1
|
Eaton DL, Simon TW, Kaminski NE, Perdew GH, Nebert DW. The 2022 revised WHO TEFs for dioxins and dioxin-like chemicals: The importance of considering the use of species-specific information to determine relative effective potency for human-based risk assessment. Regul Toxicol Pharmacol 2024; 149:105599. [PMID: 38490576 DOI: 10.1016/j.yrtph.2024.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Affiliation(s)
- David L Eaton
- Dept. Environmental Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | | | - Norbert E Kaminski
- Food and Consumer Product Ingredient Safety Endowed Chair, Department of Pharmacology and Toxicology, Institute for Integrative Toxicology, Director, Center for Reseaerch on Ingredient Safety, Michigan State University, East Lansing, MI, USA
| | - Gary H Perdew
- H. Thomas and Dorothy Willits Hallowell Chair in Agricultural Sciences, The Pennsylvania State University, State College, PA, USA
| | - Daniel W Nebert
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Department of Pediatrics & Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
2
|
Dean MC, Garrevoet J, Van Malderen SJM, Santos F, Mirazón Lahr M, Foley R, Le Cabec A. The Distribution and Biogenic Origins of Zinc in the Mineralised Tooth Tissues of Modern and Fossil Hominoids: Implications for Life History, Diet and Taphonomy. BIOLOGY 2023; 12:1455. [PMID: 38132281 PMCID: PMC10740576 DOI: 10.3390/biology12121455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Zinc is incorporated into enamel, dentine and cementum during tooth growth. This work aimed to distinguish between the processes underlying Zn incorporation and Zn distribution. These include different mineralisation processes, the physiological events around birth, Zn ingestion with diet, exposure to the oral environment during life and diagenetic changes to fossil teeth post-mortem. Synchrotron X-ray Fluorescence (SXRF) was used to map zinc distribution across longitudinal polished ground sections of both deciduous and permanent modern human, great ape and fossil hominoid teeth. Higher resolution fluorescence intensity maps were used to image Zn in surface enamel, secondary dentine and cementum, and at the neonatal line (NNL) and enamel-dentine-junction (EDJ) in deciduous teeth. Secondary dentine was consistently Zn-rich, but the highest concentrations of Zn (range 197-1743 ppm) were found in cuspal, mid-lateral and cervical surface enamel and were similar in unerupted teeth never exposed to the oral environment. Zinc was identified at the NNL and EDJ in both modern and fossil deciduous teeth. In fossil specimens, diagenetic changes were identified in various trace element distributions but only demineralisation appeared to markedly alter Zn distribution. Zinc appears to be tenacious and stable in fossil tooth tissues, especially in enamel, over millions of years.
Collapse
Affiliation(s)
- M. Christopher Dean
- Centre for Human Evolution Research, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany; (J.G.); (S.J.M.V.M.)
| | - Stijn J. M. Van Malderen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany; (J.G.); (S.J.M.V.M.)
| | - Frédéric Santos
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, F-33600 Pessac, France; (F.S.); (A.L.C.)
| | - Marta Mirazón Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK; (M.M.L.); (R.F.)
| | - Robert Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK; (M.M.L.); (R.F.)
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, F-33600 Pessac, France; (F.S.); (A.L.C.)
| |
Collapse
|
3
|
Longman DP, Wells JCK, Stock JT. Human energetic stress associated with upregulation of spatial cognition. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:32-44. [PMID: 37494592 DOI: 10.1002/ajpa.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Evolutionary life history theory has a unique potential to shed light on human adaptive capabilities. Ultra-endurance challenges are a valuable experimental model allowing the direct testing of phenotypic plasticity via physiological trade-offs in resource allocation. This enhances our understanding of how the body prioritizes different functions when energetically stressed. However, despite the central role played by the brain in both hominin evolution and metabolic budgeting, cognitive plasticity during energetic deficit remains unstudied. MATERIALS We considered human cognitive plasticity under conditions of energetic deficit by evaluating variability in performance in three key cognitive domains. To achieve this, cognitive performance in a sample of 48 athletes (m = 29, f = 19) was assessed before and after competing in multiday ultramarathons. RESULTS We demonstrate that under conditions of energetic deficit, performance in tasks of spatial working memory (which assessed ability to store location information, promoting landscape navigation and facilitating resource location and calorie acquisition) increased. In contrast, psychomotor speed (reaction time) remained unchanged and episodic memory performance (ability to recall information about specific events) decreased. DISCUSSION We propose that prioritization of spatial working memory performance during conditions of negative energy balance represents an adaptive response due to its role in facilitating calorie acquisition. We discuss these results with reference to a human evolutionary trajectory centred around encephalisation. Encephalisation affords great plasticity, facilitating rapid responses tailored to specific environmental conditions, and allowing humans to increase their capabilities as a phenotypically plastic species.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, UK
- ISSUL, Institute of Sport Science, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, UK
| | - Jay T Stock
- Department of Anthropology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Lasisi T, Smallcombe JW, Kenney WL, Shriver MD, Zydney B, Jablonski NG, Havenith G. Human scalp hair as a thermoregulatory adaptation. Proc Natl Acad Sci U S A 2023; 120:e2301760120. [PMID: 37279270 PMCID: PMC10268308 DOI: 10.1073/pnas.2301760120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Humans are unique among mammals in having a functionally naked body with a hair-covered scalp. Scalp hair is exceptionally variable across populations within Homo sapiens. Neither the function of human scalp hair nor the consequences of variation in its morphology have been studied within an evolutionary framework. A thermoregulatory role for human scalp hair has been previously suggested. Here, we present experimental evidence on the potential evolutionary function of human scalp hair and variation in its morphology. Using a thermal manikin and human hair wigs at different wind speeds in a temperature and humidity-controlled environment, with and without simulated solar radiation, we collected data on the convective, radiative, and evaporative heat fluxes to and from the scalp in relation to properties of a range of hair morphologies, as well as a naked scalp. We find evidence for a significant reduction in solar radiation influx to the scalp in the presence of hair. Maximal evaporative heat loss potential from the scalp is reduced by the presence of hair, but the amount of sweat required on the scalp to balance the incoming solar heat (i.e., zero heat gain) is reduced in the presence of hair. Particularly, we find that hair that is more tightly curled offers increased protection against heat gain from solar radiation.
Collapse
Affiliation(s)
- Tina Lasisi
- Department of Anthropology, The Pennsylvania State University, University Park, PA16802
- Department of Quantitative & Computational Biology, University of Southern California, Los Angeles, CA90089
| | - James W. Smallcombe
- Environmental Ergonomics Research Centre, Loughborough University, LoughboroughLE11 3TT, UK
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney2006, Australia
| | - W. Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, PA16802
| | - Mark D. Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, PA16802
| | - Benjamin Zydney
- Department of Anthropology, The Pennsylvania State University, University Park, PA16802
| | - Nina G. Jablonski
- Department of Anthropology, The Pennsylvania State University, University Park, PA16802
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, LoughboroughLE11 3TT, UK
| |
Collapse
|
5
|
Longman DP, Dolan E, Wells JCK, Stock JT. Patterns of energy allocation during energetic scarcity; evolutionary insights from ultra-endurance events. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111422. [PMID: 37031854 DOI: 10.1016/j.cbpa.2023.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Exercise physiologists and evolutionary biologists share a research interest in determining patterns of energy allocation during times of acute or chronic energetic scarcity.. Within sport and exercise science, this information has important implications for athlete health and performance. For evolutionary biologists, this would shed new light on our adaptive capabilities as a phenotypically plastic species. In recent years, evolutionary biologists have begun recruiting athletes as study participants and using contemporary sports as a model for studying evolution. This approach, known as human athletic palaeobiology, has identified ultra-endurance events as a valuable experimental model to investigate patterns of energy allocation during conditions of elevated energy demand, which are generally accompanied by an energy deficit. This energetic stress provokes detectable functional trade-offs in energy allocation between physiological processes. Early results from this modelsuggest thatlimited resources are preferentially allocated to processes which could be considered to confer the greatest immediate survival advantage (including immune and cognitive function). This aligns with evolutionary perspectives regarding energetic trade-offs during periods of acute and chronic energetic scarcity. Here, we discuss energy allocation patterns during periods of energetic stress as an area of shared interest between exercise physiology and evolutionary biology. We propose that, by addressing the ultimate "why" questions, namely why certain traits were selected for during the human evolutionary journey, an evolutionary perspective can complement the exercise physiology literature and provide a deeper insight of the reasons underpinning the body's physiological response to conditions of energetic stress.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3QG, United Kingdom; Department of Anthropology, University of Western Ontario, Ontario, Canada
| |
Collapse
|
6
|
Pestana C, de Sousa AA, Todorov OS, Beaudet A, Benoit J. Evolutionary history of hominin brain size and phylogenetic comparative methods. PROGRESS IN BRAIN RESEARCH 2023; 275:217-232. [PMID: 36841569 DOI: 10.1016/bs.pbr.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.
Collapse
Affiliation(s)
- Christopher Pestana
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Benoit
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Diet, Polyphenols, and Human Evolution. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although diet has contributed significantly to the evolution of human beings, the composition of the diet that has most affected this phenomenon is still an open issue. Diet has undoubtedly participated in the acquisition of the skills that underlie the differentiation of humans from other animal species and in this context the development of the nervous system has played a primary role. This paper aimed to: (1) outline the relationship between diet and human evolution; (2) evaluate how a variation in food consumption may have contributed to the enhancement of cognitive and adaptive capacities. The most widespread diet among the ancient populations that showed the highest levels of civilization (that is well-organized societies, using advanced technical tools, and promoting art and science) was very close to what is now defined as the Mediterranean diet. This suggests that a dietary approach typical of the Mediterranean basin (little meat and some fish; abundant cereals, legumes, fruit, vegetables and wine) significantly increased the intake of antioxidant molecules, including polyphenols, which along with other factors may have modulated the cognitive evolution of humans.
Collapse
|
8
|
Lu C, Lefeuvre M, Rutkowska J. Variability in ambient temperature promotes juvenile participation and shorter latency in a learning test in zebra finches. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Seasonality and Oldowan behavioral variability in East Africa. J Hum Evol 2021; 164:103070. [PMID: 34548178 DOI: 10.1016/j.jhevol.2021.103070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The extent, nature, and temporality of early hominin food procurement strategies have been subject to extensive debate. In this article, we examine evidence for the seasonal scheduling of resource procurement and technological investment in the Oldowan, starting with an evaluation of the seasonal signature of underground storage organs, freshwater resources, and terrestrial animal resources in extant primates and modern human hunter-gatherer populations. Subsequently, we use the mortality profiles, taxonomic composition, and taphonomy of the bovid assemblages at Kanjera South (Homa Peninsula, Kenya) and FLK-Zinj (Olduvai Gorge, Tanzania) to illustrate the behavioral flexibility of Oldowan hominins, who were targeting different seasonally vulnerable demographics. In terms of the lithic assemblages, the specific opportunities and constraints afforded by dry season subsistence at FLK-Zinj may have disincentivized lithic investment, resulting in a more expedient toolkit for fast and effective carcass processing. This may have been reinforced by raw material site provisioning during a relatively prolonged seasonal occupation, reducing pressures on the reduction and curation of lithic implements. In contrast, wet season plant abundance would have offered a predictable set of high-quality resources associated with low levels of competition and reduced search times, in the context of perhaps greater seasonal mobility and consequently shorter occupations. These factors appear to have fostered technological investment to reduce resource handling costs at Kanjera South, facilitated by more consistent net returns and enhanced planning of lithic deployment throughout the landscape. We subsequently discuss the seasonality of freshwater resources in Oldowan procurement strategies, focusing on FwJj20 (Koobi Fora, Kenya). Although more analytical studies with representative sample sizes are needed, we argue that interassemblage differences evidence the ability of Oldowan hominins to adapt to seasonal constraints and opportunities in resource exploitation.
Collapse
|
10
|
Evans LJ, Smith KE, Raine NE. Odour Learning Bees Have Longer Foraging Careers Than Non-learners in a Natural Environment. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individual animals allowed the opportunity to learn generally outperform those prevented from learning, yet, within a species the capacity for learning varies markedly. The evolutionary processes that maintain this variation in learning ability are not yet well understood. Several studies demonstrate links between fitness traits and visual learning, but the selection pressures operating on cognitive traits are likely influenced by multiple sensory modalities. In addition to vision, most animals will use a combination of hearing, olfaction (smell), gustation (taste), and touch to gain information about their environment. Some animals demonstrate individual preference for, or enhanced learning performance using certain senses in relation to particular aspects of their behaviour (e.g., foraging), whereas conspecific individuals may show different preferences. By assessing fitness traits in relation to different sensory modalities we will strengthen our understanding of factors driving observed variation in learning ability. We assessed the relationship between the olfactory learning ability of bumble bees (Bombus terrestris) and their foraging performance in their natural environment. We found that bees which failed to learn this odour-reward association had shorter foraging careers; foraging for fewer days and thus provisioning their colonies with fewer resources. This was not due to a reduced propensity to forage, but may have been due to a reduced ability to return to their colony. When comparing among only individuals that did learn, we found that the rate at which floral resources were collected was similar, regardless of how they performed in the olfactory learning task. Our results demonstrate that an ability to learn olfactory cues can have a positive impact of the foraging performance of B. terrestris in a natural environment, but echo findings of earlier studies on visual learning, which suggest that enhanced learning is not necessarily beneficial for bee foragers provisioning their colony.
Collapse
|
11
|
Covariation of fetal skull and maternal pelvis during the perinatal period in rhesus macaques and evolution of childbirth in primates. Proc Natl Acad Sci U S A 2020; 117:21251-21257. [PMID: 32817513 DOI: 10.1073/pnas.2002112117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A large brain combined with an upright posture in humans has resulted in a high cephalopelvic proportion and frequently obstructed labor. Fischer and Mitteroecker [B. Fischer, P. Mitteroecker, Proc. Natl. Acad. Sci. U.S.A. 112, 5655-5660 (2015)] proposed that the morphological covariations between the skull and pelvis could have evolved to ameliorate obstructed labor in humans. The availability of quantitative data of such covariation, especially of the fetal skull and maternal pelvis, however, is still scarce. Here, we present direct evidence of morphological covariations between the skull and pelvis using actual mother-fetus dyads during the perinatal period of Macaca mulatta, a species that exhibits cephalopelvic proportions comparable to modern humans. We analyzed the covariation of the three-dimensional morphology of the fetal skull and maternal pelvis using computed tomography-based models. The covariation was mostly observed at the pelvic locations related to the birth canal, and the forms of the birth canal and fetal skull covary in such a way that reduces obstetric difficulties. Therefore, cephalopelvic covariation could have evolved not only in humans, but also in other primate taxa in parallel, or it could have evolved already in the early catarrhines.
Collapse
|
12
|
Longman DP, Wells JCK, Stock JT. Human athletic paleobiology; using sport as a model to investigate human evolutionary adaptation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:42-59. [PMID: 31957878 PMCID: PMC7217212 DOI: 10.1002/ajpa.23992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 11/11/2022]
Abstract
The use of sport as a conceptual framework offers unprecedented opportunities to improve our understanding of what the body does, shedding new light on our evolutionary trajectory, our capacity for adaptation, and the underlying biological mechanisms. This approach has gained traction over recent years. To date, sport has facilitated exploration not only of the evolutionary history of our species as a whole, but also of human variation and adaptation at the interindividual and intraindividual levels. At the species level, analysis of lower and upper limb biomechanics and energetics with respect to walking, running and throwing have led to significant advances in the understanding of human adaptations relative to other hominins. From an interindividual perspective, investigation of physical activity patterns and endurance running performance is affording greater understanding of evolved constraints of energy expenditure, thermoregulatory energetics, signaling theory, and morphological variation. Furthermore, ultra-endurance challenges provoke functional trade-offs, allowing new ground to be broken in the study of life history trade-offs and human adaptability. Human athletic paleobiology-the recruitment of athletes as study participants and the use of contemporary sports as a model for studying evolutionary theory-has great potential. Here, we draw from examples in the literature to provide a review of how the use of athletes as a model system is enhancing understanding of human evolutionary adaptation.
Collapse
Affiliation(s)
- Daniel P. Longman
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | | | - Jay T. Stock
- Department of AnthropologyUniversity of Western OntarioLondonOntarioCanada
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
- Department of ArchaeologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
13
|
Swedell L, Plummer T. Social evolution in Plio-Pleistocene hominins: Insights from hamadryas baboons and paleoecology. J Hum Evol 2019; 137:102667. [PMID: 31629289 DOI: 10.1016/j.jhevol.2019.102667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
Abstract
Reconstructions of hominin evolution have long benefited from comparisons with nonhuman primates, especially baboons and chimpanzees. The hamadryas baboon (Papio hamadryas) is arguably one of the best such models, as it exhibits both the male kin bonding and the cross-sex pair bonding thought to have been important in hominin evolution. Here we link processes of behavioral evolution in hamadryas baboons with those in a Plio-Pleistocene hominin, provisionally identified as Homo erectus (sensu lato) - a pivotal species in that its larger body and brain size and wider ranging patterns increased female costs of reproduction, increasing the importance of sociality. The combination of these higher costs of reproduction and shifts in diet and food acquisition have previously been argued to have been alleviated either via strengthening of male-female bonds (involving male provisioning and the evolution of monogamy) or via the assistance of older, post-reproductive females (leading to post-reproductive longevity in females, i.e., the grandmother hypothesis). We suggest that both arrangements could have been present in Plio-Pleistocene hominins if they lived in multilevel societies. Here we expand on our earlier scenario with two sets of recent data in support of it, (1) archaeological data from the 2 million year old Oldowan site of Kanjera South, Kenya and other sites that are suggestive of tool dependent foraging on nutrient dense resources (animal carcasses and plant underground storage organs), cooperation, and food sharing; and (2) a pattern of genetic variation in hamadryas baboons that suggests the operation of kin selection among both males and females at multiple levels of society. Taken together, these two sets of data strengthen our model and support the idea of a complex society linked by male-male, male-female, and female-female bonds at multiple levels of social organization in Plio-Pleistocene hominins.
Collapse
Affiliation(s)
- Larissa Swedell
- Dept of Anthropology, Queens College, City University of New York, Flushing, NY 11367-1597, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Anthropology Program, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA; Biology and Psychology Programs, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA; Dept of Archaeology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Thomas Plummer
- Dept of Anthropology, Queens College, City University of New York, Flushing, NY 11367-1597, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Anthropology Program, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
14
|
Buodo G, Rumiati R, Lotto L, Sarlo M. Does food-drink pairings affect appetitive processing of food cues with different rewarding properties? Evidence from subjective, behavioral, and neural measures. Food Qual Prefer 2019. [DOI: 10.1016/j.foodqual.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Abstract
We propose that variation in brain energy expenditure during childhood is an unexplored but important influence on obesity risk. This hypothesis is supported by evidence that the energy required by the developing brain decreases in later childhood as the rate of body weight gain is increasing. The hypothesis is further supported by findings of genetic and brain imaging research indicating a trade-off between the body mass index (BMI) and the volume of cortical and subcortical structures, and inverse associations between BMI and energetically costly executive cognitive functions. Efforts to quantify variability in brain energy use across children could inspire new educational strategies that increase brain energy demands and thereby reduce obesity risk. The causes of obesity are complex and multifactorial. We propose that one unconsidered but likely important factor is the energetic demand of brain development, which could constrain energy available for body growth and other functions, including fat deposition. Humans are leanest during early childhood and regain body fat in later childhood. Children reaching this adiposity rebound (AR) early are at risk for adult obesity. In aggregate data, the developing brain consumes a lifetime peak of 66% of resting energy expenditure in the years preceding the AR, and brain energy use is inversely related to body weight gain from infancy until puberty. Building on this finding, we hypothesize that individual variation in childhood brain energy expenditure will help explain variation in the timing of the AR and subsequent obesity risk. The idea that brain energetics constrain fat deposition is consistent with evidence that genes that elevate BMI are expressed in the brain and mediate a trade-off between the size of brain structures and BMI. Variability in energy expended on brain development and function could also help explain widely documented inverse relationships between the BMI and cognitive abilities. We estimate that variability in brain energetics could explain the weight differential separating children at the 50th and 70th BMI-for-age centiles immediately before the AR. Our model proposes a role for brain energetics as a driver of variation within a population’s BMI distribution and suggests that educational interventions that boost global brain energy use during childhood could help reduce the burden of obesity.
Collapse
|
16
|
Louail M, Gilissen E, Prat S, Garcia C, Bouret S. Refining the ecological brain: Strong relation between the ventromedial prefrontal cortex and feeding ecology in five primate species. Cortex 2019; 118:262-274. [PMID: 31030897 DOI: 10.1016/j.cortex.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023]
Abstract
To survive in complex and seasonal environments, primates are thought to rely upon cognitive capacities such as decision-making and episodic memory, which enable them to plan their daily foraging path. According to the Ecological Brain hypothesis, feeding ecology has driven the expansion of the brain to support the corresponding development of cognitive skills. Recent works in cognitive neurosciences indicate that cognitive operations such as decision-making or subjective evaluation (which are contextual and dependent upon episodic memory), relied critically upon a small part of the frontal lobe, often referred to as the ventromedial prefrontal cortex (VMPFC). Several authors suggested that this area might be important for foraging, but this has never been tested. In the present study, we quantified the relation between the size of the VMPFC (along with other cerebral measures: the whole brain, the gyrus rectus and the somatosensory cortex) and key socio-ecological variables in five primate species (Macaca mulatta, Macaca fuscata, Gorilla gorilla, Pan troglodytes and Homo sapiens). We hypothesized that the size of the VMPFC would be greater in primates with a large dietary spectrum and complex foraging strategies. We also hypothesized that the impact of feeding ecology would be stronger on this specific region than on other regions (somatosensory cortex) or on more global cerebral measures (e.g., whole brain). In line with these hypotheses, we found that all cerebral measures were more strongly related to feeding ecology than group size, a proxy for social complexity. As expected, the VMPFC volume is more precisely related to feeding ecology than the whole brain, and appears to be critically related to dietary quality. Thus, combining a comparative approach with predictions coming both from behavioral ecology and cognitive neurosciences, our study provides evidence that feeding ecology played a key role in the development of specific cognitive skills, which rely upon the expansion of a specific cortical area.
Collapse
Affiliation(s)
- Margot Louail
- Team Motivation Brain & Behavior, ICM - Institut du Cerveau et de la Moelle épinière, CNRS UMR 7225 - INSERM U1127 - UPMC UMR S 1127, Hôpital Pitié-Salpêtrière, Paris, France; UMR 7194 (HNHP), MNHN/CNRS/UPVD, Alliance Sorbonne Université, Musée de l'Homme, Paris, France
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium; Université Libre de Bruxelles, Laboratory of Histology and Neuropathology, Brussels, Belgium
| | - Sandrine Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Alliance Sorbonne Université, Musée de l'Homme, Paris, France
| | - Cécile Garcia
- UMR 7206 Eco-anthropologie et Ethnobiologie, CNRS - MNHN - Paris Diderot, Alliance Sorbonne Université, Musée de l'Homme, Paris, France
| | - Sébastien Bouret
- Team Motivation Brain & Behavior, ICM - Institut du Cerveau et de la Moelle épinière, CNRS UMR 7225 - INSERM U1127 - UPMC UMR S 1127, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
17
|
Harrington AR, Kuzawa CW, Boyer DM. Carotid foramen size in the human skull tracks developmental changes in cerebral blood flow and brain metabolism. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:161-169. [PMID: 30821356 DOI: 10.1002/ajpa.23809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVES In humans, neuronal processes related to brain development elevate the metabolic rate of brain tissue relative to the body during early childhood. This phenomenon has been hypothesized to contribute to slow somatic growth in preadolescent Homo sapiens. The uncoupling of the brain's metabolic rate from brain size during development complicates the study of the evolutionary emergence of these traits in the fossil record. Here, we extend a method previously developed to predict interspecific differences in cerebral blood flow (a correlate of cerebral glucose use) to predict ontogenetic changes in human brain metabolism. MATERIALS AND METHODS Radii of the carotid foramen from an ontogenetic series of modern human crania were used to predict blood flow rates through the internal carotid arteries (ICA), which were compared to empirically measured ICA flow and brain metabolism values. RESULTS Predictions of both absolute ICA blood flow rates and perfusion (ICA blood flow rates relative to brain size) generally match measured values in infancy and childhood. Maximum predicted ICA blood flow rates and perfusion were found to occur between ages 5 and 8, which roughly correspond to the age of maximum measured ICA blood flow rate and absolute and brain mass-specific rate of whole brain glucose uptake. DISCUSSION These findings suggest that, during human growth and development, the size of the carotid foramen corresponds well to blood flow requirements through the ICA, and the method tested here may provide new opportunities for studying developmental changes in brain metabolism using osteological samples, including fossil hominins.
Collapse
Affiliation(s)
- Arianna R Harrington
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | | | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Ziomkiewicz A, Wichary S, Jasienska G. Cognitive costs of reproduction: life-history trade-offs explain cognitive decline during pregnancy in women. Biol Rev Camb Philos Soc 2018; 94:1105-1115. [PMID: 30588733 DOI: 10.1111/brv.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022]
Abstract
Life-history theory predicts that access to limited resources leads to trade-offs between competing body functions. Women, who face higher costs of reproduction when compared to men, should be especially vulnerable to these trade-offs. We propose the 'cognitive costs of reproduction hypothesis', which states that energy trade-offs imposed by reproduction may lead to a decline in maternal cognitive function during gestation. In particular, we hypothesize that the decline in cognitive function frequently observed during pregnancy is associated with the allocation of resources between the competing energetic requirements of the mother's brain and the developing foetus. Several distinctive anatomical and physiological features including a high metabolic rate of the brain, large infant size, specific anatomical features of the placenta and trophoblast, and the lack of maternal control over glucose flow through the placenta make the occurrence of these trade-offs likely. Herein, we review several lines of evidence for trade-offs between gestation and cognition that are related to: (i) energy metabolism during reproduction; (ii) energy metabolism of the human brain; (iii) links between energy metabolism and cognitive function; and (iv) links between gestation and cognitive function. We also review evidence for the important roles of cortisol, corticotropin-releasing hormone and sex hormones in mediating the effects of gestation on cognition, and we discuss possible neurophysiological mechanisms underlying the observed effects. The evidence supports the view that energy trade-offs between foetal growth and maternal endocrine and brain function lead to changes in maternal cognition, and that this phenomenon is mediated by neuroendocrine mechanisms involving the hypothalamic-pituitary-adrenal axis, brainstem nucleus locus coeruleus and hippocampus.
Collapse
Affiliation(s)
- Anna Ziomkiewicz
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 50-449, Poland
| | - Szymon Wichary
- Department of Psychophysiology of Cognitive Processes, SWPS University of Social Sciences and Humanities, Warsaw 03-815, Poland.,Department of Cognitive Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden 2333AK, The Netherlands
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow 31-531, Poland
| |
Collapse
|
19
|
Muthukrishna M, Doebeli M, Chudek M, Henrich J. The Cultural Brain Hypothesis: How culture drives brain expansion, sociality, and life history. PLoS Comput Biol 2018; 14:e1006504. [PMID: 30408028 PMCID: PMC6224031 DOI: 10.1371/journal.pcbi.1006504] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
In the last few million years, the hominin brain more than tripled in size. Comparisons across evolutionary lineages suggest that this expansion may be part of a broader trend toward larger, more complex brains in many taxa. Efforts to understand the evolutionary forces driving brain expansion have focused on climatic, ecological, and social factors. Here, building on existing research on learning, we analytically and computationally model the predictions of two closely related hypotheses: The Cultural Brain Hypothesis and the Cumulative Cultural Brain Hypothesis. The Cultural Brain Hypothesis posits that brains have been selected for their ability to store and manage information, acquired through asocial or social learning. The model of the Cultural Brain Hypothesis reveals relationships between brain size, group size, innovation, social learning, mating structures, and the length of the juvenile period that are supported by the existing empirical literature. From this model, we derive a set of predictions-the Cumulative Cultural Brain Hypothesis-for the conditions that favor an autocatalytic take-off characteristic of human evolution. This narrow evolutionary pathway, created by cumulative cultural evolution, may help explain the rapid expansion of human brains and other aspects of our species' life history and psychology.
Collapse
Affiliation(s)
- Michael Muthukrishna
- Department of Psychological and Behavioural Science, London School of Economics and Political Science, London, United Kingdom
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael Doebeli
- Department of Zoology / Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maciej Chudek
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
20
|
Samuni L, Preis A, Deschner T, Crockford C, Wittig RM. Reward of labor coordination and hunting success in wild chimpanzees. Commun Biol 2018; 1:138. [PMID: 30272017 PMCID: PMC6131550 DOI: 10.1038/s42003-018-0142-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022] Open
Abstract
Cooperative hunting and meat sharing are hypothesized as fundamental to human life history adaptations and biological success. Wild chimpanzees also hunt in groups, and despite the potential of inferring ancestral hominid adaptations, it remains unclear whether chimpanzee hunting is a cooperative act. Here we show support for cooperative acquisition in wild chimpanzees since hunters are more likely to receive meat than bystanders, independent of begging effort. Engagement in prey searches and higher hunt participation independently increase hunting success, suggesting that coordination may improve motivation in joint tasks. We also find higher levels of urinary oxytocin after hunts and prey searches compared with controls. We conclude that chimpanzee hunting is cooperative, likely facilitated by behavioral and neuroendocrine mechanisms of coordination and reward. If group hunting has shaped humans' life history traits, perhaps similar pressures acted upon life history patterns in the last common ancestor of human and chimpanzee.
Collapse
Affiliation(s)
- Liran Samuni
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany. .,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1303, Abidjan, 01, Côte d'Ivoire.
| | - Anna Preis
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1303, Abidjan, 01, Côte d'Ivoire
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1303, Abidjan, 01, Côte d'Ivoire
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1303, Abidjan, 01, Côte d'Ivoire
| |
Collapse
|
21
|
Longman D, Stock JT, Wells JCK. A trade-off between cognitive and physical performance, with relative preservation of brain function. Sci Rep 2017; 7:13709. [PMID: 29057922 PMCID: PMC5651807 DOI: 10.1038/s41598-017-14186-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Debate surrounds the issue of how the large, metabolically expensive brains of Homo sapiens can be energetically afforded. At the evolutionary level, decreased investment in muscularity, adiposity and the digestive tract allow for a larger brain. Developmentally, high neo-natal adiposity and preferential distribution of resources to the brain provide an energetic buffer during times of environmental stress. Through an experimental design, we investigated the hypothesis of a trade-off involving brain and muscle at the acute level in humans. Mental performance was measured by a free-recall test, and physical performance by power output on an indoor rowing ergometer. Sixty-two male student rowers performed the two tests in isolation, and then again simultaneously. Paired samples t-tests revealed that both power output and mental performance reduced when tested together compared to in isolation (t(61) = 9.699, p < 0.001 and t(61) = 8.975, p < 0.001). Furthermore, the decrease in physical performance was greater than the decrease in mental performance (t(61) = -2.069, p = 0.043). This is the first investigation to demonstrate an acute level trade-off between these two functions, and provides support for the selfish brain hypothesis due to the relative preservation of cognitive function over physical power output. The underlying mechanism is unclear, and requires further work.
Collapse
Affiliation(s)
- Daniel Longman
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK.
| | - Jay T Stock
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK
- Department of Anthropology, University of Western Ontario, Ontario, Canada
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|
22
|
Shirley MK, Cole TJ, Charoensiriwath S, Treleaven P, Wells JC. Differential investment in body girths by sex: Evidence from 3D photonic scanning in a Thai cohort. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:696-706. [DOI: 10.1002/ajpa.23238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 03/21/2017] [Accepted: 04/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Meghan K. Shirley
- UCL Great Ormond Street Institute of Child Health; London WC1N 1EH United Kingdom
| | - Tim J. Cole
- UCL Great Ormond Street Institute of Child Health; London WC1N 1EH United Kingdom
| | | | - Philip Treleaven
- UCL Great Ormond Street Institute of Child Health; London WC1N 1EH United Kingdom
| | - Jonathan C.K. Wells
- UCL Great Ormond Street Institute of Child Health; London WC1N 1EH United Kingdom
| |
Collapse
|
23
|
Evans LJ, Smith KE, Raine NE. Fast learning in free-foraging bumble bees is negatively correlated with lifetime resource collection. Sci Rep 2017; 7:496. [PMID: 28356567 PMCID: PMC5428240 DOI: 10.1038/s41598-017-00389-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 11/09/2022] Open
Abstract
Despite widespread interest in the potential adaptive value of individual differences in cognition, few studies have attempted to address the question of how variation in learning and memory impacts their performance in natural environments. Using a novel split-colony experimental design we evaluated visual learning performance of foraging naïve bumble bees (Bombus terrestris) in an ecologically relevant associative learning task under controlled laboratory conditions, before monitoring the lifetime foraging performance of the same individual bees in the field. We found appreciable variation among the 85 workers tested in both their learning and foraging performance, which was not predicted by colony membership. However, rather than finding that foragers benefited from enhanced learning performance, we found that fast and slow learners collected food at comparable rates and completed a similar number of foraging bouts per day in the field. Furthermore, bees with better learning abilities foraged for fewer days; suggesting a cost of enhanced learning performance in the wild. As a result, slower learning individuals collected more resources for their colony over the course of their foraging career. These results demonstrate that enhanced cognitive traits are not necessarily beneficial to the foraging performance of individuals or colonies in all environments.
Collapse
Affiliation(s)
- Lisa J Evans
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
- The New Zealand Institute for Plant and Food Research, Hamilton, 3240, New Zealand.
| | - Karen E Smith
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Nigel E Raine
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
24
|
Cairó O. Assessing Relevance of External Cognitive Measures. Front Integr Neurosci 2017; 11:3. [PMID: 28270753 PMCID: PMC5319308 DOI: 10.3389/fnint.2017.00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
The arrival of modern brain imaging technologies has provided new opportunities for examining the biological essence of human intelligence as well as the relationship between brain size and cognition. Thanks to these advances, we can now state that the relationship between brain size and intelligence has never been well understood. This view is supported by findings showing that cognition is correlated more with brain tissues than sheer brain size. The complexity of cellular and molecular organization of neural connections actually determines the computational capacity of the brain. In this review article, we determine that while genotypes are responsible for defining the theoretical limits of intelligence, what is primarily responsible for determining whether those limits are reached or exceeded is experience (environmental influence). Therefore, we contend that the gene-environment interplay defines the intelligent quotient of an individual.
Collapse
Affiliation(s)
- Osvaldo Cairó
- Department of Computer Science, Instituto Tecnológico Autónomo de México (ITAM) Mexico City, Mexico
| |
Collapse
|
25
|
Tsuboi M, Husby A, Kotrschal A, Hayward A, Buechel SD, Zidar J, Løvlie H, Kolm N. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution 2014; 69:190-200. [PMID: 25346264 PMCID: PMC4312921 DOI: 10.1111/evo.12556] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023]
Abstract
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates.
Collapse
Affiliation(s)
- Masahito Tsuboi
- Evolutionary Biology Centre, Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bauernfeind AL, Babbitt CC. The appropriation of glucose through primate neurodevelopment. J Hum Evol 2014; 77:132-40. [DOI: 10.1016/j.jhevol.2014.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/22/2014] [Accepted: 05/02/2014] [Indexed: 12/25/2022]
|
27
|
Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, Wildman DE, Sherwood CC, Leonard WR, Lange N. Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci U S A 2014; 111:13010-5. [PMID: 25157149 PMCID: PMC4246958 DOI: 10.1073/pnas.1323099111] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.
Collapse
Affiliation(s)
- Christopher W Kuzawa
- Department of Anthropology, Institute for Policy Research, Northwestern University, Evanston, IL 60208;
| | - Harry T Chugani
- Positron Emission Tomography Center, Children's Hospital of Michigan, Detroit, MI 48201; Department of Pediatrics, Department of Neurology, and
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Leonard Lipovich
- Department of Neurology, and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | | | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Derek E Wildman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; Institute of Genomic Biology, Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052; and
| | | | - Nicholas Lange
- Department of Psychiatry and Department of Biostatistics, Harvard University and McLean Hospital, Cambridge, MA 02138
| |
Collapse
|
28
|
The natural science underlying big history. ScientificWorldJournal 2014; 2014:384912. [PMID: 25032228 PMCID: PMC4086236 DOI: 10.1155/2014/384912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/03/2022] Open
Abstract
Nature's many varied complex systems—including galaxies, stars, planets, life, and society—are islands of order within the increasingly disordered Universe. All organized systems are subject to physical, biological, or cultural evolution, which together comprise the grander interdisciplinary subject of cosmic evolution. A wealth of observational data supports the hypothesis that increasingly complex systems evolve unceasingly, uncaringly, and unpredictably from big bang to humankind. These are global history greatly extended, big history with a scientific basis, and natural history broadly portrayed across ∼14 billion years of time. Human beings and our cultural inventions are not special, unique, or apart from Nature; rather, we are an integral part of a universal evolutionary process connecting all such complex systems throughout space and time. Such evolution writ large has significant potential to unify the natural sciences into a holistic understanding of who we are and whence we came. No new science (beyond frontier, nonequilibrium thermodynamics) is needed to describe cosmic evolution's major milestones at a deep and empirical level. Quantitative models and experimental tests imply that a remarkable simplicity underlies the emergence and growth of complexity for a wide spectrum of known and diverse systems. Energy is a principal facilitator of the rising complexity of ordered systems within the expanding Universe; energy flows are as central to life and society as they are to stars and galaxies. In particular, energy rate density—contrasting with information content or entropy production—is an objective metric suitable to gauge relative degrees of complexity among a hierarchy of widely assorted systems observed throughout the material Universe. Operationally, those systems capable of utilizing optimum amounts of energy tend to survive, and those that cannot are nonrandomly eliminated.
Collapse
|
29
|
Duka T, Anderson SM, Collins Z, Raghanti MA, Ely JJ, Hof PR, Wildman DE, Goodman M, Grossman LI, Sherwood CC. Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:216-30. [PMID: 24686273 PMCID: PMC4096905 DOI: 10.1159/000358581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023]
Abstract
With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement.
Collapse
Affiliation(s)
- Tetyana Duka
- Department of Anthropology, The George Washington University, Washington, DC
| | - Sarah M. Anderson
- Department of Anthropology, The George Washington University, Washington, DC
| | - Zachary Collins
- Department of Anthropology, The George Washington University, Washington, DC
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - John J. Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Derek E. Wildman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| |
Collapse
|
30
|
Jiménez-Arenas JM, Pérez-Claros JA, Aledo JC, Palmqvist P. On the relationships of postcanine tooth size with dietary quality and brain volume in primates: implications for hominin evolution. BIOMED RESEARCH INTERNATIONAL 2014; 2014:406507. [PMID: 24592388 PMCID: PMC3925621 DOI: 10.1155/2014/406507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/17/2022]
Abstract
Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.
Collapse
Affiliation(s)
- Juan Manuel Jiménez-Arenas
- Departamento de Prehistoria y Arqueología, Facultad de Filosofía y Letras, Campus de Cartuja S/N, 18071 Granada, Spain ; Edificio Centro de Documentación Científica, Instituto Universitario de la Paz y los Conflictos, Universidad de Granada, C/Rector López Argüeta, 10871 Granada, Spain ; Anthropological Institute & Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Juan Antonio Pérez-Claros
- Departamento de Ecología y Geología (Área de Paleontología), Facultad de Ciencias, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Paul Palmqvist
- Departamento de Ecología y Geología (Área de Paleontología), Facultad de Ciencias, Campus Universitario de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
31
|
Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct 2013; 219:1149-67. [DOI: 10.1007/s00429-013-0662-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
|
32
|
|
33
|
Dittus WPJ. Arboreal adaptations of body fat in wild toque macaques (Macaca sinica) and the evolution of adiposity in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 152:333-44. [PMID: 24022522 DOI: 10.1002/ajpa.22351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
Abstract
There is a paucity of information on body composition and fat patterning in wild nonhuman primates. Dissected adipose tissue from wild toque macaques (Macaca sinica) (WTM), feeding on a natural diet, accounted for 2.1% of body weight. This was far less than fatness reported for nonhuman primates raised in captivity or for contemporary humans. In WTM, fatness increased with age and diet richness, but did not differ by sex. In WTM (none of which were obese) intra-abdominal fat filled first, and "excess" fat was stored peripherally in a ratio of about 6:1. Intermuscular fat was minimal (0.1%). The superficial paunch held <15% of subcutaneous fat weight in contrast to its much larger proportions in obese humans and captive monkeys where most added fat accumulates subcutaneously. With increasing total adiposity, accumulating fat shifted in its distribution among eight different main internal and peripheral deposit areas-consistent with maintaining body balance and a low center of gravity. The available data suggest that, in arboreal primates, adaptations for agile locomotion and terminal branch feeding set constraints on the quantity and distribution of fat. The absence of a higher percentage of body fat in females and neonates (as are typical of humans) suggests that arboreal adaptations preclude the development of fat-dependent, large-brained infants and the adipose-rich mothers needed to sustain them. The lifestyle and body composition of wild primates represent a more appropriate model for early human foragers than well-fed captive monkeys do.
Collapse
Affiliation(s)
- Wolfgang P J Dittus
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013-7012; National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| |
Collapse
|
34
|
Judaš M, Sedmak G, Kostović I. The significance of the subplate for evolution and developmental plasticity of the human brain. Front Hum Neurosci 2013; 7:423. [PMID: 23935575 PMCID: PMC3731572 DOI: 10.3389/fnhum.2013.00423] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/14/2013] [Indexed: 01/09/2023] Open
Abstract
The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate (RMR) in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter) probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates.
Collapse
Affiliation(s)
- Miloš Judaš
- Section of Developmental Neuroscience, Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine Zagreb, Croatia
| | | | | |
Collapse
|
35
|
Vinicius L, Mumby HS. Comparative analysis of animal growth: a primate continuum revealed by a new dimensionless growth rate coefficient. Evolution 2013; 67:1485-92. [PMID: 23617923 DOI: 10.1111/evo.12043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
Abstract
The comparative analysis of animal growth still awaits full integration into life-history studies, partially due to the difficulty of defining a comparable measure of growth rate across species. Using growth data from 50 primate species, we introduce a modified "general growth model" and a dimensionless growth rate coefficient β that controls for size scaling and phylogenetic effects in the distribution of growth rates. Our results contradict the prevailing idea that slow growth characterizes primates as a group: the observed range of β values shows that not all primates grow slowly, with galago species exhibiting growth rates similar or above the mammalian average, while other strepsirrhines and most New World monkeys show limited reduction in growth rates. Low growth rate characterizes apes and some papionines. Phylogenetic regressions reveal associations between β and life-history variables, providing tests for theories of primate growth evolution. We also show that primate slow growth is an exclusively postnatal phenomenon. Our study exemplifies how the dimensionless approach promotes the integration of growth rate data into comparative life-history analysis, and demonstrates its potential applicability to other cases of adaptive diversification of animal growth patterns.
Collapse
Affiliation(s)
- Lucio Vinicius
- Max Planck Institute for Demographic Research, Konrad-Zuse St. 1, 18057 Rostock, Germany.
| | | |
Collapse
|
36
|
Abstract
Adolescence is often associated with exploring boundaries, rapid growth, hormones and pimples. A stable feature of this turbulent age is that these young people are highly over-represented in the criminal justice system. Adolescents account for disproportionate proportion of police-recorded crimes, and this seems to be a cross-cultural phenomenon. Furthermore, disaffected young people often have limited routine access to healthy foods and make poor food choices. These people form a large proportion of the prison population and there are concerns that insufficient attention is paid to their health. Hence their diet tends to be poor compared with international standards of dietary adequacy, which typically are set to protect the heart but not for optimal brain function. Thus, it has been posited that a poor diet may be a modifiable causal factor in antisocial behaviours. We tested what happened to the behaviour of violent young adult prisoners (18-21years) when nutrients missing from their diets were reinstated. We used food supplements as an analogue of a better diet because it provided the possibility of a placebo control. On a random basis, where neither the volunteers, prison staff nor researchers in the prison knew who was getting which type, 231 volunteers were given either placebo or real capsules containing broadly the daily requirements of vitamins, minerals and essential fatty acids. The number of proven offences committed by each prisoner was monitored before and while taking supplements. The result was that those who received the extra nutrients committed significantly (26.3%) fewer offences compared with placebos. Those consuming real supplements for at least 2 weeks committed 37% fewer (highly statistically significant) of the most serious offences, such as violence. These findings have been replicated by the Dutch Ministry of Justice; their double-blind study reported a 48% difference between groups. If these studies are widely replicated - and they need to be - we may have a simple and humane means to help reduce and prevent a significant proportion of violence and antisocial behaviour. This should also work in the community, because it is not about where you eat but what you eat. Indeed, criminal justice systems are often over-represented with ethnic minorities, but providing a more nutritious diet is never going to be discriminatory to these young people. The only risk is better health.
Collapse
|
37
|
Mann N. Human evolution and diet: a modern conundrum of health versus meat consumption, or is it? ANIMAL PRODUCTION SCIENCE 2013. [DOI: 10.1071/an13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite negative press reports on the effect of meat and other animal-source foods (ASFs) on human health and a vocal minority who contend that humans evolved as vegetarians, scientific evidence contradicts these views. For several million years before the development of agriculture, our ancestors were heavily reliant on ASFs as a source of energy and critical substrates such as protein and long-chain omega-3 fatty acids. Numerous lines of evidence in the anthropological literature have confirmed this scenario. Studies on ASF composition and clinical trials on ASF consumption have provided clear evidence of a requirement for meat in the diet to provide nutrients essential to health, such as Vitamin B12, long-chain omega-3 fatty acids and bioavailable forms of iron and zinc. Other studies have demonstrated that lean ASFs have a role in cholesterol-lowering diets and are important for mental function. Finally, it is possible and desirable to produce meat of a lean nature that mimics the many healthy attributes of wild-game meats and, by emphasising pasture feeding over grain feeding, this can be achieved to a large extent in Australia.
Collapse
|
38
|
|
39
|
Abstract
Sex differences are intrinsically interesting, particularly in the brain. When sexually dimorphic structures mediate learning, and when such learning ability is necessary to compete for mates, then such differences are best understood within the framework of sexual selection. By categorizing recent studies of sex differences in the brain by their role in mate competition, theories of sexual selection can be used to predict and characterize the occurrence of dimorphisms among species with different mating systems.
Collapse
Affiliation(s)
- L F Jacobs
- Dept of Psychology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
|
41
|
van Noordwijk MA, Arora N, Willems EP, Dunkel LP, Amda RN, Mardianah N, Ackermann C, Krützen M, van Schaik CP. Female philopatry and its social benefits among Bornean orangutans. Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1330-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Hart BL. Behavioural defences in animals against pathogens and parasites: parallels with the pillars of medicine in humans. Philos Trans R Soc Lond B Biol Sci 2011; 366:3406-17. [PMID: 22042917 PMCID: PMC3189355 DOI: 10.1098/rstb.2011.0092] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
No other theme in animal biology seems to be more central than the concept of employing strategies to survive and successfully reproduce. In nature, controlling or avoiding pathogens and parasites is an essential fitness strategy because of the ever-present disease-causing organisms. The disease-control strategies discussed here are: physical avoidance and removal of pathogens and parasites; quarantine or peripheralization of conspecifics that could be carrying potential pathogens; herbal medicine, animal style, to prevent or treat an infection; potentiation of the immune system; and care of sick or injured group members. These strategies are seen as also encompassing the pillars of human medicine: (i) quarantine; (ii) immune-boosting vaccinations; (iii) use of medicinal products; and (iv) caring or nursing. In contrast to animals, in humans, the disease-control strategies have been consolidated into a consistent and extensive medical system. A hypothesis that explains some of this difference between animals and humans is that humans are sick more often than animals. This increase in sickness in humans leading to an extensive, cognitively driven medical system is attributed to an evolutionary dietary transition from mostly natural vegetation to a meat-based diet, with an increase in health-eroding free radicals and a dietary reduction of free-radical-scavenging antioxidants.
Collapse
Affiliation(s)
- Benjamin L Hart
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
43
|
Ben-Dor M, Gopher A, Hershkovitz I, Barkai R. Man the fat hunter: the demise of Homo erectus and the emergence of a new hominin lineage in the Middle Pleistocene (ca. 400 kyr) Levant. PLoS One 2011; 6:e28689. [PMID: 22174868 PMCID: PMC3235142 DOI: 10.1371/journal.pone.0028689] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/14/2011] [Indexed: 12/30/2022] Open
Abstract
The worldwide association of H. erectus with elephants is well documented and so is the preference of humans for fat as a source of energy. We show that rather than a matter of preference, H. erectus in the Levant was dependent on both elephants and fat for his survival. The disappearance of elephants from the Levant some 400 kyr ago coincides with the appearance of a new and innovative local cultural complex--the Levantine Acheulo-Yabrudian and, as is evident from teeth recently found in the Acheulo-Yabrudian 400-200 kyr site of Qesem Cave, the replacement of H. erectus by a new hominin. We employ a bio-energetic model to present a hypothesis that the disappearance of the elephants, which created a need to hunt an increased number of smaller and faster animals while maintaining an adequate fat content in the diet, was the evolutionary drive behind the emergence of the lighter, more agile, and cognitively capable hominins. Qesem Cave thus provides a rare opportunity to study the mechanisms that underlie the emergence of our post-erectus ancestors, the fat hunters.
Collapse
Affiliation(s)
- Miki Ben-Dor
- Institute of Archaeology, Tel Aviv University, Tel Aviv, Israel
| | - Avi Gopher
- Institute of Archaeology, Tel Aviv University, Tel Aviv, Israel
| | - Israel Hershkovitz
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Dan David Laboratory for the Search and Study of Modern Humans, Tel Aviv University, Tel Aviv, Israel
| | - Ran Barkai
- Institute of Archaeology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Abstract
The human brain is undoubtedly the most impressive, complex, and intricate organ that has evolved over time. It is also probably the least understood, and for that reason, the one that is currently attracting the most attention. In fact, the number of comparative analyses that focus on the evolution of brain size in Homo sapiens and other species has increased dramatically in recent years. In neuroscience, no other issue has generated so much interest and been the topic of so many heated debates as the difference in brain size between socially defined population groups, both its connotations and implications. For over a century, external measures of cognition have been related to intelligence. However, it is still unclear whether these measures actually correspond to cognitive abilities. In summary, this paper must be reviewed with this premise in mind.
Collapse
Affiliation(s)
- Osvaldo Cairό
- Department of Computer Science, Instituto Tecnolόgico Autόnomo de MéxicoMéxico DF, México
| |
Collapse
|
45
|
Lee PC. Growth and Investment in Hominin Life History Evolution: Patterns, Processes, and Outcomes. INT J PRIMATOL 2011. [DOI: 10.1007/s10764-011-9536-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P, Kusanovic JP, Balasubramaniam M, Chaiworapongsa T, Vaisbuch E, Espinoza J, Gotsch F, Goncalves LF, Lee W. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol 2011; 205:76.e1-10. [PMID: 21531373 PMCID: PMC3175283 DOI: 10.1016/j.ajog.2011.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/18/2011] [Accepted: 02/14/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The objective of this study was to quantify fetal cardiovascular parameters using spatiotemporal image correlation (STIC) and virtual organ computer-aided analysis (VOCAL). STUDY DESIGN A cross-sectional study was performed in normal pregnancies (19-42 weeks) to evaluate ventricular volume, stroke volume (SV), cardiac output (CO), and ejection fraction (EF). The CO was also expressed as a function of estimated fetal weight and biometric parameters. RESULTS The following results were found: (1) 184 STIC datasets; (2) with advancing gestation, ventricular volume, SV, CO, and adjusted CO increased, whereas EF decreased; (3) right ventricular (RV) volume was larger than the left ventricular (LV) volume in systole (0.50 vs 0.27 mL; P < .001) and diastole (1.20 vs 1.03 mL; P < .001); (4) there were no differences between the LV and RV in SV, CO, or adjusted CO; and (5) LV EF was greater than the RV EF (72.2 vs 62.4%; P < .001). CONCLUSION Normal fetal cardiovascular physiology is characterized by a larger RV volume and a greater LV EF, resulting in similar LV and RV SV and CO.
Collapse
Affiliation(s)
- Neil Hamill
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | | | - Pooja Mittal
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | | | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Jimmy Espinoza
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
| | - Luis F. Goncalves
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Wesley Lee
- William Beaumont Hospital, Royal Oak, Michigan, USA
| |
Collapse
|
47
|
Cray J, Kneib J, Vecchione L, Byron C, Cooper GM, Losee JE, Siegel MI, Hamrick MW, Sciote JJ, Mooney MP. Masticatory hypermuscularity is not related to reduced cranial volume in myostatin-knockout mice. Anat Rec (Hoboken) 2011; 294:1170-7. [PMID: 21618442 DOI: 10.1002/ar.21412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 03/03/2011] [Accepted: 04/18/2011] [Indexed: 12/19/2022]
Abstract
It has been suggested recently that masticatory muscle size reduction in humans resulted in greater encephalization through decreased compressive forces on the cranial vault. Following this logic, if masticatory muscle size were increased, then a reduction in brain growth should also occur. This study was designed to test this hypothesis using a myostatin (GDF-8) knockout mouse model. Myostatin is a negative regulator of skeletal muscle growth, and individuals lacking this gene show significant hypermuscularity. Sixty-two [32 wild-type (WT) and 30 GDF-8 -/- knockout], 1, 28, 56, and 180-day-old CD-1 mice were used. Body and masseter muscle weights were collected following dissection and standardized lateral and dorsoventral cephalographs were obtained. Cephalometric landmarks were identified on the radiographs and cranial volume was calculated. Mean differences were assessed using a two-way ANOVA. KO mice had significantly greater body and masseter weights beginning at 28 days compared with WT controls. No significant differences in cranial volumes were noted between KO and WT. Muscle weight was not significantly correlated with cranial volume in 1, 28, or 180-day-old mice. Muscle weights exhibited a positive correlation with cranial volume at 56 days. Results demonstrate that masticatory hypermuscularity is not associated with reduced cranial volume. In contrast, there is abundant data demonstrating the opposite, brain growth determines cranial vault growth and masticatory apparatus only affects ectocranial morphology. The results presented here do not support the hypothesis that a reduction in masticatory musculature relaxed compressive forces on the cranial vault allowing for greater encephalization.
Collapse
Affiliation(s)
- James Cray
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Pittsburgh, Pennsylvania 15201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Barrickman NL, Lin MJ. Encephalization, expensive tissues, and energetics: An examination of the relative costs of brain size in strepsirrhines. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 143:579-90. [PMID: 20623679 DOI: 10.1002/ajpa.21354] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of encephalization requires that energetic challenges be met. Several hypotheses, such as the maternal energy and expensive tissue hypotheses, have been proposed to explain how some species are able to provide adequate energetic resources for large brains. The former incorporates maternal investment strategies, such as extended life history and elevated resting metabolic rate, which contribute to the growth of a large brain. The latter incorporates the reduction of gut size, which increases available energy for the maintenance of adult brain size. This study examines a sample of strepsirrhines, testing the hypothesis that encephalized species utilize some combination of the above-mentioned strategies. Infants and juveniles from three species at the Duke Lemur Center (DLC) were measured periodically to arrive at head and body growth trajectories. These data were used to determine the energetic tradeoff among the offspring. The examination of gestation length, weaning age, intestinal size and resting metabolic rate was used to assess adult brain maintenance and maternal energetic contribution. The results reveal that Daubentonia, the most encephalized and thus human-like of the lemurs, does not experience an energetic trade-off between brain and body during ontogeny, but does exhibit a trade-off between extensive brain growth and possibly reduced intestinal growth. Also, maternal energy is utilized. Encephalized lemurs, such as Daubentonia, have higher resting metabolic rate, while encephalized lorisiforms have a longer period of gestation. These results demonstrate that there are several strategies for meeting the energetic demands of encephalization, and they can be manifested differentially across taxa.
Collapse
Affiliation(s)
- Nancy L Barrickman
- Department of Anthropology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | |
Collapse
|
49
|
Abstract
There is a growing interest in evolutionary models of human adiposity. Frequent reference has been made to 'thrifty genes' or 'thrifty phenotypes', referring to a variety of metabolic or behavioural traits that in one or the other way imply frugality in the expenditure or storage of energy. However, there is confusion over how the strategy of thrift has been incorporated into human biology. At the broadest level, humans represent a thrifty species relative to other mammals, indicating that metabolic adaptations had a crucial role in the emergence of the Homo lineage, in particular in buffering reproduction from ecological stochasticity. In contemporary humans, some variability in adiposity may be attributable to genotypes systematically favoured in certain ecological settings. Genetic variability is also present within populations, and may be considered bet hedging (distributing risk across offspring to increase parental fitness). Bet hedging is an alternative to genetic drift for accounting for genetic variability in the absence of strong selective pressures. Contrasting with genetic variability emerging over the long-term, thrifty phenotypes represent a response to short-term ecological variability. Physiological plasticity allows the emergence of variability across the life course in response to ecological cues experienced directly or by very recent ancestors. Finally, cultural norms or individual preferences allow voluntary behavioural manipulation of thrift in individuals. Overall, there is a range of factors and processes both favouring and opposing thrifty genes, which may reflect moderate bet hedging rather than systematic adaptation. Plasticity protects the genome from selective pressures by tailoring the organism to ongoing ecological conditions. The fact that obesity can occur in different individuals through different genotypes, life histories and behaviours indicates that different treatments are also likely to be required.
Collapse
|
50
|
Foley R, Gamble C. The ecology of social transitions in human evolution. Philos Trans R Soc Lond B Biol Sci 2010; 364:3267-79. [PMID: 19805433 DOI: 10.1098/rstb.2009.0136] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We know that there are fundamental differences between humans and living apes, and also between living humans and their extinct relatives. It is also probably the case that the most significant and divergent of these differences relate to our social behaviour and its underlying cognition, as much as to fundamental differences in physiology, biochemistry or anatomy. In this paper, we first attempt to demarcate what are the principal differences between human and other societies in terms of social structure, organization and relationships, so that we can identify what derived features require explanation. We then consider the evidence of the archaeological and fossil record, to determine the most probable context in time and taxonomy, of these evolutionary trends. Finally, we attempt to link five major transitional points in hominin evolution to the selective context in which they occurred, and to use the principles of behavioural ecology to understand their ecological basis. Critical changes in human social organization relate to the development of a larger scale of fission and fusion; the development of a greater degree of nested substructures within the human community; and the development of intercommunity networks. The underlying model that we develop is that the evolution of 'human society' is underpinned by ecological factors, but these are influenced as much by technological and behavioural innovations as external environmental change.
Collapse
Affiliation(s)
- Robert Foley
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, , Fitzwilliam Street, Cambridge, Cambridgeshire CB2 1QH, UK.
| | | |
Collapse
|