1
|
Paz-Ruza J, Freitas AA, Alonso-Betanzos A, Guijarro-Berdiñas B. Positive-Unlabelled learning for identifying new candidate Dietary Restriction-related genes among ageing-related genes. Comput Biol Med 2024; 180:108999. [PMID: 39137672 DOI: 10.1016/j.compbiomed.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Dietary Restriction (DR) is one of the most popular anti-ageing interventions; recently, Machine Learning (ML) has been explored to identify potential DR-related genes among ageing-related genes, aiming to minimize costly wet lab experiments needed to expand our knowledge on DR. However, to train a model from positive (DR-related) and negative (non-DR-related) examples, the existing ML approach naively labels genes without known DR relation as negative examples, assuming that lack of DR-related annotation for a gene represents evidence of absence of DR-relatedness, rather than absence of evidence. This hinders the reliability of the negative examples (non-DR-related genes) and the method's ability to identify novel DR-related genes. This work introduces a novel gene prioritization method based on the two-step Positive-Unlabelled (PU) Learning paradigm: using a similarity-based, KNN-inspired approach, our method first selects reliable negative examples among the genes without known DR associations. Then, these reliable negatives and all known positives are used to train a classifier that effectively differentiates DR-related and non-DR-related genes, which is finally employed to generate a more reliable ranking of promising genes for novel DR-relatedness. Our method significantly outperforms (p<0.05) the existing state-of-the-art approach in three predictive accuracy metrics with up to ∼40% lower computational cost in the best case, and we identify 4 new promising DR-related genes (PRKAB1, PRKAB2, IRS2, PRKAG1), all with evidence from the existing literature supporting their potential DR-related role.
Collapse
Affiliation(s)
- Jorge Paz-Ruza
- LIDIA Group, CITIC, Universidade da Coruña, Campus de Elviña s/n, A Coruña 15071, Spain.
| | - Alex A Freitas
- School of Computing, University of Kent, Canterbury CT2 7FS, United Kingdom.
| | - Amparo Alonso-Betanzos
- LIDIA Group, CITIC, Universidade da Coruña, Campus de Elviña s/n, A Coruña 15071, Spain.
| | | |
Collapse
|
2
|
Wei F, Liu S, Liu J, Sun Y, Allen AE, Reid MA, Locasale JW. Separation of reproductive decline from lifespan extension during methionine restriction. NATURE AGING 2024; 4:1089-1101. [PMID: 39060538 DOI: 10.1038/s43587-024-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Lifespan-extending interventions are generally thought to result in reduced fecundity. The generality of this principle and how it may extend to nutrition and metabolism is not understood. We considered dietary methionine restriction (MR), a lifespan-extending intervention linked to Mediterranean and plant-based diets. Using a chemically defined diet that we developed for Drosophila melanogaster, we surveyed the nutritional landscape in the background of MR and found that folic acid, a vitamin linked to one-carbon metabolism, notably was the lone nutrient that restored reproductive capacity while maintaining lifespan extension. In vivo isotope tracing, metabolomics and flux analysis identified the tricarboxylic cycle and redox coupling as major determinants of the MR-folic acid benefits, in part, as they related to sperm function. Together these findings suggest that dietary interventions optimized for longevity may be separable from adverse effects such as reproductive decline.
Collapse
Affiliation(s)
- Fangchao Wei
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Shiyu Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yudong Sun
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Annamarie E Allen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Bartolomucci A, Tung J, Harris KM. The fortunes and misfortunes of social life across the life course: A new era of research from field, laboratory and comparative studies. Neurosci Biobehav Rev 2024; 162:105655. [PMID: 38583652 DOI: 10.1016/j.neubiorev.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Social gradients in health and aging have been reported in studies across many human populations, and - as the papers included in this special collection highlight - also occur across species. This paper serves as a general introduction to the special collection of Neuroscience and Biobehavioral Reviews entitled "Social dimensions of health and aging: population studies, preclinical research, and comparative research using animal models". Authors of the fourteen reviews are primarily members of a National Institute of Aging-supported High Priority Research Network on "Animal Models for the Social Dimensions of Health and Aging". The collection is introduced by a foreword, commentaries, and opinion pieces by leading experts in related fields. The fourteen reviews are divided into four sections: Section 1: Biodemography and life course studies; Section 2: Social behavior and healthy aging in nonhuman primates; Section 3: Social factors, stress, and hallmarks of aging; Section 4: Neuroscience and social behavior.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
5
|
Lemaître JF, Moorad J, Gaillard JM, Maklakov AA, Nussey DH. A unified framework for evolutionary genetic and physiological theories of aging. PLoS Biol 2024; 22:e3002513. [PMID: 38412150 PMCID: PMC10898761 DOI: 10.1371/journal.pbio.3002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Why and how we age are 2 intertwined questions that have fascinated scientists for many decades. However, attempts to answer these questions remain compartmentalized, preventing a comprehensive understanding of the aging process. We argue that the current lack of knowledge about the evolution of aging mechanisms is due to a lack of clarity regarding evolutionary theories of aging that explicitly involve physiological processes: the disposable soma theory (DST) and the developmental theory of aging (DTA). In this Essay, we propose a new hierarchical model linking genes to vital rates, enabling us to critically reevaluate the DST and DTA in terms of their relationship to evolutionary genetic theories of aging (mutation accumulation (MA) and antagonistic pleiotropy (AP)). We also demonstrate how these 2 theories can be incorporated in a unified hierarchical framework. The new framework will help to generate testable hypotheses of how the hallmarks of aging are shaped by natural selection.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France
| | - Jacob Moorad
- Institute of Ecology & Evolution, School of Biological Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean-Michel Gaillard
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France
| | - Alexei A. Maklakov
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Daniel H. Nussey
- Institute of Ecology & Evolution, School of Biological Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM. Inflammation as common link to progressive neurological diseases. Arch Toxicol 2024; 98:95-119. [PMID: 37964100 PMCID: PMC10761431 DOI: 10.1007/s00204-023-03628-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Gilleard C, Higgs P. Ageing without senescence: A critical absence in social gerontology? J Aging Stud 2023; 66:101166. [PMID: 37704269 DOI: 10.1016/j.jaging.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
This paper addresses the absence of the term 'senescence' in recent social science literature on ageing. The significance of this omission is considered in light of the emerging standpoint of gero-science, which argues that the central processes defining ageing are concerned with the rising probability of functional decline, development of degenerative disease and death. From this perspective, the separation of ageing and senescence sustains the myth that there exist forms of ageing that are exempt from senescence. The persistence of this myth underlies ageing studies, the sociology of later life and most social gerontology. While there have been undoubted benefits arising from this bracketing out of senescence, the argument of this paper is that the continuing advances associated with this standpoint are outweighed by the need to seriously engage with the consequences of contemporary societal ageing and the centrality of the processes of senescence in establishing an adequate understanding of ageing, its correlates and contingencies and its personal and social consequences.
Collapse
Affiliation(s)
- Chris Gilleard
- UCL Division of Psychiatry, Faculty of Brain Sciences, University College London, 6th Floor Maple House, 149 Tottenham Court Road, London, UK
| | - Paul Higgs
- UCL Division of Psychiatry, Faculty of Brain Sciences, University College London, 6th Floor Maple House, 149 Tottenham Court Road, London, UK.
| |
Collapse
|
8
|
Mohr M, Fatouros IG, Asghar M, Buono P, Nassis GP, Krustrup P. Football training as a non-pharmacological treatment of the global aging population-A topical review. FRONTIERS IN AGING 2023; 4:1146058. [PMID: 36844000 PMCID: PMC9947510 DOI: 10.3389/fragi.2023.1146058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
In the present topical mini-review, the beneficial impact of small-sided game football training for the increasing elderly global population is presented. As a multicomponent type of physical activity, football training executed on small pitched with 4-6 players in each team is targeting a myriad of physiological systems and causes positive adaptations of relevance for several non-communicable diseases, of which the incidence increases with advancing age. There is strong scientific evidence that this type of football training promotes cardiovascular, metabolic and musculo-skeletal health in elderly individuals. These positive adaptations can prevent cardiovascular disease, type 2 diabetes, sarcopenia and osteoporosis, and lower the risk of falls. Also, football training has been proven an efficient part of the treatment of several patient groups including men with prostate cancer and women after breast cancer. Finally, regular football training has an anti-inflammatory effect and may slow the biological aging. Overall, there is a growing body of evidence suggesting that recreational football training can promote health in the elderly.
Collapse
Affiliation(s)
- Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands,*Correspondence: Magni Mohr,
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | | | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy,CEINGE-Biotecnologie avanzate Francesco Salvatore, Napoli, Italy
| | - George P. Nassis
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark,Department of Physical Education, College of Education, United Arab Emirates, University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark,Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense, Denmark,Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Payo‐Payo A, Sanz‐Aguilar A, Oro D. Long‐lasting effects of harsh early‐life conditions on adult survival of a long‐lived vertebrate. OIKOS 2022. [DOI: 10.1111/oik.09371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Payo‐Payo
- School of Biological Sciences, Univ. of Aberdeen Aberdeen UK
| | - Ana Sanz‐Aguilar
- Animal Demography and Ecology Group, IMEDEA (CSIC‐UIB) Esporles Spain
- Applied Zoology and Conservation Group, Univ. of the Balearic Islands Palma Spain
| | - Daniel Oro
- Applied Zoology and Conservation Group, Univ. of the Balearic Islands Palma Spain
- Centro de Estudios Avanzados de Blanes (CEAB) Blanes Spain
| |
Collapse
|
10
|
Salmón P, Millet C, Selman C, Monaghan P, Dawson NJ. Tissue-specific reductions in mitochondrial efficiency and increased ROS release rates during ageing in zebra finches, Taeniopygia guttata. GeroScience 2022; 45:265-276. [PMID: 35986126 PMCID: PMC9886749 DOI: 10.1007/s11357-022-00624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction and oxidative damage have long been suggested as critically important mechanisms underlying the ageing process in animals. However, conflicting data exist on whether this involves increased production of mitochondrial reactive oxygen species (ROS) during ageing. We employed high-resolution respirometry and fluorometry on flight muscle (pectoralis major) and liver mitochondria to simultaneously examine mitochondrial function and ROS (H2O2) release rates in young (3 months) and old (4 years) zebra finches (Taeniopygia guttata). Respiratory capacities for oxidative phosphorylation did not differ between the two age groups in either tissue. Respiratory control ratios (RCR) of liver mitochondria also did not differ between the age classes. However, RCR in muscle mitochondria was 55% lower in old relative to young birds, suggesting that muscle mitochondria in older individuals are less efficient. Interestingly, this observed reduction in muscle RCR was driven almost entirely by higher mitochondrial LEAK-state respiration. Maximum mitochondrial ROS release rates were found to be greater in both flight muscle (1.3-fold) and the liver (1.9-fold) of old birds. However, while maximum ROS (H2O2) release rates from mitochondria increased with age across both liver and muscle tissues, the liver demonstrated a proportionally greater age-related increase in ROS release than muscle. This difference in age-related increases in ROS release rates between muscle and liver tissues may be due to increased mitochondrial leakiness in the muscle, but not the liver, of older birds. This suggests that age-related changes in cellular function seem to occur in a tissue-specific manner in zebra finches, with flight muscle exhibiting signs of minimising age-related increase in ROS release, potentially to reduce damage to this crucial tissue in older individuals.
Collapse
Affiliation(s)
- Pablo Salmón
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | - Caroline Millet
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Neal J. Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| |
Collapse
|
11
|
Lemaître J, Rey B, Gaillard J, Régis C, Gilot‐Fromont E, Débias F, Duhayer J, Pardonnet S, Pellerin M, Haghani A, Zoller JA, Li CZ, Horvath S. DNA methylation as a tool to explore ageing in wild roe deer populations. Mol Ecol Resour 2022; 22:1002-1015. [PMID: 34665921 PMCID: PMC9297961 DOI: 10.1111/1755-0998.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation-based biomarkers of ageing (epigenetic clocks) promise to lead to new insights into evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic ageing effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois-Fontaines, France) facing different ecological contexts, to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n = 94 blood samples, from which we extracted leucocyte DNA, using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age using sex-specific epigenetic clocks. Our results highlight that old females may display a lower degree of biological ageing than males. Further, we identify the main sites of epigenetic alteration that have distinct ageing patterns between the two sexes. These findings open the door to promising avenues of research at the crossroads of evolutionary biology and biogerontology.
Collapse
Affiliation(s)
- Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Corinne Régis
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
- Université de LyonVetAgro SupMarcy‐l'EtoileFrance
| | - François Débias
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jeanne Duhayer
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Sylvia Pardonnet
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Maryline Pellerin
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéUnité Ongulés SauvagesGapFrance
| | - Amin Haghani
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Steve Horvath
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Kumar Dev P, Gray AJ, Scott-Hamilton J, Hagstrom AD, Murphy A, Denham J. Co-expression analysis identifies networks of miRNAs implicated in biological ageing and modulated by short-term interval training. Mech Ageing Dev 2021; 199:111552. [PMID: 34363832 DOI: 10.1016/j.mad.2021.111552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
Exercise training seems to promote healthy biological ageing partly by inducing telomere maintenance, yet the molecular mechanisms are not fully understood. Recent studies have emphasised the importance of microRNAs (miRNAs) in ageing and their ability to mirror pathophysiological alterations associated with age-related diseases. We examined the association between aerobic fitness and leukocyte telomere length before determining the influence of vigorous exercise training on the regulation of leukocyte miRNA networks. Telomere length was positively correlated to aerobic fitness (r = 0.32, p = 0.02). 104 miRNAs were differentially expressed after six weeks of thrice-weekly sprint interval training (SIT) in healthy men (q < 0.05). Gene co-expression analysis (WGCNA) detected biologically meaningful miRNA networks, five of which were significantly correlated with pre-SIT and post-SIT expression profiles (p < 0.001) and telomere length. Enrichment analysis revealed that the immune response, T cell differentiation and lipid metabolism associated miRNAs clusters were significantly down-regulated after SIT. Using data acquired from the Gene Expression Omnibus (GEO), we also identified two co-expressed miRNAs families that were modulated by exercise training in previous investigations. Collectively, our findings highlight the miRNA networks implicated in exercise adaptations and telomere regulation, and suggest that SIT may attenuate biological ageing through the control of the let-7 and miR-320 miRNA families.
Collapse
Affiliation(s)
- Prasun Kumar Dev
- Department of Bioinformatics, Central University of South Bihar, India
| | - Adrian J Gray
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | | | - Amanda D Hagstrom
- School of Medical Sciences, University of New South Wales, NSW, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Armidale, NSW, Australia; School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Impact of Dietary Potassium Nitrate on the Life Span of Drosophila melanogaster. Processes (Basel) 2021. [DOI: 10.3390/pr9081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The recently defined and yet rather new topic of healthy aging is attracting more attention worldwide. As the world population is getting older, it is rapidly becoming essential to develop and maintain functional abilities at older age and develop mechanisms to protect the senior population from chronic diseases. One of the most effective components, as well as processes associated with aging, is the recently discovered and Nobel prize-awarded—nitric oxide (NO) (as a signaling molecule), which, followed by later discoveries, showed to have a positive metabolic, immunological, and anti-inflammatory effect. Nitrates are one of the most debated topics of the last decade in the scientific community due to their pathways involved in the production of nitric oxide. Thus, the objective of this study is to evaluate the effect of different potassium nitrate concentrate supplementation on Drosophila melanogaster longevity imitating a human carbohydrate-based diet with relationship to possible cause of oxidative stress. Influence of 0.5–3% potassium nitrate medium on the lifespan and motor function in different groups consisting of 100 fruit fly females in each was analyzed. In this assay, female fly species supplemented with potassium nitrate diet showed life span increase by 18.6% and 5.1% with 1% and 2% KNO3, respectively, with a positive impact on locomotor function. In conclusion, we found that low concentration of potassium nitrate medium increased lifespan and locomotor function in Drosophila melanogaster.
Collapse
|
14
|
Alicea B, Yuan C. Complex Temporal Biology: Towards A Unified Multi-Scale Approach to Predict the Flow of Information. Integr Comp Biol 2021; 61:2075-2081. [PMID: 34279593 DOI: 10.1093/icb/icab163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Two hallmarks of biological processes are complexity and time. While complexity can have many meanings, in this paper we propose an explicit link to the flow of time and how it is experienced by the organism. While the flow of time is rooted in constraints of fundamental physics, understanding the operation of biological systems in terms of processual flow and tempo is more elusive. Fortunately, the convergence of new computational and methodological perspectives will provide a means to transform complicated, nonlinear paths between related phenomena at different time scales into dynamic four-dimensional perspectives. According to the complex temporal biology approach, information flow between time scales of multiple lengths is a transformational process that acts to regulate life's complexity. Interactions between temporal intervals of differing magnitude and otherwise loosely-related mechanisms can be understood as inter-timescale information flow. We further propose that informational flow between time scales is the glue that binds the multiple vertical layers of biocomplexity, as well as yielding surprising outcomes ranging from complex behaviors to the persistence of lineages. Building a foundation of rules based on common interactions between orders of time and common experiential contexts would help to reintegrate biology. Emerging methodologies such as state-of-the-art imaging, visualization techniques, and computational data analysis can help us uncover these interactions. In conclusion, we propose educational and community-level changes that would better enable our vision.
Collapse
Affiliation(s)
- Bradly Alicea
- OpenWorm Foundation.,Orthogonal Research and Education Lab
| | | |
Collapse
|
15
|
Colchero F, Aburto JM, Archie EA, Boesch C, Breuer T, Campos FA, Collins A, Conde DA, Cords M, Crockford C, Thompson ME, Fedigan LM, Fichtel C, Groenenberg M, Hobaiter C, Kappeler PM, Lawler RR, Lewis RJ, Machanda ZP, Manguette ML, Muller MN, Packer C, Parnell RJ, Perry S, Pusey AE, Robbins MM, Seyfarth RM, Silk JB, Staerk J, Stoinski TS, Stokes EJ, Strier KB, Strum SC, Tung J, Villavicencio F, Wittig RM, Wrangham RW, Zuberbühler K, Vaupel JW, Alberts SC. The long lives of primates and the 'invariant rate of ageing' hypothesis. Nat Commun 2021; 12:3666. [PMID: 34135334 PMCID: PMC8209124 DOI: 10.1038/s41467-021-23894-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Is it possible to slow the rate of ageing, or do biological constraints limit its plasticity? We test the 'invariant rate of ageing' hypothesis, which posits that the rate of ageing is relatively fixed within species, with a collection of 39 human and nonhuman primate datasets across seven genera. We first recapitulate, in nonhuman primates, the highly regular relationship between life expectancy and lifespan equality seen in humans. We next demonstrate that variation in the rate of ageing within genera is orders of magnitude smaller than variation in pre-adult and age-independent mortality. Finally, we demonstrate that changes in the rate of ageing, but not other mortality parameters, produce striking, species-atypical changes in mortality patterns. Our results support the invariant rate of ageing hypothesis, implying biological constraints on how much the human rate of ageing can be slowed.
Collapse
Affiliation(s)
- Fernando Colchero
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark.
| | - José Manuel Aburto
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Department of Sociology, Leverhulme Centre for Demographic Science, Nuffield College at University of Oxford, Oxford, UK
- Lifespan Inequalities Research Group, Max Planck Institute for Demographic Research, Rostock, Germany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Christophe Boesch
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - Thomas Breuer
- Mbeli Bai Study, Wildlife Conservation Society Congo Program, Brazzaville, Congo
- World Wide Fund for Nature - Germany, Berlin, Germany
| | - Fernando A Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Anthony Collins
- Gombe Stream Research Centre, Jane Goodall Institute, Kigoma, Tanzania
| | - Dalia A Conde
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Species360 Conservation Science Alliance, Bloomington, MN, USA
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Marina Cords
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- New York Consortium in Evolutionary Anthropology, New York, NY, USA
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Linda M Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Milou Groenenberg
- Mbeli Bai Study, Wildlife Conservation Society Congo Program, Brazzaville, Congo
- World Wide Fund for Nature- Cambodia Program, Phnom Penh, Cambodia
| | - Catherine Hobaiter
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Scotland, UK
- Budongo Conservation Field Station, Masindi, Uganda
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department for Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA, USA
| | - Rebecca J Lewis
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
- Ankoatsifaka Research Station, Morondava, Madagascar
| | - Zarin P Machanda
- Kibale Chimpanzee Project, Fort Portal, Uganda
- Departments of Anthropology and Biology, Tufts University, Medford, MA, USA
| | - Marie L Manguette
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Mbeli Bai Study, Wildlife Conservation Society Congo Program, Brazzaville, Congo
| | - Martin N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Craig Packer
- College of Biological Sciences, Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Richard J Parnell
- Mbeli Bai Study, Wildlife Conservation Society Congo Program, Brazzaville, Congo
| | - Susan Perry
- Department of Anthropology, and Behavior, Evolution & Culture Program, UCLA, Los Angeles, CA, USA
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Robert M Seyfarth
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan B Silk
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - Johanna Staerk
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Species360 Conservation Science Alliance, Bloomington, MN, USA
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Emma J Stokes
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY, USA
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shirley C Strum
- Department of Anthropology, University of California, San Diego, La Jolla, CA, USA
- Uaso Ngiro Baboon Project, Laikipia, Kenya
- Kenya Wildlife Service, Nairobi, Kenya
- African Conservation Centre, Nairobi, Kenya
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke Population Research Institute, Duke University, Durham, NC, USA
| | - Francisco Villavicencio
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - Richard W Wrangham
- Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Klaus Zuberbühler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Scotland, UK
- Budongo Conservation Field Station, Masindi, Uganda
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - James W Vaupel
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Duke Population Research Institute, Duke University, Durham, NC, USA
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Department of Biology, Duke University, Durham, NC, USA.
- Duke Population Research Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Comizzoli P, Ottinger MA. Understanding Reproductive Aging in Wildlife to Improve Animal Conservation and Human Reproductive Health. Front Cell Dev Biol 2021; 9:680471. [PMID: 34095152 PMCID: PMC8170016 DOI: 10.3389/fcell.2021.680471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Similar to humans and laboratory animals, reproductive aging is observed in wild species-from small invertebrates to large mammals. Aging issues are also prevalent in rare and endangered species under human care as their life expectancy is longer than in the wild. The objectives of this review are to (1) present conserved as well as distinctive traits of reproductive aging in different wild animal species (2) highlight the value of comparative studies to address aging issues in conservation breeding as well as in human reproductive medicine, and (3) suggest next steps forward in that research area. From social insects to mega-vertebrates, reproductive aging studies as well as observations in the wild or in breeding centers often remain at the physiological or organismal scale (senescence) rather than at the germ cell level. Overall, multiple traits are conserved across very different species (depletion of the ovarian reserve or no decline in testicular functions), but unique features also exist (endless reproductive life or unaltered quality of germ cells). There is a broad consensus about the need to fill research gaps because many cellular and molecular processes during reproductive aging remain undescribed. More research in male aging is particularly needed across all species. Furthermore, studies on reproductive aging of target species in their natural habitat (sentinel species) are crucial to define more accurate reproductive indicators relevant to other species, including humans, sharing the same environment. Wild species can significantly contribute to our general knowledge of a crucial phenomenon and provide new approaches to extend the reproductive lifespan.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
17
|
Korb J, Meusemann K, Aumer D, Bernadou A, Elsner D, Feldmeyer B, Foitzik S, Heinze J, Libbrecht R, Lin S, Majoe M, Monroy Kuhn JM, Nehring V, Negroni MA, Paxton RJ, Séguret AC, Stoldt M, Flatt T. Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190728. [PMID: 33678016 PMCID: PMC7938167 DOI: 10.1098/rstb.2019.0728] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Karen Meusemann
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
| | - Denise Aumer
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
| | - Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Daniel Elsner
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Silu Lin
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Megha Majoe
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - José Manuel Monroy Kuhn
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Volker Nehring
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Matteo A. Negroni
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Alice C. Séguret
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - the So-Long consortium
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| |
Collapse
|
18
|
Lin S, Werle J, Korb J. Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun Biol 2021; 4:384. [PMID: 33753888 PMCID: PMC7985136 DOI: 10.1038/s42003-021-01892-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Organisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled among insects. How this is achieved is not understood. Here, we identified a single module of co-expressed genes that characterized queens in the termite species Cryptotermes secundus. It encompassed genes from all essential pathways known to be involved in life-history regulation in solitary model organisms. By manipulating its endocrine component, we tested the recent hypothesis that re-wiring along the nutrient-sensing/endocrine/fecundity axis can account for the reversal of the fecundity/longevity trade-off in social insect queens. Our data from termites do not support this hypothesis. However, they revealed striking links to social communication that offer new avenues to understand the re-modelling of the fecundity/longevity trade-off in social insects.
Collapse
Affiliation(s)
- Silu Lin
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Jana Werle
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Judith Korb
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
РROKOPCHUK Y, VOLYANSKAYA V, SERAFIMOVA E, GUSHCHA S, PLAKIDA A. Modern views on the role and place of gerontological rehabilitation in the nation's health improvement system. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The article discusses the aging process (theory of aging, mechanism, concept of the aging process, physiological and functional changes that negatively affect the condition of a patient with a gerontological profile). Geriatric rehabilitation is discussed, including physical (professional geriatric rehabilitation based on rehabilitation centers) and mental rehabilitation. It is shown that medical and psychological rehabilitation, which includes psychocorrection and psychotherapy, is essential. The paper assesses the rehabilitation possibilities (rehabilitation algorithms involving both natural and preformed physical factors) in gerontological patients suffering from various somatic diseases
Keywords: aging, geriatric rehabilitation, medical and physical rehabilitation, medical and psychological rehabilitation,
Collapse
Affiliation(s)
- Yulia РROKOPCHUK
- 1 Special specialized clinical sanatorium named after V.P. Chkalov, Ministry of Health of Ukraine», Odessa, Ukraine
| | - Veronika VOLYANSKAYA
- 1 Special specialized clinical sanatorium named after V.P. Chkalov, Ministry of Health of Ukraine», Odessa, Ukraine
| | - Elvira SERAFIMOVA
- 1 Special specialized clinical sanatorium named after V.P. Chkalov, Ministry of Health of Ukraine», Odessa, Ukraine
| | - Sergey GUSHCHA
- State Institution «Ukrainian Research Institute of Medical Rehabilitation and Balneology of the Ministry of Health of Ukraine», Odessa, Ukraine
| | | |
Collapse
|
20
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
21
|
Crimmins EM. Recent trends and increasing differences in life expectancy present opportunities for multidisciplinary research on aging. NATURE AGING 2021; 1:12-13. [PMID: 34355199 PMCID: PMC8336715 DOI: 10.1038/s43587-020-00016-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increase in multidisciplinary research in the field of aging has many benefits and should be further applied to better understand and possibly reverse the stalled increase in life expectancy as well as growing social inequalities in life expectancy in many countries.
Collapse
Affiliation(s)
- Eileen M. Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Sathyan S, Ayers E, Gao T, Weiss EF, Milman S, Verghese J, Barzilai N. Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging Cell 2020; 19:e13250. [PMID: 33089916 PMCID: PMC7681045 DOI: 10.1111/acel.13250] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is a complex trait characterized by a diverse spectrum of endophenotypes. By utilizing the SomaScan® proteomic platform in 1,025 participants of the LonGenity cohort (age range: 65–95, 55.7% females), we found that 754 of 4,265 proteins were associated with chronological age. Pleiotrophin (PTN; β[SE] = 0.0262 [0.0012]; p = 3.21 × 10−86), WNT1‐inducible‐signaling pathway protein 2 (WISP‐2; β[SE] = 0.0189 [0.0009]; p = 4.60 × 10−82), chordin‐like protein 1 (CRDL1; β[SE] = 0.0203[0.0010]; p = 1.45 × 10−77), transgelin (TAGL; β[SE] = 0.0215 [0.0011]; p = 9.70 × 10−71), and R‐spondin‐1(RSPO1; β[SE] = 0.0208 [0.0011]; p = 1.09 × 10−70), were the proteins most significantly associated with age. Weighted gene co‐expression network analysis identified two of nine modules (clusters of highly correlated proteins) to be significantly associated with chronological age and demonstrated that the biology of aging overlapped with complex age‐associated diseases and other age‐related traits. The correlation between proteomic age prediction based on elastic net regression and chronological age was 0.8 (p < 2.2E−16). Pathway analysis showed that inflammatory response, organismal injury and abnormalities, cell and organismal survival, and death pathways were associated with aging. The present study made novel associations between a number of proteins and aging, constructed a proteomic age model that predicted mortality, and suggested possible proteomic signatures possessed by a cohort enriched for familial exceptional longevity.
Collapse
Affiliation(s)
- Sanish Sathyan
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Emmeline Ayers
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Tina Gao
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
| | - Erica F. Weiss
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Sofiya Milman
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Joe Verghese
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| |
Collapse
|
23
|
Sepil I, Hopkins BR, Dean R, Bath E, Friedman S, Swanson B, Ostridge HJ, Harper L, Buehner NA, Wolfner MF, Konietzny R, Thézénas ML, Sandham E, Charles PD, Fischer R, Steinhauer J, Kessler BM, Wigby S. Male reproductive aging arises via multifaceted mating-dependent sperm and seminal proteome declines, but is postponable in Drosophila. Proc Natl Acad Sci U S A 2020; 117:17094-17103. [PMID: 32611817 PMCID: PMC7382285 DOI: 10.1073/pnas.2009053117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Declining ejaculate performance with male age is taxonomically widespread and has broad fitness consequences. Ejaculate success requires fully functional germline (sperm) and soma (seminal fluid) components. However, some aging theories predict that resources should be preferentially diverted to the germline at the expense of the soma, suggesting differential impacts of aging on sperm and seminal fluid and trade-offs between them or, more broadly, between reproduction and lifespan. While harmful effects of male age on sperm are well known, we do not know how much seminal fluid deteriorates in comparison. Moreover, given the predicted trade-offs, it remains unclear whether systemic lifespan-extending interventions could ameliorate the declining performance of the ejaculate as a whole. Here, we address these problems using Drosophila melanogaster. We demonstrate that seminal fluid deterioration contributes to male reproductive decline via mating-dependent mechanisms that include posttranslational modifications to seminal proteins and altered seminal proteome composition and transfer. Additionally, we find that sperm production declines chronologically with age, invariant to mating activity such that older multiply mated males become infertile principally via reduced sperm transfer and viability. Our data, therefore, support the idea that both germline and soma components of the ejaculate contribute to male reproductive aging but reveal a mismatch in their aging patterns. Our data do not generally support the idea that the germline is prioritized over soma, at least, within the ejaculate. Moreover, we find that lifespan-extending systemic down-regulation of insulin signaling results in improved late-life ejaculate performance, indicating simultaneous amelioration of both somatic and reproductive aging.
Collapse
Affiliation(s)
- Irem Sepil
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom;
| | - Ben R Hopkins
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Department of Ecology and Evolution, University of California, Davis, CA 95616
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, United Kingdom
| | - Eleanor Bath
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | | | - Ben Swanson
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | - Harrison J Ostridge
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, United Kingdom
| | - Lucy Harper
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- School of Biology, University of St Andrews, KY16 9ST St Andrews, United Kingdom
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Rebecca Konietzny
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Marie-Laëtitia Thézénas
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Elizabeth Sandham
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | - Philip D Charles
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | | | - Benedikt M Kessler
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Stuart Wigby
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
24
|
Affiliation(s)
- Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| |
Collapse
|
25
|
Stead ER, Castillo-Quan JI, Miguel VEM, Lujan C, Ketteler R, Kinghorn KJ, Bjedov I. Agephagy - Adapting Autophagy for Health During Aging. Front Cell Dev Biol 2019; 7:308. [PMID: 31850344 PMCID: PMC6892982 DOI: 10.3389/fcell.2019.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a major cellular recycling process that delivers cellular material and entire organelles to lysosomes for degradation, in a selective or non-selective manner. This process is essential for the maintenance of cellular energy levels, components, and metabolites, as well as the elimination of cellular molecular damage, thereby playing an important role in numerous cellular activities. An important function of autophagy is to enable survival under starvation conditions and other stresses. The majority of factors implicated in aging are modifiable through the process of autophagy, including the accumulation of oxidative damage and loss of proteostasis, genomic instability and epigenetic alteration. These primary causes of damage could lead to mitochondrial dysfunction, deregulation of nutrient sensing pathways and cellular senescence, finally causing a variety of aging phenotypes. Remarkably, advances in the biology of aging have revealed that aging is a malleable process: a mild decrease in signaling through nutrient-sensing pathways can improve health and extend lifespan in all model organisms tested. Consequently, autophagy is implicated in both aging and age-related disease. Enhancement of the autophagy process is a common characteristic of all principal, evolutionary conserved anti-aging interventions, including dietary restriction, as well as inhibition of target of rapamycin (TOR) and insulin/IGF-1 signaling (IIS). As an emerging and critical process in aging, this review will highlight how autophagy can be modulated for health improvement.
Collapse
Affiliation(s)
- Eleanor R Stead
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Jorge I Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Celia Lujan
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kerri J Kinghorn
- Institute of Healthy Ageing, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Institute of Neurology, University College London, London, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
26
|
Foroozandeh P, Aziz AA, Mahmoudi M. Effect of Cell Age on Uptake and Toxicity of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39672-39687. [PMID: 31633323 DOI: 10.1021/acsami.9b15533] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical translation of nanotechnologies has limited success, at least in part, due to the existence of several overlooked factors on the nature of the nanosystem (e.g., physicochemical properties of nanoparticles), nanobio interfaces (e.g., protein corona composition), and the cellular characteristics (e.g., cell type). In the past decade, several ignored factors including personalized and disease-specific protein corona (a layer of formed biomolecules at the surface of nanoparticles upon their entrance into a biological fluid), incubating temperature, local temperature gradient, cell shape, and cell sex has been introduced. Here, it was hypothesized and validated cell age as another overlooked factor in the field of nanomedicine. To test our hypothesis, cellular toxicity and uptake profiles of our model nanoparticles (i.e., PEGylated quantum dots, QDs) were probed in young and senescent cells (i.e., IMR90 fibroblast cells from human fetal lung and CCD841CoN epithelial cells from human fetal colon) and the outcomes revealed substantial dependency of cell-nanoparticles interactions to the cell age. For example, it was observed that the PEGylated QDs were acutely toxic to senescent IMR90 and CCD841CoN cells, leading to lysosomal membrane permeabilization which caused cell necrosis; in contrast, the young cells were resilient to the exact same amount of QDs and the same incubation time. It was also found that the formation of protein corona could delay the QDs' toxicity on senescent cells. These findings suggest that the cellular aging process have a capacity to cause deteriorative effects on their organelles and normal functions. The outcomes of this study suggest the proof-of-concept that cell age may have critical role in biosystem responses to nanoparticle technologies. Therefore, the effect of cell age should be carefully considered on the nanobio interactions and the information about cellular age (e.g., passage number and age of the cell donor) should be included in the nanomedicine papers to facilitate clinical translation of nanotechnologies and to help scientists to better design and produce safe and efficient diagnostic/therapeutic age-specific nanoparticles.
Collapse
Affiliation(s)
| | - Azlan Abdul Aziz
- School of Physics , Universiti Sains Malaysia , 11800 Penang , Malaysia
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , 11800 Penang , Malaysia
| | - Morteza Mahmoudi
- Precision Health Program , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
27
|
Colchero F, Kiyakoglu BY. Beyond the proportional frailty model: Bayesian estimation of individual heterogeneity on mortality parameters. Biom J 2019; 62:124-135. [PMID: 31574180 DOI: 10.1002/bimj.201800280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 11/09/2022]
Abstract
Today, we know that demographic rates can be greatly influenced by differences among individuals in their capacity to survive and reproduce. These intrinsic differences, commonly known as individual heterogeneity, can rarely be measured and are thus treated as latent variables when modeling mortality. Finite mixture models and mixed effects models have been proposed as alternative approaches for inference on individual heterogeneity in mortality. However, in general models assume that individual heterogeneity influences mortality proportionally, which limits the possibility to test hypotheses on the effect of individual heterogeneity on other aspects of mortality such as ageing rates. Here, we propose a Bayesian model that builds upon the mixture models previously developed, but that facilitates making inferences on the effect of individual heterogeneity on mortality parameters other than the baseline mortality. As an illustration, we apply this framework to the Gompertz-Makeham mortality model, commonly used in human and wildlife studies, by assuming that the Gompertz rate parameter is affected by individual heterogeneity. We provide results of a simulation study where we show that the model appropriately retrieves the parameters used for simulation, even for low variances in the heterogeneous parameter. We then apply the model to a dataset on captive chimpanzees and on a cohort life table of 1751 Swedish men, and show how model selection against a null model (i.e., without heterogeneity) can be carried out.
Collapse
Affiliation(s)
- Fernando Colchero
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Burhan Y Kiyakoglu
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Gaudreault PO, Gosselin N, Lafortune M, Deslauriers-Gauthier S, Martin N, Bouchard M, Dubé J, Lina JM, Doyon J, Carrier J. The association between white matter and sleep spindles differs in young and older individuals. Sleep 2019; 41:5025912. [PMID: 29860401 DOI: 10.1093/sleep/zsy113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/12/2022] Open
Abstract
Study Objectives Sleep is a reliable indicator of cognitive health in older individuals. Sleep spindles (SS) are non-rapid eye movement (NREM) sleep oscillations implicated in sleep-dependent learning. Their generation imply a complex activation of the thalamo-cortico-thalamic loop. Since SS require neuronal synchrony, the integrity of the white matter (WM) underlying these connections is of major importance. During aging, both SS and WM undergo important changes. The goal of this study was to investigate whether WM integrity could predict the age-related reductions in SS characteristics. Methods Thirty young and 31 older participants underwent a night of polysomnographic recording and a 3T magnetic resonance imaging acquisition including a diffusion sequence. SS were detected in NREM sleep and EEG spectral analysis was performed for the sigma frequency band. WM diffusion metrics were computed in a voxelwise design of analysis. Results Compared to young participants, older individuals showed lower SS density, amplitude, and sigma power. Diffusion metrics were correlated with SS amplitude and sigma power in tracts connecting the thalamus to the frontal cortex for the young but not for the older group, suggesting a moderation effect. Moderation analyses showed that diffusion metrics explained between 14% and 39% of SS amplitude and sigma power variance in the young participants only. Conclusion Our results indicate that WM underlying the thalamo-cortico-thalamic loop predicts SS characteristics in young individuals, but does not explain age-related changes in SS. Other neurophysiological factors could better explain the effect of age on SS characteristics.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Marjolaine Lafortune
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Samuel Deslauriers-Gauthier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Sherbrooke Connectivity Imaging Lab, Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nicolas Martin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Julien Doyon
- Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada.,Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|
29
|
Rossi GS, Cochrane PV, Tunnah L, Wright PA. Ageing impacts phenotypic flexibility in an air-acclimated amphibious fish. J Comp Physiol B 2019; 189:567-579. [PMID: 31520114 DOI: 10.1007/s00360-019-01234-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
The ability to tolerate environmental change may decline as fishes age. We tested the hypothesis that ageing influences the scope for phenotypic flexibility in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between two vastly different environments, water and land. We found that older fish (4-6 years old) exhibited marked signs of ageing; older fish were reproductively senescent, had reduced fin regenerative capacity and body condition, and exhibited atrophy of both oxidative and glycolytic muscle fibers relative to younger adult fish (1-2 years old). However, age did not affect routine O2 consumption. We then acclimated adult fish (1-6 years) to water (control) or air for 10 days to assess the scope for phenotypic flexibility in response to terrestrial exposure. In support of our hypothesis, we found that older air-acclimated fish had a diminished scope for gill remodeling relative to younger fish. We also found that older fish exhibited poorer terrestrial locomotor performance relative to younger adult fish, particularly when acclimated to air. Our results indicate that ageing diminishes skeletal muscle integrity and locomotor performance of amphibious fishes, and may, therefore, impair terrestrial foraging ability, predator avoidance, or dispersal across the terrestrial environment. Remarkably, older fish voluntarily left water to a similar degree as younger fish despite the age-related deterioration of traits important for terrestrial life.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
30
|
Colchero F, Jones O, Conde DA, Hodgson D, Zajitschek F, Schmidt BR, Malo AF, Alberts SC, Becker PH, Bouwhuis S, Bronikowski AM, De Vleeschouwer KM, Delahay RJ, Dummermuth S, Fernández‐Duque E, Frisenvænge J, Hesselsøe M, Larson S, Lemaître J, McDonald J, Miller DA, O'Donnell C, Packer C, Raboy BE, Reading CJ, Wapstra E, Weimerskirch H, While GM, Baudisch A, Flatt T, Coulson T, Gaillard J, Regan H. The diversity of population responses to environmental change. Ecol Lett 2019; 22:342-353. [PMID: 30536594 PMCID: PMC6378614 DOI: 10.1111/ele.13195] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/02/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
The current extinction and climate change crises pressure us to predict population dynamics with ever-greater accuracy. Although predictions rest on the well-advanced theory of age-structured populations, two key issues remain poorly explored. Specifically, how the age-dependency in demographic rates and the year-to-year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age-specific demographic rates and when ages are reduced to stages. We find that stage- vs. age-based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival-fecundity-trade-offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age-specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Collapse
Affiliation(s)
- Fernando Colchero
- Interdisciplinary Center on Population DynamicsUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
- Department of Mathematics and Computer ScienceUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
| | - Owen R. Jones
- Interdisciplinary Center on Population DynamicsUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
- Institute of BiologyUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
| | - Dalia A. Conde
- Interdisciplinary Center on Population DynamicsUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
- Institute of BiologyUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
- Species360 Conservation Science Alliance7900 International Drive, Suite 1040BloomingtonMN55425USA
| | - David Hodgson
- Centre for Ecology and Conservation College of Life and Environmental SciencesUniversity of ExeterCornwall Campus, PenrynCornwallTR10 9EZUK
| | - Felix Zajitschek
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Benedikt R. Schmidt
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190CH‐8057ZurichSwitzerland
- Info Fauna KarchUniMailBâtiment G, Bellevaux 512000NeuchâtelSwitzerland
| | - Aurelio F. Malo
- Department of ZoologyUniversity of OxfordOxfordOX2 6GGUK
- Departamento de Ciencias de la VidaUniversidad de Alcalá28805MadridSpain
| | - Susan C. Alberts
- Departments of Biology and Evolutionary AnthropologyDuke UniversityDurhamNC27708USA
- Institute of Primate ResearchNational Museums of KenyaNairobiKenya
| | - Peter H. Becker
- Institut of Avian Research An der Vogelwarte21 D‐26386WilhelmshavenGermany
| | - Sandra Bouwhuis
- Institut of Avian Research An der Vogelwarte21 D‐26386WilhelmshavenGermany
| | - Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State University251 Bessey HallAmesIAUSA
| | - Kristel M. De Vleeschouwer
- Centre for Research and ConservationRoyal Zoological Society of AntwerpKoningin AstridpleinAntwerpenBelgium
| | - Richard J. Delahay
- National Wildlife Management CentreAnimal and Plant Health AgencyWoodchester Park NympsfieldGloucestershireGL10 3UJUK
| | - Stefan Dummermuth
- Info Fauna KarchUniMailBâtiment G, Bellevaux 512000NeuchâtelSwitzerland
| | | | - John Frisenvænge
- Amphi ConsultSciencepark NOVI, Niels Jernes Vej 10DK9220Aalborg ØDenmark
| | - Martin Hesselsøe
- Amphi ConsultSciencepark NOVI, Niels Jernes Vej 10DK9220Aalborg ØDenmark
| | - Sam Larson
- Department of AnthropologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jean‐François Lemaître
- Université Lyon 1CNRSUMR 5558Laboratoire de Biométrie et Biologie EvolutiveF‐69622VilleurbanneFrance
| | - Jennifer McDonald
- Centre for Ecology and Conservation College of Life and Environmental SciencesUniversity of ExeterCornwall Campus, PenrynCornwallTR10 9EZUK
| | - David A.W. Miller
- Department of Ecosystem Science and ManagementPennsylvania State University411 Forest Resources BuildingUniversity ParkPA16802USA
| | - Colin O'Donnell
- Department of ConservationTe Papa AtawhaiPO Box 4715Christchurch8140New Zealand
| | - Craig Packer
- College of Biological SciencesDepartment of Ecology, Evolution and BehaviorUniversity of Minnesota123 Snyder Hall, 1475 Gortner AveSaint PaulMN55108USA
| | - Becky E. Raboy
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONCanadaM5S 3B2
| | - Chris J. Reading
- Centre for Ecology and HydrologyCEH WallingfordBenson Lane, Crowmarsh, Gifford, WallingfordOxfordshireOX10 8BBUK
| | - Erik Wapstra
- School of Biological SciencesUniversity of TasmaniaPrivate Bag 5HobartTASAustralia
| | | | - Geoffrey M. While
- Centre d'Etudes Biologiques de ChizéCNRS79360Villiers en BoisFrance
- Edward Grey InstituteDepartment of ZoologyUniversity of OxfordSouth Parks RoadOxfordOX1 3PSUK
| | - Annette Baudisch
- Department of Mathematics and Computer ScienceUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
- Institute of BiologyUniversity of Southern DenmarkCampusvej 555230Odense MDenmark
- Department of Public HealthUniversity of Southern DenmarkOdense5000Denmark
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgCh. du Musée 101700FribourgSwitzerland
| | - Tim Coulson
- Department of ZoologyUniversity of OxfordOxfordOX2 6GGUK
| | - Jean‐Michel Gaillard
- Université Lyon 1CNRSUMR 5558Laboratoire de Biométrie et Biologie EvolutiveF‐69622VilleurbanneFrance
| | | |
Collapse
|
31
|
Midão L, Giardini A, Menditto E, Kardas P, Costa E. Adherence to Medication in Older Adults as a Way to Improve Health Outcomes and Reduce Healthcare System Spending. Gerontology 2018. [DOI: 10.5772/intechopen.72070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
Kremer LPM, Korb J, Bornberg-Bauer E. Reconstructed evolution of insulin receptors in insects reveals duplications in early insects and cockroaches. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:305-311. [DOI: 10.1002/jez.b.22809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/11/2018] [Accepted: 05/03/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Judith Korb
- Evolutionary Biology & Ecology; University of Freiburg; Freiburg Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity; University of Münster; Münster Germany
| |
Collapse
|
33
|
Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity. Exp Gerontol 2018; 106:198-221. [DOI: 10.1016/j.exger.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
|
34
|
Engelman M, Seplaki CL, Varadhan R. A Quiescent Phase in Human Mortality? Exploring the Ages of Least Vulnerability. Demography 2018; 54:1097-1118. [PMID: 28397179 DOI: 10.1007/s13524-017-0569-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Demographic studies of mortality often emphasize the two ends of the lifespan, focusing on the declining hazard after birth or the increasing risk of death at older ages. We call attention to the intervening phase, when humans are least vulnerable to the force of mortality, and consider its features in both evolutionary and historical perspectives. We define this quiescent phase (Q-phase) formally, estimate its bounds using life tables for Swedish cohorts born between 1800 and 1920, and describe changes in the morphology of the Q-phase. We show that for cohorts aging during Sweden's demographic and epidemiological transitions, the Q-phase became longer and more pronounced, reflecting the retreat of infections and maternal mortality as key causes of death. These changes revealed an underlying hazard trajectory that remains relatively low and constant during the prime ages for reproduction and investment in both personal capital and relationships with others. Our characterization of the Q-phase highlights it as a unique, dynamic, and historically contingent cohort feature, whose increased visibility was made possible by the rapid pace of survival improvements in the nineteenth and twentieth centuries. This visibility may be reduced or sustained under subsequent demographic regimes.
Collapse
Affiliation(s)
- Michal Engelman
- Department of Sociology and Center for Demography and Ecology, University of Wisconsin-Madison, 1180 Observatory Drive, Madison, WI, 53704, USA.
| | | | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
Abstract
Surveys of taxonomic groups of animals have shown that contrary to the opinion of most gerontologists aging is not a genuine trait. The process of aging is not universal and its mechanisms have not been widely conserved among species. All life forms are subject to extrinsic and intrinsic destructive forces. Destructive effects of stochastic events are visible only when allowed by the specific life program of an organism. Effective life programs of immortality and high longevity eliminate the impact of unavoidable damage. Organisms that are capable of agametic reproduction are biologically immortal. Mortality of an organism is clearly associated with terminal specialisation in sexual reproduction. The longevity phenotype that is not accompanied by symptoms of senescence has been observed in those groups of animals that continue to increase their body size after reaching sexual maturity. This is the result of enormous regeneration abilities of both of the above-mentioned groups. Senescence is observed when: (i) an organism by principle switches off the expression of existing growth and regeneration programs, as in the case of imago formation in insect development; (ii) particular programs of growth and regeneration of progenitors are irreversibly lost, either partially or in their entirety, in mammals and birds. “We can't solve problems by using the same kind of thinking we used when we created them.” (Ascribed to Albert Einstein)
Collapse
|
36
|
Hughes PW. Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecol Evol 2017; 7:8232-8261. [PMID: 29075446 PMCID: PMC5648687 DOI: 10.1002/ece3.3341] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
The number of times an organism reproduces (i.e., its mode of parity) is a fundamental life-history character, and evolutionary and ecological models that compare the relative fitnesses of different modes of parity are common in life-history theory and theoretical biology. Despite the success of mathematical models designed to compare intrinsic rates of increase (i.e., density-independent growth rates) between annual-semelparous and perennial-iteroparous reproductive schedules, there is widespread evidence that variation in reproductive allocation among semelparous and iteroparous organisms alike is continuous. This study reviews the ecological and molecular evidence for the continuity and plasticity of modes of parity-that is, the idea that annual-semelparous and perennial-iteroparous life histories are better understood as endpoints along a continuum of possible strategies. I conclude that parity should be understood as a continuum of different modes of parity, which differ by the degree to which they disperse or concentrate reproductive effort in time. I further argue that there are three main implications of this conclusion: (1) that seasonality should not be conflated with parity; (2) that mathematical models purporting to explain the general evolution of semelparous life histories from iteroparous ones (or vice versa) should not assume that organisms can only display either an annual-semelparous life history or a perennial-iteroparous one; and (3) that evolutionary ecologists should base explanations of how different life-history strategies evolve on the physiological or molecular basis of traits underlying different modes of parity.
Collapse
Affiliation(s)
- Patrick William Hughes
- Department of Plant Breeding and GeneticsMax Planck Institute for Plant Breeding ResearchKölnGermany
| |
Collapse
|
37
|
Bloch Qazi MC, Miller PB, Poeschel PM, Phan MH, Thayer JL, Medrano CL. Transgenerational effects of maternal and grandmaternal age on offspring viability and performance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:43-52. [PMID: 28529156 DOI: 10.1016/j.jinsphys.2017.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
In non-social insects, fitness is determined by relative lifetime fertility. Fertility generally declines with age as a part of senescence. For females, senescence has profound effects on fitness by decreasing viability and fertility as well as those of her offspring. However, important aspects of these maternal effects, including the cause(s) of reduced offspring performance and carry-over effects of maternal age, are poorly understood. Drosophila melanogaster is a useful system for examining potential transgenerational effects of increasing maternal age, because of their use as a model system for studying the physiology and genetic architecture of both reproduction and senescence. To test the hypothesis that female senescence has transgenerational effects on offspring viability and development, we measured the effects of maternal age on offspring survival over two generations and under two larval densities in two laboratory strains of flies (Oregon-R and Canton-S). Transgenerational effects of maternal age influence embryonic viability and embryonic to adult viability in both strains. However, the generation causing the effects, and the magnitude and direction of those effects differed by genotype. The effects of maternal age on embryonic to adult viability when larvae are stressed was also genotype-specific. Maternal effects involve provisioning: older females produced smaller eggs and larger offspring. These results show that maternal age has profound, complex, and multigenerational consequences on several components of offspring fitness and traits. This study contributes to a body of work demonstrating that female age is an important condition affecting phenotypic variation and viability across multiple generations.
Collapse
Affiliation(s)
- Margaret C Bloch Qazi
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA.
| | - Paige B Miller
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA.
| | - Penny M Poeschel
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA.
| | - Mai H Phan
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA.
| | - Joseph L Thayer
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA.
| | - Christian L Medrano
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA.
| |
Collapse
|
38
|
Hipkiss AR. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson's Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine. Aging Dis 2017; 8:334-345. [PMID: 28580188 PMCID: PMC5440112 DOI: 10.14336/ad.2016.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022] Open
Abstract
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms. MG can induce many of the macromolecular modifications (e.g. protein glycation) which characterise the aged-phenotype. MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson's disease (PD) brain and whose effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble changes associated with PD. MG can directly damage the intracellular proteolytic apparatus and modify proteins into non-degradable (cross-linked) forms. It is suggested that increased endogenous MG formation may result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the macromolecular changes associated with PD. Carnosine, a naturally-occurring dipeptide, may ameliorate MG-induced effects due, in part, to its carbonyl-scavenging activity. The possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed.
Collapse
Affiliation(s)
- Alan R. Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
39
|
Aiello A, Accardi G, Candore G, Gambino CM, Mirisola M, Taormina G, Virruso C, Caruso C. Nutrient sensing pathways as therapeutic targets for healthy ageing. Expert Opin Ther Targets 2017; 21:371-380. [PMID: 28281903 DOI: 10.1080/14728222.2017.1294684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.
Collapse
Affiliation(s)
- Anna Aiello
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giulia Accardi
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giuseppina Candore
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Caterina Maria Gambino
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Mario Mirisola
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Giusi Taormina
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Claudia Virruso
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Calogero Caruso
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| |
Collapse
|
40
|
Koopman JJE, van Heemst D, van Bodegom D, Bonkowski MS, Sun LY, Bartke A. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling. Aging (Albany NY) 2017; 8:539-46. [PMID: 26959761 PMCID: PMC4833144 DOI: 10.18632/aging.100919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species.
Collapse
Affiliation(s)
- Jacob J E Koopman
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Leyden Academy on Vitality and Ageing, Leiden, the Netherlands
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Leyden Academy on Vitality and Ageing, Leiden, the Netherlands
| | - David van Bodegom
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Leyden Academy on Vitality and Ageing, Leiden, the Netherlands
| | - Michael S Bonkowski
- Division of Geriatric Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA.,Paul F. Glenn Laboratory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liou Y Sun
- Division of Geriatric Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej Bartke
- Division of Geriatric Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
| |
Collapse
|
41
|
Brooks RC, Garratt MG. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Ann N Y Acad Sci 2016; 1389:92-107. [PMID: 28009055 DOI: 10.1111/nyas.13302] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Males and females in many species differ in how they age and how long they live. These differences have motivated much research, concerning both their evolution and the underlying mechanisms that cause them. We review how differences in male and female life histories have evolved to shape patterns of aging and some of the mechanisms and pathways involved. We pay particular attention to three areas where considerable potential for synergy between mechanistic and evolutionary research exists: (1) the role of estrogens, androgens, the growth hormone/insulin-like growth factor 1 pathway, and the mechanistic target of rapamycin signaling pathway in sex-dependent growth and reproduction; (2) sexual conflict over mating rate and fertility, and how mate presence or mating can become an avenue for males and females to directly affect each other's life span; and (3) the link between dietary restriction and aging, and the emerging understanding that only the restriction of certain nutrients is involved and that this is linked to reproduction. We suggest that ideas about life histories, sex-dependent selection, and sexual conflict can inform and be informed by the ever more refined and complex understanding of the mechanisms that cause aging.
Collapse
Affiliation(s)
- Robert C Brooks
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia
| | - Michael G Garratt
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
42
|
Dahlgren JP, Colchero F, Jones OR, Øien DI, Moen A, Sletvold N. Actuarial senescence in a long-lived orchid challenges our current understanding of ageing. Proc Biol Sci 2016; 283:20161217. [PMID: 27852801 PMCID: PMC5124088 DOI: 10.1098/rspb.2016.1217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/19/2016] [Indexed: 01/18/2023] Open
Abstract
The dominant evolutionary theory of actuarial senescence-an increase in death rate with advancing age-is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival-reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics.
Collapse
Affiliation(s)
- Johan Petter Dahlgren
- Max Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, 5230 Odense, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Fernando Colchero
- Max Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, 5230 Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Owen R Jones
- Max Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, 5230 Odense, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Dag-Inge Øien
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Asbjørn Moen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Nina Sletvold
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
43
|
Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 2016; 18:3-34. [PMID: 27804052 DOI: 10.1007/s10522-016-9666-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.
Collapse
|
44
|
Regenerative decline of stem cells in sarcopenia. Mol Aspects Med 2016; 50:109-17. [DOI: 10.1016/j.mam.2016.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
|
45
|
Elsner D, Kremer LP, Arning N, Bornberg-Bauer E. Chapter 6. Comparative genomic approaches to investigate molecular traits specific to social insects. CURRENT OPINION IN INSECT SCIENCE 2016; 16:87-94. [PMID: 27720056 DOI: 10.1016/j.cois.2016.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/01/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Ageing is a feature of nearly all known organisms and, by its connection to survival, appears to trade off with fecundity. However, in some organisms such as in queens of social insects, this negative relation appears reversed and individuals live long and reproduce much. Since new experimental techniques, transcriptomes and genomes of many social insects have recently become available, a comparison of these data in a phylogenetic framework becomes feasible. This allows the study of general trends, species specific oddities and evolutionary dynamics of the molecular properties and changes which underlie ageing, fecundity and the reversal of this negative association. In the framework of social insect evolution, we review the most important recent insights, computational methods, their applications and data resources which are available.
Collapse
Affiliation(s)
- Daniel Elsner
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | - Lukas Pm Kremer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Nicolas Arning
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, D-48149 Münster, Germany
| |
Collapse
|
46
|
Biliński T, Paszkiewicz T, Zadrag-Tecza R. Energy excess is the main cause of accelerated aging of mammals. Oncotarget 2016; 6:12909-19. [PMID: 26079722 PMCID: PMC4536988 DOI: 10.18632/oncotarget.4271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
The analysis of cases of unusually high longevity of naked mole rats and an alternative explanation of the phenomenon of calorie restriction effects in monkeys allowed for postulating that any factor preventing an excess of energy consumed, leads to increased lifespan, both in evolutionary and an individual lifetime scale. It is postulated that in mammals the most destructive processes resulting in shortening of life are not restricted to the phenomena explained by the hyperfunction theory of Mikhail Blagosklonny. Hyperfunction, understood as unnecessary or even adverse syntheses of cell components, can be to some extent prevented by lowered intake of nutrients when body growth ceases. We postulate also the contribution of glyco/lipotoxicity to aging, resulting from the excess of energy. Besides two other factors seem to participate in aging. One of them is lack of telomerase activity in some somatic cells. The second factor concerns epigenetic phenomena. Excessive activity of epigenetic maintenance system probably turns off some crucial organismal functions. Another epigenetic factor playing important role could be the micro RNA system deciding on expression of numerous age-related diseases. However, low extrinsic mortality from predation is a conditio sine qua non of the expression of all longevity phenotypes in animals. Among all long-lived animals, naked mole rats are unique in the elimination of neoplasia, which is accompanied by delayed functional symptoms of senescence. The question whether simultaneous disappearance of neoplasia and delayed senescence is accidental or not remains open.
Collapse
Affiliation(s)
- Tomasz Biliński
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland
| | | | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
47
|
Abstract
Aging involves defined genetic, biochemical and cellular pathways that regulate lifespan. These pathways are called longevity pathways and they have relevance for many age-related diseases. In the eye, longevity pathways are involved in the major blinding diseases, cataract, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy. Pharmaceutical targeting of longevity pathways can extend healthy lifespan in laboratory model systems. This offers the possibility of therapeutic interventions to also delay onset or slow the progression of age-related eye diseases. I suggest that retinal degeneration may be viewed as accelerated aging of photoreceptors and that interventions extending healthy lifespan may also slow the pace of photoreceptor loss.
Collapse
|
48
|
Xu XM, Cai GY, Bu R, Wang WJ, Bai XY, Sun XF, Chen XM. Beneficial Effects of Caloric Restriction on Chronic Kidney Disease in Rodent Models: A Meta-Analysis and Systematic Review. PLoS One 2015; 10:e0144442. [PMID: 26695411 PMCID: PMC4690609 DOI: 10.1371/journal.pone.0144442] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the life-extending effect of caloric restriction. It is generally accepted that caloric restriction has health benefits, such as prolonging lifespan and delaying the onset and progression of CKD in various species, especially in rodent models. Although many studies have tested the efficacy of caloric restriction, no complete quantitative analysis of the potential beneficial effects of reducing caloric intake on the development and progression of CKD has been published. METHODS All studies regarding the relationship between caloric restriction and chronic kidney diseases were searched in electronic databases, including PubMed/MEDLINE, EMBASE, Science Citation Index (SCI), OVID evidence-based medicine, Chinese Bio-medical Literature and Chinese science and technology periodicals (CNKI, VIP, and Wan Fang). The pooled odds ratios (OR) and 95% confidence intervals (95% CI) were calculated by using fixed- or random-effects models. RESULTS The data from 27 of all the studies mentioned above was used in the Meta analysis. Through the meta-analysis, we found that the parameter of blood urea nitrogen, serum creatinine and urinary protein levels of the AL group was significant higher than that of the CR group, which are 4.11 mg/dl, 0.08mg/dl and 33.20mg/kg/24h, respectively. The incidence of the nephropathy in the caloric restriction (CR) group was significantly lower than that in the ad libitum-fed (AL) group. We further introduced the subgroup analysis and found that the effect of caloric restriction on the occurrence of kidney disease was only significant with prolonged intervention; the beneficial effects of CR on the 60%-caloric-restriction group were greater than on the less-than-60%-caloric-restriction group, and caloric restriction did not show obvious protective effects in genetically modified strains. Moreover, survival rate of the caloric restriction group is much higher than that of the ad libitum-fed (AL) group. CONCLUSIONS Our findings demonstrate for the first time that compared with the AL group, the caloric restriction indeed decreased urea nitrogen, creatinine, urine protein, incidence of kidney diseases and increased the survival rate on 700~800 days.
Collapse
Affiliation(s)
- Xiao-meng Xu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guang-yan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Ru Bu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wen-juan Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xue-yuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xue-feng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xiang-mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
49
|
Archer CR, Hempenstall S, Royle NJ, Selman C, Willis S, Rapkin J, Blount JD, Hunt J. Testing the Effects of DL-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus). Antioxidants (Basel) 2015; 4:768-92. [PMID: 26783958 PMCID: PMC4712936 DOI: 10.3390/antiox4040768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022] Open
Abstract
The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform DL-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with DL-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus.
Collapse
Affiliation(s)
- C Ruth Archer
- Max Planck Research Group, Laboratory of Survival and Longevity, Max Planck Institute for Demographic Research Konrad-Zuse-Str. 1, 18057 Rostock, Germany.
- MaxNetAging School, Max Planck Institute for Demographic Research, Konrad-Zuse-Straße 1, 18057 Rostock, Germany.
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Cornwall TR10 9FE, UK.
| | - Sarah Hempenstall
- Leiden University Medical Center, Postzone S4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Nick J Royle
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Cornwall TR10 9FE, UK.
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sheridan Willis
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Cornwall TR10 9FE, UK.
| | - James Rapkin
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Cornwall TR10 9FE, UK.
| | - Jon D Blount
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Cornwall TR10 9FE, UK.
| | - John Hunt
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Cornwall TR10 9FE, UK.
| |
Collapse
|
50
|
Briga M, Verhulst S. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? Exp Gerontol 2015; 71:21-6. [DOI: 10.1016/j.exger.2015.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022]
|