1
|
He X, Liao Y, Shen Y, Shao J, Wang S, Bao Y. Transcriptomic analysis of mRNA and miRNA reveals new insights into the regulatory mechanisms of Anadara granosa responses to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101311. [PMID: 39154435 DOI: 10.1016/j.cbd.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Temperature fluctuations resulting from climate change and global warming pose significant threats to various species. The blood clam, Anadara granosa, a commercially important marine bivalve, predominantly inhabits intertidal mudflats that are especially susceptible to elevated temperatures. This vulnerability has led to noticeable declines in the survival rates of A. granosa larvae, accompanied by an increase in malformations. Despite these observable trends, there is a lack of comprehensive research on the regulatory mechanisms underlying A. granosa's responses to heat stress. In this study, we examined the survival rates of A. granosa under varying high temperature conditions, selecting 34 °C as heat stress temperature. Enzyme activity assays have shed light on A. granosa's adaptive response to heat stress, revealing its ability to maintain redox balance and transition from aerobic to anaerobic metabolic pathways. Subsequently, mRNA and miRNA transcriptome analyses were conducted, elucidating several key responses of A. granosa to heat stress. These responses include the upregulation of transcription and protein synthesis, downregulation of proteasome activity, and metabolic pattern adjustments. Furthermore, we identified miRNA-mRNA networks implicated in heat stress responses, potentially serving as valuable candidate markers for A. granosa's heat stress response. Notably, we validated the involvement of agr-miR-3199 in A. granosa's heat stress response through its regulation of the target gene Foxj1. These findings not only deepen our understanding of the molecular mechanisms underlying the blood clam's response to heat stress but also offer valuable insights for enhancing heat stress resilience in the blood clam aquaculture industry. Moreover, they contribute to improved cultivation strategies for molluscs in the face of global warming and have significant implications for the conservation of marine resources and the preservation of ecological balance.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yiping Shen
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Junfa Shao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
2
|
Wang Y, Jiang P, Xia F, Bai Q, Zhang X. Transcriptional and physiological profiles reveal the respiratory, antioxidant and metabolic adaption to intermittent hypoxia in the clam Tegillarca granosa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101215. [PMID: 38359602 DOI: 10.1016/j.cbd.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Tegillarca granosa can survive intermittent hypoxia for a long-term. We used the clam T. granosa as model to investigate the respiratory, antioxidant and metabolic responses to consecutive hypoxia-reoxygenation (H/R) stress at both physiological and transcriptional levels. The results showed that the clams were able to rapidly regulate oxygen consumption and ammonia excretion during H/R stress, and alleviate oxidative stress during the second-time challenge. The clams also efficiently balanced energy metabolism through the rapid conversion and decomposition of glycogen. According to the transcriptome profile, KEGG pathways of starch and sucrose metabolism, ECM-receptor interaction, and protein processing in endoplasmic reticulum were significantly enriched in H group (the second-time 24 h hypoxia exposure), while pathways associated with lipid metabolism were significantly enriched in h group (the first-time 24 h hypoxia exposure). DEGs including hspa5, birc2/3, and map3k5 might play important roles in alleviating endoplasmic reticulum stress, cpla2 and pla2g16 might mitigate oxidative stress by adjusting the composition of cellular membrane. In conclusions, our findings suggest that rapid adjustment of oxygen consumption, ammonia metabolism, glycogen metabolism, and the ability to adjust the composition of the membrane lipid may be critical for T. granosa in maintaining energy homeostasis and reducing oxidative damage during intermittent H/R exposure. This study preliminarily clarified the response of T. granosa to intermittent hypoxia stress on the physiological and molecular levels, offering insights into the hypoxia-tolerant mechanisms in this species and providing a reference for the following study on the other hypoxic-tolerant species.
Collapse
Affiliation(s)
- Yihang Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Puyuan Jiang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feiyu Xia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qingqing Bai
- The Government of Guanhaiwei Town, Cixi 315315, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
3
|
Davie T, Serrat X, Imhof L, Snider J, Štagljar I, Keiser J, Hirano H, Watanabe N, Osada H, Fraser AG. Identification of a family of species-selective complex I inhibitors as potential anthelmintics. Nat Commun 2024; 15:3367. [PMID: 38719808 PMCID: PMC11079024 DOI: 10.1038/s41467-024-47331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.
Collapse
Affiliation(s)
- Taylor Davie
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xènia Serrat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lea Imhof
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, CH-4000, Basel, Switzerland
| | - Jamie Snider
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Igor Štagljar
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, CH-4000, Basel, Switzerland
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | - Nobumoto Watanabe
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Andrew G Fraser
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Ouillon N, Forster S, Timm S, Jarrett A, Otto S, Rehder G, Sokolova IM. Effects of different oxygen regimes on ecological performance and bioenergetics of a coastal marine bioturbator, the soft shell clam Mya arenaria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160459. [PMID: 36435244 DOI: 10.1016/j.scitotenv.2022.160459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Benthic species are exposed to oxygen fluctuations that can affect their performance and survival. Physiological effects and ecological consequences of fluctuating oxygen are not well understood in marine bioturbators such as the soft-shell clam Mya arenaria. We explored the effects of different oxygen regimes (21 days of exposure to constant hypoxia (~4.1 kPa PO2), cyclic hypoxia (~2.1-~10.4 kPa PO2) or normoxia (~21 kPa PO2)) on energy metabolism, oxidative stress and ecological behaviors (bioirrigation and bioturbation) of M. arenaria. Constant hypoxia and post-hypoxic recovery in cyclic hypoxia led to oxidative injury of proteins and lipids, respectively. Clams acclimated to constant hypoxia maintained aerobic capacity similar to the normoxic clams. In contrast, clams acclimated to cyclic hypoxia suppressed aerobic metabolism and activated anaerobiosis during hypoxia, and strongly upregulated aerobic metabolism during recovery. Constant hypoxia led to decreased lipid content, whereas in cyclic hypoxia proteins and glycogen accumulated during recovery and were broken down during the hypoxic phase. Digging of clams was impaired by constant and cyclic hypoxia, and bioirrigation was also suppressed under constant hypoxia. Overall, cyclic hypoxia appears less stressful for M. arenaria due to the metabolic flexibility that ensures recovery during reoxygenation and mitigates the negative effects of hypoxia, whereas constant hypoxia leads to depletion of energy reserves and impairs ecological functions of M. arenaria potentially leading to negative ecological consequences in benthic ecosystems.
Collapse
Affiliation(s)
- Natascha Ouillon
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany
| | - Stefan Forster
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Department of Plant Physiology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany
| | - Abigail Jarrett
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany
| | - Stefan Otto
- Department of Marine Chemistry, Leibniz Institute for Baltic Research, Rostock 18119, Germany
| | - Gregor Rehder
- Department of Marine Chemistry, Leibniz Institute for Baltic Research, Rostock 18119, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
5
|
Evolutionary Adaptations of Parasitic Flatworms to Different Oxygen Tensions. Antioxidants (Basel) 2022; 11:antiox11061102. [PMID: 35739999 PMCID: PMC9220675 DOI: 10.3390/antiox11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.
Collapse
|
6
|
Stryiński R, Mateos J, Carrera M, Jastrzębski JP, Bogacka I, Łopieńska-Biernat E. Tandem Mass Tagging (TMT) Reveals Tissue-Specific Proteome of L4 Larvae of Anisakis simplex s. s.: Enzymes of Energy and/or Carbohydrate Metabolism as Potential Drug Targets in Anisakiasis. Int J Mol Sci 2022; 23:ijms23084336. [PMID: 35457153 PMCID: PMC9027741 DOI: 10.3390/ijms23084336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex s. s. is a parasitic nematode of marine mammals and causative agent of anisakiasis in humans. The cuticle and intestine of the larvae are the tissues most responsible for direct and indirect contact, respectively, of the parasite with the host. At the L4 larval stage, tissues, such as the cuticle and intestine, are fully developed and functional, in contrast to the L3 stage. As such, this work provides for the first time the tissue-specific proteome of A. simplex s. s. larvae in the L4 stage. Statistical analysis (FC ≥ 2; p-value ≤ 0.01) showed that 107 proteins were differentially regulated (DRPs) between the cuticle and the rest of the larval body. In the comparison between the intestine and the rest of the larval body at the L4 stage, 123 proteins were identified as DRPs. Comparison of the individual tissues examined revealed a total of 272 DRPs, with 133 proteins more abundant in the cuticle and 139 proteins more abundant in the intestine. Detailed functional analysis of the identified proteins was performed using bioinformatics tools. Glycolysis and the tricarboxylic acid cycle were the most enriched metabolic pathways by cuticular and intestinal proteins, respectively, in the L4 stage of A. simplex s. s. The presence of two proteins, folliculin (FLCN) and oxoglutarate dehydrogenase (OGDH), was confirmed by Western blot, and their tertiary structure was predicted and compared with other species. In addition, host–pathogen interactions were identified, and potential new allergens were predicted. The result of this manuscript shows the largest number of protein identifications to our knowledge using proteomics tools for different tissues of L4 larvae of A. simplex s. s. The identified tissue-specific proteins could serve as targets for new drugs against anisakiasis.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15-706 A Coruña, Spain;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| |
Collapse
|
7
|
Lautens MJ, Tan JH, Serrat X, Del Borrello S, Schertzberg MR, Fraser AG. Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl Trop Dis 2021; 15:e0009991. [PMID: 34843467 PMCID: PMC8659336 DOI: 10.1371/journal.pntd.0009991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/09/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.
Collapse
Affiliation(s)
- Margot J. Lautens
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - June H. Tan
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Xènia Serrat
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Yusseppone M, Noya Abad T, Risoli M, Sabatini S, Ríos de Molina M, Lomovasky B. Biochemical adaptations of the stout razor clam ( Tagelus plebeius) to changes in oxygen availability: resilience in a changing world? CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Climate change is producing sea level rise and deoxygenation of the ocean, altering estuaries and coastal areas. Changes in oxygen availability are expected to have consequences on the physiological fitness of intertidal species. In this work we analyze the coping response of the intertidal stout razor clam (Tagelus plebeius (Lightfoot, 1786)) to extreme environmental changes in oxygen concentration. Their biochemical responses to normoxia, hypoxia, and hyperoxia transition at different intertidal level (low–high) were measured through an in situ transplant experiment. The high intertidal level negatively affected the analyzed traits of the T. plebeius populations. The differences in reactive oxygen species production, total oxyradical scavenger capacities, and catalase activity also suggested more stressful conditions at the high level where long-term hypoxia periods occur. Both hypoxia and re-oxygenation provoked re-adjustments in the antioxidant responses and higher lipid oxidative damage (normoxia < hypoxia < re-oxygenation). The observed responses in transplanted clams at the opposite intertidal level suggested the potential acclimation of T. plebeius to cope with new environmental conditions. These findings are discussed within a global changing context where both increasing deoxygenation conditions and sea level rise are predicted to be exacerbated in the area driven by climate change.
Collapse
Affiliation(s)
- M.S. Yusseppone
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046 Nivel 1, CC 1260 (7600), Mar del Plata, Argentina
| | - T. Noya Abad
- Centro de Ciencias Naturales, Ambientales y Antropológicas (CCNAA), Universidad Maimónides, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hidalgo 775, C1405BCK, Ciudad Autónoma de Buenos Aires, Argentina
| | - M.C. Risoli
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046 Nivel 1, CC 1260 (7600), Mar del Plata, Argentina
| | - S.E. Sabatini
- Instituto de Química Biológica (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pabellón II, Intendente Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - M.C. Ríos de Molina
- Instituto de Química Biológica (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pabellón II, Intendente Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - B.J. Lomovasky
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046 Nivel 1, CC 1260 (7600), Mar del Plata, Argentina
| |
Collapse
|
9
|
Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148278. [DOI: 10.1016/j.bbabio.2020.148278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
|
10
|
Tan JH, Lautens M, Romanelli-Cedrez L, Wang J, Schertzberg MR, Reinl SR, Davis RE, Shepherd JN, Fraser AG, Salinas G. Alternative splicing of coq-2 controls the levels of rhodoquinone in animals. eLife 2020; 9:e56376. [PMID: 32744503 PMCID: PMC7434440 DOI: 10.7554/elife.56376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022] Open
Abstract
Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.
Collapse
Affiliation(s)
- June H Tan
- The Donnelly Centre, University of TorontoTorontoCanada
| | | | - Laura Romanelli-Cedrez
- Laboratorio de Biología de Gusanos. Unidad Mixta, Departamento de Biociencias, Facultad de Química, Universidad de la República - Institut Pasteur de MontevideoMontevideoUruguay
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
- Department of Biochemistry and Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | | | - Samantha R Reinl
- Department of Chemistry and Biochemistry, Gonzaga UniversitySpokaneUnited States
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga UniversitySpokaneUnited States
| | | | - Gustavo Salinas
- Laboratorio de Biología de Gusanos. Unidad Mixta, Departamento de Biociencias, Facultad de Química, Universidad de la República - Institut Pasteur de MontevideoMontevideoUruguay
| |
Collapse
|
11
|
Wang L, Abu-Doleh A, Plank J, Catalyurek UV, Firkins JL, Yu Z. The transcriptome of the rumen ciliate Entodinium caudatum reveals some of its metabolic features. BMC Genomics 2019; 20:1008. [PMID: 31864285 PMCID: PMC6925433 DOI: 10.1186/s12864-019-6382-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Rumen ciliates play important roles in rumen function by digesting and fermenting feed and shaping the rumen microbiome. However, they remain poorly understood due to the lack of definitive direct evidence without influence by prokaryotes (including symbionts) in co-cultures or the rumen. In this study, we used RNA-Seq to characterize the transcriptome of Entodinium caudatum, the most predominant and representative rumen ciliate species. Results Of a large number of transcripts, > 12,000 were annotated to the curated genes in the NR, UniProt, and GO databases. Numerous CAZymes (including lysozyme and chitinase) and peptidases were represented in the transcriptome. This study revealed the ability of E. caudatum to depolymerize starch, hemicellulose, pectin, and the polysaccharides of the bacterial and fungal cell wall, and to degrade proteins. Many signaling pathways, including the ones that have been shown to function in E. caudatum, were represented by many transcripts. The transcriptome also revealed the expression of the genes involved in symbiosis, detoxification of reactive oxygen species, and the electron-transport chain. Overall, the transcriptomic evidence is consistent with some of the previous premises about E. caudatum. However, the identification of specific genes, such as those encoding lysozyme, peptidases, and other enzymes unique to rumen ciliates might be targeted to develop specific and effective inhibitors to improve nitrogen utilization efficiency by controlling the activity and growth of rumen ciliates. The transcriptomic data will also help the assembly and annotation in future genomic sequencing of E. caudatum. Conclusion As the first transcriptome of a single species of rumen ciliates ever sequenced, it provides direct evidence for the substrate spectrum, fermentation pathways, ability to respond to various biotic and abiotic stimuli, and other physiological and ecological features of E. caudatum. The presence and expression of the genes involved in the lysis and degradation of microbial cells highlight the dependence of E. caudatum on engulfment of other rumen microbes for its survival and growth. These genes may be explored in future research to develop targeted control of Entodinium species in the rumen. The transcriptome can also facilitate future genomic studies of E. caudatum and other related rumen ciliates.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Court, Columbus, OH, 43210, USA
| | - Anas Abu-Doleh
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.,Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA.,Current address: Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid, Jordan
| | - Johanna Plank
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Court, Columbus, OH, 43210, USA
| | - Umit V Catalyurek
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.,Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA.,Current address: School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Court, Columbus, OH, 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Court, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Otero L, Martínez-Rosales C, Barrera E, Pantano S, Salinas G. Complex I and II Subunit Gene Duplications Provide Increased Fitness to Worms. Front Genet 2019; 10:1043. [PMID: 31781156 PMCID: PMC6859908 DOI: 10.3389/fgene.2019.01043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Helminths use an alternative mitochondrial electron transport chain (ETC) under hypoxic conditions, such as those found in the gastrointestinal tract. In this alternative ETC, fumarate is the final electron acceptor and rhodoquinone (RQ) serves as an electron carrier. RQ receives electrons from reduced nicotinamide adenine dinucleotide through complex I and donates electrons to fumarate through complex II. In this latter reaction, complex II functions in the opposite direction to the conventional ETC (i.e., as fumarate reductase instead of succinate dehydrogenase). Studies in Ascaris suum indicate that this is possible due to changes in complex II, involving alternative succinate dehydrogenase (SDH) subunits SDHA and SDHD, derived from duplicated genes. We analyzed helminth genomes and found that distinct lineages have different gene duplications of complex II subunits (SDHA, SDHB, SDHC, and SDHD). Similarly, we found lineage-specific duplications in genes encoding complex I subunits that interact with quinones (NDUF2 and NDUF7). The phylogenetic analysis of ETC subunits revealed a complex history with independent evolutionary events involving gene duplications and losses. Our results indicated that there is not a common evolutionary event related to ETC subunit genes linked to RQ. The free-living nematode Caenorhabditis elegans uses RQ and has two genes encoding SDHA (sdha-1 and sdha-2) and two genes encoding NDUF2 (nduf2-1 and nduf2-2). sdha-1 and nduf2-1 are essential genes and have a similar expression pattern during C. elegans lifecycle. Using knockout strains, we found that sdha-2 and nduf2-2 are not essential, even in hypoxia. Yet, sdha-2 and nduf2-2 expression is increased in the early embryo and in dauer larvae, stages where there is low oxygen tension. Strikingly, sdha-1 and sdha-2 as well as nduf2-1 and nduf2-2 showed inverted expression profiles during the C. elegans life cycle. Finally, we found that sdha-2 and nduf2-2 knockout mutant strain progeny is affected. Our results indicate that different complex I and II subunit gene duplications provide increased fitness to worms.
Collapse
Affiliation(s)
- Lucía Otero
- Laboratorio de Biología de Gusanos, Unidad Mixta Departamento de Biociencias, Facultad de Química, Universidad de la República–Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Martínez-Rosales
- Laboratorio de Biología de Gusanos, Unidad Mixta Departamento de Biociencias, Facultad de Química, Universidad de la República–Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Exequiel Barrera
- Laboratorio de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Laboratorio de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gustavo Salinas
- Laboratorio de Biología de Gusanos, Unidad Mixta Departamento de Biociencias, Facultad de Química, Universidad de la República–Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
13
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Roberts Buceta PM, Romanelli-Cedrez L, Babcock SJ, Xun H, VonPaige ML, Higley TW, Schlatter TD, Davis DC, Drexelius JA, Culver JC, Carrera I, Shepherd JN, Salinas G. The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans. J Biol Chem 2019; 294:11047-11053. [PMID: 31177094 PMCID: PMC6635453 DOI: 10.1074/jbc.ac119.009475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.
Collapse
Affiliation(s)
| | - Laura Romanelli-Cedrez
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Shannon J Babcock
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Helen Xun
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Miranda L VonPaige
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Thomas W Higley
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Tyler D Schlatter
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Dakota C Davis
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Julia A Drexelius
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - John C Culver
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Inés Carrera
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and.
| | - Gustavo Salinas
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay.
| |
Collapse
|
15
|
Young ND, Gasser RB. Opisthorchis viverrini Draft Genome - Biomedical Implications and Future Avenues. ADVANCES IN PARASITOLOGY 2018; 101:125-148. [PMID: 29907252 DOI: 10.1016/bs.apar.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Opisthorchiasis is a neglected tropical disease of major proportion, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Southeast Asia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Despite technological advances, little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. The advent of high-throughput nucleic acid sequencing and bioinformatic technologies is enabling researchers to gain global insights into the molecular pathways and processes in parasites. The principal aims of this chapter are to (1) review molecular research of O. viverrini and opisthorchiasis; (2) provide an account of recent advances in the sequencing and characterization of the genome and transcriptomes of O. viverrini; (3) describe the complex life of this worm in the biliary system of the definitive (human) host and how the fluke interacts with this host and causes disease at the molecular level; (4) discuss the implications of systems biological research and (5) consider how progress in genomics and informatics might enable explorations of O. viverrini and related worms and the discovery of new interventions against opisthorchiasis and CCA.
Collapse
Affiliation(s)
- Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
16
|
Yusseppone MS, Rocchetta I, Sabatini SE, Luquet CM, Ríos de Molina MDC, Held C, Abele D. Inducing the Alternative Oxidase Forms Part of the Molecular Strategy of Anoxic Survival in Freshwater Bivalves. Front Physiol 2018. [PMID: 29527172 PMCID: PMC5829090 DOI: 10.3389/fphys.2018.00100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hypoxia in freshwater ecosystems is spreading as a consequence of global change, including pollution and eutrophication. In the Patagonian Andes, a decline in precipitation causes reduced lake water volumes and stagnant conditions that limit oxygen transport and exacerbate hypoxia below the upper mixed layer. We analyzed the molecular and biochemical response of the North Patagonian bivalve Diplodon chilensis after 10 days of experimental anoxia (<0.2 mg O2/L), hypoxia (2 mg O2/L), and normoxia (9 mg O2/L). Specifically, we investigated the expression of an alternative oxidase (AOX) pathway assumed to shortcut the regular mitochondrial electron transport system (ETS) during metabolic rate depression (MRD) in hypoxia-tolerant invertebrates. Whereas, the AOX system was strongly upregulated during anoxia in gills, ETS activities and energy mobilization decreased [less transcription of glycogen phosphorylase (GlyP) and succinate dehydrogenase (SDH) in gills and mantle]. Accumulation of succinate and induction of malate dehydrogenase (MDH) activity could indicate activation of anaerobic mitochondrial pathways to support anoxic survival in D. chilensis. Oxidative stress [protein carbonylation, glutathione peroxidase (GPx) expression] and apoptotic intensity (caspase 3/7 activity) decreased, whereas an unfolded protein response (HSP90) was induced under anoxia. This is the first clear evidence of the concerted regulation of the AOX and ETS genes in a hypoxia-tolerant freshwater bivalve and yet another example that exposure to hypoxia and anoxia is not necessarily accompanied by oxidative stress in hypoxia-tolerant mollusks.
Collapse
Affiliation(s)
- Maria S Yusseppone
- Laboratorio de Enzimología, Estrés y Metabolismo, INQUIBICEN, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Iara Rocchetta
- Laboratorio de Ecotoxicología Acuática, INIBIOMA, Universidad Nacional del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas, Junín de los Andes, Argentina
| | - Sebastian E Sabatini
- Laboratorio de Enzimología, Estrés y Metabolismo, INQUIBICEN, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA, Universidad Nacional del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas, Junín de los Andes, Argentina
| | - Maria Del Carmen Ríos de Molina
- Laboratorio de Enzimología, Estrés y Metabolismo, INQUIBICEN, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Christoph Held
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Doris Abele
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
17
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. The Mitochondrion of Euglena gracilis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:19-37. [PMID: 28429315 DOI: 10.1007/978-3-319-54910-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cessa Rauch
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
Ivanina AV, Nesmelova I, Leamy L, Sokolov EP, Sokolova IM. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. ACTA ACUST UNITED AC 2017; 219:1659-74. [PMID: 27252455 DOI: 10.1242/jeb.134700] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at <0.1% O2 followed by 1 h of reoxygenation) using hypoxia-tolerant intertidal clams Mercenaria mercenaria and hypoxia-sensitive subtidal scallops Argopecten irradians as models. We also assessed H/R-induced changes in cellular energy balance, oxidative damage and unfolded protein response to determine the potential links between mitochondrial dysfunction and cellular injury. Mitochondrial responses to H/R in scallops strongly resembled those in other hypoxia-sensitive organisms. Exposure to hypoxia followed by reoxygenation led to a strong decrease in the substrate oxidation (SOX) and phosphorylation (PHOS) capacities as well as partial depolarization of mitochondria of scallops. Elevated mRNA expression of a reactive oxygen species-sensitive enzyme aconitase and Lon protease (responsible for degradation of oxidized mitochondrial proteins) during H/R stress was consistent with elevated levels of oxidative stress in mitochondria of scallops. In hypoxia-tolerant clams, mitochondrial SOX capacity was enhanced during hypoxia and continued rising during the first hour of reoxygenation. In both species, the mitochondrial PHOS capacity was suppressed during hypoxia, likely to prevent ATP wastage by the reverse action of FO,F1-ATPase. The PHOS capacity recovered after 1 h of reoxygenation in clams but not in scallops. Compared with scallops, clams showed a greater suppression of energy-consuming processes (such as protein turnover and ion transport) during hypoxia, indicated by inactivation of the translation initiation factor EIF-2α, suppression of 26S proteasome activity and a dramatic decrease in the activity of Na(+)/K(+)-ATPase. The steady-state levels of adenylates were preserved during H/R exposure and AMP-dependent protein kinase was not activated in either species, indicating that the H/R exposure did not lead to severe energy deficiency. Taken together, our findings suggest that mitochondrial reorganizations sustaining high oxidative phosphorylation flux during recovery, combined with the ability to suppress ATP-demanding cellular functions during hypoxia, may contribute to high resilience of clams to H/R stress and help maintain energy homeostasis during frequent H/R cycles in the intertidal zone.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Irina Nesmelova
- Department of Physics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Larry Leamy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Eugene P Sokolov
- Department of General Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
20
|
Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea. Sci Rep 2016; 6:39476. [PMID: 27995990 PMCID: PMC5171794 DOI: 10.1038/srep39476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023] Open
Abstract
Global climate change (GCC) can negatively affect freshwater ecosystems. However, the degree to which freshwater populations can acclimate to long-term warming and the underlying molecular mechanisms are not yet fully understood. We used the cooling water discharge (CWD) area of a power plant as a model for long-term warming. Survival and molecular stress responses (expression of molecular chaperones, antioxidants, bioenergetic and protein synthesis biomarkers) to experimental warming (20–41 °C, +1.5 °C per day) were assessed in invasive clams Corbicula fluminea from two pristine populations and a CWD population. CWD clams had considerably higher (by ~8–12 °C) lethal temperature thresholds than clams from the pristine areas. High thermal tolerance of CWD clams was associated with overexpression of heat shock proteins HSP70, HSP90 and HSP60 and activation of protein synthesis at 38 °C. Heat shock response was prioritized over the oxidative stress response resulting in accumulation of oxidative lesions and ubiquitinated proteins during heat stress in CWD clams. Future studies should determine whether the increase in thermal tolerance in CWD clams are due to genetic adaptation and/or phenotypic plasticity. Overall, our findings indicate that C. fluminea has potential to survive and increase its invasive range during warming such as expected during GCC.
Collapse
|
21
|
Subrahmanian N, Remacle C, Hamel PP. Plant mitochondrial Complex I composition and assembly: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1001-14. [PMID: 26801215 DOI: 10.1016/j.bbabio.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
Abstract
In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Claire Remacle
- Institute of Botany, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Patrice Paul Hamel
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA; The Ohio State University, Department of Biological Chemistry and Pharmacology, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Gasser RB, Tan P, Teh BT, Wongkham S, Young ND. Genomics of worms, with an emphasis on Opisthorchis viverrini - opportunities for fundamental discovery and biomedical outcomes. Parasitol Int 2016; 66:341-345. [PMID: 26792076 DOI: 10.1016/j.parint.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/24/2022]
Abstract
Neglected tropical diseases cause substantial morbidity and mortality in animals and people globally. Opisthorchiasis is one such disease, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia, including Thailand, Lao People's Democratic Republic (PDR) and Cambodia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Relatively little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. With the advent of high-throughput nucleic acid sequencing and bioinformatic technologies, it has now become possible to gain global insights into the molecular biology of parasites. The purpose of this minireview is (i) to discuss recent progress on the genomics of parasitic worms, with an emphasis on the draft genome and transcriptome of O. viverrini; (ii) to use results from an integrated, global analysis of the genomic and transcriptomic data, to explain how we believe that this carcinogenic fluke establishes in the biliary system, how it feeds, survives and protects itself in such a hostile, microaerobic environment within the liver, and to propose how this parasite evades or modulates host attack; and (iii) to indicate some of the challenges, and, more importantly, the exciting opportunities that the 'omic resources for O. viverrini now provide for a plethora of fundamental and applied research areas. Looking ahead, we hope that this genomic resource stimulates vibrant and productive collaborations within a consortium context, focused on the effective control of opisthorchiasis.
Collapse
Affiliation(s)
- Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore; Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Bin Tean Teh
- Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Sopit Wongkham
- Faculty of Medicine, Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
23
|
Mentel M, Röttger M, Leys S, Tielens AGM, Martin WF. Of early animals, anaerobic mitochondria, and a modern sponge. Bioessays 2014; 36:924-32. [PMID: 25118050 DOI: 10.1002/bies.201400060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The origin and early evolution of animals marks an important event in life's history. This event is historically associated with an important variable in Earth history - oxygen. One view has it that an increase in oceanic oxygen levels at the end of the Neoproterozoic Era (roughly 600 million years ago) allowed animals to become large and leave fossils. How important was oxygen for the process of early animal evolution? New data show that some modern sponges can survive for several weeks at low oxygen levels. Many groups of animals have mechanisms to cope with low oxygen or anoxia, and very often, mitochondria - organelles usually associated with oxygen - are involved in anaerobic energy metabolism in animals. It is a good time to refresh our memory about the anaerobic capacities of mitochondria in modern animals and how that might relate to the ecology of early metazoans.
Collapse
Affiliation(s)
- Marek Mentel
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
24
|
Mondal S, Roy JJ, Bera T. Characterization of mitochondrial bioenergetic functions between two forms of Leishmania donovani - a comparative analysis. J Bioenerg Biomembr 2014; 46:395-402. [PMID: 25107348 DOI: 10.1007/s10863-014-9569-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023]
Abstract
Leishmaniasis is a growing health problem in many parts of the world partly due to drug resistance of the parasite. This study reports on the fisibility of studying mitochondrial properties of two forms of wild-type L. donovani through the use of selective inhibitors. Amastigote forms of L. donovani exhibited a wide range of sensitivities to these inhibitors. Mitochondrial complex II inhibitor thenoyltrifluoroacetone and FoF1-ATP synthase inhibitors oligomycin and dicyclohexylcarbodiimide were refractory to growth inhibition of amastigote forms, whereas they strongly inhibited the growth of promastigote forms. This result indicated that complex II and FoF1-ATP synthase were not functional in amastigote forms suggesting the presence of attenuated oxidative phosphorylation in the mitochondria of amastigote forms. In contrast, mitochondrial complex I inhibitor rotenone and complex III inhibitor antimycin A inhibited cellular multiplication and substrate level phosphorylation in amastigote forms, suggesting the role of complex I and complex III for the survival of amastigote forms. Further we studied the mitochondrial activities of both forms by measuring oxygen consumption and ATP production. In amastigote form, substantial ATP formation by substrate level phosphorylation was observed in NADPH-fumarate, NADH-fumarate, NADPH-pyruvate and NADH-pyruvate redox couples. None of the redox couple generated ATP formation was inhibited by FoF1-ATP synthase inhibitor oligomycin. Therefore, we may conclude that there are significant differences between these two forms of L. donovani in respect of mitochondrial bioenergetics. Our results demonstrated bioenergetic disfunction of amastigote mitochondria. Therefore, these alterations of metabolic functions might be a potential chemotherapeutic target.
Collapse
Affiliation(s)
- Subhasish Mondal
- Division of Medicinal Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | | | | |
Collapse
|
25
|
Friedrich T. On the mechanism of respiratory complex I. J Bioenerg Biomembr 2014; 46:255-68. [PMID: 25022766 DOI: 10.1007/s10863-014-9566-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 02/08/2023]
Abstract
The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy and X-ray crystallography revealed the two-part structure of the enzyme complex. A peripheral arm extending into the aqueous phase catalyzes the electron transfer reaction. Accordingly, this arm contains the redox-active cofactors, namely one flavin mononucleotide (FMN) and up to ten iron-sulfur (Fe/S) clusters. A membrane arm embedded in the lipid bilayer catalyzes proton translocation by a yet unknown mechanism. The binding site of the substrate (ubi) quinone is located at the interface of the two arms. The oxidation of one NADH is coupled with the translocation of four protons across the membrane. In this review, the binding of the substrates, the intramolecular electron transfer, the role of individual Fe/S clusters and the mechanism of proton translocation are discussed in the light of recent data obtained from our laboratory.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104, Freiburg, Germany,
| |
Collapse
|
26
|
Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, Safavi-Hemami H, Kaewkong W, Bertrand D, Gao S, Seet Q, Wongkham S, Teh BT, Wongkham C, Intapan PM, Maleewong W, Yang X, Hu M, Wang Z, Hofmann A, Sternberg PW, Tan P, Wang J, Gasser RB. The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun 2014; 5:4378. [PMID: 25007141 PMCID: PMC4104445 DOI: 10.1038/ncomms5378] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/11/2014] [Indexed: 12/15/2022] Open
Abstract
Opisthorchiasis is a neglected, tropical disease caused by the carcinogenic Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is linked to malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia. No vaccine is available, and only one drug (praziquantel) is used against the parasite. Little is known about O. viverrini biology and the diseases that it causes. Here we characterize the draft genome (634.5 Mb) and transcriptomes of O. viverrini, elucidate how this fluke survives in the hostile environment within the bile duct and show that metabolic pathways in the parasite are highly adapted to a lipid-rich diet from bile and/or cholangiocytes. We also provide additional evidence that O. viverrini and other flukes secrete proteins that directly modulate host cell proliferation. Our molecular resources now underpin profound explorations of opisthorchiasis/CCA and the design of new interventions. The Asian liver fluke is a parasitic worm that is linked to an increased risk of malignant cancer. Here, the authors sequence the draft genome and transcriptome of this fluke and provide insight into how the species has adapted to be able to survive in the bile duct.
Collapse
Affiliation(s)
- Neil D Young
- 1] Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia [2]
| | - Niranjan Nagarajan
- 1] Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore [2]
| | - Suling Joyce Lin
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Aaron R Jex
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ross S Hall
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Worasak Kaewkong
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Denis Bertrand
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Song Gao
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 138672, Republic of Singapore
| | - Qihui Seet
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Sopit Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Chaisiri Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pewpan Maleewong Intapan
- Research and Diagnostic Center for Emerging Infectious Diseases, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | - Andreas Hofmann
- 1] Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia [2] Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Paul W Sternberg
- Division of Biology, HHMI, California Institute of Technology, Pasadena, California 91125, USA
| | - Patrick Tan
- 1] Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore [2] Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Jun Wang
- 1] [2] Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark [3] Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia [4] Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
27
|
Depuydt G, Xie F, Petyuk VA, Smolders A, Brewer HM, Camp DG, Smith RD, Braeckman BP. LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(e1370) mutant reveals extensive restructuring of intermediary metabolism. J Proteome Res 2014; 13:1938-56. [PMID: 24555535 PMCID: PMC3993954 DOI: 10.1021/pr401081b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 12/11/2022]
Abstract
The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC-MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.
Collapse
Affiliation(s)
- Geert Depuydt
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | - Fang Xie
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav A. Petyuk
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Arne Smolders
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | - Heather M. Brewer
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David G. Camp
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bart P. Braeckman
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| |
Collapse
|
28
|
Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:668-78. [PMID: 23396003 DOI: 10.1016/j.bbabio.2013.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
There are two homologous membrane-bound enzymes in Escherichia coli that catalyze reversible conversion between succinate/fumarate and quinone/quinol. Succinate:ubiquinone reductase (SQR) is a component of aerobic respiratory chains, whereas quinol:fumarate reductase (QFR) utilizes menaquinol to reduce fumarate in a final step of anaerobic respiration. Although, both protein complexes are capable of supporting bacterial growth on either minimal succinate or fumarate media, the enzymes are more proficient in their physiological directions. Here we evaluate factors that may underlie this catalytic bias. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
|
29
|
Sakai C, Tomitsuka E, Esumi H, Harada S, Kita K. Mitochondrial fumarate reductase as a target of chemotherapy: From parasites to cancer cells. Biochim Biophys Acta Gen Subj 2012; 1820:643-51. [DOI: 10.1016/j.bbagen.2011.12.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/28/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
|
30
|
Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci U S A 2012; 109:E1173-82. [PMID: 22517752 DOI: 10.1073/pnas.1121198109] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO(2). Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO(2) fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.
Collapse
|
31
|
Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum. J Bacteriol 2011; 194:965-71. [PMID: 22194448 DOI: 10.1128/jb.06319-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodoquinone (RQ) is a required cofactor for anaerobic respiration in Rhodospirillum rubrum, and it is also found in several helminth parasites that utilize a fumarate reductase pathway. RQ is an aminoquinone that is structurally similar to ubiquinone (Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is not found in humans or other mammals, and therefore, the inhibition of its biosynthesis may provide a novel antiparasitic drug target. To identify a gene specifically required for RQ biosynthesis, we determined the complete genome sequence of a mutant strain of R. rubrum (F11), which cannot grow anaerobically and does not synthesize RQ, and compared it with that of a spontaneous revertant (RF111). RF111 can grow anaerobically and has recovered the ability to synthesize RQ. The two strains differ by a single base pair, which causes a nonsense mutation in the putative methyltransferase gene rquA. To test whether this mutation is important for the F11 phenotype, the wild-type rquA gene was cloned into the pRK404E1 vector and conjugated into F11. Complementation of the anaerobic growth defect in F11 was observed, and liquid chromatography-time of flight mass spectrometry (LC-TOF-MS) analysis of lipid extracts confirmed that plasmid-complemented F11 was able to synthesize RQ. To further validate the requirement of rquA for RQ biosynthesis, we generated a deletion mutant from wild-type R. rubrum by the targeted replacement of rquA with a gentamicin resistance cassette. The ΔrquA mutant exhibited the same phenotype as that of F11. These results are significant because rquA is the first gene to be discovered that is required for RQ biosynthesis.
Collapse
|
32
|
Opperdoes FR, De Jonckheere JF, Tielens AG. Naegleria gruberi metabolism. Int J Parasitol 2011; 41:915-24. [DOI: 10.1016/j.ijpara.2011.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/30/2011] [Accepted: 04/23/2011] [Indexed: 01/08/2023]
|
33
|
Araújo WL, Nunes-Nesi A, Fernie AR. Fumarate: Multiple functions of a simple metabolite. PHYTOCHEMISTRY 2011; 72:838-43. [PMID: 21440919 DOI: 10.1016/j.phytochem.2011.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 05/19/2023]
Abstract
Although much is now known about fumarate metabolism, our knowledge of some aspects of its biological function remain far from comprehensive. In this short review we begin with an introductory overview of the role of fumarate in both plant and non-plant systems. We next highlight the relative importance of fumarate in relation to cell type and circumstance in contrast to other chemically similar organic acids. Considerable cumulative evidence is suggestive of a role for fumarate in pH regulation during nitrate assimilation and that fumarate has similar effects as malate during stomatal movement. Indeed it is currently difficult to separate the biological function of fumarate from malate under certain circumstances. However, in other cases this can be easily performed. This physiological complexity notwithstanding it remains possible that the engineering of fumarate metabolism may provide opportunities to improve plant growth and performance.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
34
|
Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist 2010; 161:642-71. [PMID: 21036663 PMCID: PMC3021972 DOI: 10.1016/j.protis.2010.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | |
Collapse
|
35
|
The electron transfer flavoprotein: ubiquinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1910-6. [PMID: 20937244 DOI: 10.1016/j.bbabio.2010.10.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/20/2010] [Accepted: 10/05/2010] [Indexed: 12/30/2022]
Abstract
Electron transfer flavoprotein: ubiqionone oxidoreductase (ETF-QO) is a component of the mitochondrial respiratory chain that together with electron transfer flavoprotein (ETF) forms a short pathway that transfers electrons from 11 different mitochondrial flavoprotein dehydrogenases to the ubiquinone pool. The X-ray structure of the pig liver enzyme has been solved in the presence and absence of a bound ubiquinone. This structure reveals ETF-QO to be a monotopic membrane protein with the cofactors, FAD and a [4Fe-4S](+1+2) cluster, organised to suggests that it is the flavin that serves as the immediate reductant of ubiquinone. ETF-QO is very highly conserved in evolution and the recombinant enzyme from the bacterium Rhodobacter sphaeroides has allowed the mutational analysis of a number of residues that the structure suggested are involved in modulating the reduction potential of the cofactors. These experiments, together with the spectroscopic measurement of the distances between the cofactors in solution have confirmed the intramolecular pathway of electron transfer from ETF to ubiquinone. This approach can be extended as the R. sphaeroides ETF-QO provides a template for investigating the mechanistic consequences of single amino acid substitutions of conserved residues that are associated with a mild and late onset variant of the metabolic disease multiple acyl-CoA dehydrogenase deficiency (MADD).
Collapse
|
36
|
Chakraborty B, Biswas S, Mondal S, Bera T. Stage specific developmental changes in the mitochondrial and surface membrane associated redox systems of Leishmania donovani promastigote and amastigote. BIOCHEMISTRY (MOSCOW) 2010; 75:494-518. [DOI: 10.1134/s0006297910040140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Mentel M, Martin W. Anaerobic animals from an ancient, anoxic ecological niche. BMC Biol 2010; 8:32. [PMID: 20370917 PMCID: PMC2859860 DOI: 10.1186/1741-7007-8-32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/06/2010] [Indexed: 11/10/2022] Open
Abstract
Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats.
Collapse
Affiliation(s)
- Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, Bratislava, Slovakia
| | | |
Collapse
|
38
|
Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology 2009; 137:1315-31. [PMID: 20028611 DOI: 10.1017/s0031182009991843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parasites that often grow anaerobically in their hosts have adopted a fermentative strategy relying on the production of partially oxidized end products, including lactate, glycerol, ethanol, succinate and acetate. This review focuses on recent progress in understanding acetate production in protist parasites, such as amoebae, diplomonads, trichomonads, trypanosomatids and in the metazoan parasites helminths, as well as the succinate production pathway(s) present in some of them. We also describe the unconventional organisation of the tricarboxylic acid cycle associated with the fermentative strategy adopted by the procyclic trypanosomes, which may resemble the probable structure of the primordial TCA cycle in prokaryotes.
Collapse
|
39
|
Paranagama MP, Sakamoto K, Amino H, Awano M, Miyoshi H, Kita K. Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II. Mitochondrion 2009; 10:158-65. [PMID: 20006739 DOI: 10.1016/j.mito.2009.12.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 10/22/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) production from mitochondrial complex II (succinate-quinone reductase, SQR) has become a focus of research recently since it is implicated in carcinogenesis. To date, the FAD site is proposed as the ROS producing site in complex II, based on studies done on Escherichia coli, whereas the quinone binding site is proposed as the site of ROS production based on studies in Saccharomyces cerevisiae. Using the submitochondrial particles from the adult worms and L(3) larvae of the parasitic nematode Ascaris suum, we found that ROS are produced from more than one site in the mitochondrial complex II. Moreover, the succinate-dependent ROS production from the complex II of the A. suum adult worm was significantly higher than that from the complex II of the L(3) larvae. Considering the conservation of amino acids crucial for the SQR activity and the high levels of ROS production from the mitochondrial complex II of the A. suum adult worm together with the absence of complexes III and IV activities in its respiratory chain, it is a good model to examine the reactive oxygen species production from the mitochondrial complex II.
Collapse
Affiliation(s)
- Madhavi P Paranagama
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in Rhodospirillum rubrum. J Bacteriol 2009; 192:436-45. [PMID: 19933361 DOI: 10.1128/jb.01040-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodoquinone (RQ) is an important cofactor used in the anaerobic energy metabolism of Rhodospirillum rubrum. RQ is structurally similar to ubiquinone (coenzyme Q or Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is also found in several eukaryotic species that utilize a fumarate reductase pathway for anaerobic respiration, an important example being the parasitic helminths. RQ is not found in humans or other mammals, and therefore inhibition of its biosynthesis may provide a parasite-specific drug target. In this report, we describe several in vivo feeding experiments with R. rubrum used for the identification of RQ biosynthetic intermediates. Cultures of R. rubrum were grown in the presence of synthetic analogs of ubiquinone and the known Q biosynthetic precursors demethylubiquinone, demethoxyubiquinone, and demethyldemethoxyubiquinone, and assays were monitored for the formation of RQ(3). Data from time course experiments and S-adenosyl-l-methionine-dependent O-methyltransferase inhibition studies are discussed. Based on the results presented, we have demonstrated that Q is a required intermediate for the biosynthesis of RQ in R. rubrum.
Collapse
|
41
|
VAN DER GIEZEN MARK. Hydrogenosomes and Mitosomes: Conservation and Evolution of Functions. J Eukaryot Microbiol 2009; 56:221-31. [DOI: 10.1111/j.1550-7408.2009.00407.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Yin Y, Martin J, Abubucker S, Wang Z, Wyrwicz L, Rychlewski L, McCarter JP, Wilson RK, Mitreva M. Molecular determinants archetypical to the phylum Nematoda. BMC Genomics 2009; 10:114. [PMID: 19296854 PMCID: PMC2666764 DOI: 10.1186/1471-2164-10-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background Nematoda diverged from other animals between 600–1,200 million years ago and has become one of the most diverse animal phyla on earth. Most nematodes are free-living animals, but many are parasites of plants and animals including humans, posing major ecological and economical challenges around the world. Results We investigated phylum-specific molecular characteristics in Nematoda by exploring over 214,000 polypeptides from 32 nematode species including 27 parasites. Over 50,000 nematode protein families were identified based on primary sequence, including ~10% with members from at least three different species. Nearly 1,600 of the multi-species families did not share homology to Pfam domains, including a total of 758 restricted to Nematoda. Majority of the 462 families that were conserved among both free-living and parasitic species contained members from multiple nematode clades, yet ~90% of the 296 parasite-specific families originated only from a single clade. Features of these protein families were revealed through extrapolation of essential functions from observed RNAi phenotypes in C. elegans, bioinformatics-based functional annotations, identification of distant homology based on protein folds, and prediction of expression at accessible nematode surfaces. In addition, we identified a group of nematode-restricted sequence features in energy-generating electron transfer complexes as potential targets for new chemicals with minimal or no toxicity to the host. Conclusion This study identified and characterized the molecular determinants that help in defining the phylum Nematoda, and therefore improved our understanding of nematode protein evolution and provided novel insights for the development of next generation parasite control strategies.
Collapse
Affiliation(s)
- Yong Yin
- The Genome Center, Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mentel M, Martin W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos Trans R Soc Lond B Biol Sci 2008; 363:2717-29. [PMID: 18468979 PMCID: PMC2606767 DOI: 10.1098/rstb.2008.0031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages.
Collapse
Affiliation(s)
| | - William Martin
- Institute of Botany, University of DüsseldorfUniversitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Hamblin K, Standley DM, Rogers MB, Stechmann A, Roger AJ, Maytum R, van der Giezen M. Localization and nucleotide specificity of Blastocystis succinyl-CoA synthetase. Mol Microbiol 2008; 68:1395-405. [PMID: 18452512 PMCID: PMC2440562 DOI: 10.1111/j.1365-2958.2008.06228.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The anaerobic lifestyle of the intestinal parasite Blastocystis raises questions about the biochemistry and function of its mitochondria-like organelles. We have characterized the Blastocystis succinyl-CoA synthetase (SCS), a tricarboxylic acid cycle enzyme that conserves energy by substrate-level phosphorylation. We show that SCS localizes to the enigmatic Blastocystis organelles, indicating that these organelles might play a similar role in energy metabolism as classic mitochondria. Although analysis of residues inside the nucleotide-binding site suggests that Blastocystis SCS is GTP-specific, we demonstrate that it is ATP-specific. Homology modelling, followed by flexible docking and molecular dynamics simulations, indicates that while both ATP and GTP fit into the Blastocystis SCS active site, GTP is destabilized by electrostatic dipole interactions with Lys 42 and Lys 110, the side-chains of which lie outside the nucleotide-binding cavity. It has been proposed that residues in direct contact with the substrate determine nucleotide specificity in SCS. However, our results indicate that, in Blastocystis, an electrostatic gatekeeper controls which ligands can enter the binding site.
Collapse
Affiliation(s)
- Karleigh Hamblin
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
van Grinsven KWA, Rosnowsky S, van Weelden SWH, Pütz S, van der Giezen M, Martin W, van Hellemond JJ, Tielens AGM, Henze K. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem 2007; 283:1411-1418. [PMID: 18024431 DOI: 10.1074/jbc.m702528200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial eukaryotes such as Trichomonas vaginalis, no acetate producing enzyme has ever been identified in these organelles. Acetate production is the last unidentified enzymatic reaction of hydrogenosomal carbohydrate metabolism. We identified a gene encoding an enzyme for acetate production in the genome of the hydrogenosome-containing protozoan parasite T. vaginalis. This gene shows high similarity to Saccharomyces cerevisiae acetyl-CoA hydrolase and Clostridium kluyveri succinyl-CoA:CoA-transferase. Here we demonstrate that this protein is expressed and is present in the hydrogenosomes where it functions as the T. vaginalis acetate:succinate CoA-transferase (TvASCT). Heterologous expression of TvASCT in CHO cells resulted in the expression of an active ASCT. Furthermore, homologous overexpression of the TvASCT gene in T. vaginalis resulted in an equivalent increase in ASCT activity. It was shown that the CoA transferase activity is succinate-dependent. These results demonstrate that this acetyl-CoA hydrolase/transferase homolog functions as the hydrogenosomal ASCT of T. vaginalis. This is the first hydrogenosomal acetate-producing enzyme to be identified. Interestingly, TvASCT does not share any similarity with the mitochondrial ASCT from Trypanosoma brucei, the only other eukaryotic succinate-dependent acetyl-CoA-transferase identified so far. The trichomonad enzyme clearly belongs to a distinct class of acetate:succinate CoA-transferases. Apparently, two completely different enzymes for succinate-dependent acetate production have evolved independently in ATP-generating organelles.
Collapse
Affiliation(s)
- Koen W A van Grinsven
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Silke Rosnowsky
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Susanne W H van Weelden
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Simone Pütz
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Mark van der Giezen
- Centre for Eukaryotic Evolutionary Microbiology, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - William Martin
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; Department of Medical Microbiology & Infectious Diseases, ErasmusMC University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; Department of Medical Microbiology & Infectious Diseases, ErasmusMC University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Katrin Henze
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
46
|
Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. PLANT PHYSIOLOGY 2006; 142:839-54. [PMID: 16963520 PMCID: PMC1630763 DOI: 10.1104/pp.106.086694] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
While the metabolic networks in developing seeds during the period of reserve accumulation have been extensively characterized, much less is known about those present during seed desiccation and subsequent germination. Here we utilized metabolite profiling, in conjunction with selective mRNA and physiological profiling to characterize Arabidopsis (Arabidopsis thaliana) seeds throughout development and germination. Seed maturation was associated with a significant reduction of most sugars, organic acids, and amino acids, suggesting their efficient incorporation into storage reserves. The transition from reserve accumulation to seed desiccation was associated with a major metabolic switch, resulting in the accumulation of distinct sugars, organic acids, nitrogen-rich amino acids, and shikimate-derived metabolites. In contrast, seed vernalization was associated with a decrease in the content of several of the metabolic intermediates accumulated during seed desiccation, implying that these intermediates might support the metabolic reorganization needed for seed germination. Concomitantly, the levels of other metabolites significantly increased during vernalization and were boosted further during germination sensu stricto, implying their importance for germination and seedling establishment. The metabolic switches during seed maturation and germination were also associated with distinct patterns of expression of genes encoding metabolism-associated gene products, as determined by semiquantitative reverse transcription-polymerase chain reaction and analysis of publicly available microarray data. When taken together our results provide a comprehensive picture of the coordinated changes in primary metabolism that underlie seed development and germination in Arabidopsis. They furthermore imply that the metabolic preparation for germination and efficient seedling establishment initiates already during seed desiccation and continues by additional distinct metabolic switches during vernalization and early germination.
Collapse
Affiliation(s)
- Aaron Fait
- Department of Plant Sciences, the Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
48
|
Dacks JB, Dyal PL, Embley TM, van der Giezen M. Hydrogenosomal succinyl-CoA synthetase from the rumen-dwelling fungus Neocallimastix patriciarum; an energy-producing enzyme of mitochondrial origin. Gene 2006; 373:75-82. [PMID: 16515848 DOI: 10.1016/j.gene.2006.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/19/2005] [Accepted: 01/10/2006] [Indexed: 10/25/2022]
Abstract
Hydrogenosomes are hydrogen-producing organelles that are related to mitochondria and found in a variety of evolutionarily unrelated anaerobic microbial eukaryotes. Similar to classic mitochondria, hydrogenosomes contain the enzyme catalyzing the only reaction of the citric acid cycle directly producing energy; succinyl-CoA synthetase. We have isolated and characterized the genes encoding both subunits of this enzyme from the anaerobic chytrid fungus Neocallimastix patriciarum, a model organism in hydrogenosome research. Both subunits contain all characteristic features of this enzyme, including predicted hydrogenosomal targeting signals. Phylogenetic analyses of succinyl-CoA synthetase clearly indicate its mitochondrial ancestry, both by affiliation with mitochondrially localized fungal homologues and by the sisterhood of the eukaryotic succinyl-CoA synthetase clade with alpha-proteobacteria. Our analyses of the Trichomonas vaginalis SCS sequences also confirmed the mitochondrial affiliation of these hydrogenosomal enzymes, in contrast to previous results. While both hydrogenosomal and mitochondrial succinyl-CoA synthetase homologues have been identified, no succinyl-CoA synthetase proteins were identifiable in taxa possessing another mitochondrially derived organelle, the mitosome. Our analyses further confirm the mitochondrial ancestry of the Neocallimastix hydrogenosome and sheds light upon the stepwise process by which mitochondria evolve into alternate forms of the organelle.
Collapse
Affiliation(s)
- Joel B Dacks
- Department of Zoology, the Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | | | | |
Collapse
|
49
|
Maklashina E, Iverson TM, Sher Y, Kotlyar V, Andréll J, Mirza O, Hudson JM, Armstrong FA, Rothery RA, Weiner JH, Cecchini G. Fumarate Reductase and Succinate Oxidase Activity of Escherichia coli Complex II Homologs Are Perturbed Differently by Mutation of the Flavin Binding Domain. J Biol Chem 2006; 281:11357-65. [PMID: 16484232 DOI: 10.1074/jbc.m512544200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli complex II homologues succinate:ubiquinone oxidoreductase (SQR, SdhCDAB) and menaquinol:fumarate oxidoreductase (QFR, FrdABCD) have remarkable structural homology at their dicarboxylate binding sites. Although both SQR and QFR can catalyze the interconversion of fumarate and succinate, QFR is a much better fumarate reductase, and SQR is a better succinate oxidase. An exception to the conservation of amino acids near the dicarboxylate binding sites of the two enzymes is that there is a Glu (FrdA Glu-49) near the covalently bound FAD cofactor in most QFRs, which is replaced with a Gln (SdhA Gln-50) in SQRs. The role of the amino acid side chain in enzymes with Glu/Gln/Ala substitutions at FrdA Glu-49 and SdhA Gln-50 has been investigated in this study. The data demonstrate that the mutant enzymes with Ala substitutions in either QFR or SQR remain functionally similar to their wild type counterparts. There were, however, dramatic changes in the catalytic properties when Glu and Gln were exchanged for each other in QFR and SQR. The data show that QFR and SQR enzymes are more efficient succinate oxidases when Gln is in the target position and a better fumarate reductase when Glu is present. Overall, structural and catalytic analyses of the FrdA E49Q and SdhA Q50E mutants suggest that coulombic effects and the electronic state of the FAD are critical in dictating the preferred directionality of the succinate/fumarate interconversions catalyzed by the complex II superfamily.
Collapse
Affiliation(s)
- Elena Maklashina
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yin Y, Martin J, McCarter JP, Clifton SW, Wilson RK, Mitreva M. Identification and analysis of genes expressed in the adult filarial parasitic nematode Dirofilaria immitis. Int J Parasitol 2006; 36:829-39. [PMID: 16697384 DOI: 10.1016/j.ijpara.2006.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
The heartworm Dirofilaria immitis is a filarial parasitic nematode infecting dogs and other mammals worldwide causing fatal complications. Here, we present the first large-scale survey of the adult heartworm transcriptome by generation and analysis of 4005 expressed sequence tags, identifying about 1800 genes and expanding the available sequence information for the parasite significantly. Brugia malayi genomic data offered the most valuable information to interpret heartworm genes, with about 70% of D. immitis genes showing significant similarities to the assembly. Comparative genomic analyses revealed both genes common to metazoans or nematodes and genes specific to filarial parasites that may relate to parasitism. Characterization of abundant transcripts suggested important roles for genes involved in energy generation and antioxidant defense in adults. In particular, we proposed that adult heartworm likely adopted an anaerobic electron transfer-based energy generation system distinct from the aerobic pathway utilized by its mammalian host, making it a promising target in developing next generation macrofilaricides and other treatments. Our survey provided novel insights into the D. immitis transcriptome and laid a foundation for further comparative studies on biology, parasitism and evolution within the phylum Nematoda.
Collapse
Affiliation(s)
- Yong Yin
- Department of Genetics, Genome Sequencing Center, Washington University School of Medicine, Box 8501, St Louis, MO 63108, USA.
| | | | | | | | | | | |
Collapse
|