and low Fst values among the biogeographic provinces; in combination with negative values on the neutrality test, this suggests that the populations of acanthocephalans are expanding. Paratenic hosts are key for the transmission from intermediate to definitive hosts in the generalist species. However, the inclusion of paratenic hosts does not play a principal role in the population genetic structure of S. hispida within its distribution along the coasts of Mexico.
Collapse
Affiliation(s)
- Martín García-Varela
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP 04510 México City, Mexico
| | - Alejandra López-Jiménez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP 04510 México City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, CP 04510 México City, Mexico
| | - Marcelo Tonatiuh González-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP 04510 México City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, CP 04510 México City, Mexico
| | - Ana Lucia Sereno-Uribe
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP 04510 México City, Mexico
| | - Leopoldo Andrade-Gómez
- Escuela Nacional de Estudios Superiores Unidad Mérida, Km 4.5 Carretera Mérida-Tetiz, Ucú, Yucatán CP 97357, Mexico
| |
Collapse
|
11
|
Thompson LM, Thurman LL, Cook CN, Beever EA, Sgrò CM, Battles A, Botero CA, Gross JE, Hall KR, Hendry AP, Hoffmann AA, Hoving C, LeDee OE, Mengelt C, Nicotra AB, Niver RA, Pérez‐Jvostov F, Quiñones RM, Schuurman GW, Schwartz MK, Szymanski J, Whiteley A. Connecting research and practice to enhance the evolutionary potential of species under climate change. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Laura M. Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center and the University of Tennessee Knoxville Tennessee USA
| | | | - Carly N. Cook
- School of Biological Sciences Monash University Melbourne Australia
| | - Erik A. Beever
- USGS, Northern Rocky Mountain Science Center and Montana State University Bozeman Montana USA
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Australia
| | | | | | - John E. Gross
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | | | | | | | | | - Olivia E. LeDee
- USGS, Midwest Climate Adaptation Science Center Saint Paul Minnesota USA
| | | | | | - Robyn A. Niver
- U.S. Fish and Wildlife Service (USFWS), Branch of Listing and Policy Support Bailey's Crossroads Virginia USA
| | | | - Rebecca M. Quiñones
- Massachusetts Division of Fisheries and Wildlife Westborough Massachusetts USA
| | - Gregor W. Schuurman
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | - Michael K. Schwartz
- U.S. Forest Service, National Genomics Center for Wildlife and Fish Conservation Missoula Montana USA
| | - Jennifer Szymanski
- USFWS, Branch of SSA Science Support, Division of Endangered Species Onalaska Wisconsin USA
| | | |
Collapse
|
12
|
Abe M, Kamiyama T, Izumi Y, Qian Q, Yoshihashi Y, Degawa Y, Watanabe K, Hattori Y, Uemura T, Niwa R. Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in Drosophila sechellia. J Exp Biol 2022; 225:jeb244423. [PMID: 36226701 PMCID: PMC9687539 DOI: 10.1242/jeb.244423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022]
Abstract
Organisms can generally be divided into two nutritional groups: generalists that consume various types of food and specialists that consume specific types of food. However, it remains unclear how specialists adapt to only limited nutritional conditions in nature. In this study, we addressed this question by focusing on Drosophila fruit flies. The generalist Drosophila melanogaster can consume a wide variety of foods that contain high glucose levels. In contrast, the specialist Drosophila sechellia consumes only the Indian mulberry, known as noni (Morinda citrifolia), which contains relatively little glucose. We showed that the lifespan of D. sechellia was significantly shortened under a high-glucose diet, but this effect was not observed for D. melanogaster. In D. sechellia, a high-glucose diet induced disorganization of the gut epithelia and visceral muscles, which was associated with abnormal digestion and constipation. RNA-sequencing analysis revealed that many immune-responsive genes were suppressed in the gut of D. sechellia fed a high-glucose diet compared with those fed a control diet. Consistent with this difference in the expression of immune-responsive genes, high glucose-induced phenotypes were restored by the addition of tetracycline or scopoletin, a major nutritional component of noni, each of which suppresses gut bacterial growth. We propose that, in D. sechellia, a high-glucose diet impairs gut immune function, which leads to a change in gut microbiota, disorganization of the gut epithelial structure and a shortened lifespan.
Collapse
Affiliation(s)
- Maiko Abe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Qingyin Qian
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuma Yoshihashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Yousuke Degawa
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Kaori Watanabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
13
|
Sloat SA, Noble LM, Paaby AB, Bernstein M, Chang A, Kaur T, Yuen J, Tintori SC, Jackson JL, Martel A, Salome Correa JA, Stevens L, Kiontke K, Blaxter M, Rockman MV. Caenorhabditis nematodes colonize ephemeral resource patches in neotropical forests. Ecol Evol 2022; 12:e9124. [PMID: 35898425 PMCID: PMC9309040 DOI: 10.1002/ece3.9124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
Factors shaping the distribution and abundance of species include life-history traits, population structure, and stochastic colonization-extinction dynamics. Field studies of model species groups help reveal the roles of these factors. Species of Caenorhabditis nematodes are highly divergent at the sequence level but exhibit highly conserved morphology, and many of these species live in sympatry on microbe-rich patches of rotten material. Here, we use field experiments and large-scale opportunistic collections to investigate species composition, abundance, and colonization efficiency of Caenorhabditis species in two of the world's best-studied lowland tropical field sites: Barro Colorado Island in Panamá and La Selva in Sarapiquí, Costa Rica. We observed seven species of Caenorhabditis, four of them known only from these collections. We formally describe two species and place them within the Caenorhabditis phylogeny. While these localities contain species from many parts of the phylogeny, both localities were dominated by globally distributed androdiecious species. We found that Caenorhabditis individuals were able to colonize baits accessible only through phoresy and preferentially colonized baits that were in direct contact with the ground. We estimate the number of colonization events per patch to be low.
Collapse
Affiliation(s)
- Solomon A. Sloat
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Luke M. Noble
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Annalise B. Paaby
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Max Bernstein
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Audrey Chang
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Taniya Kaur
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - John Yuen
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Sophia C. Tintori
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jacqueline L. Jackson
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Arielle Martel
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jose A. Salome Correa
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | | | - Karin Kiontke
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger InstituteHinxtonUK
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
14
|
Genetic diversity and spatial genetic structure support the specialist-generalist variation hypothesis in two sympatric woodpecker species. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01451-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSpecies are often arranged along a continuum from “specialists” to “generalists”. Specialists typically use fewer resources, occur in more patchily distributed habitats and have overall smaller population sizes than generalists. Accordingly, the specialist-generalist variation hypothesis (SGVH) proposes that populations of habitat specialists have lower genetic diversity and are genetically more differentiated due to reduced gene flow compared to populations of generalists. Here, expectations of the SGVH were tested by examining genetic diversity, spatial genetic structure and contemporary gene flow in two sympatric woodpecker species differing in habitat specialization. Compared to the generalist great spotted woodpecker (Dendrocopos major), lower genetic diversity was found in the specialist middle spotted woodpecker (Dendrocoptes medius). Evidence for recent bottlenecks was revealed in some populations of the middle spotted woodpecker, but in none of the great spotted woodpecker. Substantial spatial genetic structure and a significant correlation between genetic and geographic distances were found in the middle spotted woodpecker, but only weak spatial genetic structure and no significant correlation between genetic and geographic distances in the great spotted woodpecker. Finally, estimated levels of contemporary gene flow did not differ between the two species. Results are consistent with all but one expectations of the SGVH. This study adds to the relatively few investigations addressing the SGVH in terrestrial vertebrates.
Collapse
|
15
|
Nazarizadeh M, Martinů J, Nováková M, Stanko M, Štefka J. Phylogeography of the parasitic mite Laelaps agilis in Western Palearctic shows lineages lacking host specificity but possessing different demographic histories. BMC ZOOL 2022; 7:15. [PMID: 37170127 PMCID: PMC10127304 DOI: 10.1186/s40850-022-00115-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Laelaps agilis C.L. Koch, 1836 is one the most abundant and widespread parasitic mite species in the Western Palearctic. It is a permanent ectoparasite associated with the Apodemus genus, which transmits Hepatozoon species via the host’s blood. Phylogenetic relationships, genealogy and host specificity of the mite are uncertain in the Western Palearctic. Here, we investigated the population genetic structure of 132 individual mites across Europe from their Apodemus and Clethrionomys hosts. Phylogenetic relationships and genetic variation of the populations were analyzed using cytochrome c oxidase subunit I (COI) gene sequences.
Results
We recovered three main mtDNA lineages within L. agilis in the Western Palearctic, which differentiated between 1.02 and 1.79 million years ago during the Pleistocene period: (i) Lineage A, including structured populations from Western Europe and the Czech Republic, (ii) Lineage B, which included only a few individuals from Greece and the Czech Republic; and (iii) Lineage C, which comprised admixed populations from Western and Eastern Europe. Contrary to their population genetic differentiation, the lineages did not show signs of specificity to different hosts. Finally, we confirmed that the sympatric congener L. clethrionomydis is represented by a separated monophyletic lineage.
Conclusion
Differences in the depth of population structure between L. agilis Lineages A and C, corroborated by the neutrality tests and demographic history analyses, suggested a stable population size in the structured Lineage A and a rapid range expansion for the geographically admixed Lineage C. We hypothesized that the two lineages were associated with hosts experiencing different glaciation histories. The lack of host specificity in L. agilis lineages was in contrast to the co-occurring highly host-specific lineages of Polyplax serrata lice, sharing Apodemus hosts. The incongruence was attributed to the differences in mobility between the parasites, allowing mites to switch hosts more often.
Collapse
|
16
|
Yousefi S, Sharifi M, Štefka J. Comparative phylogeography of two bat species and their mites in Iran shows impact of host sociality and vagility on population structure. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Jan Štefka
- Institute of Parasitology, Biology Centre CAS České Budějovice Czech Republic
- Faculty of Science University of South Bohemia in České Budějovice České Budějovice Czech Republic
| |
Collapse
|
17
|
McGreevy TJ, Michaelides S, Djan M, Sullivan M, Beltrán DM, Buffum B, Husband T. Location and Species Matters: Variable Influence of the Environment on the Gene Flow of Imperiled, Native and Invasive Cottontails. Front Genet 2021; 12:708871. [PMID: 34659333 PMCID: PMC8511500 DOI: 10.3389/fgene.2021.708871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The environment plays an important role in the movement of individuals and their associated genes among populations, which facilitates gene flow. Gene flow can help maintain the genetic diversity both within and between populations and counter the negative impact of genetic drift, which can decrease the fitness of individuals. Sympatric species can have different habitat preferences, and thus can exhibit different patterns of genetic variability and population structure. The specialist-generalist variation hypothesis (SGVH) predicts that specialists will have lower genetic diversity, lower effective population sizes (Ne), and less gene flow among populations. In this study, we used spatially explicit, individual-based comparative approaches to test SGVH predictions in two sympatric cottontail species and identify environmental variables that influence their gene flow. New England cottontail (Sylvilagus transitionalis) is the only native cottontail in the Northeast US, an early successional habitat specialist, and a species of conservation concern. Eastern cottontail (S. floridanus) is an invasive species in the Northeast US and a habitat generalist. We characterized each species' genomic variation by developing double-digest Restriction-site Associated DNA sequence single nucleotide polymorphism markers, quantified their habitat with Geographic Information System environmental variables, and conducted our analyses at multiple scales. Surprisingly, both species had similar levels of genetic diversity and eastern cottontail's Ne was only higher than New England cottontail in one of three subregions. At a regional level, the population clusters of New England cottontail were more distinct than eastern cottontail, but the subregional levels showed more geographic areas of restricted gene flow for eastern cottontail than New England cottontail. In general, the environmental variables had the predicted effect on each species' gene flow. However, the most important environmental variable varied by subregion and species, which shows that location and species matter. Our results provide partial support for the SGVH and the identification of environmental variables that facilitate or impede gene flow can be used to help inform management decisions to conserve New England cottontail.
Collapse
Affiliation(s)
- Thomas J McGreevy
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| | | | - Mihajla Djan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Mary Sullivan
- USDA Agricultural Research Service, National Cold Water Marine Aquaculture Center, Kingston, RI, United States
| | - Diana M Beltrán
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| | - Bill Buffum
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| | - Thomas Husband
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
18
|
Schrader L, Pan H, Bollazzi M, Schiøtt M, Larabee FJ, Bi X, Deng Y, Zhang G, Boomsma JJ, Rabeling C. Relaxed selection underlies genome erosion in socially parasitic ant species. Nat Commun 2021; 12:2918. [PMID: 34006882 PMCID: PMC8131649 DOI: 10.1038/s41467-021-23178-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Inquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex, we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches.
Collapse
Affiliation(s)
- Lukas Schrader
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | | | - Martin Bollazzi
- Entomología, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fredrick J Larabee
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | | | - Guojie Zhang
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Rabeling
- Department of Biology, University of Rochester, Rochester, NY, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
19
|
Pascall DJ, Tinsley MC, Clark BL, Obbard DJ, Wilfert L. Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community. Front Microbiol 2021; 12:650747. [PMID: 33967987 PMCID: PMC8100031 DOI: 10.3389/fmicb.2021.650747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus, and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed, and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild.
Collapse
Affiliation(s)
- David J. Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Matthew C. Tinsley
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Bethany L. Clark
- BirdLife International, The David Attenborough Building, Cambridge, United Kingdom
- Environment and Sustainability Institute, University of Exeter, Cornwall, United Kingdom
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
20
|
De la Mora-Curiel M, Piñero D, Oyama K, Núñez-Farfán J. A single genealogical lineage from the Sonoran Desert and the Mexican Pacific Coast explains the haplotype distribution of Trichobaris compacta. REV MEX BIODIVERS 2021. [DOI: 10.22201/ib.20078706e.2021.92.3370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Freedman MG, Jason C, Ramírez SR, Strauss SY. Host plant adaptation during contemporary range expansion in the monarch butterfly. Evolution 2020; 74:377-391. [DOI: 10.1111/evo.13914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Micah G. Freedman
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Christopher Jason
- Department of Evolution and Ecology University of California, Davis Davis California
- School of Biological Sciences Washington State University Vancouver Washington 98686
| | - Santiago R. Ramírez
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Sharon Y. Strauss
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| |
Collapse
|
22
|
Crombie TA, Zdraljevic S, Cook DE, Tanny RE, Brady SC, Wang Y, Evans KS, Hahnel S, Lee D, Rodriguez BC, Zhang G, van der Zwagg J, Kiontke K, Andersen EC. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. eLife 2019; 8:50465. [PMID: 31793880 PMCID: PMC6927746 DOI: 10.7554/elife.50465] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.
Collapse
Affiliation(s)
- Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Shannon C Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Steffen Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Briana C Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Joost van der Zwagg
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Karin Kiontke
- Department of Biology, New York University, New York, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
23
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
24
|
Zhao L, Duffy S. Gauging genetic diversity of generalists: A test of genetic and ecological generalism with RNA virus experimental evolution. Virus Evol 2019; 5:vez019. [PMID: 31275611 PMCID: PMC6599687 DOI: 10.1093/ve/vez019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generalist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses’ response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| |
Collapse
|
25
|
Kjeldsen SR, Raadsma HW, Leigh KA, Tobey JR, Phalen D, Krockenberger A, Ellis WA, Hynes E, Higgins DP, Zenger KR. Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments. Heredity (Edinb) 2019; 122:525-544. [PMID: 30209291 PMCID: PMC6461856 DOI: 10.1038/s41437-018-0144-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, ~70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHecorr=0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available.
Collapse
Affiliation(s)
- Shannon R Kjeldsen
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia.
| | - Herman W Raadsma
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, Private Mail Bag 4003, Narellan, NSW, 2570, Australia
| | - Kellie A Leigh
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, Private Mail Bag 4003, Narellan, NSW, 2570, Australia
- Science for Wildlife, PO Box 286, Cammeray, NSW, 2062, Australia
| | - Jennifer R Tobey
- San Diego Zoo Institute for Conservation Research, Escondido, CA, 92027, USA
| | - David Phalen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, Private Mail Bag 4003, Narellan, NSW, 2570, Australia
| | - Andrew Krockenberger
- Centre for Tropical Biodiversity and Climate Change, Division of Research and Innovation, James Cook University, Cairns, QLD, 4878, Australia
| | - William A Ellis
- School of Agriculture and Food Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emily Hynes
- Ecoplan Australia, PO Box 968, Torquay, VIC, 3228, Australia
| | - Damien P Higgins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
26
|
Finch J, Walck JL, Hidayati SN, Kramer AT, Lason V, Havens K. Germination niche breadth varies inconsistently among three Asclepias congeners along a latitudinal gradient. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:425-438. [PMID: 29779252 DOI: 10.1111/plb.12843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Species responses to climate change will be primarily driven by their environmental tolerance range, or niche breadth, with the expectation that broad niches will increase resilience. Niche breadth is expected to be larger in more heterogeneous environments and moderated by life history. Niche breadth also varies across life stages. Therefore, the life stage with the narrowest niche may serve as the best predictor of climatic vulnerability. To investigate the relationship between niche breadth, climate and life stage we identify germination niche breadth for dormant and non-dormant seeds in multiple populations of three milkweed (Asclepias) species. Complementary trials evaluated germination under conditions simulating historic and predicted future climate by varying cold-moist stratification temperature, length and incubation temperature. Germination niche breadth was derived from germination evenness across treatments (Levins Bn ), with stratified seeds considered less dormant than non-stratified seeds. Germination response varies significantly among species, populations and treatments. Cold-moist stratification ≥4 weeks (1-3 °C) followed by incubation at 25/15 °C+ achieves peak germination for most populations. Germination niche breadth significantly expands following stratification and interacts significantly with latitude of origin. Interestingly, two species display a positive relationship between niche breadth and latitude, while the third presents a concave quadratic relationship. Germination niche breadth significantly varies by species, latitude and population, suggesting an interaction between source climate, life history and site-specific factors. Results contribute to our understanding of inter- and intraspecific variation in germination, underscore the role of dormancy in germination niche breadth, and have implications for prioritising and conserving species under climate change.
Collapse
Affiliation(s)
- J Finch
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, USA
- Deparment of Plant Science and Conservation, Chicago Botanic Garden, Glencoe, IL, USA
| | - J L Walck
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - S N Hidayati
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - A T Kramer
- Deparment of Plant Science and Conservation, Chicago Botanic Garden, Glencoe, IL, USA
| | - V Lason
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - K Havens
- Deparment of Plant Science and Conservation, Chicago Botanic Garden, Glencoe, IL, USA
| |
Collapse
|
27
|
Benham PM, Cheviron ZA. Divergent mitochondrial lineages arose within a large, panmictic population of the Savannah sparrow (Passerculus sandwichensis). Mol Ecol 2019; 28:1765-1783. [PMID: 30770598 DOI: 10.1111/mec.15049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
Abstract
Unusual patterns of mtDNA diversity can reveal interesting aspects of a species' biology. However, making such inferences requires discerning among the many alternative scenarios that could underlie any given mtDNA pattern. Next-generation sequencing methods provide large, multilocus data sets with increased power to resolve unusual mtDNA patterns. A mtDNA-based phylogeography of the Savannah sparrow (Passerculus sandwichensis) previously identified two sympatric, but divergent (~2%) clades within the nominate subspecies group and a third clade that consisted of birds sampled from northwest Mexico. We revisited the phylogeography of this species using a population genomic data set to resolve the processes leading to the evolution of sympatric and divergent mtDNA lineages. We identified two genetic clusters in the genomic data set corresponding to (a) the nominate subspecies group and (b) northwestern Mexico birds. Following divergence, the nominate clade maintained a large, stable population, indicating that divergent mitochondrial lineages arose within a panmictic population. Simulations based on parameter estimates from this model further confirmed that this demographic history could produce observed levels of mtDNA diversity. Patterns of divergent, sympatric mtDNA lineages are frequently interpreted as admixture of historically isolated lineages. Our analyses reject this interpretation for Savannah sparrows and underscore the need for genomic data sets to resolve the evolutionary mechanisms behind anomalous, locus-specific patterns.
Collapse
Affiliation(s)
- Phred M Benham
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
28
|
Gajdzik L, Bernardi G, Lepoint G, Frédérich B. Genetic diversity mirrors trophic ecology in coral reef fish feeding guilds. Mol Ecol 2018; 27:5004-5018. [DOI: 10.1111/mec.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Gajdzik
- Laboratory of Functional and Evolutionary Morphology FOCUS, University of Liège Liège Belgium
| | - Giacomo Bernardi
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California
| | - Gilles Lepoint
- Laboratory of Oceanology FOCUS, University of Liège Liège Belgium
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology FOCUS, University of Liège Liège Belgium
| |
Collapse
|
29
|
Nguyen HN, Lu CW, Chu JH, Grismer LL, Hung CM, Lin SM. Historical demography of four gecko species specializing in boulder cave habitat: Implications in the evolutionary dead end hypothesis and conservation. Mol Ecol 2018; 28:772-784. [PMID: 30580492 DOI: 10.1111/mec.14985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022]
Abstract
Specialization in narrow ecological niches may not only help species to survive in competitive or unique environments but also contribute to their extermination over evolutionary time. Although the "evolutionary dead end" hypothesis has long been debated, empirical evidence from species with detailed information on niche specialization and evolutionary history remains rare. Here we use a group of four closely related Cnemaspis gecko species that depend highly on granite boulder caves in the Mekong Delta to investigate the potential impact of ecological specialization on their evolution and population dynamics. Isolated by unsuitable floodplain habitats, these boulder-dwelling geckos are among the most narrowly distributed Squamata in the world. We applied several coalescence-based approaches combined with the RAD-seq technique to estimate their divergence times, gene flow and demographic fluctuations during the speciation and population differentiation processes. Our results reveal long-term population shrinkage in the four geckos and limited gene flow during their divergence. The results suggest that the erosion and fragmentation of the granite boulder hills have greatly impacted population divergence and declines. The habitat specialization of these geckos has led to fine-scaled speciation in these granite rocky hills; in contrast, specialization might also have pushed these species toward the edge of extinction. Our study also emphasizes the conservation urgency of these vulnerable, cave-dependent geckos.
Collapse
Affiliation(s)
- Hung N Nguyen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department of Zoology, Southern Institute of Ecology, Vietnam Academia of Science and Technology, Ho Chi Minh City, Vietnam.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Hua Chu
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Ming Hung
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Si-Min Lin
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
30
|
Fournet S, Pellan L, Porte C, Piriou C, Grenier E, Montarry J. Populations of the Beet Cyst Nematode Heterodera schachtii Exhibit Strong Differences in Their Life-History Traits Across Changing Thermal Conditions. Front Microbiol 2018; 9:2801. [PMID: 30519223 PMCID: PMC6250974 DOI: 10.3389/fmicb.2018.02801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that climate has an essential influence on the distribution of species and that temperature is the major abiotic factor that affects their life-history traits. Species with very restricted active dispersal abilities and a wide geographical distribution are thus expected to encompass distinct populations adapted to contrasted local conditions. The beet cyst nematode Heterodera schachtii is a good biological model to study temperature adaptation in populations collected from different environments. Here, we tested the effect of temperature on H. schachtii life-history traits using seven field populations from Morocco, Spain, France, Germany, Austria, Poland and Ukraine. We tested hatching and multiplication rates of each population at different temperatures, as well as hatching rates of each population after storage at different temperatures - simulating survival conditions during the inter-cropping period. Results showed a strong temperature effect on the life-history traits explored. Temperature impact on hatching (at different temperatures and after storage at different temperatures) depended on the origin of populations, separating southern from northern ones. Surprisingly, low temperatures influenced hatching less in southern populations. However, for these populations, a storage period at low temperatures strongly reduce subsequent hatching. Conversely, nematode multiplication was not differentially affected by temperatures, as favorable conditions for the host are also favorable for the parasite. Finally, a significant correlation between the genetic diversity and the level of specialization showed that the less diverse populations were more specialized than the more diverse ones.
Collapse
Affiliation(s)
- Sylvain Fournet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | | | | | | | | |
Collapse
|
31
|
Kamp L, Pasinelli G, Milanesi P, Drovetski SV, Kosiński Z, Kossenko S, Robles H, Schweizer M. Significant Asia‐Europe divergence in the middle spotted woodpecker (Aves, Picidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laura Kamp
- Naturhistorisches Museum der Burgergemeinde Bern Bern Switzerland
- Institute of Ecology and Evolution Universität Bern Bern Switzerland
- Swiss Ornithological Station Sempach Switzerland
| | | | | | - Sergei V. Drovetski
- Laboratories of Analytical Biology, National Museum of Natural History Smithsonian Institution Washington DC
| | - Ziemowit Kosiński
- Department of Avian Biology and Ecology, Institute of Environmental Biology, Faculty of Biology Adam Mickiewicz University Poznań Poland
| | - Serguei Kossenko
- State Nature Biosphere Reserve "Bryansky Les," Nerussa Station Bryansk Region Russia
| | - Hugo Robles
- Evolutionary Ecology Group (EVECO) University of Antwerp Wilrijk Belgium
| | - Manuel Schweizer
- Naturhistorisches Museum der Burgergemeinde Bern Bern Switzerland
| |
Collapse
|
32
|
Scott Chialvo CH, White BE, Reed LK, Dyer KA. A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila. Mol Phylogenet Evol 2018; 130:233-243. [PMID: 30366088 DOI: 10.1016/j.ympev.2018.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Adaptive radiations provide an opportunity to examine complex evolutionary processes such as ecological specialization and speciation. While a well-resolved phylogenetic hypothesis is critical to completing such studies, the rapid rates of evolution in these groups can impede phylogenetic studies. Here we study the quinaria and testacea species groups of the immigrans-tripunctata radiation of Drosophila, which represent a recent adaptive radiation and are a developing model system for ecological genetics. We were especially interested in understanding host use evolution in these species. In order to infer a phylogenetic hypothesis for this group we sampled loci from both the nuclear genome and the mitochondrial DNA to develop a dataset of 43 protein-coding loci for these two groups along with their close relatives in the immigrans-tripunctata radiation. We used this dataset to examine their evolutionary relationships along with the evolution of feeding behavior. Our analysis recovers strong support for the monophyly of the testacea but not the quinaria group. Results from our ancestral state reconstruction analysis suggests that the ancestor of the testacea and quinaria groups exhibited mushroom-feeding. Within the quinaria group, we infer that transition to vegetative feeding occurred twice, and that this transition did not coincide with a genome-wide change in the rate of protein evolution.
Collapse
Affiliation(s)
- Clare H Scott Chialvo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Brooke E White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
33
|
Matthee CA, Engelbrecht A, Matthee S. Comparative phylogeography of parasitic Laelaps mites contribute new insights into the specialist-generalist variation hypothesis (SGVH). BMC Evol Biol 2018; 18:131. [PMID: 30176805 PMCID: PMC6122474 DOI: 10.1186/s12862-018-1245-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/16/2018] [Indexed: 11/10/2022] Open
Abstract
Background The specialist-generalist variation hypothesis (SGVH) in parasites suggests that, due to patchiness in habitat (host availability), specialist species will show more subdivided population structure when compared to generalist species. In addition, since specialist species are more prone to local stochastic extinction events with their hosts, they will show lower levels of intraspecific genetic diversity when compared to more generalist. Results To test the wider applicability of the SGVH we compared 337 cytochrome oxidase I mitochondrial DNA and 268 nuclear tropomyosin DNA sequenced fragments derived from two co-distributed Laelaps mite species and compared the data to 294 COI mtDNA sequences derived from the respective hosts Rhabdomys dilectus, R. bechuanae, Mastomys coucha and M. natalensis. In support of the SGVH, the generalist L. muricola was characterized by a high mtDNA haplotypic diversity of 0.97 (±0.00) and a low level of population differentiation (mtDNA Fst = 0.56, p < 0.05; nuDNA Fst = 0.33, P < 0.05) while the specialist L. giganteus was overall characterized by a lower haplotypic diversity of 0.77 (±0.03) and comparatively higher levels of population differentiation (mtDNA Fst = 0.87, P < 0.05; nuDNA Fst = 0.48, P < 0.05). When the two specialist L. giganteus lineages, which occur on two different Rhabdomys species, are respectively compared to the generalist parasite, L. muricola, the SGVH is not fully supported. One of the specialist L. giganteus species occurring on R. dilectus shows similar low levels of population differentiation (mtDNA Fst = 0.53, P < 0.05; nuDNA Fst = 0.12, P < 0.05) than that found for the generalist L. muricola. This finding can be correlated to differences in host dispersal: R. bechuanae populations are characterized by a differentiated mtDNA Fst of 0.79 (P < 0.05) while R. dilectus populations are less structured with a mtDNA Fst = 0.18 (P < 0.05). Conclusions These findings suggest that in ectoparasites, host specificity and the vagility of the host are both important drivers for parasite dispersal. It is proposed that the SGHV hypothesis should also incorporate reference to host dispersal since in our case only the specialist species who occur on less mobile hosts showed more subdivided population structure when compared to generalist species. Electronic supplementary material The online version of this article (10.1186/s12862-018-1245-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape Province, South Africa.
| | - Adriaan Engelbrecht
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape Province, South Africa.,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, Western Cape Province, South Africa.,Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town, Western Cape Province, South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, Western Cape Province, South Africa
| |
Collapse
|
34
|
Woodruff GC, Phillips PC. Field studies reveal a close relative of C. elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps. BMC Ecol 2018; 18:26. [PMID: 30129423 PMCID: PMC6102938 DOI: 10.1186/s12898-018-0182-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biotic interactions are ubiquitous and require information from ecology, evolutionary biology, and functional genetics in order to be understood. However, study systems that are amenable to investigations across such disparate fields are rare. Figs and fig wasps are a classic system for ecology and evolutionary biology with poor functional genetics; Caenorhabditis elegans is a classic system for functional genetics with poor ecology. In order to help bridge these disciplines, here we describe the natural history of a close relative of C. elegans, Caenorhabditis inopinata, that is associated with the fig Ficus septica and its pollinating Ceratosolen wasps. RESULTS To understand the natural context of fig-associated Caenorhabditis, fresh F. septica figs from four Okinawan islands were sampled, dissected, and observed under microscopy. C. inopinata was found in all islands where F. septica figs were found. C.i nopinata was routinely found in the fig interior and almost never observed on the outside surface. C. inopinata was only found in pollinated figs, and C. inopinata was more likely to be observed in figs with more foundress pollinating wasps. Actively reproducing C. inopinata dominated early phase figs, whereas late phase figs with emerging wasp progeny harbored C. inopinata dauer larvae. Additionally, C. inopinata was observed dismounting from Ceratosolen pollinating wasps that were placed on agar plates. C. inopinata was not found on non-pollinating, parasitic Philotrypesis wasps. Finally, C. inopinata was only observed in F. septica figs among five Okinawan Ficus species sampled. CONCLUSION These are the first detailed field observations of C. inopinata, and they suggest a natural history where this species proliferates in early phase F. septica figs and disperses from late phase figs on Ceratosolen pollinating fig wasps. While consistent with other examples of nematode diversification in the fig microcosm, the fig and wasp host specificity of C. inopinata is highly divergent from the life histories of its close relatives and frames hypotheses for future investigations. This natural co-occurrence of the fig/fig wasp and C. inopinata study systems sets the stage for an integrated research program that can help to explain the evolution of interspecific interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, Tsukuba, Japan.
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| | - Patrick C Phillips
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
35
|
Müller MI, Morais DH, Costa-Silva GJ, Aguiar A, Ávila RW, da Silva RJ. Diversity in the genusRhabdias(Nematoda, Rhabdiasidae): Evidence for cryptic speciation. ZOOL SCR 2018. [DOI: 10.1111/zsc.12304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Maria I. Müller
- Department of Parasitology, Rua Professor Doutor Antônio Celso Wagner Zanin; Institute of Biosciences, São Paulo State University (UNESP); Botucatu São Paulo Brazil
| | - Drausio H. Morais
- Universidade Federal Rural da Amazônia (UFRA); Parauapebas Pará Brazil
| | - Guilherme J. Costa-Silva
- Department of Morphology, Rua Professor Doutor Antônio Celso Wagner Zanin; Institute of Biosciences, São Paulo State University (UNESP); Botucatu São Paulo Brazil
- Universidade Santo Amaro, Rua Prof. Enéas de Siqueira Neto, Jardim das Imbuias; São Paulo Brazil
| | - Aline Aguiar
- Department of Parasitology, Rua Professor Doutor Antônio Celso Wagner Zanin; Institute of Biosciences, São Paulo State University (UNESP); Botucatu São Paulo Brazil
| | - Robson W. Ávila
- Departamento de Química Biológica, Laboratório de Herpetologia; Universidade Regional do Cariri (URCA); Crato Ceará Brazil
| | - Reinaldo J. da Silva
- Department of Parasitology, Rua Professor Doutor Antônio Celso Wagner Zanin; Institute of Biosciences, São Paulo State University (UNESP); Botucatu São Paulo Brazil
| |
Collapse
|
36
|
Dermauw W, Pym A, Bass C, Van Leeuwen T, Feyereisen R. Does host plant adaptation lead to pesticide resistance in generalist herbivores? CURRENT OPINION IN INSECT SCIENCE 2018; 26:25-33. [PMID: 29764657 DOI: 10.1016/j.cois.2018.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 05/09/2023]
Abstract
Most herbivorous arthropods feed on one or a few closely related plant species; however, certain insect and mite species have a greatly expanded host range. Several of these generalists also show a remarkable propensity to evolve resistance to chemical pesticides. In this review, we ask if the evolution of mechanisms to tolerate the diversity of plant secondary metabolites that generalist herbivores encounter, has pre-adapted them to resist synthetic pesticides. Critical examination of the evidence suggests that a generalist life-style per se is not a predictor of rapid resistance evolution to pesticides. Rather the prevalence of pesticide resistance in generalist herbivores probably reflects their economic importance as pests and thus the strong selection imposed by intensive pesticide use.
Collapse
Affiliation(s)
- Wannes Dermauw
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Adam Pym
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Thomas Van Leeuwen
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - René Feyereisen
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Ferrari C, Salle R, Callemeyn-Torre N, Jovelin R, Cutter AD, Braendle C. Ephemeral-habitat colonization and neotropical species richness of Caenorhabditis nematodes. BMC Ecol 2017; 17:43. [PMID: 29258487 PMCID: PMC5738176 DOI: 10.1186/s12898-017-0150-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Background The drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species. Here we characterize the colonization dynamics and abundance of nine species of Caenorhabditis nematodes in neotropical French Guiana, the most speciose known assemblage of this genus, with resource use overlap and notoriously similar external morphology despite deep genomic divergence. Methods To characterize the dynamics and specificity of colonization and exploitation of ephemeral resource patches, we conducted manipulative field experiments and the largest sampling effort to date for Caenorhabditis outside of Europe. This effort provides the first in-depth quantitative analysis of substrate specificity for Caenorhabditis in natural, unperturbed habitats. Results We amassed a total of 626 strain isolates from nine species of Caenorhabditis among 2865 substrate samples. With the two new species described here (C. astrocarya and C. dolens), we estimate that our sampling procedures will discover few additional species of these microbivorous animals in this tropical rainforest system. We demonstrate experimentally that the two most prevalent species (C. nouraguensis and C. tropicalis) rapidly colonize fresh resource patches, whereas at least one rarer species shows specialist micro-habitat fidelity. Conclusion Despite the potential to colonize rapidly, these ephemeral patchy resources of rotting fruits and flowers are likely to often remain uncolonized by Caenorhabditis prior to their complete decay, implying dispersal-limited resource exploitation. We hypothesize that a combination of rapid colonization, high ephemerality of resource patches, and species heterogeneity in degree of specialization on micro-habitats and life histories enables a dynamic co-existence of so many morphologically cryptic species of Caenorhabditis. Electronic supplementary material The online version of this article (10.1186/s12898-017-0150-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Romain Salle
- CNRS, IBV, Inserm, Université Côte d'Azur, Nice, France
| | | | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| | | |
Collapse
|
38
|
Hung C, Drovetski SV, Zink RM. The roles of ecology, behaviour and effective population size in the evolution of a community. Mol Ecol 2017; 26:3775-3784. [DOI: 10.1111/mec.14152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Chih‐Ming Hung
- Biodiversity Research Center Academia Sinica Taipei Taiwan
| | - Sergei V. Drovetski
- Division of Birds National Museum of Natural History Smithsonian Institution Washington DC USA
| | - Robert M. Zink
- School of Natural Resources Nebraska State Museum, and School of Biological Sciences University of Nebraska Lincoln NE USA
| |
Collapse
|
39
|
Vielle A, Callemeyn-Torre N, Gimond C, Poullet N, Gray JC, Cutter AD, Braendle C. Convergent evolution of sperm gigantism and the developmental origins of sperm size variability in Caenorhabditis nematodes. Evolution 2016; 70:2485-2503. [PMID: 27565121 DOI: 10.1111/evo.13043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50-fold range of sperm-cell volumes across the genus have sperm capable of comprising up to 5% of egg-cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter- and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.
Collapse
Affiliation(s)
- Anne Vielle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | | | - Clotilde Gimond
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Nausicaa Poullet
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
40
|
Harter DEV, Thiv M, Weig A, Jentsch A, Beierkuhnlein C. Spatial and ecological population genetic structures within two island-endemic Aeonium species of different niche width. Ecol Evol 2015; 5:4327-44. [PMID: 26664682 PMCID: PMC4667834 DOI: 10.1002/ece3.1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 01/21/2023] Open
Abstract
The Crassulacean genus Aeonium is a well-known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra-island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island-endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci-environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.
Collapse
Affiliation(s)
| | - Mike Thiv
- State Museum of Natural History StuttgartStuttgartGermany
| | - Alfons Weig
- DNA Analytics and EcoinformaticsBayCEERUniversity of BayreuthBayreuthGermany
| | - Anke Jentsch
- Disturbance EcologyBayCEERUniversity of BayreuthBayreuthGermany
| | | |
Collapse
|
41
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|