1
|
Panchal H, Bhardwaj JK. Quercetin Supplementation Alleviates Cadmium Induced Genotoxicity-Mediated Apoptosis in Caprine Testicular Cells. Biol Trace Elem Res 2024; 202:1-14. [PMID: 38158459 DOI: 10.1007/s12011-023-04038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Being a common environmental pollutant, cadmium causes detrimental health effects, including testicular injury. Herein, we document the ameliorative potential of quercetin, a potent antioxidant, against cadmium-induced geno-cytotoxicity and steroidogenic toxicity in goat testicular tissue. Cadmium induced different comet types (Type 0 - Type 4), indicating the varying degree of DNA-damage in testicular cells. The quantitative analysis at 50 and 100 µM cadmium concentration revealed the DNA damage with per cent tail DNA as 75.78 ± 1.49 and 94.65 ± 0.95, respectively, in comparison to the control group (8.87 ± 0.48) post 8 h exposure duration. Cadmium caused a substantial decrease in the activity of key steroidogenic enzymes' (3β-HSD and 17β-HSD) along with reduction of testosterone level in testicular tissue. Furthermore, cadmium treatment induced various types of deformities in sperm, altered the Bax/Bcl-2 expression ratio in testicular tissue and thus suggesting the apoptosis-mediated death of testicular cells. Simultaneous quercetin supplementation, however, significantly (p < 0.05) averted the aforementioned cadmium-mediated damage in testicular tissue. Conclusively, the cadmium-induced DNA-damage and decrease in steroidogenic potential results in death of testicular cells via apoptosis, which was significantly counteracted by quercetin co-supplementation, and thus preventing the cadmium-mediated cytotoxicity of testicular cells.
Collapse
Affiliation(s)
- Harish Panchal
- Department of Zoology, Shri Ramasamy Memorial University, Sikkim, 737102, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
2
|
Chen W, Wang M, Wang H, Jiang Y, Zhu J, Zeng X, Xie H, Yang Q, Sun Y. Sestrin2 and Sestrin3 protect spermatogenesis against heat-induced meiotic defects†. Biol Reprod 2024; 111:197-211. [PMID: 38519102 DOI: 10.1093/biolre/ioae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Heat stress induces testicular oxidative stress, impairs spermatogenesis, and increases the risk of male infertility. Recent studies have highlighted the antioxidative properties of the Sestrins family in reducing cellular oxidative damage. However, the role of Sestrins (Sestrin1, 2, and 3) in the testicular response to heat stress remains unclear. Here, we found that Sestrin2 and 3 were highly expressed in the testis relative to Sestrin1. Then, the Sestrin2-/- and Sestrin3-/- mice were generated by CRISPR/Cas9 to investigate the role of them on spermatogenesis after heat stress. Our data showed that Sestrin2-/- and Sestrin3-/- mice testes exhibited more severe damage manifested by exacerbated loss of germ cells and higher levels of oxidative stress as compared to wild-type counterparts after heat stress. Notably, Sestrin2-/- and Sestrin3-/- mice underwent a remarkable increase in heat-induced spermatocyte apoptosis than that of controls. Furthermore, the transcriptome landscape of spermatocytes and chromosome spreading showed that loss of Sestrin2 and Sestrin3 exacerbated meiotic failure by compromising DNA double-strand breaks repair after heat stress. Taken together, our work demonstrated a critical protective function of Sestrin2 and Sestrin3 in mitigating the impairments of spermatogenesis against heat stress.
Collapse
Affiliation(s)
- Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Xie
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Chavatte-Palmer P, Couturier-Tarrade A, Rousseau-Ralliard D. Intra-uterine programming of future fertility. Reprod Domest Anim 2024; 59:e14475. [PMID: 37942852 DOI: 10.1111/rda.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
The developmental origins of health and disease (DOHaD) shows that a relationship exists between parental environment at large, foeto-placental development and the risk for the offspring to develop non-transmittable disease(s) in adulthood. This concept has been validated in both humans and livestock. In mammals, after fertilization and time spent free in the maternal reproductive tract, the embryo develops a placenta that, in close relationship with maternal endometrium, is the organ responsible for exchanges between dam and foetus. Any modification of the maternal environment can lead to adaptive mechanisms affecting placental morphology, blood flow, foetal-maternal exchanges (transporters) and/or endocrine function, ultimately modifying placental efficiency. Among deleterious environments, undernutrition, protein restriction, overnutrition, micronutrient deficiencies and food contaminants can be outlined. When placental adaptive capacities become insufficient, foetal growth and organ formation is no longer optimal, including foetal gonadal formation and maturation, which can affect subsequent offspring fertility. Since epigenetic mechanisms have been shown to be key to foetal programming, epigenetic modifications of the gametes may also occur, leading to inter-generational effects. After briefly describing normal gonadal development in domestic species and inter-species differences, this review highlights the current knowledge on intra-uterine programming of offspring fertility with a focus on domestic animals and underlines the importance to assess transgenerational effects on offspring fertility at a time when new breeding systems are developed to face the current climate changes.
Collapse
Affiliation(s)
- Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
4
|
Zheng F, Li S, Wang Z, Xiong S, Liu J, Yang L, Yuan Y, Zeng J, Liu X, Xu S, Chen R, Fu B. The enigmatic interplay of immune cells and abnormal spermatozoa through Mendelian randomization. Am J Reprod Immunol 2024; 91:e13846. [PMID: 38650368 DOI: 10.1111/aji.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Abnormal spermatozoa significantly impact reproductive health, affecting fertility rates, potentially prolonging conception time, and increasing the risk of miscarriages. This study employs Mendelian randomization to explore their potential link with immune cells, aiming to reveal their potential causal association and wider implications for reproductive health. METHODS We conducted forward and reverse Mendelian randomization analyses to explore the potential causal connection between 731 immune cell signatures and abnormal spermatozoa. Using publicly available genetic data, we investigated various immune signatures such as median fluorescence intensities (MFI), relative cell (RC), absolute cell (AC), and morphological parameters (MP). Robustness was ensured through comprehensive sensitivity analyses assessing consistency, heterogeneity, and potential horizontal pleiotropy. The MR study produced a statistically significant p-value of .0000684, Bonferroni-corrected for the 731 exposures. RESULTS The Mendelian randomization analysis revealed strong indications of a reciprocal relationship between immune cell pathways and sperm integrity. When examining immune cell exposure, a potential causal link with abnormal sperm was observed in 35 different types of immune cells. Conversely, the reverse Mendelian randomization results indicated that abnormal sperm might causally affect 39 types of immune cells. These outcomes suggest a potential mutual influence between alterations in immune cell functionality and the quality of spermatozoa. CONCLUSION This study highlights the close link between immune responses and sperm development, suggesting implications for reproductive health and immune therapies. Further research may offer crucial insights into male fertility and immune disorders.
Collapse
Affiliation(s)
- Fuchun Zheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Zhipeng Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jiahao Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Lin Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Yuyang Yuan
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Ru Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
5
|
Zhang J, Cheng H, Zhu Y, Xie S, Shao X, Wang C, Chung SK, Zhang Z, Hao K. Exposure to Airborne PM 2.5 Water-Soluble Inorganic Ions Induces a Wide Array of Reproductive Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4092-4103. [PMID: 38373958 DOI: 10.1021/acs.est.3c07532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Water-soluble inorganic ions (WSIIs, primarily NH4+, SO42-, and NO3-) are major components in ambient PM2.5, but their reproductive toxicity remains largely unknown. An animal study was conducted where parental mice were exposed to PM2.5 WSIIs or clean air during preconception and the gestational period. After delivery, all maternal and offspring mice lived in a clean air environment. We assessed reproductive organs, gestation outcome, birth weight, and growth trajectory of the offspring mice. In parallel, we collected birth weight and placenta transcriptome data from 150 mother-infant pairs from the Rhode Island Child Health Study. We found that PM2.5 WSIIs induced a broad range of adverse reproductive outcomes in mice. PM2.5 NH4+, SO42-, and NO3- exposure reduced ovary weight by 24.22% (p = 0.005), 14.45% (p = 0.048), and 16.64% (p = 0.022) relative to the clean air controls. PM2.5 SO42- exposure reduced the weight of testicle by 5.24% (p = 0.025); further, mice in the PM2.5 SO42- exposure group had 1.81 (p = 0.027) fewer offspring than the control group. PM2.5 NH4+, SO42-, and NO3- exposure all led to lower birth than controls. In mice, 557 placenta genes were perturbed by exposure. Integrative analysis of mouse and human data suggested hypoxia response in placenta as an etiological mechanism underlying PM2.5 WSII exposure's reproductive toxicity.
Collapse
Affiliation(s)
- Jushan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China 200092
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
- College of Environmental Science and Engineering, Tongji University, Shanghai, China 200092
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ke Hao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China 200092
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
- College of Environmental Science and Engineering, Tongji University, Shanghai, China 200092
| |
Collapse
|
6
|
Kimmins S, Anderson RA, Barratt CLR, Behre HM, Catford SR, De Jonge CJ, Delbes G, Eisenberg ML, Garrido N, Houston BJ, Jørgensen N, Krausz C, Lismer A, McLachlan RI, Minhas S, Moss T, Pacey A, Priskorn L, Schlatt S, Trasler J, Trasande L, Tüttelmann F, Vazquez-Levin MH, Veltman JA, Zhang F, O'Bryan MK. Frequency, morbidity and equity - the case for increased research on male fertility. Nat Rev Urol 2024; 21:102-124. [PMID: 37828407 DOI: 10.1038/s41585-023-00820-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- The Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- The Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, University Hospital, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sarah R Catford
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Geraldine Delbes
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Sante Biotechnologie, Laval, Quebec, Canada
| | - Michael L Eisenberg
- Department of Urology and Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | - Niels Jørgensen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, 'Mario Serio', University of Florence, University Hospital of Careggi Florence, Florence, Italy
| | - Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group, Richmond, Victoria, Australia
| | - Suks Minhas
- Department of Surgery and Cancer Imperial, London, UK
| | - Tim Moss
- Healthy Male and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jacquetta Trasler
- Departments of Paediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Leonardo Trasande
- Center for the Investigation of Environmental Hazards, Department of Paediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Fundación IBYME, Buenos Aires, Argentina
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
7
|
Ferrero G, Festa R, Follia L, Lettieri G, Tarallo S, Notari T, Giarra A, Marinaro C, Pardini B, Marano A, Piaggeschi G, Di Battista C, Trifuoggi M, Piscopo M, Montano L, Naccarati A. Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells. Mol Med 2024; 30:12. [PMID: 38243211 PMCID: PMC10799426 DOI: 10.1186/s10020-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
- Department of Computer Science, University of Turin, Corso Svizzera, 185, 10149, Turin, Italy
| | - Rosaria Festa
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Laura Follia
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Tiziana Notari
- Check-Up PolyDiagnostic and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5, 84131, Salerno, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, 84020, Oliveto Citra, Salerno, Italy.
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| |
Collapse
|
8
|
Rahban R, Senn A, Nef S, Rӧӧsli M. Association between self-reported mobile phone use and the semen quality of young men. Fertil Steril 2023; 120:1181-1192. [PMID: 37921737 DOI: 10.1016/j.fertnstert.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES To investigate the association between mobile phone exposure and semen parameters. DESIGN A nationwide cross-sectional study. SETTING Andrology laboratories in close proximity to 6 army recruitment centers. PATIENTS In total, 2886 men from the general Swiss population, 18-22 years old, were recruited between 2005 and 2018 during military conscription. INTERVENTION Participants delivered a semen sample and completed a questionnaire on health and lifestyle, including the number of hours they spent using their mobile phones and where they placed them when not in use. MAIN OUTCOME MEASURES Using logistic and multiple linear regression models, adjusted odds ratios and β coefficients were determined, respectively. The association between mobile phone exposure and semen parameters such as volume, sperm concentration, total sperm count (TSC), motility, and morphology was then evaluated. RESULTS A total of 2759 men answered the question concerning their mobile phone use, and 2764 gave details on the position of their mobile phone when not in use. In the adjusted linear model, a higher frequency of mobile phone use (>20 times per day) was associated with a lower sperm concentration (adjusted β: -0.152; 95% confidence interval: -0.316; 0.011) and a lower TSC (adjusted β: -0.271; 95% confidence interval: -0.515; -0.027). In the adjusted logistic regression model, this translates to a 30% and 21% increased risk for sperm concentration and TSC to be below the World Health Organization reference values for fertile men, respectively. This inverse association was found to be more pronounced in the first study period (2005-2007) and gradually decreased with time (2008-2011 and 2012-2018). No consistent associations were observed between mobile phone use and sperm motility or sperm morphology. Keeping a mobile phone in the pants pocket was not found to be associated with lower semen parameters. CONCLUSION This large population-based study suggests that higher mobile phone use is associated with lower sperm concentration and TSC. The observed time trend of decreasing association is in line with the transition to new technologies and the corresponding decrease in mobile phone output power. Prospective studies with improved exposure assessment are needed to confirm whether the observed associations are causal.
Collapse
Affiliation(s)
- Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
| | - Alfred Senn
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Martin Rӧӧsli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Cipriani S, Ricci E, Chiaffarino F, Esposito G, Dalmartello M, La Vecchia C, Negri E, Parazzini F. Trend of change of sperm count and concentration over the last two decades: A systematic review and meta-regression analysis. Andrology 2023; 11:997-1008. [PMID: 36709405 DOI: 10.1111/andr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Since the 1970s, several studies found that sperm concentration (SC) and total sperm count (TSC) constantly worsened over time, mainly in high-income countries. OBJECTIVES To evaluate whether the decreasing trend in sperm count is continuing in Western European countries and USA, we performed a systematic review and meta-regression analysis. MATERIALS AND METHODS Embase and Pubmed/Medline were searched papers published in English in the 2000-2020 period limiting the search to data collected in the USA and Western European countries. RESULTS We identified 62 articles and pooled information on 24,196 men (range 10-2,523), collected from 1993 to 2018. Considering all the studies, random-effects meta-regression analyses showed no significant trend for SC (slope per year -0.07 mil/mL, p-value = 0.86). Negative trends of SC were detected in Scandinavian countries (slope per year -1.11 mil/mL, 95% CI: -2.40 to +0.19; p-value = 0.09), but the findings were statistically not significant. No significant trends of SC were detected in Central Europe (slope per year +0.23, 95% CI -2.51 to +2.96; p-value = 0.87), the USA (slope per year +1.08, 95% CI -0.42 to +2.57; p-value = 0.16), and Southern Europe (slope per year +0.19, 95% CI -0.99 to +1.37; p-value = 0.75). We have analyzed separately findings from studies including sperm donors, fertile men, young unselected men (unselected men, study mean age < 25 years) and unselected men (unselected men, study mean age ≥ 25 years). No significant trends of SC were observed among sperm donors (slope per year -2.80, 95% CI -6.76 to +1.17; p-value 0.16), unselected men (slope per year -0.23, 95% CI -1.58 to +1.12; p-value 0.73), young unselected men (slope per year -0.49, 95% CI -1.76 to +0.79; p-value 0.45), fertile men (slope per year +0.29, 95% CI -1.09 to +1.67; p-value 0.68). DISCUSSION AND CONCLUSION The results of this analysis show no significant trends in SC, in USA, and selected Western European countries.
Collapse
Affiliation(s)
- Sonia Cipriani
- Gynaecology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Ricci
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesca Chiaffarino
- Gynaecology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Michela Dalmartello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eva Negri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Fabio Parazzini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Basic M, Mitic D, Krstic M, Cvetkovic J. Tobacco and alcohol as factors for male infertility-a public health approach. J Public Health (Oxf) 2023; 45:e241-e249. [PMID: 35485418 PMCID: PMC10273357 DOI: 10.1093/pubmed/fdac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The study of reproductive characteristics of 430 male subjects of different age, fertility status and educational level who were involved in the program of extracorporeal fertilization at the Clinic of Gynecology and Obstetrics, Clinical Centre Niš, examined their knowledge, attitudes and behavior regarding tobacco and alcohol consumption as lifestyle risk predictors of their partial or full infertility. METHODOLOGY Consisted of the analyses of spermiograms to establish their fertility status and a survey of their attitudes towards smoking and alcohol use (behavior, knowledge of the general health and reproductive health consequences of such a lifestyle, and their determination to change it). RESULTS The proportion with higher tobacco consumption and more severe forms of infertility increased significantly with ageing (P < 0.001); the highest daily consumption of alcohol and the incidence of intoxication was seen among azoospermic patients; the level of awareness of the harmful effects of tobacco was highest among normozoospermic subjects and the highest level of determination to quit smoking was statistically significantly present among azoospermic subjects. CONCLUSION Appropriate use of health promotion activities in relation to alcohol and tobacco use is through specially designed programs.
Collapse
Affiliation(s)
- Marin Basic
- Obstetrics and Gynecology Clinic, Department of Assisted Reproduction, Niš, Serbia
| | - Dejan Mitic
- Faculty of Medicine, Univerziteta u Nišu, Serbia
| | - Mirjana Krstic
- Obstetrics and Gynecology Clinic, Department of Assisted Reproduction, Niš, Serbia
| | | |
Collapse
|
11
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Wu B, Li R, Ma S, Ma Y, Fan L, Gong C, Liu C, Sun L, Yuan L. The cilia and flagella associated protein CFAP52 orchestrated with CFAP45 is required for sperm motility in mice. J Biol Chem 2023:104858. [PMID: 37236356 PMCID: PMC10319328 DOI: 10.1016/j.jbc.2023.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Asthenozoospermia characterized by decreased sperm motility is a major cause of male infertility, but the majority of their etiology remains unknown. Here, we showed that the cilia and flagella associated protein 52 (Cfap52) gene was predominantly expressed in testis and its deletion in a Cfap52 knockout mouse model resulted in decreased sperm motility and male infertility. Cfap52 knockout also led to the disorganization of midpiece-principal piece junction of the sperm tail, but had no effect on the axoneme ultrastructure in spermatozoa. Furthermore, we found that CFAP52 interacted with the cilia and flagella associated protein 45 (CFAP45), and knockout of Cfap52 decreased the expression level of CFAP45 in sperm flagellum, which further disrupted the microtubule sliding produced by dynein ATPase. Together, our studies demonstrate that CFAP52 plays an essential role in sperm motility by interacting with CFAP45 in sperm flagellum, providing insights into the potential pathogenesis of the infertility of the human CFAP52 mutations.
Collapse
Affiliation(s)
- Bingbing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rachel Li
- Beijing Academy International Division, Beijing, 100018, China
| | - Shuang Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjie Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Fan
- Department of Endocrinology, Genetics, Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics, Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Ling Sun
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China.
| | - Li Yuan
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Mashoodh R, Habrylo IB, Gudsnuk K, Champagne FA. Sex-specific effects of chronic paternal stress on offspring development are partially mediated via mothers. Horm Behav 2023; 152:105357. [PMID: 37062113 DOI: 10.1016/j.yhbeh.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Paternal stress exposure is known to impact the development of stress-related behaviors in offspring. Previous work has highlighted the importance of sperm mediated factors, such as RNAs, in transmitting the effects of parental stress. However, a key unanswered question is whether mothers behavior could drive or modulate the transmission of paternal stress effects on offspring development. Here we investigate how chronic variable stress in Balb/C mice influences the sex-specific development of anxiety- and depression-like neural and behavioral development in offspring. Moreover, we examined how stressed fathers influenced mate maternal investment towards their offspring and how this may modulate the transmission of paternal stress effects on offspring. We show that paternal stress leads to sex-specific effects on offspring behavior. Males that are chronically stressed sire female offspring that show increased anxiety and depression-like behaviors. However, male offspring of stressed fathers show reductions in anxiety- and depression-behaviors and are generally more exploratory. Moreover, we show that females mated with stressed males gain less weight during pregnancy and provide less care towards their offspring which additionally influenced offspring development. These data indicate that paternal stress can influence offspring development both directly and indirectly via changes in mothers, with implications for sex-specific offspring development.
Collapse
Affiliation(s)
- Rahia Mashoodh
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | - Ireneusz B Habrylo
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Kathryn Gudsnuk
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Frances A Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America; University of Texas Austin, Department of Psychology, 108 Dean Keeton, Austin, TX 78712, United States of America
| |
Collapse
|
14
|
Engelsman M, Banks APW, He C, Nilsson S, Blake D, Jayarthne A, Ishaq Z, Toms LML, Wang X. An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085472. [PMID: 37107753 PMCID: PMC10138572 DOI: 10.3390/ijerph20085472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Firefighters are occupationally exposed to chemicals that may affect fertility. To investigate this effect, firefighters were recruited to contribute blood, urine, breast milk or semen samples to (1) evaluate chemical concentrations and semen parameters against fertility standards and the general population; (2) assess correlations between chemical concentrations and demographics, fire exposure and reproductive history; and (3) consider how occupational exposures may affect reproduction. A total of 774 firefighters completed the online survey, and 97 firefighters produced 125 urine samples, 113 plasma samples, 46 breast milk samples and 23 semen samples. Blood, urine and breast milk samples were analysed for chemical concentrations (semivolatile organic compounds, volatile organic compounds, metals). Semen samples were analysed for quality (volume, count, motility, morphology). Firefighter semen parameters were below WHO reference values across multiple parameters. Self-reported rates of miscarriage were higher than the general population (22% vs. 12-15%) and in line with prior firefighter studies. Estimated daily intake for infants was above reference values for multiple chemicals in breast milk. More frequent fire incident exposure (more than once per fortnight), longer duration of employment (≥15 years) or not always using a breathing apparatus demonstrated significantly higher concentrations across a range of investigated chemicals. Findings of this study warrant further research surrounding the risk occupational exposure has on reproduction.
Collapse
Affiliation(s)
- Michelle Engelsman
- Fire and Rescue NSW, Greenacre, NSW 2190, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Andrew P. W. Banks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chang He
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Ayomi Jayarthne
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zubaria Ishaq
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Leisa-Maree L. Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
15
|
Xia Y, Hao L, Li Y, Li Y, Chen J, Li L, Han X, Liu Y, Wang X, Li D. Embryonic 6:2 FTOH exposure causes reproductive toxicity by disrupting the formation of the blood-testis barrier in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114497. [PMID: 36608565 DOI: 10.1016/j.ecoenv.2023.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have revealed nephrotoxicity, hepatotoxicity, subchronic developmental and reproductive toxicity in rats exposed to fluorotelomer alcohol (FTOH). However, the effects of embryonic 6:2 FTOH exposure on the reproductive system of offspring mice remain unclear. The purpose of this study is to explore the reproductive toxic effects of embryonic 6:2 FTOH exposure on offspring male mice and the related molecular mechanisms. Therefore, the pregnant mice were given corn oil or 6:2 FTOH by gavage from gestational days 12.5-21.5. The results demonstrated that embryonic 6:2 FTOH exposure resulted in disrupted testicular structure, low expression of tight junction protein between Sertoli cells (SCs), impaired blood-testis barrier (BTB) formation and maturation, reduced sperm viability and increased malformation, and induced testicular inflammation in the offspring of mice. Further in vitro studies showed that 6:2 FTOH treatment upregulated MMP-8 expression by activating AKT/NF-κB signaling pathway, which in turn enhanced occludin cleavage leading to the disruption of SCs barrier integrity. In summary, this study demonstrated that 6:2 FTOH exposure caused reproductive dysfunction in male offspring through disruption of BTB, which provided new insights into the effects of 6:2 FTOH exposure on the offspring.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Yueyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Li
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanmei Liu
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
16
|
Dehdari Ebrahimi N, Parsa S, Nozari F, Shahlaee MA, Maktabi A, Sayadi M, Sadeghi A, Azarpira N. Protective effects of melatonin against the toxic effects of environmental pollutants and heavy metals on testicular tissue: A systematic review and meta-analysis of animal studies. Front Endocrinol (Lausanne) 2023; 14:1119553. [PMID: 36793277 PMCID: PMC9922902 DOI: 10.3389/fendo.2023.1119553] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Environmental pollution and infertility are two modern global challenges that agonize personal and public health. The causal relationship between these two deserves scientific efforts to intervene. It is believed that melatonin maintains antioxidant properties and may be utilized to protect the testicular tissue from oxidant effects caused by toxic materials. METHODS A systematic literature search was conducted in PubMed, Scopus, and Web of Science to identify the animal trial studies that evaluated melatonin therapy's effects on rodents' testicular tissue against oxidative stress caused by heavy metal and non-heavy metal environmental pollutants. Data were pooled, and standardized mean difference and 95% confidence intervals were estimated using the random-effect model. Also, the risk of bias was assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool. (PROSPERO: CRD42022369872). RESULTS Out of 10039 records, 38 studies were eligible for the review, of which 31 were included in the meta-analysis. Most of them showed beneficial effects of melatonin therapy on testicular tissue histopathology. [20 toxic materials were evaluated in this review, including arsenic, lead, hexavalent chromium, cadmium, potassium dichromate, sodium fluoride, cigarette smoke, formaldehyde, carbon tetrachloride (CCl4), 2-Bromopropane, bisphenol A, thioacetamide, bisphenol S, ochratoxin A, nicotine, diazinon, Bis(2-ethylhexyl) phthalate (DEHP), Chlorpyrifos (CPF), nonylphenol, and acetamiprid.] The pooled results showed that melatonin therapy increased sperm count, motility, viability and body and testicular weights, germinal epithelial height, Johnsen's biopsy score, epididymis weight, seminiferous tubular diameter, serum testosterone, and luteinizing hormone levels, testicular tissue Malondialdehyde, glutathione peroxidase, superoxide dismutase, and glutathione levels. On the other hand, abnormal sperm morphology, apoptotic index, and testicular tissue nitric oxide were lower in the melatonin therapy arms. The included studies presented a high risk of bias in most SYRCLE domains. CONCLUSION In conclusion, our study demonstrated amelioration of testicular histopathological characteristics, reproductive hormonal panel, and tissue markers of oxidative stress. Melatonin deserves scientific attention as a potential therapeutic agent for male infertility. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022369872.
Collapse
Affiliation(s)
| | - Shima Parsa
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Nozari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amirhossein Maktabi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrab Sayadi
- Cardiovascular research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Sadeghi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Negar Azarpira,
| |
Collapse
|
17
|
Ranjbarkohan F, Hamedi S. Chronic minocycline administration improves spermatogenesis in rats. Rev Int Androl 2022; 21:100332. [PMID: 36428214 DOI: 10.1016/j.androl.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/30/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Minocycline is a tetracycline with promising protective effects on different organs which are completely distinct from its antibacterial effects. METHODS To evaluate the effects of chronic administration of this agent on histological structure and sperm parameters of testes, forty adult male rats were randomly allocated into 2 equal groups I: control animals and II: treated animal that received 25mg/kg/day minocycline, orally. After 90 days of treatment, serum level of testosterone was assessed as well as sperm count, motility and morphology. Moreover, histological and histomorphometric evaluation of testes was performed including determination of height of the seminiferous germinal epithelium and perpendicular diameter of seminiferous tubules. Numbers of spermatogonia, primary spermatocytes, spermatids, Sertoli and Leydig cells were counted. Johnsen's scoring method was also performed. RESULTS Sperm parameters significantly improved in minocycline-treated animals. Moreover, number of germ cells in different stages of development significantly increased in treatment group as compared to control. This finding was associated with better Johnsen's score and thicker epithelium in seminiferous tubules. However, serum testosterone levels, Leydig and Sertoli cell count as well as tubular diameter did not show significant changes (p>0.05). DISCUSSION Chronic administration of minocycline is associated with improved spermatogenesis and sperm characteristics without affecting steroidogenesis in rats.
Collapse
Affiliation(s)
- Farshad Ranjbarkohan
- Department of Veterinary Basic Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Somayeh Hamedi
- Department of Veterinary Basic Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
18
|
Pathway Analysis of Genome Wide Association Studies (GWAS) Data Associated with Male Infertility. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Infertility is a common condition affecting approximately 10–20% of the reproductive age population. Idiopathic infertility cases are thought to have a genetic basis, but the underlying causes are largely unknown. However, the genetic basis underlying male infertility in humans is only partially understood. The Purpose of the study is to understand the current state of research on the genetics of male infertility and its association with significant biological mechanisms. Results: We performed an Identify Candidate Causal SNPs and Pathway (ICSN Pathway) analysis using a genome-wide association study (GWAS) dataset, and NCBI-PubMed search which included 632 SNPs in GWAS and 451 SNPs from the PubMed server, respectively. The ICSN Pathway analysis produced three hypothetical biological mechanisms associated with male infertility: (1) rs8084 and rs7192→HLA-DRA→inflammatory pathways and cell adhesion; rs7550231 and rs2234167→TNFRSF14→TNF Receptor Superfamily Member 14→T lymphocyte proliferation and activation; rs1105879 and rs2070959→UGT1A6→UDP glucuronosyltransferase family 1 member A6→Metabolism of Xenobiotics, androgen, estrogen, retinol, and carbohydrates. Conclusions: We believe that our results may be helpful to study the genetic mechanisms of male infertility. Pathway-based methods have been applied to male infertility GWAS datasets to investigate the biological mechanisms and reported some novel male infertility risk pathways. This pathway analysis using GWAS dataset suggests that the biological process related to inflammation and metabolism might contribute to male infertility susceptibility. Our analysis suggests that genetic contribution to male infertility operates through multiple genes affecting common inflammatory diseases interacting in functional pathways.
Collapse
|
19
|
Awang-Junaidi AH, Fayaz MA, Goldstein S, Honaramooz A. Using a testis regeneration model, FGF9, LIF, and SCF improve testis cord formation while RA enhances gonocyte survival. Cell Tissue Res 2022; 389:351-370. [PMID: 35596812 DOI: 10.1007/s00441-022-03641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Implantation of testis cell aggregates from various donors under the back skin of recipient mice results in de novo formation of testis tissue. We used this implantation model to study the putative in vivo effects of six different growth factors on testis cord development. Recipient mice (n = 7/group) were implanted with eight neonatal porcine testis cell aggregates that were first exposed to a designated growth factor: FGF2 at 1 µg/mL, FGF9 at 5 µg/mL, VEGF at 3.5 µg/mL, LIF at 5 µg/mL, SCF at 3.5 µg/mL, retinoic acid (RA) at 3.5 × 10-5 M, or no growth factors (control). The newly developed seminiferous cords (SC) were classified based on their morphology into regular, irregular, enlarged, or aberrant. Certain treatments enhanced implant weight (LIF), implant cross-sectional area (SCF) or the relative cross-sectional area covered by SC within implants (FGF2). RA promoted the formation of enlarged SC and FGF2 led to the highest ratio of regular SC and the lowest ratio of aberrant SC. Rete testis-like structures appeared earlier in implants treated with FGF2, FGF9, or LIF. These results show that even brief pre-implantation exposure of testis cells to these growth factors can have profound effects on morphogenesis of testis cords using this implantation model.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.,Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Savannah Goldstein
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
20
|
Yokota S, Takeda K, Oshio S. Spatiotemporal Small Non-coding RNAs Expressed in the Germline as an Early Biomarker of Testicular Toxicity and Transgenerational Effects Caused by Prenatal Exposure to Nanosized Particles. FRONTIERS IN TOXICOLOGY 2022; 3:691070. [PMID: 35295114 PMCID: PMC8915876 DOI: 10.3389/ftox.2021.691070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, an apparent decline in human sperm quality has been observed worldwide. One in every 5.5 couples suffers from infertility, with male reproductive problems contributing to nearly 40% of all infertility cases. Although the reasons for the increasing number of infertility cases are largely unknown, both genetic and environmental factors can be contributing factors. In particular, exposure to chemical substances during mammalian male germ cell development has been linked to an increased risk of infertility in later life owing to defective sperm production, reproductive tract obstruction, inflammation, and sexual disorders. Prenatal exposure to nanomaterials (NMs) is no exception. In animal experiments, maternal exposure to NMs has been reported to affect the reproductive health of male offspring. Male germ cells require multiple epigenetic reprogramming events during their lifespan to acquire reproductive capacity. Given that spermatozoa deliver the paternal genome to oocytes upon fertilization, we hypothesized that maternal exposure to NMs negatively affects male germ cells by altering epigenetic regulation, which may in turn affect embryo development. Small non-coding RNAs (including microRNAs, PIWI-interacting RNAs, tRNA-derived small RNAs, and rRNA-derived small RNAs), which are differentially expressed in mammalian male germ cells in a spatiotemporal manner, could play important regulatory roles in spermatogenesis and embryogenesis. Thus, the evaluation of RNAs responsible for sperm fertility is of great interest in reproductive toxicology and medicine. However, whether the effect of maternal exposure to NMs on spermatogenesis in the offspring (intergenerational effects) really triggers multigenerational effects remains unclear, and infertility biomarkers for evaluating paternal inheritance have not been identified to date. In this review, existing lines of evidence on the effects of prenatal exposure to NMs on male reproduction are summarized. A working hypothesis of the transgenerational effects of sperm-derived epigenomic changes in the F1 generation is presented, in that such maternal exposure could affect early embryonic development followed by deficits in neurodevelopment and male reproduction in the F2 generation.
Collapse
Affiliation(s)
- Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Ken Takeda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Shigeru Oshio
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| |
Collapse
|
21
|
Xie J, Yu J, Zhang Z, Liu D, Fan Y, Wu Y, Ma H, Wang C, Hong Z. AMPK pathway is implicated in low level lead-induced pubertal testicular damage via disordered glycolysis. CHEMOSPHERE 2022; 291:132819. [PMID: 34762894 DOI: 10.1016/j.chemosphere.2021.132819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is a common environmental pollutant. It has been demonstrated that long-term exposure to Pb at environmental levels may cause severe and irreversible damage to the male reproductive system. Of note, the impairments may originate from environmental Pb exposure at puberty. However, the underlying mechanisms remain unclear. In this study, we administrated male ICR mice with 200 mg/L Pb through the drinking water for 30-, 60-, 90-day from postnatal day 28. RNA sequencing was performed in the control group and the 90-day Pb exposure group. It was found that Pb exposure induced testicular damage, increased oxidative stress levels and poor sperm quality. Bioinformatic analysis displayed 199 genes up-regulated (such as GLUT1 and MCT4 genes) and 156 genes down-regulated (such as GLUT3, PFK1, LDH, CD147 and AMPK genes) in the Pb exposure group compared to the control group. Gene ontology (GO) terms enrichment analysis showed differentially expressed genes (DEGs) are involved in the protein catabolic, cellular catabolic and triglyceride catabolic processes. KEGG pathways enrichment analysis indicated glycerolipid metabolism and AMPK signaling were significantly enriched. Furthermore, experimental verification showed that Pb exposure induces energy dysmetabolism and decreases glycolysis products in mice testicular tissue. The AMPK signaling pathway was found to be deactivated after Pb exposure. The GLUT1, GLUT3, PFK1 and LDH proteins, which play a critical role in the cell glycolysis process, also were decreased. Besides, the expression of CD147 was decreased and the location of CD147 was altered upon Pb exposure. Together, these findings indicated the implication of the AMPK signaling pathway in Pb exposure induced pubertal testicular damage and poor sperm quality by inhibiting cell glycolysis and disordering lactate transportation in testicular cells.
Collapse
Affiliation(s)
- Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Jun Yu
- Department of Preventive Medicine, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Zhaoyu Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Duanya Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Yongsheng Fan
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Yu Wu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Haitao Ma
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, PR China.
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
22
|
Khaled Taïbi MA, Ait Abderrahim L, Boussaid M, Souana K, Tadj A, Benaissa T, Gouchich T. Dissecting the relationship between artificial insemination success and bull semen quality in the arid region of Tiaret (Algeria). BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Despite being subject to prior assortment, frozen bull sperms commercialized for artificial insemination may present certain morphological defects. The present study aims (i) to assess the artificial insemination success of the most common cattle breeds in Algeria and (ii) to evaluate the possible effects of commercialized bull’s semen quality on this operation.
Artificial insemination was assessed through four years of field monitoring by inseminating different cattle breeds of normal fertility. However, semen quality was evaluated using light microscopy by measuring viability, motility, and morphological abnormalities of spermatozoa. Field study revealed a high percentage of normal calving in red and white Holstein breed (44.83 %) against the high percentage of embryonic mortality (46.43 %) and calving with a malformation (10.71 %) in Montbéliarde breed. Semen quality assessment revealed that sperm viability and motility were higher in Holstein breeds than in Montbéliarde. Furthermore, significant differences between semen bulls were found in the proportion of abnormal spermatozoa; a higher rate of sperms with the abnormal head was observed in the black and white Holstein breed (69.3±10.98 %). However, the percentage of abnormal sperms with tail defects was higher in the Montbéliarde breed (67.5±10.74 %).
The lousy quality of the selected semen and/or the poor handling and storage of frozen semen constitute a determinant factor that hinders the success of artificial insemination in the arid region of Tiaret (Algeria).
Collapse
Affiliation(s)
| | | | - Mohamed Boussaid
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Kada Souana
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Abdelkader Tadj
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Toufik Benaissa
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| | - Tayeb Gouchich
- Faculty of Life and Natural Sciences, University of Tiaret, 14000, Algeria
| |
Collapse
|
23
|
Vozdova M, Kubickova S, Kopecka V, Sipek J, Rubes J. Effects of the air pollution dynamics on semen quality and sperm DNA methylation in men living in urban industrial agglomeration. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:76-83. [PMID: 35246879 DOI: 10.1002/em.22474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Human populations living in urban industrial regions of developed countries are exposed to high levels of environmental pollutants. The reproductive consequences of the exposure to air pollution can be monitored through semen analysis and molecular methods. In this study, we tested the possible impact of seasonal changes in the level of air pollution on the semen quality and sperm DNA methylation of 24 men living and working in the industrial agglomeration of Ostrava (Czech Republic). The study participants were healthy non-smokers. The study group was homogeneous regarding their profession, moderate alcohol consumption, no drug abuse and no additional exposure to chemical toxicants. We performed targeted methylation next generation sequencing (NGS) using Agilent SureSelect Human Methyl-Seq and Illumina NextSeq 500 platform to analyze semen samples collected repeatedly from the same men following the season of high (winter) and low (summer) air pollution exposure. We did not detect any adverse effects of the increased exposure on the semen quality; neither we found any difference in average sperm DNA methylation between the two sampling periods. Our search for differentially methylated CpG sites did not reveal any specific CpG methylation change. Our data indicate that the seasonal changes in the level of the air pollution probably do not have any substantial effect on sperm DNA methylation of men living in the highly polluted industrial agglomeration for a long period of time.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Vera Kopecka
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Sipek
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
24
|
Castleton PE, Deluao JC, Sharkey DJ, McPherson NO. Measuring Reactive Oxygen Species in Semen for Male Preconception Care: A Scientist Perspective. Antioxidants (Basel) 2022; 11:antiox11020264. [PMID: 35204147 PMCID: PMC8868448 DOI: 10.3390/antiox11020264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress and elevated levels of seminal and sperm reactive oxygen species (ROS) may contribute to up to 80% of male infertility diagnosis, with sperm ROS concentrations at fertilization important in the development of a healthy fetus and child. The evaluation of ROS in semen seems promising as a potential diagnostic tool for male infertility and male preconception care with a number of clinically available tests on the market (MiOXSYS, luminol chemiluminescence and OxiSperm). While some of these tests show promise for clinical use, discrepancies in documented decision limits and lack of cohort studies/clinical trials assessing their benefits on fertilization rates, embryo development, pregnancy and live birth rates limit their current clinical utility. In this review, we provide an update on the current techniques used for analyzing semen ROS concentrations clinically, the potential to use of ROS research tools for improving clinical ROS detection in sperm and describe why we believe we are likely still a long way away before semen ROS concentrations might become a mainstream preconception diagnostic test in men.
Collapse
Affiliation(s)
- Patience E. Castleton
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - Joshua C. Deluao
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - David J. Sharkey
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - Nicole O. McPherson
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
- Repromed, 180 Fullarton Rd., Dulwich 5065, Australia
- Correspondence: ; Tel.: +61-8-8313-8201
| |
Collapse
|
25
|
Mustafa M, Dar SA, Azmi S, Haque S. The Role of Environmental Toxicant-Induced Oxidative Stress in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:17-32. [PMID: 36472814 DOI: 10.1007/978-3-031-12966-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a serious public health issue affecting around 15% of couples globally. Of the 60-80 million people of reproductive age affected by infertility, 40-50% are due to male factor while 30-40% of cases are still idiopathic. The recent global deterioration in sperm quality raises apprehensions regarding the toxic effects of environmental pollutants on reproductive health of males. Environmental toxicants have shown strong evidences for inducing oxidative stress affecting spermatogenesis severely, thereby leading to reduced sperm motility, count, and DNA damage. Reactive oxygen species (ROS) influences the spermatozoa development and transit process both internally and externally. Low level of ROS is indispensable for critical physiological sperm processes like sperm capacitation, motility, acrosome reaction, hyper-activation, sperm-oocyte interaction, etc., while excessive ROS disrupt antioxidant molecules which is detrimental to normal functioning of the sperm. Hence, identification of potential environmental toxicant may have clinical relevance for early screening and diagnosis of male infertility.
Collapse
Affiliation(s)
- Mohammad Mustafa
- Scientific Research Centre, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Centre, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
26
|
Sakib S, Lara NDLEM, Huynh BC, Dobrinski I. Organotypic Rat Testicular Organoids for the Study of Testicular Maturation and Toxicology. Front Endocrinol (Lausanne) 2022; 13:892342. [PMID: 35757431 PMCID: PMC9218276 DOI: 10.3389/fendo.2022.892342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022] Open
Abstract
An in vitro system to study testicular maturation in rats, an important model organism for reproductive toxicity, could serve as a platform for high-throughput drug and toxicity screening in a tissue specific context. In vitro maturation of somatic cells and spermatogonia in organ culture systems has been reported. However, this has been a challenge for organoids derived from dissociated testicular cells. Here, we report generation and maintenance of rat testicular organoids in microwell culture for 28 days. We find that rat organoids can be maintained in vitro only at lower than ambient O2 tension of 15% and organoids cultured at 34°C have higher somatic cell maturation and spermatogonial differentiation potential compared to cultures in 37°C. Upon exposure to known toxicants, phthalic acid mono-2-ethylhexyl ester and cadmium chloride, the organoids displayed loss of tight-junction protein Claudin 11 and altered transcription levels of somatic cell markers that are consistent with previous reports in animal models. Therefore, the microwell-derived rat testicular organoids described here can serve as a novel platform for the study of testicular cell maturation and reproductive toxicity in vitro.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Nathalia de Lima e Martins Lara
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Brandon Christopher Huynh
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Ina Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- *Correspondence: Ina Dobrinski,
| |
Collapse
|
27
|
Paternal Exercise Improves the Metabolic Health of Offspring via Epigenetic Modulation of the Germline. Int J Mol Sci 2021; 23:ijms23010001. [PMID: 35008427 PMCID: PMC8744992 DOI: 10.3390/ijms23010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS Epigenetic regulation is considered the main molecular mechanism underlying the developmental origin of health and disease's (DOHAD) hypothesis. Previous studies that have investigated the role of paternal exercise on the metabolic health of the offspring did not control for the amount and intensity of the training or possible effects of adaptation to exercise and produced conflicting results regarding the benefits of parental exercise to the next generation. We employed a precisely regulated exercise regimen to study the transgenerational inheritance of improved metabolic health. METHODS We subjected male mice to a well-controlled exercise -training program to investigate the effects of paternal exercise on glucose tolerance and insulin sensitivity in their adult progeny. To investigate the molecular mechanisms of epigenetic inheritance, we determined chromatin markers in the skeletal muscle of the offspring and the paternal sperm. RESULTS Offspring of trained male mice exhibited improved glucose homeostasis and insulin sensitivity. Paternal exercise modulated the DNA methylation profile of PI3Kca and the imprinted H19/Igf2 locus at specific differentially methylated regions (DMRs) in the skeletal muscle of the offspring, which affected their gene expression. Remarkably, a similar DNA methylation profile at the PI3Kca, H19, and Igf2 genes was present in the progenitor sperm indicating that exercise-induced epigenetic changes that occurred during germ cell development contributed to transgenerational transmission. CONCLUSION Paternal exercise might be considered as a strategy that could promote metabolic health in the offspring as the benefits can be inherited transgenerationally.
Collapse
|
28
|
Hayaei Tehrani RS, Sayahpour FA, Esfandiari F. A comparison between BMP4 and SB4 in inducing germ line gene expression pattern during embryonic stem cells differentiation. Differentiation 2021; 123:9-17. [PMID: 34864442 DOI: 10.1016/j.diff.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/03/2022]
Abstract
Germ cell production from stem cells allows for studying the mechanisms involved in gamete development with the aim of helping infertile couples with the generation of healthy gametes. In this context, improving the protocols for in-vitro germ cell induction from stem cells is very important. Recently, SB4 small molecule has been introduced as a potent agonist for bone morphogenic protein 4 (BMP4). Herein, we investigated whether BMP4, is replaceable by SB4 for having affordable protocol for in vitro germ cell differentiation. We demonstrated that SB4 can induce Blimp1 (as the first gene induced germ line differentiation) expression significantly but at a lower level compared to BMP4. However, Tfap2c (a putative downstream target of Blimp1 during germ cell differentiation) expression level in SB4-induced aggregates was significantly higher than in BMP4-induced aggregates. Moreover, co-presence of both BMP4 and SB4 could increase the expression level of Prdm14, Nnose3 and Stella (Dppa3), and thereby improve establishment of the germ cell fate during in-vitro differentiation of embryonic stem cells. In summary, our data suggest that SB4 could improve germ line gene expression pattern induced by BMP4 during embryonic stem cells in-vitro differentiation.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
29
|
Ho SM, Rao R, Ouyang B, Tam NNC, Schoch E, Song D, Ying J, Leung YK, Govindarajah V, Tarapore P. Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients 2021; 13:nu13103636. [PMID: 34684636 PMCID: PMC8541510 DOI: 10.3390/nu13103636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17β (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| | - Rahul Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Neville N. C. Tam
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Emma Schoch
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Dan Song
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Jun Ying
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| |
Collapse
|
30
|
Oliver E, Alves-Lopes JP, Harteveld F, Mitchell RT, Åkesson E, Söder O, Stukenborg JB. Self-organising human gonads generated by a Matrigel-based gradient system. BMC Biol 2021; 19:212. [PMID: 34556114 PMCID: PMC8461962 DOI: 10.1186/s12915-021-01149-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Advances in three-dimensional culture technologies have led to progression in systems used to model the gonadal microenvironment in vitro. Despite demonstrating basic functionality, tissue organisation is often limited. We have previously detailed a three-dimensional culture model termed the three-layer gradient system to generate rat testicular organoids in vitro. Here we extend the model to human first-trimester embryonic gonadal tissue. RESULTS Testicular cell suspensions reorganised into testis-like organoids with distinct seminiferous-like cords situated within an interstitial environment after 7 days. In contrast, tissue reorganisation failed to occur when mesonephros, which promotes testicular development in vivo, was included in the tissue digest. Organoids generated from dissociated female gonad cell suspensions formed loosely organised cords after 7 days. In addition to displaying testis-specific architecture, testis-like organoids demonstrated evidence of somatic cell differentiation. Within the 3-LGS, we observed the onset of AMH expression in the cytoplasm of SOX9-positive Sertoli cells within reorganised testicular cords. Leydig cell differentiation and onset of steroidogenic capacity was also revealed in the 3-LGS through the expression of key steroidogenic enzymes StAR and CYP17A1 within the interstitial compartment. While the 3-LGS generates a somatic cell environment capable of supporting germ cell survival in ovarian organoids germ cell loss was observed in testicular organoids. CONCLUSION The 3-LGS can be used to generate organised whole gonadal organoids within 7 days. The 3-LGS brings a new opportunity to explore gonadal organogenesis and contributes to the development of more complex in vitro models in the field of developmental and regenerative medicine.
Collapse
Affiliation(s)
- Elizabeth Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - João Pedro Alves-Lopes
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.,Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Femke Harteveld
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.,Royal Hospital for Children and Young People, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,The R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Olle Söder
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.
| |
Collapse
|
31
|
Galimov SN, Gromenko JY, Bulygin KV, Galimov KS, Galimova EF, Sinelnikov MY. The level of secondary messengers and the redox state of NAD +/NADH are associated with sperm quality in infertility. J Reprod Immunol 2021; 148:103383. [PMID: 34534880 DOI: 10.1016/j.jri.2021.103383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
In order to explore the interrelation of Calcium, cAMP, and redox state of pyridine nucleotides in seminal plasma and ejaculate quality in cases of idiopathic infertility we conducted an evaluation of 170 infertile males and 46 fertile males aged 20-43 years. Sperm analysis was undertaken according to WHO protocol. The content of Calcium in the seminal plasma was detected using optical emission spectrometry, cAMP levels were determined via enzymatic immunoassay. The redox state of pyridine nucleotides was evaluated from the ratio of pyruvate to lactate, determined via enzymatic method. Our results show a decrease in Calcium, cAMP, pyruvate and the oxidation-reduction potential of pyridine nucleotides in the seminal plasma of infertile males with pathospermia. This corresponds to anaerobic inversion of oxidative conversions and metabolism inadaptation. Such processes are often seen in inflammatory and autoimmune conditions. cAMP levels reliably correlated with the number of progressively mobile sperm cells, but not with the number of their pathological forms. A positive correlation between the concentration of cAMP and calcium was discovered as well. Pathospermia was characterized by the positive relation between the value of the NAD+/NADH coefficient and the spermatozoa concentration that was not present in fertile donors. Our study shows distinct changes in the concentration of secondary messengers and redox state of pyridine nucleotides in the seminal fluid that can act as molecular predictors for the development of idiopathic infertility.
Collapse
Affiliation(s)
| | | | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Kamil Sh Galimov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mikhail Y Sinelnikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Institute of Human Morphology, Moscow, Russia.
| |
Collapse
|
32
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
33
|
Istvan M, Rahban R, Dananche B, Senn A, Stettler E, Multigner L, Nef S, Garlantézec R. Maternal occupational exposure to endocrine-disrupting chemicals during pregnancy and semen parameters in adulthood: results of a nationwide cross-sectional study among Swiss conscripts. Hum Reprod 2021; 36:1948-1958. [PMID: 33729457 DOI: 10.1093/humrep/deab034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/23/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Is there a relationship between maternal occupational exposure to endocrine-disrupting chemicals (EDCs) during pregnancy and the semen quality of their sons? SUMMARY ANSWER Our results suggest an association between maternal occupational exposure to potential EDCs, especially to pesticides, phthalates and heavy metals, and a decrease in several semen parameters. WHAT IS KNOWN ALREADY Sexual differentiation, development and proper functioning of the reproductive system are largely dependent on steroid hormones. Although there is some animal evidence, studies on maternal exposure to EDCs during pregnancy and its effect on the semen quality of sons are scarce and none have focused on maternal occupational exposure. STUDY DESIGN, SIZE, DURATION A cross-sectional study aiming to evaluate semen quality was carried out among Swiss conscripts aged 18 to 22 years between 2005 and 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS Conscript and parent questionnaires were completed prior to the collection of a semen sample. Semen parameters were categorised according to the guidelines of the World Health Organization (WHO). Data on maternal employment during pregnancy were provided by the parent questionnaire. Maternal occupational exposure to potential EDC categories was defined using a job-exposure matrix (JEM). Logistic regressions were used to analyse the relationship between maternal occupational exposure to EDCs and each semen parameter adjusted for potential confounding factors. Results are presented using odds ratios and 95% confidence intervals. MAIN RESULTS AND THE ROLE OF CHANCE In total, 1,737 conscripts provided a conscript and parent questionnaire, as well as a semen sample; among these 1,045 of their mothers worked during pregnancy. Our study suggests an association between occupational exposure of mothers during pregnancy to potential EDCs and low semen volume and total sperm count, particularly for exposure to pesticides (OR 2.07, 95% CI 1.11-3.86 and OR 2.14, 95% CI 1.05-4.35), phthalates (OR 1.92, 95% CI 1.10-3.37 and OR 1.89, 95% CI 1.01-3.55), and heavy metals (OR 2.02, 95% CI 1.14-3.60 and OR 2.29, 95% CI 1.21-4.35). Maternal occupational exposure to heavy metals was additionally associated with a low sperm concentration (OR 1.89, 95% CI 1.06-3.37). LIMITATIONS, REASONS FOR CAUTION Several limitations should be noted, such as the indirect method for maternal occupational exposure assessment during the pregnancy (JEM) and the cross-sectional design of the study. WIDER IMPLICATIONS OF THE FINDINGS Our observations reinforce the need to inform pregnant women of potential hazards during pregnancy that could impair their child's fertility. Additional studies are needed to confirm the involvement of EDCs. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Swiss Centre for Applied Human Toxicology: SCAHT and the 'Fondation privée des Hôpitaux Universitaires de Genève'. The collection of human biological material used for this study was supported by the FABER Foundation, the Swiss National Science Foundation (SNSF): NFP 50 'Endocrine Disruptors: Relevance to Humans, Animals and Ecosystems', the Medical Services of the Swiss Army (DDPS) and Medisupport. The authors declare they have no competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- M Istvan
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Université de Rennes, Rennes, 35000, France
| | - R Rahban
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, 1206, Switzerland
- Swiss Centre for Applied Human Toxicology, Basel, 4055, Switzerland
| | - B Dananche
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Université de Rennes, Rennes, 35000, France
| | - A Senn
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, 1206, Switzerland
- Swiss Centre for Applied Human Toxicology, Basel, 4055, Switzerland
| | - E Stettler
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, 1206, Switzerland
- Swiss Centre for Applied Human Toxicology, Basel, 4055, Switzerland
- Swiss Armed Forces Joint Staff, Medical Services, Ittigen, 3063, Switzerland
| | - L Multigner
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Université de Rennes, Rennes, 35000, France
| | - S Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, 1206, Switzerland
- Swiss Centre for Applied Human Toxicology, Basel, 4055, Switzerland
| | - R Garlantézec
- CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Université de Rennes, Rennes, 35000, France
| |
Collapse
|
34
|
Priskorn L, Kreiberg M, Bandak M, Lauritsen J, Daugaard G, Petersen JH, Aksglaede L, Juul A, Jørgensen N. Testicular cancer survivors have shorter anogenital distance that is not increased by 1 year of testosterone replacement therapy. Hum Reprod 2021; 36:2443-2451. [PMID: 34223605 DOI: 10.1093/humrep/deab162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Is anogenital distance (AGD) shorter in testicular cancer (TC) survivors than in men from the general population, and is AGD affected by testosterone replacement therapy in adulthood? SUMMARY ANSWER AGD, measured as distance from anus to scrotum (AGDas), is shorter in TC survivors and does not change as a result of testosterone replacement therapy. WHAT IS KNOWN ALREADY Animal studies have shown that AGD is a postnatal 'read-out' of foetal androgen action, and short AGD in male offspring is considered a sign of feminization caused by in utero disruption of the reproductive system. Likewise, measurement of AGD in human studies has suggested AGD to be part of the testicular dysgenesis syndrome hypothesis, which proposes that male reproductive disorders, such as hypospadias, cryptorchidism, some cases of impaired semen quality and TC, all share a common foetal origin. STUDY DESIGN, SIZE, DURATION The aim was to assess AGD in men with a history of TC and controls, and furthermore to examine AGD during testosterone replacement therapy in adulthood. Study participants were TC survivors with a mild Leydig cell insufficiency who participated in a randomized double-blind study of testosterone replacement therapy versus placebo for 52 weeks (N = 69). Men from the general population were prospectively included from a study on testicular function as controls (N = 67). PARTICIPANTS/MATERIALS, SETTING, METHODS We measured two variants of AGD; as our primary outcome the anoscrotal distance (AGDas) measured from the centre of the anus to the posterior base of the scrotum, and secondarily the anopenile distance (AGDap) measured from the anus to the cephalad insertion of the penis. Using multiple regression analysis, the mean difference in AGD between TC survivors and men from the general population was assessed, adjusted for height, BMI and examiner. Next, AGD was measured before and after 52 weeks of treatment with testosterone or placebo, and with covariance analysis differences between the two groups at follow-up was assessed after adjustment for baseline AGD, examiner, BMI and change in BMI during treatment. MAIN RESULTS AND THE ROLE OF CHANCE TC survivors had a shorter AGDas (-0.84 cm, 95% CI: -1.31; -0.37) compared to men from the general population, and AGDas did not differ between the testosterone and placebo treated group at follow-up (0.11 cm, 95% CI: -0.22; 0.44). In contrast, AGDap was not shorter in TC survivors after adjustment (0.05 cm, 95% CI: -0.30; 0.39), and was 0.48 cm longer (95% CI: 0.13; 0.82) at follow-up in the testosterone treated compared to the placebo-treated group. LIMITATIONS, REASONS FOR CAUTION A limitation of the study is that the number of included men was limited, and results need confirmation in a larger study. Furthermore, TC survivors were significantly older than controls. For the comparison of AGD in TC survivors and controls, it was not possible to conduct the examinations with the examiner being blinded to which group he was examining, and it cannot be excluded that this can cause a bias. WIDER IMPLICATIONS OF THE FINDINGS The shorter AGDas in TC survivors compared to controls, which did not change upon adult testosterone replacement therapy, supports the hypothesis that reduced AGD is part of the testicular dysgenesis syndrome and may be a marker of disrupted foetal testicular development. By contrast, AGDap was not shorter in TC survivors and might be modestly sensitive to adult testosterone treatment, and thus inferior to AGDas as a constant postnatal marker of the foetal androgen environment. STUDY FUNDING/COMPETING INTEREST(S) Expenses were paid by the Department of Oncology, Copenhagen University Hospital, Rigshospitalet. Kiowa Kirin International covered expenses for Tostran and placebo. The Danish Cancer Society, The Danish Cancer Research Foundation, the Preben & Anna Simonsen Foundation, and Rigshospitalet have supported the study. L.P. was financed by the Research Fund of the Capital Region of Denmark. The authors have no competing interests. TRIAL REGISTRATION NUMBER Part of the study is based on men participating in a randomized controlled trial registered at ClinicalTrials.gov, NCT02991209, 25 November 2016.
Collapse
Affiliation(s)
- L Priskorn
- Department of Growth and Reproduction and EDMaRC, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - M Kreiberg
- Department of Oncology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - M Bandak
- Department of Oncology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - J Lauritsen
- Department of Oncology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - G Daugaard
- Department of Oncology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J H Petersen
- Department of Growth and Reproduction and EDMaRC, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - L Aksglaede
- Department of Growth and Reproduction and EDMaRC, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - A Juul
- Department of Growth and Reproduction and EDMaRC, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - N Jørgensen
- Department of Growth and Reproduction and EDMaRC, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
35
|
The G-Protein-Coupled Membrane Estrogen Receptor Is Present in Horse Cryptorchid Testes and Mediates Downstream Pathways. Int J Mol Sci 2021; 22:ijms22137131. [PMID: 34281183 PMCID: PMC8269005 DOI: 10.3390/ijms22137131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cryptorchidism in horses is a commonly occurring malformation. The molecular basis of this pathology is not fully known. In addition, the origins of high intratesticular estrogen levels in horses remain obscure. In order to investigate the role of the G-protein-coupled membrane estrogen receptor (GPER) and establish histological and biochemical cryptorchid testis status, healthy and cryptorchid horse testes were subjected to scanning electron microscopy analysis, histochemical staining for total protein (with naphthol blue black; NBB), acid content (with toluidine blue O; TBO), and polysaccharide content (with periodic acid-Schiff; PAS). The expression of GPER was analyzed by immunohistochemistry and Western blot. GPER-mediated intracellular cAMP and calcium (Ca2+) signaling were measured immunoenzymatically or colorimetrically. Our data revealed changes in the distribution of polysaccharide content but not the protein and acid content in the cryptorchid testis. Polysaccharides seemed to be partially translocated from the interstitial compartment to the seminiferous tubule compartment. Moreover, the markedly decreased expression of GPER and GPER downstream molecules, cAMP and Ca2+, suggests their potential role in testis pathology. Increased estrogen levels in cryptorchid conditions may be linked to disturbed GPER signaling. We postulate that GPER is a prominent key player in testis development and function and may be used as a new biomarker of horse testis in health and disease.
Collapse
|
36
|
Sonographic evaluation of fetal scrotum, testes and epididymis. Obstet Gynecol Sci 2021; 64:393-406. [PMID: 34176256 PMCID: PMC8458611 DOI: 10.5468/ogs.21040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
External male genitalia have rarely been evaluated on fetal ultrasound. Apart from visualization of the penis for fetal sex determination, there are no specific instructions or recommendations from scientific societies. This study aimed to review the current knowledge about prenatal diagnosis of the scrotum and internal structures, with discussion regarding technical aspects and clinical management. We conducted an article search in Medline, EMBASE, Scopus, Google Scholar, and Web of Science databases for studies in English or Spanish language that discussed prenatal scrotal pathologies. We identified 72 studies that met the inclusion criteria. Relevant data were grouped into sections of embryology, ultrasound, pathology, and prenatal diagnosis. The scrotum and internal structures show a wide range of pathologies, with varying degrees of prevalence and morbidity. Most of the reported cases have described incidental findings diagnosed via striking ultrasound signs. Studies discussing normative data or management are scarce.
Collapse
|
37
|
Qian YC, Xie YX, Wang CS, Shi ZM, Jiang CF, Tang YY, Qian X, Wang L, Jiang BH. Mkrn2 deficiency induces teratozoospermia and male infertility through p53/PERP-mediated apoptosis in testis. Asian J Androl 2021; 22:414-421. [PMID: 31489847 PMCID: PMC7406093 DOI: 10.4103/aja.aja_76_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The apoptosis that occurs in the immature testis under physiological conditions is necessary for male germ cell development, whereas improper activation of apoptosis can impair spermatogenesis and cause defects in reproduction. We previously demonstrated that in mice, the makorin-2 (Mkrn2) gene is expressed exclusively in the testis and its deletion leads to male infertility. To understand the potential molecular mechanism, in this study, we found that levels of apoptosis in the testis were abnormally high in the absence of Mkrn2. To identify specific gene(s) involved, we performed digital gene expression profiling (DGE) and pathway analysis via gene set enrichment analysis (GSEA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and we found that MKRN2 inhibits p53 apoptosis effector related to PMP22 (PERP) expression and that levels of the protein in sperm samples have an inverse correlation with infertility levels. GSEA additionally indicated that PERP is a negative regulator of spermatogenesis and that its ectopic expression induces male infertility. Further, Gene Expression Omnibus (GEO) dataset analysis showed that p53, upstream of PERP, was upregulated in oligoasthenoteratozoospermia (OAT). These observations suggest that Mkrn2 is crucial for protecting germ cells from excessive apoptosis and implicate Mkrn2-based suppression of the p53/PERP signaling pathway in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Ying-Chen Qian
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Yun-Xia Xie
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Chao-Shan Wang
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Zhu-Mei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cheng-Fei Jiang
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Yun-Yi Tang
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Xu Qian
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Lin Wang
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Hua Jiang
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Priskorn L, Joensen UN, Petersen JH, Jensen TK, Skakkebaek NE, Jørgensen N. Familial resemblance in markers of testicular function in fathers and their young sons: a cross-sectional study. Hum Reprod 2021; 36:543-550. [PMID: 33367654 DOI: 10.1093/humrep/deaa314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is testicular function associated within father-son pairs? SUMMARY ANSWER Familial resemblance in testis volume and serum markers of spermatogenesis was observed in father-son pairs. WHAT IS KNOWN ALREADY Studies suggest familial clustering of male subfertility and impaired spermatogenesis, but in men from the general population little is known about concordance in testicular function between fathers and sons. STUDY DESIGN, SIZE, DURATION This cross-sectional study with simultaneous collection of data in fathers and sons included 72 pairs (144 fathers and sons), unselected regarding testicular function were included. PARTICIPANTS/MATERIALS, SETTING, METHODS A subgroup of men from the background population and participating in a study on testicular function were asked permission to invite their fathers to participate in a similar setup. Fathers (median age of 53 years) and sons (median age of 19 years) participated in the same study setup including assessment of testis size, having a blood sample taken and analysed for serum levels of reproductive hormones (FSH, inhibin B, LH, testosterone, oestradiol, sex hormone-binding globulin (SHBG) and calculated free testosterone) and delivering a semen sample for assessment of traditional semen parameters. Mixed-effects models were fitted to estimate the familial resemblance as the proportion of variance in markers of testicular function due to shared factors for fathers and sons accounted for using random-effects. Variance components were calculated from both unadjusted and adjusted models. MAIN RESULTS AND THE ROLE OF CHANCE After adjustments, variance component analyses showed that familial resemblance between fathers and sons accounted for 48% (P < 0.001) of the variation in testicular volume, 32% (P = 0.009) of the variation in FSH, 31% (P = 0.009) of the variation in the inhibin B/FSH ratio, 33% (P = 0.007) and 45% (P < 0.001) of the variation in testosterone and free testosterone, respectively, and 31% (P = 0.009) of the variation in SHBG. None of the semen parameters were associated within father-son pairs. LIMITATIONS, REASONS FOR CAUTION The present study may have lacked power to detect associations for semen quality, as large intra- and inter-individual variation occur in semen parameters. WIDER IMPLICATIONS OF THE FINDINGS In this study, testis volume, serum testosterone and serum markers of spermatogenesis including FSH were associated in fathers and sons, suggesting an impact of paternal genetics for testicular function in the son. However, the estimated familial resemblance for spermatogenesis markers highlights that other factors, such as maternal genetics and prenatal as well as adult exposures, are also of major importance for testicular function. STUDY FUNDING/COMPETING INTEREST(S) The study has received funding from Danish Health Authority, Research Fund of the Capital Region of Denmark and Independent Research Fund Denmark (8020-00218B). None of the funders had any role in the study design, collection, analysis or interpretation of data, writing of the paper of publication decisions. The authors have nothing to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Lærke Priskorn
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Nordström Joensen
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Holm Petersen
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Niels Erik Skakkebaek
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Rosa-Villagrán L, Barrera N, Montes J, Riso C, Sapiro R. Decline of semen quality over the last 30 years in Uruguay. Basic Clin Androl 2021; 31:8. [PMID: 33952196 PMCID: PMC8101031 DOI: 10.1186/s12610-021-00128-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the last years, there has been an increasing concern about a global decline in men's fertility. Specifically, some evidence indicates that sperm quality has decreased over the last years. However, reports showing the changes in sperm quality with time are inconsistent. Part of the contradictions between studies is attributed to geographical differences. Surprisingly, few studies include data from South American countries, creating a bias in the conclusions. This study aims to determine how sperm quality has evolved over the past 30 years in Uruguay. For this purpose, 317 medical records from allegedly healthy sperm donor candidates, aged between 18 and 36 years old, who voluntarily requested to be considered as sperm donors between 1988 and 2019, were analyzed. The studied variables were the following sperm parameters: semen volume, sperm cell concentration, total sperm number, progressive motility, vitality, and sperm morphology. A correlative statistical analysis was performed between seminal parameter values and the year data were collected. RESULTS We found a statistically significant decrease in sperm concentration and normal sperm morphology during the studied period. There was no decrease in vitality, seminal volume, and total progressive motility. Semen parameters were not associated with tobacco, drugs, or alcohol consumption. CONCLUSIONS We conclude that the sperm quality of donor candidates in Uruguay decreased during this period. Further studies should be carried out to verify the occurrence of this phenomenon in the general population and find its possible causes.
Collapse
Affiliation(s)
- Lucía Rosa-Villagrán
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Natalibeth Barrera
- Laboratorio de Andrología, Fertilab Laboratorio de Análisis Clínicos, Montevideo, Uruguay.,Laboratorio de FIV, Centro de Esterilidad Montevideo (CEM), Montevideo, Uruguay
| | - José Montes
- Laboratorio de Andrología, Fertilab Laboratorio de Análisis Clínicos, Montevideo, Uruguay
| | - Carlos Riso
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay.
| |
Collapse
|
40
|
Gorga A, Rindone GM, Centola CL, Sobarzo CM, Pellizzari EH, Camberos MDC, Marín-Briggiler CI, Cohen DJ, Riera MF, Galardo MN, Meroni SB. Low Doses of Glyphosate/Roundup Alter Blood-Testis Barrier Integrity in Juvenile Rats. Front Endocrinol (Lausanne) 2021; 12:615678. [PMID: 33776912 PMCID: PMC7992013 DOI: 10.3389/fendo.2021.615678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
It has been postulated that glyphosate (G) or its commercial formulation Roundup (R) might lead to male fertility impairment. In this study, we investigated the possible effects of G or R treatment of juvenile male rats on blood-testis barrier function and on adult male sperm production. Pups were randomly assigned to the following groups: control group (C), receiving water; G2 and G50 groups, receiving 2 and 50 mg/kg/day G respectively; and R2 and R50 groups receiving 2 and 50 mg/kg/day R respectively. Treatments were performed orally from postnatal day (PND) 14 to 30, period of life that is essential to complete a functional blood-testis barrier. Evaluation was done on PND 31. No differences in body and testis weight were observed between groups. Testis histological analysis showed disorganized seminiferous epithelium, with apparent low cellular adhesion in treated animals. Blood-testis barrier permeability to a biotin tracer was examined. A significant increase in permeable tubules was observed in treated groups. To evaluate possible mechanisms that could explain the effects on blood-testis barrier permeability, intratesticular testosterone levels, androgen receptor expression, thiobarbituric acid reactive substances (TBARS) and the expression of intercellular junction proteins (claudin11, occludin, ZO-1, connexin43, 46, and 50 which are components of the blood-testis barrier) were examined. No modifications in the above-mentioned parameters were detected. To evaluate whether juvenile exposure to G and R could have consequences during adulthood, a set of animals of the R50 group was allowed to grow up until PND 90. Histological analysis showed that control and R50 groups had normal cellular associations and complete spermatogenesis. Also, blood-testis barrier function was recovered and testicular weight, daily sperm production, and epididymal sperm motility and morphology did not seem to be modified by juvenile treatment. In conclusion, the results presented herein show that continuous exposure to low doses of G or R alters blood-testis barrier permeability in juvenile rats. However, considering that adult animals treated during the juvenile stage showed no differences in daily sperm production compared with control animals, it is feasible to think that blood-testis barrier impairment is a reversible phenomenon. More studies are needed to determine possible damage in the reproductive function of human juvenile populations exposed to low doses of G or R.
Collapse
Affiliation(s)
- Agostina Gorga
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Gustavo Marcelo Rindone
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cecilia Lucía Centola
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cristian M. Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Eliana Herminia Pellizzari
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María del Carmen Camberos
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Clara Isabel Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Debora J. Cohen
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
41
|
Characterization of Estrogenic Activity and Site-Specific Accumulation of Bisphenol-A in Epididymal Fat Pad: Interfering Effects on the Endocannabinoid System and Temporal Progression of Germ Cells. Int J Mol Sci 2021; 22:ijms22052540. [PMID: 33802611 PMCID: PMC7961766 DOI: 10.3390/ijms22052540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3β-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell–cell junction genes (i.e., zonula occcludens protein-1, vimentin and β-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.
Collapse
|
42
|
Cham TC, Chen X, Honaramooz A. Current progress, challenges, and future prospects of testis organoids†. Biol Reprod 2021; 104:942-961. [PMID: 33550399 DOI: 10.1093/biolre/ioab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Spermatogenic failure is believed to be a major cause of male infertility. The establishment of a testis organoid model would facilitate the study of such pathological mechanisms and open the possibility of male fertility preservation. Because of the complex structures and cellular events occurring within the testis, the establishment of a compartmentalized testis organoid with a complete spermatogenic cycle remains a challenge in all species. Since the late 20th century, a great variety of scaffold-based and scaffold-free testis cell culture systems have been established to recapitulate de novo testis organogenesis and in vitro spermatogenesis. The utilization of the hydrogel scaffolds provides a 3D microenvironment for testis cell growth and development, facilitating the reconstruction of de novo testis tissue-like structures and spermatogenic differentiation. Using a combination of different strategies, including the use of various scaffolding biomaterials, the incorporation of the living cells with high self-assembling capacity, and the integration of the advanced fabrication techniques, a scaffold-based testis organoid with a compartmentalized structure that supports in vitro spermatogenesis may be achieved. This article briefly reviews the current progress in the development of scaffold-based testis organoids while focusing on the scaffolding biomaterials (hydrogels), cell sources, and scaffolding approaches. Key challenges in current organoid studies are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
43
|
Wang L, Luo D, Liu X, Zhu J, Wang F, Li B, Li L. Effects of PM 2.5 exposure on reproductive system and its mechanisms. CHEMOSPHERE 2021; 264:128436. [PMID: 33032215 DOI: 10.1016/j.chemosphere.2020.128436] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
With the development of human society, haze has become an important form of air pollution. Haze is a mixture of fog and haze, and the main component of haze is fine particulate matter (PM2.5), which is the most important indicator of composite air pollution. Epidemiological studies proved that PM2.5 can break through the respiratory mucosal barrier and enter the human body, causing pathological effects on multiple systems of the body. In the past, people put more attention to PM2.5 in the respiratory system, cardiovascular system, nervous system, etc, and relatively paid less attention to the reproductive system. Recent studies have shown that PM2.5 will accumulate in the reproductive organs through blood-testis barrier, placental barrier, epithelial barrier and other barriers protecting reproductive tissues. In addition, PM2.5 can disrupt hormone levels, ultimately affecting fertility. Prior studies have shown that oxidative stress, inflammation, apoptosis, and the breakdown of barrier structures are now considered to contribute to reproductive toxicity and may cause damage at the molecular and genetic levels. However, the exact mechanism remains to be elucidated. Our review aims to provide an understanding of the pathological effects of PM2.5 on reproductive system and the existing injury mechanism.
Collapse
Affiliation(s)
- Lingjuan Wang
- Tianjin Medical University General Hospital, Tianjin, 300211, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Luo
- Department of Cardiovascular Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730000, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| | - Jianqiang Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China.
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| |
Collapse
|
44
|
Senescent cells in rabbit, nutria and chinchilla testes-Results from histochemical and immunohistochemical studies. Anim Reprod Sci 2021; 226:106701. [PMID: 33516138 DOI: 10.1016/j.anireprosci.2021.106701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/31/2022]
Abstract
Rabbit, nutria and chinchilla testes were evaluated to compare testicular cellular senescence. There were no major species-specific differences in structure of either seminiferous tubules or interstitial tissue. There, however, were occasional abnormalities in seminiferous tubule structure with there being multinucleated and exfoliated cells present in rabbit testes. Furthermore, there were seminiferous tubules without a lumen that were filled with premeiotic/meiotic cells in nutria; and tubules with vacuolization with there being no post-meiotic cells in chinchillas. There were no differences in distribution or content of acids, total proteins and polysaccharides in the testis of any of the three species. Results using comparative immunohistochemistry procedures indicated the testes contained a few senescent cells in seminiferous tubules with typical morphology and there was a large number of senescent cells in seminiferous tubules of nutrias and chinchillas that had an abnormal structure (P <0.001). Compared to rabbit testes, in which there was the least number of senescent cells in seminiferous tubules, there was a greater abundance of senescence markers in both nutria and chinchilla testes (P < 0.05; P < 0.001, respectively). Furthermore, there were small abundances of caspase 3 and LC3 in the testes of all species. In chinchilla testes, there was a lesser concentration of cholesterol (P < 0.001) and testosterone compared with the other species. Cellular senescence in testes, therefore, can be assessed by detection of morpho-functional disorders of the testis of the three species evaluated in the present study.
Collapse
|
45
|
Rodprasert W, Toppari J, Virtanen HE. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne) 2021; 12:706532. [PMID: 34690925 PMCID: PMC8530230 DOI: 10.3389/fendo.2021.706532] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called 'masculinization programming window (MPW)', can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Helena E. Virtanen,
| |
Collapse
|
46
|
|
47
|
Weaver JA, Beverly BEJ, Keshava N, Mudipalli A, Arzuaga X, Cai C, Hotchkiss AK, Makris SL, Yost EE. Hazards of diethyl phthalate (DEP) exposure: A systematic review of animal toxicology studies. ENVIRONMENT INTERNATIONAL 2020; 145:105848. [PMID: 32958228 PMCID: PMC7995140 DOI: 10.1016/j.envint.2020.105848] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Diethyl phthalate (DEP) is widely used in many commercially available products including plastics and personal care products. DEP has generally not been found to share the antiandrogenic mode of action that is common among other types of phthalates, but there is emerging evidence that DEP may be associated with other types of health effects. OBJECTIVE To inform chemical risk assessment, we performed a systematic review to identify and characterize outcomes within six broad hazard categories (male reproductive, female reproductive, developmental, liver, kidney, and cancer) following exposure of nonhuman mammalian animals to DEP or its primary metabolite, monoethyl phthalate (MEP). METHODS A literature search was conducted in online scientific databases (PubMed, Web of Science, Toxline, Toxcenter) and Toxic Substances Control Act Submissions, augmented by review of online regulatory sources as well as forward and backward searches. Studies were selected for inclusion using PECO (Population, Exposure, Comparator, Outcome) criteria. Studies were evaluated using criteria defined a priori for reporting quality, risk of bias, and sensitivity using a domain-based approach. Evidence was synthesized by outcome and life stage of exposure, and strength of evidence was summarized into categories of robust, moderate, slight, indeterminate, or compelling evidence of no effect, using a structured framework. RESULTS Thirty-four experimental studies in animals were included in this analysis. Although no effects on androgen-dependent male reproductive development were observed following gestational exposure to DEP, there was evidence including effects on sperm following peripubertal and adult exposures, and the overall evidence for male reproductive effects was considered moderate. There was moderate evidence that DEP exposure can lead to developmental effects, with the major effect being reduced postnatal growth following gestational or early postnatal exposure; this generally occurred at doses associated with maternal effects, consistent with the observation that DEP is not a potent developmental toxicant. The evidence for liver effects was considered moderate based on consistent changes in relative liver weight at higher dose levels; histopathological and biochemical changes indicative of hepatic effects were also observed, but primarily in studies that had significant concerns for risk of bias and sensitivity. The evidence for female reproductive effects was considered slight based on few reports of statistically significant effects on maternal body weight gain, organ weight changes, and pregnancy outcomes. Evidence for cancer and effects on kidney were judged to be indeterminate based on limited evidence (i.e., a single two-year cancer bioassay) and inconsistent findings, respectively. CONCLUSIONS These results suggest that DEP exposure may induce androgen-independent male reproductive toxicity (i.e., sperm effects) as well as developmental toxicity and hepatic effects, with some evidence of female reproductive toxicity. More research is warranted to fully evaluate these outcomes and strengthen confidence in this database.
Collapse
Affiliation(s)
- James A Weaver
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Brandiese E J Beverly
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Nagalakshmi Keshava
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Anuradha Mudipalli
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Xabier Arzuaga
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, United States
| | - Christine Cai
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, United States
| | - Andrew K Hotchkiss
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Susan L Makris
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, United States
| | - Erin E Yost
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States.
| |
Collapse
|
48
|
Rahban R, Nef S. Regional difference in semen quality of young men: a review on the implication of environmental and lifestyle factors during fetal life and adulthood. Basic Clin Androl 2020; 30:16. [PMID: 33072332 PMCID: PMC7559360 DOI: 10.1186/s12610-020-00114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
The prevalence of low semen quality and the incidence of testicular cancer have been steadily increasing over the past decades in different parts of the World. Although these conditions may have a genetic or epigenetic origin, there is growing evidence that multiple environmental and lifestyle factors can act alone or in combination to induce adverse effects. Exposure to these factors may occur as early as during fetal life, via the mother, and directly throughout adulthood after full spermatogenic capacity is reached. This review aims at providing an overview of past and current trends in semen quality and its relevance to fertility as well as a barometer of men’s general health. The focus will be on recent epidemiological studies of young men from the general population highlighting geographic variations in Europe. The impact of some lifestyle and environmental factors will be discussed with their role in both fetal life and adulthood. These factors include smoking, alcohol consumption, psychological stress, exposure to electromagnetic radiation, and Endocrine Disrupting Chemicals (EDCs). Finally, the challenges in investigating the influence of environmental factors on semen quality in a fast changing world are presented.
Collapse
Affiliation(s)
- Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland and Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland and Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
49
|
Vardiani M, Ghaffari Novin M, Koruji M, Nazarian H, Goossens E, Aghaei A, Seifalian AM, Ghasemi Hamidabadi H, Asgari F, Gholipourmalekabadi M. Gelatin Electrospun Mat as a Potential Co-culture System for In Vitro Production of Sperm Cells from Embryonic Stem Cells. ACS Biomater Sci Eng 2020; 6:5823-5832. [PMID: 33320586 DOI: 10.1021/acsbiomaterials.0c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering of 3D substrates with maximum similarity to seminiferous tubules would help to produce functional sperm cells in vitro from stem cells. Here, we present a 3D electrospun gelatin (EG) substrate seeded with Sertoli cells and determine its potential for guided differentiation of embryonic stem cells (ESCs) toward germline cells. The EG was fabricated by electrospinning, and its morphology under SEM, as well as cytobiocompatibility for Sertoli cells and ESCs, was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and cell attachment assay. Embryoid bodies (EBs) were formed from ESCs and co-cultured with Sertoli cells, induced with BMP4 for 3 and 7 consecutive days to induce the differentiation of EBs toward germline cells. The differentiation was investigated by immunocytochemistry (ICC), flow cytometry, and RT-PCR in four experimental groups of EBs (EBs cultured in gelatin-coated cell culture plates); Scaffold/EB (EBs cultured on EG); ESCs/Ser (EBs and Sertoli cells co-cultured on gelatin-coated cell culture plates without EG); and Scaffold/EB/Ser (EBs and Sertoli cells co-cultured on EG). All experimental groups exhibited a significantly increased MVH (germline-specific marker) and decreased c-KIT (stemness marker) expression when compared with the EB group. ICC and flow cytometry revealed that Scaffold/EB/Ser had the highest level of MVH and the lowest c-KIT expression at both 3 and 7 days postdifferentiation compared with other groups. RT-PCR results showed a significant increase in the germline marker (Dazl) and a significant decrease in the ESC stemness marker (Nanog) in Scaffold/EB compared to the EB group. The germline markers Gcna, Stella, Mvh, Stra8, Piwil2, and Dazl were significantly increased in Scaffold/EB/Ser compared to the Scaffold/EB group. Our findings revealed that the EG scaffold can provide an excellent substrate biomimicking the micro/nanostructure of native seminiferous tubules and a platform for Sertoli cell-EB communication required for growth and differentiation of ESCs into germline cells.
Collapse
Affiliation(s)
- Mina Vardiani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Reproductive Biotechnology Research Center, Aviccena Research Institute, ACECR, 14115-343 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Hamid Nazarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Ellen Goossens
- Biology of the Testis Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Abbas Aghaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd.), The London BioScience Innovation Centre, NW1 0NH London, United Kingdom
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran
| | - Fatemeh Asgari
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
50
|
Yang D, Wei Y, Lu Q, Qin D, Zhang M, Du X, Xu W, Yu X, He C, Li N, Peng S, Li G, Hua J. Melatonin alleviates LPS-induced endoplasmic reticulum stress and inflammation in spermatogonial stem cells. J Cell Physiol 2020; 236:3536-3551. [PMID: 32996162 DOI: 10.1002/jcp.30088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Orchitis is one of the leading causes of male animal infertility and is associated with inflammatory reactions caused by the bacterium. It has been reported that there is a mutual coupling effect between endoplasmic reticulum stress (ERS) and inflammatory response. Our studies showed that lipopolysaccharide (LPS) could cause testicular damages, apoptosis, ERS, and inflammatory responses in spermatogonial stem cells (SSCs); ERS-related apoptosis proteins were activated and the expression of ERS genes was significantly upregulated; meanwhile, the expression of Toll-like receptor 4 and inflammation factors was apparently increased with LPS treatment. Moreover, melatonin (MEL) could rescue testicular damage, and significantly inhibited the expression of ERS-related apoptosis genes, ERS markers, and inflammatory factors in SSCs and MEL played repairing and anti-infection roles in LPS-induced testicular damage. Therefore, MEL may be used as a drug to prevent and control bacterial infections in male reproductive systems. However, the specific molecular mechanism of MEL to resist ERS and inflammatory response remains to be further studied.
Collapse
Affiliation(s)
- Donghui Yang
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yudong Wei
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qizhong Lu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dezhe Qin
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengfei Zhang
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomin Du
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenjing Xu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiuwei Yu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen He
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sha Peng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|