1
|
Wang Y, Cao K, Guo ZX, Wan XH. Effect of lens crystallins aggregation on cataract formation. Exp Eye Res 2025; 253:110288. [PMID: 39955021 DOI: 10.1016/j.exer.2025.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Cataracts represent one of the leading causes of blindness globally. The World Health Organization's 2019World Report on Vision indicates that approximately 65.2 million individuals worldwide experience varying degrees of visual impairment or blindness attributable to cataracts. The prevalence of this condition is significantly increasing, largely due to the accelerated aging of the global population. The lens of the eye is primarily composed of crystallins, which are categorized into three families: α-, β-, and γ-crystallins. The highly ordered structure and interactions among these crystallins are crucial for maintaining lens transparency. Disruptions in the interactions within or between crystallins can compromise this delicate architecture, exposing hydrophobic surfaces that lead to crystallin aggregation and subsequent cataract formation. Currently, surgical intervention is the sole treatment for cataracts, and the cataract surgery rate in China remains considerably lower than that of developed nations. Investigating the mechanisms of crystallins interaction and aggregation is essential for understanding the molecular pathogenesis of cataract formation, which may inform the development of targeted therapies and preventative strategies. This paper reviews recent scientific advancements in the research field of lens crystallins aggregation and cataract formation.
Collapse
Affiliation(s)
- Yue Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Zhao-Xing Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hua Wan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Sluzala ZB, Hamati A, Fort PE. Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation. Cells 2025; 14:127. [PMID: 39851555 PMCID: PMC11764305 DOI: 10.3390/cells14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation-which are often linked to protein destabilization-phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Sluzala ZB, Shan Y, Elghazi L, Cárdenas EL, Hamati A, Garner AL, Fort PE. Novel mTORC2/HSPB4 Interaction: Role and Regulation of HSPB4 T148 Phosphorylation. Cells 2024; 13:2000. [PMID: 39682748 DOI: 10.3390/cells13232000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity. We recently demonstrated that this phosphorylation is reduced in retinal tissues from patients with diabetic retinopathy, raising the question of its regulation during diseases. The kinase(s) responsible for regulating this phosphorylation, however, have yet to be identified. To this end, we employed a multi-tier strategy utilizing in vitro kinome profiling, bioinformatics, and chemoproteomics to predict and discover the kinases capable of phosphorylating T148. Several kinases were identified as being capable of specifically phosphorylating T148 in vitro, and further analysis highlighted mTORC2 as a particularly strong candidate. Altogether, our data demonstrate that the HSPB4-mTORC2 interaction is multi-faceted. Our data support the role of mTORC2 as a specific kinase phosphorylating HSPB4 at T148, but also provide evidence that the HSPB4 chaperone function further strengthens the interaction. This study addresses a critical gap in our understanding of the regulatory underpinnings of T148 phosphorylation-mediated neuroprotection.
Collapse
Affiliation(s)
- Zachary B Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Shan
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Lynda Elghazi
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emilio L Cárdenas
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda L Garner
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrice E Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Parsa CF. New Sight for Old: Commentary On the Use of Pilocarpine for Presbyopia. J Ophthalmic Vis Res 2024; 19:392-396. [PMID: 39917451 PMCID: PMC11795007 DOI: 10.18502/jovr.v19i4.17786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 02/09/2025] Open
Abstract
This is an Editorial and does not have an abstract. Please download the PDF or view the article in HTML.
Collapse
Affiliation(s)
- Cameron F. Parsa
- Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Faculty of Medicine, Sorbonne University, Paris, France
| |
Collapse
|
5
|
Antonietti M, Kim CK, Djulbegovic MB, Gonzalez DJT, Greenfield JA, Uversky VN, Gibbons AG, Karp CL. Effects of Aging on Intrinsic Protein Disorder in Human Lenses and Zonules. Cell Biochem Biophys 2024; 82:3667-3679. [PMID: 39117985 PMCID: PMC11576620 DOI: 10.1007/s12013-024-01455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
This study aims to compare the levels of intrinsic protein disorder within the human lens and zonule proteomes and investigate the role of aging as a potential influencing factor on disorder levels. A cross-sectional proteomic analysis was employed, utilizing a dataset of 1466 proteins derived from the lens and zonule proteomes previously published by Wang et al. and De Maria et al. Bioinformatics tools, including a composition profiler and a rapid intrinsic disorder analysis online tool, were used to conduct a comparative analysis of protein disorder. Statistical tests such as ANOVA, Tukey's HSD, and chi-squared tests were applied to evaluate differences between groups. The study revealed distinct amino acid compositions for each proteome, showing a direct correlation between aging and increased protein disorder in the zonular proteomes, whereas the lens proteomes exhibited the opposite trend. Findings suggest that age-related changes in intrinsic protein disorder within the lens and zonule proteomes may be linked to structural transformations in these tissues. Understanding how protein disorder evolves with age could enhance knowledge of the molecular basis for age-related conditions such as cataracts and pseudoexfoliation, potentially leading to better therapeutic strategies.
Collapse
Affiliation(s)
| | - Colin K Kim
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Mak B Djulbegovic
- Wills Eye Hospital, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
7
|
Konlack Mekontso JG, Dohvoma VA, Ebana Mvogo SR, Nguefang Tchoukeu GL, Mbessoh Kengne UI, Ndzernyuy Dubila F, Tamhouo Nwabo FL, Ebana Mvogo C. Differences in Ocular Axial Length Between Genders and Refractive Error Groups: A Cross-Sectional Study at the Yaoundé Central Hospital, Cameroon. Cureus 2024; 16:e75828. [PMID: 39816289 PMCID: PMC11735051 DOI: 10.7759/cureus.75828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Refractive errors are a common global health issue. Previous studies in Cameroon have predominantly identified hyperopia and hyperopic astigmatism as the primary refractive errors. This study aimed to determine ocular axial length (OAL) values in Cameroonian adults and to evaluate differences between genders and refractive error groups. METHODS A cross-sectional study was conducted at the ophthalmology unit of Yaoundé Central Hospital. Participants aged 20-40 years who consented and had no intraocular pathologies or craniofacial malformations were included. OAL was measured using A-scan ultrasonography, and objective refraction was performed following cycloplegia. Age, gender, and refractive error were recorded. Statistical analyses, including Student's t-test, ANOVA, Chi-square, and Pearson correlation coefficient were used with a significance level of p < 0.05. RESULTS A total of 200 participants, predominantly female (75.5%), were included. The mean age was 26.36 ± 5.01 years. Men had significantly longer OAL (24.01 ± 0.88 mm) compared to women (23.47 ± 0.84 mm) (adjusted p-value = 0.00). While OAL was slightly larger in myopes and shorter in hypermetropes, these differences were not statistically significant. However, OAL increased significantly with increasing myopia severity (p = 0.000) and decreased with increasing hyperopia severity (p = 0.000). There was a negative, moderate, and significant correlation between OAL and spherical value (r = -0.432 for the right eye, r = -0.429 for the left eye, adjusted p = 0.01). CONCLUSION The OAL values observed in our population were higher than those reported in other studies, and a significant gender difference was noted. These findings suggest that factors other than OAL, such as ocular optics, may significantly influence the hyperopic status of our population.
Collapse
Affiliation(s)
| | - Viola Andin Dohvoma
- Ophthalmology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, CMR
| | - Steve Robert Ebana Mvogo
- Ophthalmology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, CMR
| | | | | | - Fabrice Ndzernyuy Dubila
- General Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, CMR
| | | | - Côme Ebana Mvogo
- Ophthalmology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, CMR
| |
Collapse
|
8
|
Coviltir V, Burcel MG, Baltă G, Marinescu MC. Interplay Between Ocular Ischemia and Glaucoma: An Update. Int J Mol Sci 2024; 25:12400. [PMID: 39596463 PMCID: PMC11594906 DOI: 10.3390/ijms252212400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Glaucoma is a main cause of irreversible blindness worldwide, with a high impact on productivity and quality of life. The mechanical and ischemic theories are currently the most recognized pathophysiological pathways that explain the neurodegeneration of retinal nerve fibers in glaucoma. In this narrative review, aspects of ischemia in glaucoma are discussed, including vascular dysregulation, retinal ischemia signaling pathways, roles of vascular endothelial growth factors, and future research and therapeutic directions. In conclusion, a better understanding of the ischemic processes in glaucoma may lead to innovative treatment options and improved management and follow-up of our patients.
Collapse
Affiliation(s)
- Valeria Coviltir
- Ophthalmology Discipline, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania;
| | - Miruna Gabriela Burcel
- Faculty of Medicine, Transilvania University of Braşov, 500019 Braşov, Romania
- Brasov County Emergency Clinical Hospital, 500326 Braşov, Romania
| | - George Baltă
- Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania;
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Maria Cristina Marinescu
- Medical Physiology Discipline, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
9
|
Goody N, Israeliantz N, Massidda A, Richardson J, Blacklock B, Mitchell J, Liuti T. Ocular biometry in rabbits using computed tomography. Vet Ophthalmol 2024; 27:530-539. [PMID: 38468158 PMCID: PMC11669491 DOI: 10.1111/vop.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE To describe a repeatable method of measuring ocular structures and to establish ocular biometry reference ranges in adult domestic rabbits (Oryctolagus cuniculus) without medical history or imaging findings consistent with ophthalmic disease using a 64-slice multidetector computed tomography scanner. PROCEDURE In this retrospective and observational anatomic study, 100 eyes from 50 rabbits without medical history or imaging findings consistent with ophthalmic disease who received a head computed tomography scan were selected for measurement of globe length, width, and height using 3D multiplanar reconstruction. Lens width and length, the anteroposterior length of the anterior and vitreous chambers, and attenuation of the lens and vitreous chamber were collected. These parameters were compared against age, sex, weight, body condition, and ear conformation. RESULTS A reference guide was established, with globe width being the largest dimension (18.03 ± 0.81 mm), followed by height (17.18 ± 0.69 mm) and then length (16.64 ± 0.66 mm). Increased weight was associated with an increase in globe height (p = 2.43 × 10-5), length (p = 1.63 × 10-4), and width (p = 7.0 × 10-3). Increased age was associated with increased lens attenuation (p = 1.28 × 10-7) and increased transverse lens width (p = 1.64 × 10-3). Inter- and intra-observer agreement was excellent. CONCLUSIONS CT is a reliable modality for measurement of ocular biometry dimensions in rabbits. These reference values can be applied to aid in identifying diseases that affect the dimensions of the ocular structures in rabbits over 18 months of age.
Collapse
Affiliation(s)
- Nicholas Goody
- Royal (Dick) School of Veterinary Studies, Hospital for Small AnimalsThe University of EdinburghMidlothianUK
| | - Nicolas Israeliantz
- Royal (Dick) School of Veterinary Studies, Hospital for Small AnimalsThe University of EdinburghMidlothianUK
| | | | - Jenna Richardson
- Royal (Dick) School of Veterinary Studies, Hospital for Small AnimalsThe University of EdinburghMidlothianUK
| | - Benjamin Blacklock
- Royal (Dick) School of Veterinary Studies, Hospital for Small AnimalsThe University of EdinburghMidlothianUK
| | - Jordan Mitchell
- The Roslin InstituteThe University of EdinburghMidlothianUK
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHertfordshireUK
| | - Tiziana Liuti
- Royal (Dick) School of Veterinary Studies, Hospital for Small AnimalsThe University of EdinburghMidlothianUK
| |
Collapse
|
10
|
Zemitis A, Vanags J, Fan J, Klavins K, Laganovska G. Metabolomic Disparities in Intraocular Fluid Across Varied Stages of Cataract Progression: Implications for the Analysis of Cataract Development. J Ocul Pharmacol Ther 2024; 40:477-485. [PMID: 38976556 DOI: 10.1089/jop.2024.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Introduction: The lens's metabolic demands are met through a continuous circulation of aqueous humor, encompassing a spectrum of components such as organic and inorganic ions, carbohydrates, glutathione, urea, amino acids, proteins, oxygen, carbon dioxide, and water. Metabolomics is a pivotal tool, offering an initial insight into the complexities of integrated metabolism. In this investigative study, we systematically scrutinize the composition of intraocular fluid in individuals afflicted with cataracts. Methods: The investigation involved a comprehensive analysis of aqueous humor samples from a cohort comprising 192 patients. These individuals were stratified by utilizing the SPONCS classification system, delineating distinct groups characterized by the hardness of cataracts. The analytical approach employed targeted quantitative metabolite analysis using HILIC-based liquid chromatography coupled with high-resolution mass spectrometric detection. The metabolomics data analysis was performed with MetaboAnalyst 5.0. Results: The results of the enrichment analysis have facilitated the inference that the discerned disparities among groups arise from disruptions in taurine and hypotaurine metabolism, variations in tryptophan metabolism, and modifications in mitochondrial beta-oxidation of short-chain saturated fatty acids and pyrimidine metabolism. Conclusion: A decline in taurine concentration precipitates diminished glutathione activity, prompting an elevated requirement for NAD+ and instigating tryptophan metabolism along the kynurenine pathway. Activation of this pathway is additionally prompted by interferon-gamma and UV radiation, leading to the induction of IDO. Concurrently, heightened mitochondrial beta-oxidation signifies a distinctive scenario in translocating fatty acids into the mitochondria, enhancing energy production.
Collapse
Affiliation(s)
- Arturs Zemitis
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
- Clinic of Ophthalmology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Juris Vanags
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
- Clinic of Ophthalmology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Jingzhi Fan
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
| | - Kristaps Klavins
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
| | - Guna Laganovska
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
- Clinic of Ophthalmology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| |
Collapse
|
11
|
Hagström A, Sabazade S, Gill V, Stålhammar G. Association of female sex with cataract surgery in the general population but not in plaque brachytherapy-treated uveal melanoma patients. Sci Rep 2024; 14:22016. [PMID: 39317717 PMCID: PMC11422500 DOI: 10.1038/s41598-024-73346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Cataract is a leading cause of blindness worldwide, necessitating a deeper understanding of its risk factors. We analyzed two cohorts: 1000 individuals from the general Swedish population and 933 patients who received plaque brachytherapy for uveal melanoma. Using Kaplan-Meier and cumulative incidence analyses, as well as Cox and competing risk regressions, we assessed whether there is a relationship between sex and cataract surgery. In the general population, female sex was a significant risk factor for cataract surgery, with a 10-year incidence of 16% compared to 10% for males (subdistribution hazard ratio adjusted for age, 1.35, P < 0.001). In the brachytherapy cohort, female sex was not associated with an increased incidence of cataract surgery, with a 10-year incidence of 25% versus 23% for males (HR 1.08, P = 0.61). Visual acuity at the time of cataract surgery did not significantly differ between sexes in either cohort, suggesting that differences in surgery rates are not due to health-seeking behavior or surgery assessment thresholds. These findings indicate that female sex is associated with a higher risk of cataract surgery in the general population, but not among those treated with plaque brachytherapy for uveal melanoma.
Collapse
Affiliation(s)
- Anna Hagström
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden
| | - Shiva Sabazade
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden
- Ocular Oncology Service, St. Erik Eye Hospital, Stockholm, Sweden
| | - Viktor Gill
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden
- Department of Pathology, Västmanland Hospital Västerås, Västerås, Sweden
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164, Stockholm, Sweden.
- Ocular Oncology Service, St. Erik Eye Hospital, Stockholm, Sweden.
- St. Erik Ophthalmic Pathology Laboratory, St. Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
MacFarlane ER, Donaldson PJ, Grey AC. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1414483. [PMID: 39301012 PMCID: PMC11410779 DOI: 10.3389/fopht.2024.1414483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
UV light is known to cause damage to biomolecules in living tissue. Tissues of the eye that play highly specialised roles in forming our sense of sight are uniquely exposed to light of all wavelengths. While these tissues have evolved protective mechanisms to resist damage from UV wavelengths, prolonged exposure is thought to lead to pathological changes. In the lens, UV light exposure is a risk factor for the development of cataract, which is a condition that is characterised by opacity that impairs its function as a focusing element in the eye. Cataract can affect spatially distinct regions of the lens. Age-related nuclear cataract is the most prevalent form of cataract and is strongly associated with oxidative stress and a decrease in the antioxidant capacity of the central lens region. Since UV light can generate reactive oxygen species to induce oxidative stress, its effects on lens structure, transparency, and biochemistry have been extensively investigated in animal models in order to better understand human cataract aetiology. A review of the different light exposure models and the advances in mechanistic understanding gained from these models is presented.
Collapse
Affiliation(s)
- Emily R MacFarlane
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Caixinha M, Santos J, Santos M, Nunes S. Animal model for in-vivo Nuclear Cataract. Lens hardness and elasticity assessment. J Mech Behav Biomed Mater 2024; 157:106610. [PMID: 38838543 DOI: 10.1016/j.jmbbm.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Age-related cataract is the most frequent cause of blindness in the world being responsible for 48% of blindness and affecting more than 10% of the working population. Currently there is no objective data of the lens biomechanical properties so the process by which the cataract affects the lens's properties (e.g. hardness and elasticity) is still unclear. A modified animal model was produced to create different severities of nuclear cataract. Different doses of sodium selenite were injected in two different moments of the rat' eyes maturation resulting in 12, 13 and 11 rats with incipient, moderate and severe cataract, respectively. The nucleus and cortex's hardness and the stiffness were measured using NanoTest™. Statistically significant differences were found between healthy and cataractous lenses. Statistically significant differences were also found between the different nuclear cataract degrees (p = 0.016), showing that the lens' hardness increases with cataract formation. The nucleus shows a higher hardness increase with cataract formation (p = 0.049). The animal model used in this study allowed for the first time the characterization of the lens's hardness and elasticity in two regions of the lens, in healthy and cataractous lenses.
Collapse
Affiliation(s)
- Miguel Caixinha
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Portugal; Department of Physics, Univ Beira Interior, Portugal; Department of Electrical and Computer Engineering, Univ Coimbra, Portugal.
| | - Jaime Santos
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Portugal; Department of Electrical and Computer Engineering, Univ Coimbra, Portugal
| | - Mário Santos
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Portugal; Department of Electrical and Computer Engineering, Univ Coimbra, Portugal
| | - Sandrina Nunes
- Department of Electrical and Computer Engineering, Univ Coimbra, Portugal
| |
Collapse
|
14
|
Nishad A, Malik P, Dewan T. Effect of ageing and cataract formation on the Raman spectroscopic profile of human lens: An observational study. Indian J Ophthalmol 2024; 72:1346-1351. [PMID: 39185832 PMCID: PMC11552796 DOI: 10.4103/ijo.ijo_3302_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE To observe the spectroscopic profile of human lens in different age groups and varying grades of cataract and to use the data to arrive at differentiating molecular biology. DESIGN An observational cross-sectional study. METHODS The study enrolled 30 patients (30 eyes) with a mean age of 59.6 years diagnosed with immature senile cataracts. The patients underwent small incision cataract surgery, and the harvested lens nuclei were examined under a Raman spectroscope for studying their molecular composition. The relative intensities of the peaks in the Raman spectra were evaluated and compared among different age groups and grades of cataract. A correlation of tyrosine doublet ratio with grade of cataract and age of the subject was calculated. RESULT Several Raman spectral peaks were observed in the range of 600 cm-1 to 1800 cm-1 with correspondence to tyrosine, phenylalanine, tryptophan, and amides I and III. A strong negative correlation between the grade of cataract and the ratio of tyrosine doublet was seen (r = -0.805). Also, a negative correlation between age and tyrosine ratio was seen (r = -0.62). The wavenumber/spectral peak of tryptophan was observed only in one sample, and amides I and III were identified, but the intensity of the peak for amide II was very small or absent. CONCLUSION It was observed that the buried conformation of tyrosine was predominant in cases with a higher age or grade of cataract. The buried conformation of tryptophan became less in the higher grades of cataract.
Collapse
Affiliation(s)
- Ayasha Nishad
- Department of Ophthalmology, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Praveen Malik
- Department of Ophthalmology, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Taru Dewan
- Department of Ophthalmology, ABVIMS and Dr. RML Hospital, New Delhi, India
| |
Collapse
|
15
|
Baur ID, Mueller A, Labuz G, Naujokaitis T, Auffarth GU, Khoramnia R. Refractive Lens Exchange: A Review. Klin Monbl Augenheilkd 2024; 241:893-904. [PMID: 39146574 DOI: 10.1055/a-2346-4428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In recent decades, technical advancements in lens surgery have considerably improved safety and refractive outcomes. This has led to a much broader range of indications for refractive lens exchange (RLE). Effective restoration of uncorrected distance and near visual acuity is possible with modern presbyopia correcting intraocular lenses (IOLs). Hyperopic patients who are fully presbyopic were identified as ideal candidates for RLE. For myopic patients, an increased risk of retinal detachment has been reported, which leads to a higher threshold to perform RLE in this patient group. The most frequent postoperative complications include posterior capsular opacification, deviation from the target refraction and cystoid macular edema. Thus, adequate planning of surgery, careful patient selection, as well as comprehensive counseling are crucial for successful RLE.
Collapse
Affiliation(s)
| | - Arthur Mueller
- Department of Ophthalmology, University Hospital Augsburg, Germany
| | - Grzegorz Labuz
- International Vision Correction Research Centre (IVCRC) and David J Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
| | - Tadas Naujokaitis
- International Vision Correction Research Centre (IVCRC) and David J Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
| | - Gerd U Auffarth
- International Vision Correction Research Centre (IVCRC) and David J Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
| | - Ramin Khoramnia
- International Vision Correction Research Centre (IVCRC) and David J Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
| |
Collapse
|
16
|
Carter RT, Swetledge S, Navarro S, Liu CC, Ineck N, Lewin AC, Donnarumma F, Bodoki E, Stout RW, Astete C, Jung JP, Sabliov CM. The impact of lutein-loaded poly(lactic-co-glycolic acid) nanoparticles following topical application: An in vitro and in vivo study. PLoS One 2024; 19:e0306640. [PMID: 39088452 PMCID: PMC11293729 DOI: 10.1371/journal.pone.0306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 08/03/2024] Open
Abstract
Antioxidant therapies are of interest in the prevention and management of ocular disorders such as cataracts. Although an active area of interest, topical therapy with antioxidants for the treatment of cataracts is complicated by multiple ocular anatomical barriers, product stability, and solubility. Entrapment and delivery of antioxidants with poly(lactic-co-glycolic acid) nanoparticles is a possible solution to these challenges, however, little is known regarding their effects in vitro or in vivo. Our first aim was to investigate the impact of blank and lutein loaded PLGA nanoparticles on viability and development of reactive oxygen species in lens epithelial cells in vitro. Photo-oxidative stress was induced by ultraviolet light exposure with cell viability and reactive oxygen species monitored. Next, an in vivo, selenite model was utilized to induce cataract formation in rodents. Eyes were treated topically with both free lutein and lutein loaded nanoparticles (LNP) at varying concentrations. Eyes were monitored for the development of anterior segment changes and cataract formation. The ability of nanodelivered lutein to reach the anterior segment of the eye was evaluated by liquid chromatography coupled to mass spectrometry of aqueous humor samples and liquid chromatography coupled to tandem mass spectrometry (targeted LC-MS/MS) of lenses. LNP had a minimal impact on the viability of lens epithelial cells during the short exposure timeframe (24 h) and at concentrations < 0.2 μg LNP/μl. A significant reduction in the development of reactive oxygen species was also noted. Animals treated with LNPs at an equivalent lutein concentration of 1,278 μg /mL showed the greatest reduction in cataract scores. Lutein delivery to the anterior segment was confirmed through evaluation of aqueous humor and lens sample evaluation. Topical treatment was not associated with the development of secondary keratitis or anterior uveitis when applied once daily for one week. LNPs may be an effective in the treatment of cataracts.
Collapse
Affiliation(s)
- Renee T. Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sean Swetledge
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sara Navarro
- Department of Entomology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Chin-C. Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nikole Ineck
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Andrew C. Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ede Bodoki
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Rhett W. Stout
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Carlos Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jangwook P. Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Cristina M. Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
17
|
Davies LN, Biswas S, Bullimore M, Cruickshank F, Estevez JJ, Khanal S, Kollbaum P, Marcotte-Collard R, Montani G, Plainis S, Richdale K, Simard P, Wolffsohn JS. BCLA CLEAR presbyopia: Mechanism and optics. Cont Lens Anterior Eye 2024; 47:102185. [PMID: 38796331 DOI: 10.1016/j.clae.2024.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
With over a billion adults worldwide currently affected, presbyopia remains a ubiquitous, global problem. Despite over a century of study, the precise mechanism of ocular accommodation and presbyopia progression remains a topic of debate. Accordingly, this narrative review outlines the lenticular and extralenticular components of accommodation together with the impact of age on the accommodative apparatus, neural control of accommodation, models of accommodation, the impact of presbyopia on retinal image quality, and both historic and contemporary theories of presbyopia.
Collapse
Affiliation(s)
- Leon N Davies
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Sayantan Biswas
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | | | - Fiona Cruickshank
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Jose J Estevez
- Caring Futures Institute, College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Adelaide, Australia; Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Safal Khanal
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, USA
| | | | | | | | - Sotiris Plainis
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK; Laboratory of Optics and Vision, School of Medicine, University of Crete, Greece
| | | | - Patrick Simard
- School of Optometry, Universite de Montreal, Montreal, Quebec, Canada
| | - James S Wolffsohn
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
18
|
Su Y, Sun D, Cao C, Wang Y. Lanosterol regulates abnormal amyloid accumulation in LECs through the mediation of cholesterol pathway metabolism. Biochem Biophys Rep 2024; 38:101679. [PMID: 38501050 PMCID: PMC10945048 DOI: 10.1016/j.bbrep.2024.101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Age-related cataract (ARC) is the predominant cause of global blindness, linked to the progressive aging of the lens, oxidative stress, perturbed calcium homeostasis, hydration irregularities, and modifications in crystallin proteins. Currently, surgical intervention remains the sole efficacious remedy, albeit carrying inherent risks of complications that may culminate in irreversible blindness. It is urgent to explore alternative, cost-effective, and uncomplicated treatment modalities for cataracts. Lanosterol has been widely reported to reverse cataracts, but the mechanism of action is not yet clear. In this study, we elucidated the mechanism through which lanosterol operates in the context of cataract reversal. Through the targeted suppression of sterol regulatory element-binding protein 2 (SREBP2) followed by lanosterol treatment, we observed the restoration of lipid metabolism disorders induced by SREBP2 knockdown in lens epithelial cells (LECs). Notably, lanosterol exhibited the ability to effectively counteract amyloid accumulation and cellular apoptosis triggered by lipid metabolism disorders. In summary, our findings suggest that lanosterol, a pivotal intermediate in lipid metabolism, may exert its therapeutic effects on cataracts by influencing lipid metabolism. This study shed light on the treatment and pharmaceutical development targeting Age-related Cataracts (ARC).
Collapse
Affiliation(s)
- Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Danyuan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chen Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Yandong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Thompson P, Vilkelyte V, Woronkowicz M, Tavakoli M, Skopinski P, Roberts H. Adenylyl Cyclase in Ocular Health and Disease: A Comprehensive Review. BIOLOGY 2024; 13:445. [PMID: 38927325 PMCID: PMC11200476 DOI: 10.3390/biology13060445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Adenylyl cyclases (ACs) are a group of enzymes that convert adenosine-5'-triphosphate (ATP) to cyclic adenosine 3',5' monophosphate (cAMP), a vital and ubiquitous signalling molecule in cellular responses to hormones and neurotransmitters. There are nine transmembrane (tmAC) forms, which have been widely studied; however, the tenth, soluble AC (sAC) is less extensively characterised. The eye is one of the most metabolically active sites in the body, where sAC has been found in abundance, making it a target for novel therapeutics and biomarking. In the cornea, AC plays a role in endothelial cell function, which is vital in maintaining stromal dehydration, and therefore, clarity. In the retina, AC has been implicated in axon cell growth and survival. As these cells are irreversibly damaged in glaucoma and injury, this molecule may provide focus for future therapies. Another potential area for glaucoma management is the source of aqueous humour production, the ciliary body, where AC has also been identified. Furthering the understanding of lacrimal gland function is vital in managing dry eye disease, a common and debilitating condition. sAC has been linked to tear production and could serve as a therapeutic target. Overall, ACs are an exciting area of study in ocular health, offering multiple avenues for future medical therapies and diagnostics. This review paper explores the diverse roles of ACs in the eye and their potential as targets for innovative treatments.
Collapse
Affiliation(s)
- Polly Thompson
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
| | - Virginija Vilkelyte
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| | - Malgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK;
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Mitra Tavakoli
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| | - Piotr Skopinski
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| |
Collapse
|
20
|
Ciorba AL, Teusdea A, Roiu G, Cavalu DS. Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification. Geriatrics (Basel) 2024; 9:77. [PMID: 38920433 PMCID: PMC11202640 DOI: 10.3390/geriatrics9030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to evaluate the influence of ultrasounds used in phacoemulsification during cataract surgery on the corneal structure and morphology in patients over 65 years. We compared the outcomes of phacoemulsification techniques in terms of corneal cell morphology in 77 patients over 65 years old and 43 patients under 65 years old. Corneal cell density, central corneal thickness and hexagonality were measured preoperatively and post-surgery (at 1 and 4 weeks) by specular microscopy. The effect of gender, axial length and anterior chamber depth on the parameters of corneal endothelium were evaluated. In both groups, a progressive decrease in endothelial cells was observed, starting from the first week post-surgery until the fourth postoperative week. The central corneal thickness increased in both groups with maximum values at the first week postoperatively, while their initial values were restored in the fourth week post-surgery, with no statistical difference between groups. Statistically significant differences were noticed in terms of cell hexagonality in the group over 65, showing smaller hexagonality at all preoperative and postoperative time points compared to group under 65. Our result highlights the importance of routine specular microscopy performed before surgery, regardless the age of the patients, with caution and careful attention to the phaco power intensity, ultrasound energy consumption and intraoperative manipulation of instruments, as well as proper use of viscoelastic substances to reduce corneal endothelium damage, especially in elderly patients.
Collapse
Affiliation(s)
- Adela Laura Ciorba
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania; (A.L.C.); (D.S.C.)
| | - Alin Teusdea
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania
| | - George Roiu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Daniela Simona Cavalu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania; (A.L.C.); (D.S.C.)
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
21
|
Al-Bassam L, Shearman GC, Brocchini S, Alany RG, Williams GR. The Potential of Selenium-Based Therapies for Ocular Oxidative Stress. Pharmaceutics 2024; 16:631. [PMID: 38794293 PMCID: PMC11125443 DOI: 10.3390/pharmaceutics16050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress plays a critical role in the development of chronic ocular conditions including cataracts, age-related macular degeneration, and diabetic retinopathy. There is a need to explore the potential of topical antioxidants to slow the progression of those conditions by mediating oxidative stress and maintaining ocular health. Selenium has attracted considerable attention because it is a component of selenoproteins and antioxidant enzymes. The application of selenium to a patient can increase selenoprotein expression, counteracting the effect of reactive oxygen species by increasing the presence of antioxidant enzymes, and thus slowing the progression of chronic ocular disorders. Oxidative stress effects at the biomolecular level for prevalent ocular conditions are described in this review along with some of the known defensive mechanisms, with a focus on selenoproteins. The importance of selenium in the eye is described, along with a discussion of selenium studies and uses. Selenium's antioxidant and anti-inflammatory qualities may prevent or delay eye diseases. Recent breakthroughs in drug delivery methods and nanotechnology for selenium-based ocular medication delivery are enumerated. Different types of selenium may be employed in formulations aimed at managing ocular oxidative stress conditions.
Collapse
Affiliation(s)
- Lulwah Al-Bassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Gemma C. Shearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Raid G. Alany
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| |
Collapse
|
22
|
Bhogal-Bhamra GK, Aujla M, Kolli S, Sheppard AL, Wolffsohn JS. Glare prediction and mechanism of adaptation following implantation of hydrophilic and hydrophobic intraocular lenses. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1310468. [PMID: 38984113 PMCID: PMC11182291 DOI: 10.3389/fopht.2024.1310468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/01/2024] [Indexed: 07/11/2024]
Abstract
Purpose Glare is a known side effect of intraocular lens (IOL) implantation, affected principally by IOL material and optics, although it is reported subjectively to decrease in impact with time. However, little objective data have been published on changes over time, how these relate to subjective reports, and whether those who will report greater glare symptoms can be predicted prior to IOL implantation. Methods A total of 32 patients (aged 72.4 ± 8.0 years) with healthy eyes were implanted bilaterally with hydrophilic 600s (Rayner, Worthing, UK) or hydrophobic Acrysof (Alcon, Texas, USA) acrylic IOLs (n = 16 each, randomly assigned). Each patient reported their dysphotopsia symptoms subjectively using the validated forced choice photographic questionnaire for photic phenomena, and halo size resulting from a bright light in a dark environment was quantified objectively in eight orientations using the Aston Halometer. Assessment was performed binocularly pre-operatively and at 1, 2, 3, and 4 weeks after IOL implantation. Setting The study was carried out at the National Health Service Ophthalmology Department, Queen Elizabeth Hospital, Birmingham, UK. Results Visual acuity (average 0.37 ± 0.26 logMAR) did not correlate with subjective glare (r = 0.184, p = 0.494) or objective glare (r = 0.294, p = 0.270) pre-surgery. Objective halo size (F = 112.781, p < 0.001) decreased with cataract removal and IOL implantation and continued to decreased over the month after surgery. Subjective dysphotopsia complaints (p < 0.001) were also greater pre-surgery, but did not change thereafter (p = 0.228). In neither case was there a difference with IOL material (p > 0.05). It was not possible to predict post-surgery dysphotopsia from symptoms or a ratio of symptoms to halo size pre-surgery (p > 0.05). Conclusions Subjective dysphotopsia and objective halos caused by cataracts are greatly reduced by implantation of IOL after cataract removal causing few perceivable symptoms. However, objective measures are able to quantify a further reduction in light scatter over the first month post-IOL implantation, suggesting that any subjective effects over this period are due to the healing process and not due to neuroadaptation.
Collapse
Affiliation(s)
- Gurpreet K Bhogal-Bhamra
- Ophthalmic Research Group, Aston University, Birmingham, United Kingdom
- University Hospitals Trust, Ophthalmology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Maana Aujla
- Ophthalmic Research Group, Aston University, Birmingham, United Kingdom
| | - Sai Kolli
- University Hospitals Trust, Ophthalmology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Amy L Sheppard
- Ophthalmic Research Group, Aston University, Birmingham, United Kingdom
| | - James S Wolffsohn
- Ophthalmic Research Group, Aston University, Birmingham, United Kingdom
| |
Collapse
|
23
|
Wang K, Pu Y, Chen L, Hoshino M, Uesugi K, Yagi N, Chen X, Usui Y, Hanashima A, Hashimoto K, Mohri S, Pierscionek BK. Optical development in the murine eye lens of accelerated senescence-prone SAMP8 and senescence-resistant SAMR1 strains. Exp Eye Res 2024; 241:109858. [PMID: 38467176 DOI: 10.1016/j.exer.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).
Collapse
Affiliation(s)
- Kehao Wang
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yutian Pu
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Leran Chen
- Peking University First Hospital, Beijing, China.
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| | - Xiaoyong Chen
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, China.
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Barbara K Pierscionek
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford, United Kingdom.
| |
Collapse
|
24
|
Zhang Q, Jiang Y, Deng C, Wang J. Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Front Med (Lausanne) 2024; 11:1353624. [PMID: 38585147 PMCID: PMC10995365 DOI: 10.3389/fmed.2024.1353624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
In the field of eye health, the profound impact of exercise and physical activity on various ocular diseases has become a focal point of attention. This review summarizes and elucidates the positive effects of exercise and physical activities on common ocular diseases, including dry eye disease (DED), cataracts, myopia, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD). It also catalogues and offers exercise recommendations based on the varying impacts that different types and intensities of physical activities may have on specific eye conditions. Beyond correlations, this review also compiles potential mechanisms through which exercise and physical activity beneficially affect eye health. From mitigating ocular oxidative stress and inflammatory responses, reducing intraocular pressure, enhancing mitochondrial function, to promoting ocular blood circulation and the release of protective factors, the complex biological effects triggered by exercise and physical activities reveal their substantial potential in preventing and even assisting in the treatment of ocular diseases. This review aims not only to foster awareness and appreciation for how exercise and physical activity can improve eye health but also to serve as a catalyst for further exploration into the specific mechanisms and key targets through which exercise impacts ocular health. Such inquiries are crucial for advancing innovative strategies for the treatment of eye diseases, thereby holding significant implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Ye L, Yuan J, Zhu S, Ji S, Dai J. Swimming exercise reverses transcriptomic changes in aging mouse lens. BMC Med Genomics 2024; 17:67. [PMID: 38439070 PMCID: PMC10913554 DOI: 10.1186/s12920-024-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The benefits of physical activity for the overall well-being of elderly individuals are well-established, the precise mechanisms through which exercise improves pathological changes in the aging lens have yet to be fully understood. METHODS 3-month-old C57BL/6J mice comprised young sedentary (YS) group, while aging mice (18-month-old) were divided into aging sedentary (AS) group and aging exercising (AE) group. Mice in AE groups underwent sequential stages of swimming exercise. H&E staining was employed to observe alterations in lens morphology. RNA-seq analysis was utilized to examine transcriptomic changes. Furthermore, qPCR and immunohistochemistry were employed for validation of the results. RESULTS AE group showed alleviation of histopathological aging changes in AS group. By GSEA analysis of the transcriptomic changes, swimming exercise significantly downregulated approximately half of the pathways that underwent alterations upon aging, where notable improvements were 'calcium signaling pathway', 'neuroactive ligand receptor interaction' and 'cell adhesion molecules'. Furthermore, we revealed a total of 92 differentially expressed genes between the YS and AS groups, of which 10 genes were observed to be mitigated by swimming exercise. The result of qPCR was in consistent with the transcriptome data. We conducted immunohistochemical analysis on Ciart, which was of particular interest due to its dual association as a common aging gene and its significant responsiveness to exercise. The Protein-protein Interaction network of Ciart showed the involvement of the regulation of Rorb and Sptbn5 during the process. CONCLUSION The known benefits of exercise could extend to the aging lens and support further investigation into the specific roles of Ciart-related pathways in aging lens.
Collapse
Affiliation(s)
- Lin Ye
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayue Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Shunmei Ji
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
27
|
Owusu-Afriyie B, Gende T, Silki F, Ishmael B, Kuiaha J. Epidemiology of eye diseases: outcomes from a free provincial eye clinic in Papua New Guinea. Front Med (Lausanne) 2023; 10:1272337. [PMID: 38179281 PMCID: PMC10765577 DOI: 10.3389/fmed.2023.1272337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Aim To ascertain the prevalence and pattern of eye problems in Madang Province, Papua New Guinea. Materials and methods A six-month retrospective study was performed at Madang Provincial Hospital Eye Clinic. Convenience sampling was used in this study and all patient records from January to June 2020 were included. Data was extracted using Microsoft Excel and the data included gender, age, occupation, district where the patient lived, presenting visual acuity, and diagnosis. It was then analyzed using International Business Machines Corporation's Statistical Package for the Social Sciences version 26. A p-value of ≤0.05 was considered statistically significant. Results A total of 1,715 patients received services at the eye clinic between January and June 2020, and 1,664 were included in this study. The mean age of the patients was 39.3 ± 20.3 years. There were slightly more males (50.4%) than females. The overall leading ocular morbidities were corneal ulcers and keratitis (20.7%), refractive errors (17.4%), and cataracts (16.8%). More than half of the patients (56.2%) were either visually impaired or blind. Nearly half of the patients (41.8%) traveled long distances to seek services at the eye clinic. There was a significant association between demographic characteristics, diagnosis, and level of visual impairment. Conclusion There is a high prevalence of potential causes of visual impairment and blindness in Madang Province and these conditions affect all age groups and genders. It is essential to increase accessibility to eye care services in the country.
Collapse
Affiliation(s)
- Bismark Owusu-Afriyie
- Faculty of Medicine and Health Sciences, Divine Word University, Madang, Papua New Guinea
- The Fred Hollows Foundation NZ, Auckland, New Zealand
| | - Theresa Gende
- Faculty of Medicine and Health Sciences, Divine Word University, Madang, Papua New Guinea
- The Fred Hollows Foundation NZ, Auckland, New Zealand
| | - Frederick Silki
- Faculty of Medicine and Health Sciences, Divine Word University, Madang, Papua New Guinea
| | - Bolgii Ishmael
- Faculty of Medicine and Health Sciences, Divine Word University, Madang, Papua New Guinea
| | - Joelda Kuiaha
- The Fred Hollows Foundation PNG Inc., Madang, Papua New Guinea
| |
Collapse
|
28
|
Gupta A, Ruminski D, Villar AJ, Toledo RD, Gondek G, Pierscionek B, Artal P, Grulkowski I. Age-related changes in geometry and transparency of human crystalline lens revealed by optical signal discontinuity zones in swept-source OCT images. EYE AND VISION (LONDON, ENGLAND) 2023; 10:46. [PMID: 38037146 PMCID: PMC10691129 DOI: 10.1186/s40662-023-00365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The shape and microstructure of the human crystalline lens alter with ageing, and this has an effect on the optical properties of the eye. The aim of this study was to characterise the age-related differences in the morphology and transparency of the eye lenses of healthy subjects through the optical signal discontinuity (OSD) zones in optical coherence tomography (OCT) images. We also investigated the association of those changes with the optical quality of the eye and visual function. METHODS OCT images of the anterior segment of 49 eyes of subjects (9-78 years) were acquired, and the OSD zones (nucleus, C1-C4 cortical zones) were identified. Central thickness, curvature and optical density were measured. The eye's optical quality was evaluated by the objective scatter index (OSI). Contrast sensitivity and visual acuity tests were performed. The correlation between extracted parameters and age was assessed. RESULTS The increase in lens thickness with age was dominated by the thickening of the cortical zone C3 (0.0146 mm/year). The curvature radii of the anterior lens surface and both anterior and posterior nucleo-cortical interfaces decreased with age (- 0.053 mm/year, - 0.013 mm/year and - 0.006 mm/year, respectively), and no change was observed for the posterior lens radius. OCT-based densitometry revealed significant correlations with age for all zones except for C1β, and the highest increase in density was in the C2-C4 zones (R = 0.45, 0.74, 0.56, respectively, P < 0.001). Increase in OSI was associated with the degradation of visual function. CONCLUSIONS OCT enables the identification of OSD zones of the crystalline lens. The most significant age-related changes occur in the C3 zone as it thickens with age at a faster rate and becomes more opaque than other OSD zones. The changes are associated with optical quality deterioration and reduction of visual performance. These findings contribute to a better understanding of the structure-function relationship of the ageing lens and offer insights into both pathological and aging alterations.
Collapse
Affiliation(s)
- Ashish Gupta
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100, Toruń, Poland
| | - Daniel Ruminski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100, Toruń, Poland
| | - Alfonso Jimenez Villar
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100, Toruń, Poland
| | - Raúl Duarte Toledo
- Laboratorio de Óptica, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, Edif. CIOyN, N º34, Campus de Espinardo, 30100, Murcia, Spain
| | - Grzegorz Gondek
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100, Toruń, Poland
| | - Barbara Pierscionek
- Faculty of Health, Education, Medicine, and Social Care, Medical Technology Research Center, Chelmsford Campus, Anglia Ruskin University, Bishop Hall Ln, Chelmsford, CM1 1SQ, UK
| | - Pablo Artal
- Laboratorio de Óptica, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, Edif. CIOyN, N º34, Campus de Espinardo, 30100, Murcia, Spain
| | - Ireneusz Grulkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100, Toruń, Poland.
| |
Collapse
|
29
|
Kinoshita K, Kodera S, Hatsusaka N, Egawa R, Takizawa H, Kubo E, Sasaki H, Hirata A. Association of nuclear cataract prevalence with UV radiation and heat load in lens of older people -five city study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123832-123842. [PMID: 37991619 DOI: 10.1007/s11356-023-31079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Epidemiological studies have reported that the frequency of nuclear cataracts (NUCs) is high among the elderly and in tropical countries. Ultraviolet (UV) irradiation and lens temperature are considered as key physical contributors, although their precise quantification is difficult. The aim of this study is to investigate the association of NUC prevalence with UV irradiation and heat load. First, we assessed the lens temperature using thermodynamic modeling considering the thermophysiological response. We then conducted a multivariate linear regression analysis for the epidemiological analysis of NUC prevalence across five cities. A strong correlation was observed between NUC prevalence and the combined effects of UV irradiation and cumulative equivalent minutes at 43 °C (CEM43°C) derived from the computed lens temperature (adjusted R2 = 0.933, p < 0.0001). Heat load significantly contributed to the prevalence at 52%, surpassing the contributions of UV irradiation (31%) and the decline in DNA repair capacity in the lens (17%). These results suggested that both UV radiation and heat load are associated with NUC, with heat load contributing more. Our findings provided important implications for future interventions, particularly in the context of global warming.
Collapse
Affiliation(s)
- Kotaro Kinoshita
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-Cho, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-Cho, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Ryusuke Egawa
- School of Engineering, Tokyo Denki University, Tokyo, Japan
| | | | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-Cho, Showa-Ku, Nagoya, Aichi, 466-8555, Japan.
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
30
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
31
|
Zhang X, Liu B, Lal K, Liu H, Tran M, Zhou M, Ezugwu C, Gao X, Dang T, Au ML, Brown E, Wu H, Liao Y. Antioxidant System and Endoplasmic Reticulum Stress in Cataracts. Cell Mol Neurobiol 2023; 43:4041-4058. [PMID: 37874455 PMCID: PMC10842247 DOI: 10.1007/s10571-023-01427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kevin Lal
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haihua Liu
- Peking University First Hospital, Beijing, China
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Manyu Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chimdindu Ezugwu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xin Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Terry Dang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Erica Brown
- School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yan Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
32
|
Khare K, Mendonca T, Rodrigues G, Kamath M, Hegde A, Nayak S, Kamath A, Kamath S. Aldose reductase and glutathione in senile cataract nucleus of diabetics and non-diabetics. Int Ophthalmol 2023; 43:3673-3680. [PMID: 37395905 PMCID: PMC10504100 DOI: 10.1007/s10792-023-02776-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE The aim is to evaluate the aldose reductase (AR) and glutathione (GSH) activity in the nucleus of senile cataract in type 2 diabetes and non-diabetic group of patients. METHODS A total of 62 patients including 31 diabetics and 31 non- diabetics who were undergoing cataract surgery were included. Nucleus extracted was sent for analysis of AR and GSH activity while blood sample was taken for glycated haemoglobin (HbA1c) levels. STATISTICAL ANALYSIS Data were analysed using IBM SPSS 25. Comparison was carried out by unpaired T-test and correlations were established by Pearson's correlation. The p value less than 0.05 was considered significant for all analyses. STUDY DESIGN This is a prospective cross-sectional comparative study. RESULTS In this study, diabetic group patients showed earlier progression of cataract as compared to the non-diabetic group (p-value 0.0310). Mean HbA1c in the diabetic group was 7.34% compared to the non-diabetic group of 5.7% (p value < 0.001). AR in the diabetic patients was 2.07 mU/mg while the non-diabetic group was 0.22 mU/mg (p-value < 0.001). GSH in the diabetic group was 3.38 μMol/g and the non-diabetic group was 7.47 μMol/g (p value < 0.001). HbA1c showed positive correlation with AR among the diabetic group (p-value 0.028). CONCLUSION Elevated oxidative stress can be strongly attributed to high AR and low GSH activity among the diabetic group as compared to the non-diabetic group and can lead to early cataract formation.
Collapse
Affiliation(s)
- Kanishk Khare
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Teena Mendonca
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Gladys Rodrigues
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Manjunath Kamath
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anupama Hegde
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shyamala Nayak
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ajay Kamath
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sumana Kamath
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
33
|
Subczynski WK, Pasenkiewicz-Gierula M, Widomska J. Protecting the Eye Lens from Oxidative Stress through Oxygen Regulation. Antioxidants (Basel) 2023; 12:1783. [PMID: 37760086 PMCID: PMC10525422 DOI: 10.3390/antiox12091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular oxygen is a primary oxidant that is involved in the formation of active oxygen species and in the oxidation of lipids and proteins. Thus, controlling oxygen partial pressure (concentration) in the human organism, tissues, and organs can be the first step in protecting them against oxidative stress. However, it is not an easy task because oxygen is necessary for ATP synthesis by mitochondria and in many biochemical reactions taking place in all cells in the human body. Moreover, the blood circulatory system delivers oxygen to all parts of the body. The eye lens seems to be the only organ that is protected from the oxidative stress through the regulation of oxygen partial pressure. The basic mechanism that developed during evolution to protect the eye lens against oxidative damage is based on the maintenance of a very low concentration of oxygen within the lens. This antioxidant mechanism is supported by the resistance of both the lipid components of the lens membrane and cytosolic proteins to oxidation. Any disturbance, continuous or acute, in the working of this mechanism increases the oxygen concentration, in effect causing cataract development. Here, we describe the biophysical basis of the mechanism and its correlation with lens transparency.
Collapse
Affiliation(s)
| | - Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, 30-387 Krakow, Poland;
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
34
|
Xue Y, Cao Y, Fan S, Xu M, Yang Z, Zhou L, Shi L, Ou L, Li Y, Qing W, Zou Z, Mao F, Wang N, Duh EJ, Yi W, Liu X. Nonhuman Primate Eyes Display Variable Growth and Aging Rates in Alignment With Human Eyes. Invest Ophthalmol Vis Sci 2023; 64:23. [PMID: 37589983 PMCID: PMC10440610 DOI: 10.1167/iovs.64.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Purpose To assess age-related biometric changes of the eye in nonhuman primates (NHPs), to and decipher the growth and aging rates and their comparability with humans. Methods Ocular anatomic measurements were performed on 341 macaca fascicularis aged 0.5 to 23 years via multimodal approaches including IOLMaster 700. Linear or polynomial regression models were simulated to determine the best fitted age-related function. The metrics were compared with human equivalents in published reports. Results Macaques exhibited a postnatal eye growth pattern similar to humans, characterized by continuous eye extension coordinated with dramatic reshaping of the lens but not the cornea. The age-related growth of lens thickness (LT), anterior chamber depth (ACD), and axis length (AL) exhibited nonlinear and bipolar patterns. The inflection points were 10 to 12 years old for LT and ACD and 13 to 15 years old for AL in macaques, which were comparable in chronological age at a ratio of ∼1: ratio with that in humans. In contrast, the speed of aging, including the increase in lens density and the decrease in retinal nerve fiber layer thickness, was comparable in relative age at a ratio of ∼1:3 according to the differences in lifespan between macaques and humans. Lens density was a robust indicator for the aging process. Conclusions Macaque eyes recapitulated the age-related process of human eyes to varying extents with different growth and aging rates. Chronological age or relative age should be considered in different scenarios when macaques are included in preclinical studies.
Collapse
Affiliation(s)
- Ying Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingxue Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shuxin Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingming Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ziqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Le Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lechun Ou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuying Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenjie Qing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhicheng Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ningli Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing, China
| | - Elia J. Duh
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
35
|
Bejarano E, Weinberg J, Clark M, Taylor A, Rowan S, Whitcomb EA. Redox Regulation in Age-Related Cataracts: Roles for Glutathione, Vitamin C, and the NRF2 Signaling Pathway. Nutrients 2023; 15:3375. [PMID: 37571310 PMCID: PMC10421530 DOI: 10.3390/nu15153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Age is the biggest risk factor for cataracts, and aberrant oxidative modifications are correlated with age-related cataracts, suggesting that proper redox regulation is important for lens clarity. The lens has very high levels of antioxidants, including ascorbate and glutathione that aid in keeping the lens clear, at least in young animals and humans. We summarize current functional and genetic data supporting the hypothesis that impaired regulation of oxidative stress leads to redox dysregulation and cataract. We will focus on the essential endogenous antioxidant glutathione and the exogenous antioxidant vitamin C/ascorbate. Additionally, gene expression in response to oxidative stress is regulated in part by the transcription factor NRF2 (nuclear factor erythroid 2-related factor 2 [NFE2L2]), thus we will summarize our data regarding cataracts in Nrf2-/- mice. In this work, we discuss the function and integration of these capacities with the objective of maintaining lens clarity.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- School of Health Sciences and Veterinary, Universidad CEU Cardenal Herrera, CEU Universities, 46113 Valencia, Spain
| | - Jasper Weinberg
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Madison Clark
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
- Department of Developmental, Chemical and Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Elizabeth A. Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| |
Collapse
|
36
|
Boix-Lemonche G, Nagymihaly RM, Lumi X, Petrovski G. The human lens is capable of trilineage differentiation towards osteo-, chondro-, and adipogenesis-a model for studying cataract pathogenesis. Front Bioeng Biotechnol 2023; 11:1164795. [PMID: 37324433 PMCID: PMC10264667 DOI: 10.3389/fbioe.2023.1164795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
The potential for trilineage differentiation of cells in tissues represents a model for studying disease pathogenesis and regeneration pathways. Human lens trilineage differentiation has not yet been demonstrated, and so has calcification and osteogenic differentiation of human lens epithelial cells in the whole human lens. Such changes can pose a risk for complications during cataract surgery. Human lens capsules (n = 9) from cataract patients undergoing uneventful surgery were trilineage-differentiated toward osteogenesis, chondrogenesis, and adipogenesis. Furthermore, whole human healthy lenses (n = 3) collected from cadaveric eyes were differentiated into bone and characterized by immunohistochemistry. The cells in the human lens capsules were capable of undergoing trilineage differentiation, while the whole human healthy lenses could undergo osteogenesis differentiation, expressing osteocalcin, collagen I, and pigment epithelium-derived factor. We, hereby, show an ex vivo model for cataract formation through different stages of opacification, as well as provide in vivo evidence from patients undergoing calcified lens extraction with bone-like consistency.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Department of Ophthalmology, Center for Eye Research and Innovative Diagnostics, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Center for Eye Research and Innovative Diagnostics, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| |
Collapse
|
37
|
Ma X, Nan Y, Huang C, Li X, Yang Y, Jiang W, Ye M, Liu Q, Niu Y, Yuan L. Expression of αA-crystallin (CRYAA) in vivo and in vitro models of age-related cataract and the effect of its silencing on HLEB3 cells. Aging (Albany NY) 2023; 15:204754. [PMID: 37253645 DOI: 10.18632/aging.204754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
AIM To investigate the expression of αA-crystallin (CRYAA) in age-related cataract (ARC) models and its role in lens epithelial cells (LECs). METHODS We used Flow cytometry to detect the apoptosis and cell cycle in HLEB3 cells and Real-time fluorescence quantitative polymerase chain reaction to detect the expression of CRYAA mRNA in HLEB3 and in rabbit lens. The expression of CRYAA in HLEB3 cells and rabbit lenses as well as the proteins related to apoptosis and autophagy in transfected cells were detected by western blotting. The lens structure in rabbits was investigated using hematoxylin-eosin staining. Protein thermostability assay was performed to detect the thermal stability of rabbit lens proteins. CCK- 8 assay was used to detect the viability of transfected cells, and the transfection was recorded by fluorescence photography. RESULTS Hydrogen peroxide can promote apoptosis and arrest the cell cycle in HLEB3 cells, and naphthalene can cause cataract formation and damage the structure of the lens in rabbits. Both ARC models can reduce the expression of CRYAA. The expression of CRYAA silencing increased apoptosis and autophagy in HLEB3 cells.
Collapse
Affiliation(s)
- Xiaoling Ma
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yi Nan
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Can Huang
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiangyang Li
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yifan Yang
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Wenjie Jiang
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Mengyi Ye
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qian Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yang Niu
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Ling Yuan
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
38
|
Guo X, Li C, Wang Y, Jiang C, Yang L. Long non-coding RNA nuclear paraspeckle assembly transcript 1 downregulation protects lens epithelial cells from oxidative stress-induced apoptosis by regulating the microRNA-124-3p/death-associated protein kinase 1 axis in age-related cataract. Int Ophthalmol 2023:10.1007/s10792-023-02749-4. [PMID: 37191928 DOI: 10.1007/s10792-023-02749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Oxidative stress plays a significant role in cataract development. It causes the apoptosis of lens epithelial cells (LECs), resulting in lens opacification and accelerating cataract progression. Long non-coding RNAs (lncRNAs) and microRNAs have been linked to cataract development. Notably, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in LEC apoptosis and cataract formation. However, the molecular mechanism by which NEAT1 causes age-related cataracts remains unknown. In this study, LECs (SRA01/04) were exposed to 200 μM H2O2 to generate an in vitro cataract model. The apoptosis and viability of cells were determined using flow cytometry and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assays, respectively. Additionally, western blotting and quantitative polymerase chain reaction were used to determine the miRNA and lncRNA expression levels. When LECs were treated with hydrogen peroxide, lncRNA NEAT1 expression levels were significantly upregulated, which contributed to LEC apoptosis. Notably, lncRNA NEAT1 suppressed the expression of miR-124-3p, a critical regulator of apoptosis, whereas NEAT1 inhibition increased miR-124-3p expression and alleviated apoptosis. However, this effect was reversed when miR1243p expression was inhibited. Additionally, the miR1243p mimic effectively inhibited the death-associated protein kinase 1 (DAPK1) expression and apoptosis of LECs, while the DAPK1 mimic reversed these effects. In conclusion, our findings indicate that the lncRNA NEAT1/miR-124-3p/DAPK1 signaling loop is involved in the regulation of LEC apoptosis induced by oxidative stress, which can be exploited to develop potential treatment strategies for age-related cataracts.
Collapse
Affiliation(s)
- Xuanni Guo
- Department of Ophthalmology, Xianyang Central Hospital, No.78 Renmin East Road, Xianyang, 712000, China
| | - Chunyan Li
- Department of Ophthalmology, Xianyang Central Hospital, No.78 Renmin East Road, Xianyang, 712000, China.
| | - Yongbin Wang
- Department of Ophthalmology, Xianyang Central Hospital, No.78 Renmin East Road, Xianyang, 712000, China
| | - Chunhui Jiang
- Department of Ophthalmology, Xianyang Central Hospital, No.78 Renmin East Road, Xianyang, 712000, China
| | - Li Yang
- Department of Ophthalmology, Xianyang Central Hospital, No.78 Renmin East Road, Xianyang, 712000, China
| |
Collapse
|
39
|
Rodríguez-Meza O, Palomino-Vizcaino G, Quintanar L, Costas M. Mercury ions impact the kinetic and thermal stabilities of human lens γ-crystallins via direct metal-protein interactions. J Inorg Biochem 2023; 242:112159. [PMID: 36827733 DOI: 10.1016/j.jinorgbio.2023.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Loss of metal homeostasis may be involved in several age-related diseases, such as cataracts. Cataracts are caused by the aggregation of lens proteins into light-scattering high molecular weight complexes that impair vision. Environmental exposure to heavy metals, such as mercury, is a risk factor for cataract development. Indeed, mercury ions induce the non-amyloid aggregation of human γC- and γS crystallins, while human γD-crystallin is not sensitive to this metal. Using Differential Scanning Calorimetry (DSC), we evaluate the impact of mercury ions on the kinetic stability of the three most abundant human γ-crystallins. The metal/crystallin interactions were characterized using Isothermal Titration Calorimetry (ITC). Human γD-crystallins exhibited kinetic stabilization due to the presence of mercury ions, despite its thermal stability being decreased. In contrast, human γC- and γS-crystallins are both, thermally and kinetically destabilized by this metal, consistent with their sensitivity to mercury-induced aggregation. The interaction of human γ-crystallins with mercury ions is highly exothermic and complex, since the protein interacts with the metal at more than three sites. The isolated domains of human γ-D and its variant with the H22Q mutation were also studied, revealing the importance of these regions in the mercury-induced stabilization by a direct metal-protein interaction.
Collapse
Affiliation(s)
- Oscar Rodríguez-Meza
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico
| | | | - Liliana Quintanar
- Departamento de Química, Centro de Investigación y Estudios Avanzados (Cinvestav), CdMx 07360, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico.
| |
Collapse
|
40
|
Shaohua H, Yihui W, Kaier Z, Ying B, Xiaoyi W, Hui Z, Guohu D, Peng C. Aquaporin 5 maintains lens transparency by regulating the lysosomal pathway using circRNA. J Cell Mol Med 2023; 27:803-818. [PMID: 36824022 PMCID: PMC10002928 DOI: 10.1111/jcmm.17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
The lens is transparent, non-vascular, elastic and wrapped in a transparent capsule. The lens oppacity of AQP5-/- mice was increased more than that of wild-type (AQP5+/+ ) mice. In this study, we explored the potential functional role of circular RNAs (circRNAs) and transcription factor HSF4 in lens opacity in aquaporin 5 (AQP5) knockout (AQP5-/- ) mice. Autophagy was impaired in the lens tissues of AQP5-/- mice. Autophagic lysosomes in lens epithelial cells of AQP5-/- mice were increased compared with AQP5+/+ mice, based on analysis by transmission electron microscopy. The genetic information of the mice lens was obtained by high-throughput sequencing, and then the downstream genes were analysed. A circRNA-miRNA-mRNA network related to lysosomal pathway was constructed by the bioinformatics analysis of the differentially expressed circRNAs. Based on the prediction of the TargetScan website and the validation by dual luciferase reporter assay and RNA immunoprecipitation-qPCR, we found that circRNA (Chr16: 33421321-33468183+) inhibited the function of HSF4 by sponging microRNA (miR-149-5p), and it downregulated the normal expression of lysosome-related mRNAs. The accumulation of autophagic lysosome may be one of the reasons for the abnormal development of the lens in AQP5-/- mice.
Collapse
Affiliation(s)
- Hu Shaohua
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wang Yihui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhang Kaier
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bai Ying
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wang Xiaoyi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhao Hui
- The 971 Hospital of the Chinese People's Liberation Army Navy, Qingdao, China
| | - Di Guohu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chen Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China.,Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Yildiz SH, Karaosmanoğlu C, Duman R, Varol N, Özdemir Erdoğan M, Solak M, Duman R, Elmas M. Relationship between expression levels of TDRD7 and CRYBB3 and development of age-related cortico-nuclear cataracts. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Abstract
Background
The human lens develops age-related cataracts (ARCs) because of the complicated effects of aging and stressful conditions. Under conditions involving oxidative stress, cells form stress granules (SGs). TDRD7 has been identified as an RNA granule component and an important component of SGs. TDRD7 plays a role in the post-transcriptional expression of genes, such as the crystallin gene CRYBB3. Therefore, the present study investigated TDRD7 and CRYBB3 mRNA expressions in relation to age-related cortico-nuclear cataracts.
Methods
Quantitative real-time PCR was used to determine the expression levels of TDRD7 and CRYBB3 in 52 patients with ARC and 52 healthy controls. Anterior lens capsules and peripheral blood samples from patients with ARC were included in the patient group, and peripheral blood samples from healthy subjects and human lens epithelial cells (HLE-B3) were included in the control group. Gene expression levels in the different age groups were compared. Correlation analysis was used to assess the gene expression levels and age.
Results
The expression of TDRD7 and CRYBB3 was significantly up-regulated (P < 0.0001) in anterior lens capsules compared to that in HLE-B3 cells. Similarly, the expression of TDRD7 (P = 0.0004) and CRYBB3 (P < 0.0001) was higher in the peripheral blood samples of patients with ARC than in those of healthy subjects. Significant upregulation (P < 0.05) was observed in the 71–81-year age group of patients. No correlation was found between gene expression levels and age.
Conclusion
Significantly higher expression levels of TDRD7 and CRYBB3 in patients with ARC than in controls suggest that TDRD7 and CRYBB3 are associated with the development of age-related cortico-nuclear cataracts and the aging process under chronic stress.
Collapse
|
42
|
Cicinelli MV, Buchan JC, Nicholson M, Varadaraj V, Khanna RC. Cataracts. Lancet 2023; 401:377-389. [PMID: 36565712 DOI: 10.1016/s0140-6736(22)01839-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022]
Abstract
94 million people are blind or visually impaired globally, and cataract is the most common cause of blindness worldwide. However, most cases of blindness are avoidable. Cataract is associated with decreased quality of life and reduced life expectancy. Most cases of cataract occur after birth and share ageing and oxidative stress as primary causes, although several non-modifiable and modifiable risk factors can accelerate cataract formation. In most patients, phacoemulsification with intraocular lens implantation is the preferred treatment and is highly cost-effective. There has been an increase in the use of comprehensive cataract surgical services, including diagnoses, treatment referrals, and rehabilitation. However, global inequity in surgical service quality is still a limitation. Implementation of preoperative risk assessment, risk reduction strategies, and new surgical technologies have made cataract surgery possible at an earlier stage of cataract severity with the expectation of good refractive outcomes. The main challenge is making the service that is currently available to some patients accessible to all by use of universal health coverage.
Collapse
Affiliation(s)
- Maria Vittoria Cicinelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - John C Buchan
- International Centre for Eye Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Maneck Nicholson
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | | | - Rohit C Khanna
- Allen Foster Community Eye Health Research Centre, Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, Hyderabad, India; Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India; School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia; School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
43
|
Ma Y, Liu Y, Shu B, Yang J, Lv L, Zhou L, Wang L, Shi Z. CircMAP3K4 protects human lens epithelial cells from H 2O 2-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract. Cell Cycle 2023; 22:303-315. [PMID: 36071682 PMCID: PMC9851233 DOI: 10.1080/15384101.2022.2114587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) have shown pivotal regulatory roles in multiple human ocular diseases, including age-related cataract (ARC). Here, we explored the role of circRNA mitogen-activated protein kinase kinase kinase 4 (circMAP3K4, hsa_circ_0078619) in ARC pathology and its associated mechanism. The expression of RNAs and proteins was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, senescence, proliferation, and apoptosis were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, senescence-associated-β-galactosidase (SA-β-Gal) staining, 5-ethynyl-20-deoxyuridine (EdU) assay, and flow cytometry. The oxidative stress status of SRA01/04 cells was analyzed using the commercial kits. The interaction between microRNA-193a-3p (miR-193a-3p) and circMAP3K4 or phospholipase C delta 3 (PLCD3) was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay. CircMAP3K4 was significantly down-regulated in ARC patients and H2O2-induced SRA01/04 cells. H2O2 treatment restrained the viability and proliferation and promoted the senescence, apoptosis, and oxidative stress of SRA01/04 cells, and circMAP3K4 overexpression protected SRA01/04 cells from H2O2-induced dysfunction. MiR-193a-3p was a direct target of circMAP3K4, and circMAP3K4 overexpression-mediated protective effects in H2O2-induced SRA01/04 cells were largely reversed by the accumulation of miR-193a-3p. MiR-193a-3p interacted with the 3' untranslated region (3'UTR) of PLCD3, and PLCD3 knockdown largely overturned miR-193a-3p silencing-induced protective effects in H2O2-induced SRA01/04 cells. CircMAP3K4 up-regulated the expression of PLCD3 via sponging miR-193a-3p in SRA01/04 cells. In conclusion, circMAP3K4 protected SRA01/04 cells from H2O2-induced dysfunction in ARC through mediating miR-193a-3p/PLCD3 axis.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Yi Liu
- College of Medical Technology and Engineering, Zhengzhou Railway Vocational Technology College, Zhengzhou, China
| | - Baotong Shu
- Department of Medical Technology, Henan Medical College, Zhengzhou, Henan, China
| | - Jianguo Yang
- Department of ophtalmology, Ningbo Eye Hospital West Branch, Ningbo, China
| | - Liang Lv
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Lixiao Zhou
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Lichun Wang
- Department of Ophthalmology, Zhengzhou Second People’s Hospital, Zhengzhou, China
| | - Zongli Shi
- Department of ophtalmology, Chang Zhou Banshang Eye Hospital, Changzhou, China
| |
Collapse
|
44
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
45
|
Paidi SK, Zhang Q, Yang Y, Xia CH, Ji N, Gong X. Adaptive optical two-photon fluorescence microscopy probes cellular organization of ocular lenses in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524320. [PMID: 36711806 PMCID: PMC9882239 DOI: 10.1101/2023.01.17.524320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mammalian ocular lens is an avascular multicellular organ that grows continuously throughout life. Traditionally, its cellular organization is investigated using dissected lenses, which eliminates in vivo environmental and structural support. Here, we demonstrated that two-photon fluorescence microscopy (2PFM) can visualize lens cells in vivo. To maintain subcellular resolution at depth, we employed adaptive optics (AO) to correct aberrations due to ocular and lens tissues, which led to substantial signal and resolution improvements. Imaging lens cells up to 980 μm deep, we observed novel cellular organizations including suture-associated voids, enlarged vacuoles, and large cavities, contrary to the conventional view of a highly ordered organization. We tracked these features longitudinally over weeks and observed the incorporation of new cells during growth. Taken together, non-invasive longitudinal in vivo imaging of lens morphology using AO 2PFM will allow us to directly observe the development or alterations of lens cellular organization in living animals.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- School of Optometry, University of California, Berkeley, California 94720, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, California 94720, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yuhan Yang
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Chun-Hong Xia
- School of Optometry, University of California, Berkeley, California 94720, USA,Vision Science Program, University of California, Berkeley, California 94720, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, California 94720, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Corresponding authors: Xiaohua Gong () and Na Ji ()
| | - Xiaohua Gong
- School of Optometry, University of California, Berkeley, California 94720, USA,Vision Science Program, University of California, Berkeley, California 94720, USA,Corresponding authors: Xiaohua Gong () and Na Ji ()
| |
Collapse
|
46
|
Comparison of aqueous humor ascorbic acid level in smokers and non-smokers. Exp Eye Res 2023; 226:109302. [PMID: 36334639 DOI: 10.1016/j.exer.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
In this study, we studied effect of smoking on ascorbic acid level in aqueous humor. A cohort of 112 individuals undergoing cataract surgery for senile cataract (mean ± SD age-65 ± 8 years) was sub-grouped as smoker (n = 56) and non-smoker (n = 56) based on smoking habit. The aqueous humor sample was collected in beginning of the surgery and quantitative ascorbic acid estimation was done by colorimetric method (spectrophotometry at λ = 578 nm) using commercially available assay kits using the auto-analyzer assay procedure. The mean (±SD) aqueous humor ascorbic acid level was 1396 ± 629 μmol/L among non-smokers and 774 ± 436 μmol/L among smokers (p < 0.0001). The aqueous humor ascorbic acid concentration is significantly lower in smokers compared to non-smokers. The aqueous humor ascorbic acid concentration is affected by gender but not by age or morphology of cataract.
Collapse
|
47
|
Mi Y, Wei C, Sun L, Liu H, Zhang J, Luo J, Yu X, He J, Ge H, Liu P. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother 2023; 157:114048. [PMID: 36463827 DOI: 10.1016/j.biopha.2022.114048] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cataracts are the main cause of reversible blindness worldwide. The ageing of the lens caused by ultraviolet B (UVB) radiation is mostly related to oxidative stress (OS). Little is known about whether OS induced by UVB enhances the sensitivity of lens epithelial cells to ferroptotic stress, which may be a new mechanism leading to age-related cataracts (ARCs). METHODS Ferroptosis was detected by transmission electron microscopy (TEM), iron assay, lipid peroxidation (MDA) assay, real-time PCR, western blotting, and immunofluorescence. Genetic engineering technology was used to investigate the regulatory relationship among Sirtuin 6 (SIRT6), nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear receptor coactivator 4 (NCOA4), glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH1). Knockdown and overexpression of SIRT6 locally in vivo in rats were performed to probe the regulatory mechanism of SIRT6 in ferroptosis in ARCs. FINDINGS Here, we observed that UVB can drastically induce ferroptosis in lens epithelial cells in vivo and in vitro. Surprisingly, inhibition of ferroptosis was the direct reason that melatonin rescued B-3, SRA01/04 and HEK-293 T cells survival; the pan-caspase inhibitor Z-Vad-FMK did not significantly reverse the death of UVB-irradiated cells compared with that in the UVB+DMSO group. SIRT6 was an upstream regulator of phosphorylated Nrf2 (p-Nrf2) and NCOA4 in B-3, SRA01/04 and HEK-293 T cells. Melatonin inhibited ferroptosis through the SIRT6/p-Nrf2/GPX4 and SIRT6/COA4/FTH1 pathways to neutralize lipid peroxidation toxicity, which protected cells against ferroptotic stress in vitro and delayed cataract formation caused by UVB exposure in rats. INTERPRETATION Our findings reveal a novel causal role of melatonin in the pathogenesis of ARCs, which raises the possibility of selectively targeting the activation of SIRT6 and ferroptotic resistance as a latent antioxidative therapeutic strategy for ARCs.
Collapse
Affiliation(s)
- Yu Mi
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chaoqun Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Huirui Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiayue Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jialin Luo
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Xiaohan Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Jie He
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| |
Collapse
|
48
|
Rusmayani E, Artini W, Sasongko MB, Suhardjo, Viona V. A Novel Biomarker in Primary Glaucoma: Aqueous Humor and Serum Levels of Ischemia Modified Albumin (IMA). Clin Ophthalmol 2022; 16:4075-4087. [PMID: 36532823 PMCID: PMC9755293 DOI: 10.2147/opth.s388382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 07/30/2023] Open
Abstract
PURPOSE To analyze ischemia-modified albumin (IMA) levels in aqueous humor and serum, and their correlation to RNFL thinning in primary glaucoma patients. DESIGN Cross-sectional study. METHODS Patients were divided into the control and glaucoma groups. The control group was patients with senile cataracts. The glaucoma group consisted of patients diagnosed for the first time as primary open-angle glaucoma (POAG) or primary angle closure glaucoma (PACG). Exclusion criteria were secondary glaucoma and patients with systemic disease. A complete cataract examination was done for all patients, and glaucoma examinations for the glaucoma group. In both groups, the IMA aqueous humor was obtained during cataract and glaucoma procedure. Serum levels of IMA, malondialdehyde (MDA), and tumor necrosis factor alpha (TNF-α) were examined during preoperative examinations. RESULTS Control group comprised 33 participants, and glaucoma group 41 patients (21 PACG and 20 POAG). Mean IMA aqueous humor (AQH) levels found in cataract group 6.039±3.16 ng/mL, glaucoma group 14.89±6.08 ng/mL, PACG group 12.69±6.25 ng/mL and POAG group 17.33±4.988 mg/mL. Mean IMA serum levels in cataract group 14.75±6.53 ng/mL, glaucoma group 13.89±6.53 ng/mL, PACG group 12.79±6.46 ng/mL± and POAG group 14.93±10.74 ng/mL. Glaucoma group had significant higher level of IMA in aqueous humor compared to control group, but opposite findings in serum IMA levels between groups. POAG patients had a higher aqueous IMA level compared to PACG group and correlated significantly with IOP. IMA AQH also negatively correlated to the RNFL thickness in both POAG and PACG group. Cut off 9.5 ng/mL was considered as a normal limit value to differentiate between control and glaucoma group. CONCLUSION Primary glaucoma patients showed a significantly increased level of IMA AQH as a local ischemic biomarker compared to the control group. Systemic oxidative activity is not a representation of local ocular oxidative stress in both cataract and glaucoma group.
Collapse
Affiliation(s)
- Emma Rusmayani
- Glaucoma Department, Jakarta Eye Center Hospitals and Clinics, Jakarta, Indonesia
| | - Widya Artini
- Glaucoma Department, Jakarta Eye Center Hospitals and Clinics, Jakarta, Indonesia
| | - Muhammad Bayu Sasongko
- Ophthalmology Department, Faculty of Medicine University Gadjah Mada, Yogyakarta, Indonesia
| | - Suhardjo
- Ophthalmology Department, Faculty of Medicine University Gadjah Mada, Yogyakarta, Indonesia
| | - Viona Viona
- Glaucoma Department, Jakarta Eye Center Hospitals and Clinics, Jakarta, Indonesia
| |
Collapse
|
49
|
Fernandes JB, Yu Y, Klauda JB. Molecular dynamics simulations of the human ocular lens with age and cataract. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184025. [PMID: 35944665 DOI: 10.1016/j.bbamem.2022.184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The human ocular lens consists primarily of elongated, static fibers characterized by high stability and low turnover, which differ dramatically in their composition and properties from other biological membranes. Cholesterol (Chol) and sphingolipids (SL) are present at high concentrations, including saturated SLs, such as dihyrosphingomyelin (DHSM). Past molecular dynamics simulations demonstrated that the presence of DHSM and high Chol concentration contributes to higher order in lipid membranes. This current study simulated more complex models of human lens membranes. Models were developed representing physiological compositions in cataractous lenses aged 74 ± 6 years and in healthy lenses aged 22 ± 4, 41 ± 6, and 69 ± 3 years. With older age, Chol and ceramide concentrations increase and glycerophospholipid concentration decreases. With cataract, ceramide concentration increases and Chol and glycerophospholipid concentrations decrease. Surface area per lipid, deuterium order parameters (SCD), sterol tilt angle, electron density profiles, bilayer thickness, chain interdigitation, two-dimensional radial distribution functions (2D-RDF), lipid clustering, and hydrogen bonding were calculated for all simulations. All systems exhibited low surface area per lipid and high bilayer thickness, indicative of strong vertical packing. SCD parameters suggest similarly, with saturated tails in the hydrophobic core of the membrane having elevated order. Vertical packing and acyl tail order increased with both age and cataract condition. Lateral diffusion decreased with age and cataracts, with the older and cataractous models demonstrating increased long-range structure by the 2D-RDF analysis. In future work examining the membrane proteins of the lens, these models can serve as a physiologically accurate representation of the lens lipidome.
Collapse
Affiliation(s)
- Joshua B Fernandes
- Department of Chemical and Biomolecular Engineering, College Park, MD 20742, USA
| | - Yalun Yu
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, College Park, MD 20742, USA; Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
D’Antin JC, Tresserra F, Barraquer RI, Michael R. Soemmerring's Rings Developed around IOLs, in Human Donor Eyes, Can Present Internal Transparent Areas. Int J Mol Sci 2022; 23:13294. [PMID: 36362082 PMCID: PMC9656497 DOI: 10.3390/ijms232113294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/09/2024] Open
Abstract
Soemmerring's rings consist of a ring of lens epithelial derived cells that grow along the periphery of an aphakic lens capsule, or around an intraocular lens. These rings when visualized frontally, appear opaque, however, in some cases the cells that compose these rings are organized in the same fashion as those in normal transparent adult lenses. Thus, our purpose was to test whether any part of the adult Soemmerring's ring could be transparent and how this related to morphological factors. To study this, 16 Soemmerring's rings were extracted from donor eye globes. After imaging, they were thickly sectioned sagittally in order to analyze the degrees of transparency of different areas. All samples were also histologically analyzed using alpha smooth muscle actin, Vimentin, wheat germ agglutinin and DAPI. Our results showed that many samples had some transparent areas, mostly towards the center of their cross-section. Of the factors that we analyzed, only lens fiber organization at the bow region and an increased area of mature lens fiber cells had a significant relation to the degree of transparency at the center. Thus, we can conclude that as Soemmerring's rings mature, they can develop organized and transparent areas of lens cells.
Collapse
Affiliation(s)
- Justin Christopher D’Antin
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
| | - Francesc Tresserra
- Department of Pathology, Institut Universitari Dexeus, 08028 Barcelona, Spain
| | - Rafael I. Barraquer
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, 04109 Leipzig, Germany
| |
Collapse
|