1
|
Anter JM, Yakimovich A. Artificial Intelligence Methods in Infection Biology Research. Methods Mol Biol 2025; 2890:291-333. [PMID: 39890733 DOI: 10.1007/978-1-0716-4326-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite unprecedented achievements, the domain-specific application of artificial intelligence (AI) in the realm of infection biology was still in its infancy just a couple of years ago. This is largely attributable to the proneness of the infection biology community to shirk quantitative techniques. The so-called "sorting machine" paradigm was prevailing at that time, meaning that AI applications were primarily confined to the automation of tedious laboratory tasks. However, fueled by the severe acute respiratory syndrome coronavirus 2 pandemic, AI-driven applications in infection biology made giant leaps beyond mere automation. Instead, increasingly sophisticated tasks were successfully tackled, thereby ushering in the transition to the "Swiss army knife" paradigm. Incentivized by the urgent need to subdue a raging pandemic, AI achieved maturity in infection biology and became a versatile tool. In this chapter, the maturation of AI in the field of infection biology from the "sorting machine" paradigm to the "Swiss army knife" paradigm is outlined. Successful applications are illustrated for the three data modalities in the domain, that is, images, molecular data, and language data, with a particular emphasis on disentangling host-pathogen interactions. Along the way, fundamental terminology mentioned in the same breath as AI is elaborated on, and relationships between the subfields these terms represent are established. Notably, in order to dispel the fears of infection biologists toward quantitative methodologies and lower the initial hurdle, this chapter features a hands-on guide on software installation, virtual environment setup, data preparation, and utilization of pretrained models at its very end.
Collapse
Affiliation(s)
- Jacob Marcel Anter
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany
| | - Artur Yakimovich
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany.
- Institute of Computer Science, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
2
|
Guo Y, Xiao Z. Constructing the dynamic transcriptional regulatory networks to identify phenotype-specific transcription regulators. Brief Bioinform 2024; 25:bbae542. [PMID: 39451156 PMCID: PMC11503644 DOI: 10.1093/bib/bbae542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The transcriptional regulatory network (TRN) is a graph framework that helps understand the complex transcriptional regulation mechanisms in the transcription process. Identifying the phenotype-specific transcription regulators is vital to reveal the functional roles of transcription elements in associating the specific phenotypes. Although many methods have been developed towards detecting the phenotype-specific transcription elements based on the static TRN in the past decade, most of them are not satisfactory for elucidating the phenotype-related functional roles of transcription regulators in multiple levels, as the dynamic characteristics of transcription regulators are usually ignored in static models. In this study, we introduce a novel framework called DTGN to identify the phenotype-specific transcription factors (TFs) and pathways by constructing dynamic TRNs. We first design a graph autoencoder model to integrate the phenotype-oriented time-series gene expression data and static TRN to learn the temporal representations of genes. Then, based on the learned temporal representations of genes, we develop a statistical method to construct a series of dynamic TRNs associated with the development of specific phenotypes. Finally, we identify the phenotype-specific TFs and pathways from the constructed dynamic TRNs. Results from multiple phenotypic datasets show that the proposed DTGN framework outperforms most existing methods in identifying phenotype-specific TFs and pathways. Our framework offers a new approach to exploring the functional roles of transcription regulators that associate with specific phenotypes in a dynamic model.
Collapse
Affiliation(s)
- Yang Guo
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhiqiang Xiao
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Jiménez J, Mishra R, Wang X, Magee CM, Bonning BC. Composition and abundance of midgut plasma membrane proteins in two major hemipteran vectors of plant viruses, Bemisia tabaci and Myzus persicae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22133. [PMID: 39054788 DOI: 10.1002/arch.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Abstract
Multiple species within the order Hemiptera cause severe agricultural losses on a global scale. Aphids and whiteflies are of particular importance due to their role as vectors for hundreds of plant viruses, many of which enter the insect via the gut. To facilitate the identification of novel targets for disruption of plant virus transmission, we compared the relative abundance and composition of the gut plasma membrane proteomes of adult Bemisia tabaci (Hemiptera: Aleyrodidae) and Myzus persicae (Hemiptera: Aphididae), representing the first study comparing the gut plasma membrane proteomes of two different insect species. Brush border membrane vesicles were prepared from dissected guts, and proteins extracted, identified and quantified from triplicate samples via timsTOF mass spectrometry. A total of 1699 B. tabaci and 1175 M. persicae proteins were identified. Following bioinformatics analysis and manual curation, 151 B. tabaci and 115 M. persicae proteins were predicted to localize to the plasma membrane of the gut microvilli. These proteins were further categorized based on molecular function and biological process according to Gene Ontology terms. The most abundant gut plasma membrane proteins were identified. The ten plasma membrane proteins that differed in abundance between the two insect species were associated with the terms "protein binding" and "viral processes." In addition to providing insight into the gut physiology of hemipteran insects, these gut plasma membrane proteomes provide context for appropriate identification of plant virus receptors based on a combination of bioinformatic prediction and protein localization on the surface of the insect gut.
Collapse
Affiliation(s)
- Jaime Jiménez
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Ciara M Magee
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Mensah-Bonsu M, Doss C, Gloster C, Muganda P. Identification and Potential Roles of Human MicroRNAs in Ebola Virus Infection and Disease Pathogenesis. Genes (Basel) 2024; 15:403. [PMID: 38674337 PMCID: PMC11049046 DOI: 10.3390/genes15040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic virus that causes a severe illness called Ebola virus disease (EVD). EVD has a high mortality rate and remains a significant threat to public health. Research on EVD pathogenesis has traditionally focused on host transcriptional responses. Limited recent studies, however, have revealed some information on the significance of cellular microRNAs (miRNAs) in EBOV infection and pathogenic mechanisms, but further studies are needed. Thus, this study aimed to identify and validate additional known and novel human miRNAs in EBOV-infected adult retinal pigment epithelial (ARPE) cells and predict their potential roles in EBOV infection and pathogenic mechanisms. We analyzed previously available small RNA-Seq data obtained from ARPE cells and identified 23 upregulated and seven downregulated miRNAs in the EBOV-infected cells; these included two novel miRNAs and 17 additional known miRNAs not previously identified in ARPE cells. In addition to pathways previously identified by others, these miRNAs are associated with pathways and biological processes that include WNT, FoxO, and phosphatidylinositol signaling; these pathways were not identified in the original study. This study thus confirms and expands on the previous study using the same datasets and demonstrates further the importance of human miRNAs in the host response and EVD pathogenesis during infection.
Collapse
Affiliation(s)
- Melvin Mensah-Bonsu
- Applied Science and Technology Ph.D. Program, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Christopher Doss
- Department of Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Clay Gloster
- Department of Computer Systems Technology, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Perpetua Muganda
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
5
|
Dey D, Dasgupta A, Ghosh D, Bhattacharjee O, Ghosh A, Honda A, Chattopadhyay D. Host proteins Alpha-2-Macroglobulin and LRP1 associate with Chandipura virus. Biochimie 2024; 218:105-117. [PMID: 37517577 DOI: 10.1016/j.biochi.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Chandipura Virus is an emerging tropical pathogen with a high mortality rate among children. No mode of treatment or antivirals exists against CHPV infection, due to little information regarding its host interaction. Studying viral pathogen interaction with its host can not only provide valuable information regarding its propagation strategy, but also on which host proteins interact with the virus. Identifying these proteins and understanding their role in the infection process can provide more stable anti-viral targets. In this study, we focused on identifying host factors that interact with CHPV and may play a critical role in CHPV infection. We are the first to report the successful identification of Alpha-2-Macroglobulin (A2M), a secretory protein of the host that interacts with CHPV. We also established that LRP1 (Low-density lipoprotein receptor-related protein 1) and GRP78 (Glucose regulated protein 78), receptors of A2M, also interact with CHPV. Furthermore, we could also demonstrate that knocking out A2M has a severe effect on viral infection. We conclusively show the interaction of these host proteins with CHPV. Our findings also indicate that these host proteins could play a role in viral entry into the host cell.
Collapse
Affiliation(s)
- Dhritiman Dey
- Department of Biotechnology, University of Calcutta, Kolkata, India
| | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Ayae Honda
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | |
Collapse
|
6
|
Valero-Rello A, Baeza-Delgado C, Andreu-Moreno I, Sanjuán R. Cellular receptors for mammalian viruses. PLoS Pathog 2024; 20:e1012021. [PMID: 38377111 PMCID: PMC10906839 DOI: 10.1371/journal.ppat.1012021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/01/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
The interaction of viral surface components with cellular receptors and other entry factors determines key features of viral infection such as host range, tropism and virulence. Despite intensive research, our understanding of these interactions remains limited. Here, we report a systematic analysis of published work on mammalian virus receptors and attachment factors. We build a dataset twice the size of those available to date and specify the role of each factor in virus entry. We identify cellular proteins that are preferentially used as virus receptors, which tend to be plasma membrane proteins with a high propensity to interact with other proteins. Using machine learning, we assign cell surface proteins a score that predicts their ability to function as virus receptors. Our results also reveal common patterns of receptor usage among viruses and suggest that enveloped viruses tend to use a broader repertoire of alternative receptors than non-enveloped viruses, a feature that might confer them with higher interspecies transmissibility.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Carlos Baeza-Delgado
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
7
|
Velázquez-Lizárraga AE, Sukonthamarn P, Junprung W, Nanakorn Z, Itsathitphaisarn O, Jaroenlak P, Tassanakajon A. Molecular characterization of turtle-like protein in whiteleg shrimp (Litopenaeus vannamei) and its role in Enterocytozoon hepatopenaei infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108976. [PMID: 37506856 DOI: 10.1016/j.fsi.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects shrimp hepatopancreas, causing growth retardation and disease susceptibility. Knowledge of the host-pathogen molecular mechanisms is essential to understanding the microsporidian pathogenesis. Turtle-like protein (TLP) is part of the immunoglobulin superfamily of proteins, which is widely distributed in the animal kingdom. TLP has multiple functions, such as cell surface receptors and cell adhesion molecules. The spore wall proteins (SWPs) of microsporidia are involved in the infection mechanisms. Some SWPs are responsible for spore adherence, which is part of the activation and host cell invasion processes. Previous studies showed that TLP from silkworms (Bombyx mori) interacted with SWP26, contributing to the infectivity of Nosema bombycis to its host. In this study, we identified and characterized for the first time, the Litopenaeus vannamei TLP gene (LvTLP), which encodes an 827-aa protein (92.4 kDa) composed of five immunoglobulin domains, two fibronectin type III domains, and a transmembrane region. The LvTLP transcript was expressed in all tested tissues and upregulated in the hepatopancreas at 1 and 7 days post-cohabitation (dpc) and at 9 dpc in hemocytes. To identify the LvTLP binding counterpart, recombinant (r)LvTLP and recombinant (r)EhSWP1 were produced in Escherichia coli. Coimmunoprecipitation and enzyme-linked immunosorbent assays demonstrated that rLvTLP interacted with rEhSWP with high affinity (KD = 1.20 × 10-7 M). In EHP-infected hepatopancreases, LvTLP was clustered and co-localized with some of the developing EHP plasmodia. Furthermore, LvTLP gene silencing reduced the EHP copy numbers compared with those of the control group, suggesting the critical role of LvTLP in EHP infection. These results provide insight into the molecular mechanisms of the host-pathogen interactions during EHP infection.
Collapse
Affiliation(s)
- Adrián E Velázquez-Lizárraga
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Pongsakorn Sukonthamarn
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Ornchuma Itsathitphaisarn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, 272 Rama VI, Road, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Cardoso-Lima R, Santos-Oliveira R, Souza PFN, Barbosa LRS, Wuite GJL, Alencar LMR. Physical virology: how physics is enabling a better understanding of recent viral invaders. Biophys Rev 2023; 15:611-623. [PMID: 37681101 PMCID: PMC10480132 DOI: 10.1007/s12551-023-01075-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 09/09/2023] Open
Abstract
The world is frequently afflicted by several viral outbreaks that bring diseases and health crises. It is vital to comprehend how viral assemblies' fundamental components work to counteract them. Determining the ultrastructure and nanomechanical characteristics of viruses from a physical standpoint helps categorize their mechanical characteristics, offers insight into new treatment options, and/or shows weak spots that can clarify methods for medication targeting. This study compiles the findings from studies on the ultrastructure and nanomechanical behavior of SARS-CoV-2, ZIKV (Zika virus), and CHIKV (Chikungunya virus) viral particles. With results that uncovered aspects of the organization and the spatial distribution of the proteins on the surface of the viral particle as well as the deformation response of the particles when applied a recurring loading force, this review aims to provide further discussion on the mechanical properties of viral particles at the nanoscale, offering new prospects that could be employed for designing strategies for the prevention and treatment of viral diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01075-4.
Collapse
Affiliation(s)
- Ruana Cardoso-Lima
- Physics Department, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, São Luís, MA Brazil
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro, 23070200 Brazil
| | - Pedro Filho Noronha Souza
- Department of Biochemistry, Federal University of Ceará, Fortaleza, CE Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE Brazil
| | - Leandro R. S. Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo, SP 05508-000 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications. Biomater Sci 2023; 11:2620-2638. [PMID: 36661319 DOI: 10.1039/d2bm01595a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sialic acid is a kind of monosaccharide expressed on the non-reducing end of glycoproteins or glycolipids. It acts as a signal molecule combining with its natural receptors such as selectins and siglecs (sialic acid-binding immunoglobulin-like lectins) in intercellular interactions like immunological surveillance and leukocyte infiltration. The last few decades have witnessed the exploration of the roles that sialic acid plays in different physiological and pathological processes and the use of sialic acid-modified materials as therapeutics for related diseases like immune dysregulation and virus infection. In this review, we will briefly introduce the biomedical function of sialic acids in organisms and the utilization of multivalent sialic acid materials for targeted drug delivery as well as therapeutic applications including anti-inflammation and anti-virus.
Collapse
Affiliation(s)
- Yusong Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
10
|
A Review on COVID-19: Primary Receptor, Endothelial Dysfunction, Related Comorbidities, and Therapeutics. IRANIAN JOURNAL OF SCIENCE 2023. [PMCID: PMC9843681 DOI: 10.1007/s40995-022-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic named coronavirus disease-19 (COVID-19) and resulted in a worldwide economic crisis. Utilizing the spike-like protein on its surface, the SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2), which highly expresses on the surface of many cell types. Given the crucial role of ACE2 in the renin–angiotensin system, its engagement by SARS-CoV-2 could potentially result in endothelial cell perturbation. This is supported by the observation that one of the most common consequences of COVID-19 infection is endothelial dysfunction and subsequent vascular damage. Furthermore, endothelial dysfunction is the shared denominator among previous comorbidities, including hypertension, kidney disease, cardiovascular diseases, etc., which are associated with an increased risk of severe disease and mortality in COVID-19 patients. Several vaccines and therapeutics have been developed and suggested for COVID-19 therapy. The present review summarizes the relationship between ACE2 and endothelial dysfunction and COVID-19, also reviews the most common comorbidities associated with COVID-19, and finally reviews several categories of potential therapies against COVID-19.
Collapse
|
11
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
12
|
Nawaz M, Li X, Yue X, Gouife M, Huang K, Chen S, Ma R, Jiang J, Zhou S, Jin S, Wang Y, Xie J. Transcriptome profiling and differential expression analysis of the immune-related genes during the acute phase of infection with Photobacterium damselae subsp. damselae in silver pomfret (Pampus argenteus). FISH & SHELLFISH IMMUNOLOGY 2022; 131:342-348. [PMID: 36243271 DOI: 10.1016/j.fsi.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Silver pomfret has been widely cultured in China due to its high economic value. Photobacterium damselae subsp. damselae (PDD) is a Gram-negative bacterium that has been shown to infect many fish species. To increase knowledge of the molecular mechanisms of the host defense against PDD, we conducted transcriptome analysis of head kidney in silver pomfret at 24 h and 72 h post-infection (hpi) via Illumina sequencing. The de novo assembly resulted in the identification of 79,063 unigenes, with 59,386 (75.11%) successfully annotated in public databases (NR, NT, KO, Swiss-Prot, Pfam, GO, and KOG databases). Comparison of gene expression profiles between PBS-injected fish (sham control) and PDD-challenged fish revealed 329 and 570 differentially expressed genes (DEGs) were screened at 24 hpi and 72 hpi, respectively. The DEGs were enriched in multiple immune-related pathways such as Hepatitis C, Gastric acid secretion, CAMs and Leukocyte transendothelial migration pathways, Primary immunodeficieny, ECM-receptor interaction, PI3K-Akt signaling pathway. The data obtained in the present study offers valuable information for acute immune response of silver pomfret challenged with PDD, which will facilitate further investigations on strategies against Photobacterium spp. infection in teleosts.
Collapse
Affiliation(s)
- Mateen Nawaz
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xionglin Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kejing Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Suyang Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Rongrong Ma
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Suming Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shan Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
13
|
Pires De Souza GA, Le Bideau M, Boschi C, Wurtz N, Colson P, Aherfi S, Devaux C, La Scola B. Choosing a cellular model to study SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:1003608. [PMID: 36339347 PMCID: PMC9634005 DOI: 10.3389/fcimb.2022.1003608] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 08/04/2023] Open
Abstract
As new pathogens emerge, new challenges must be faced. This is no different in infectious disease research, where identifying the best tools available in laboratories to conduct an investigation can, at least initially, be particularly complicated. However, in the context of an emerging virus, such as SARS-CoV-2, which was recently detected in China and has become a global threat to healthcare systems, developing models of infection and pathogenesis is urgently required. Cell-based approaches are crucial to understanding coronavirus infection biology, growth kinetics, and tropism. Usually, laboratory cell lines are the first line in experimental models to study viral pathogenicity and perform assays aimed at screening antiviral compounds which are efficient at blocking the replication of emerging viruses, saving time and resources, reducing the use of experimental animals. However, determining the ideal cell type can be challenging, especially when several researchers have to adapt their studies to specific requirements. This review strives to guide scientists who are venturing into studying SARS-CoV-2 and help them choose the right cellular models. It revisits basic concepts of virology and presents the currently available in vitro models, their advantages and disadvantages, and the known consequences of each choice.
Collapse
Affiliation(s)
- Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Marion Le Bideau
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Céline Boschi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Nathalie Wurtz
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Department of Biological Sciences (INSB), Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
14
|
Jones LM, Super EH, Batt LJ, Gasbarri M, Coppola F, Bhebhe LM, Cheesman BT, Howe AM, Král P, Coulston R, Jones ST. Broad-Spectrum Extracellular Antiviral Properties of Cucurbit[ n]urils. ACS Infect Dis 2022; 8:2084-2095. [PMID: 36062478 PMCID: PMC9578052 DOI: 10.1021/acsinfecdis.2c00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Viruses are microscopic pathogens capable of causing disease and are responsible for a range of human mortalities and morbidities worldwide. They can be rendered harmless or destroyed with a range of antiviral chemical compounds. Cucurbit[n]urils (CB[n]s) are a family of macrocycle chemical compounds existing as a range of homologues; due to their structure, they can bind to biological materials, acting as supramolecular "hosts" to "guests", such as amino acids. Due to the increasing need for a nontoxic antiviral compound, we investigated whether cucurbit[n]urils could act in an antiviral manner. We have found that certain cucurbit[n]uril homologues do indeed have an antiviral effect against a range of viruses, including herpes simplex virus 2 (HSV-2), respiratory syncytial virus (RSV) and SARS-CoV-2. In particular, we demonstrate that CB[7] is the active homologue of CB[n], having an antiviral effect against enveloped and nonenveloped species. High levels of efficacy were observed with 5 min contact times across different viruses. We also demonstrate that CB[7] acts with an extracellular virucidal mode of action via host-guest supramolecular interactions between viral surface proteins and the CB[n] cavity, rather than via cell internalization or a virustatic mechanism. This finding demonstrates that CB[7] acts as a supramolecular virucidal antiviral (a mechanism distinct from other current extracellular antivirals), demonstrating the potential of supramolecular interactions for future antiviral disinfectants.
Collapse
Affiliation(s)
- Luke M. Jones
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Elana H. Super
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Lauren J. Batt
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Matteo Gasbarri
- Institute
of Materials, Interfaculty Bioengineering
Institute, MXG 030 Lausanne, Switzerland
| | - Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Lorraine M. Bhebhe
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom
| | - Benjamin T. Cheesman
- Aqdot
Limited, Iconix Park,
London Road, Pampisford, Cambridge CB22 3EG, United Kingdom
| | - Andrew M. Howe
- Aqdot
Limited, Iconix Park,
London Road, Pampisford, Cambridge CB22 3EG, United Kingdom
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States,Department
of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Roger Coulston
- Aqdot
Limited, Iconix Park,
London Road, Pampisford, Cambridge CB22 3EG, United Kingdom
| | - Samuel T. Jones
- Department
of Materials and The Henry Royce Institute, The University of Manchester, Manchester M19 3PL, United
Kingdom,
| |
Collapse
|
15
|
de Araujo Dorneles ML, Cardoso-Lima R, Souza PFN, Santoro Rosa D, Magne TM, Santos-Oliveira R, Alencar LMR. Zika Virus (ZIKV): A New Perspective on the Nanomechanical and Structural Properties. Viruses 2022; 14:v14081727. [PMID: 36016349 PMCID: PMC9414353 DOI: 10.3390/v14081727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) from Flavivirus. In 2015, Brazil and other Latin American countries experienced an outbreak of ZIKV infections associated with severe neurological disorders such as Guillain–Barre syndrome (GBS), encephalopathy, and encephalitis. Here, a complete mechanical and structural analysis of the ZIKV has been performed using Atomic Force Microscopy (AFM). AFM analysis corroborated the virus mean size (~50 nm) and icosahedral geometry and revealed high mechanical resistance of both: the viral surface particle (~200 kPa) and its internal content (~800 kPa). The analysis demonstrated the detailed organization of the nucleocapsid structure (such as RNA strips). An interesting finding was the discovery that ZIKV has no surface self-assembling property. These results can contribute to the development of future treatment candidates and circumscribe the magnitude of viral transmission.
Collapse
Affiliation(s)
| | - Ruana Cardoso-Lima
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65020070, Brazil
| | - Pedro Filho Noronha Souza
- Department of Biochemistry, Federal University of Ceará, Fortaleza 60440900, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60440900, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo, São Paulo 04023062, Brazil
| | - Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65020070, Brazil
- Correspondence:
| |
Collapse
|
16
|
Mendoza C, Nagidi SH, Collett K, Mckell J, Mizrachi D. Calcium regulates the interplay between the tight junction and epithelial adherens junction at the plasma membrane. FEBS Lett 2022; 596:219-231. [PMID: 34882783 DOI: 10.1002/1873-3468.14252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 01/15/2023]
Abstract
The apical junctional complex (AJC) is a membrane protein ultrastructure that regulates cell adhesion and homeostasis. The tight junction (TJ) and the adherens junction (AJ) are substructures of the AJC. The interplay between TJ and AJ membrane proteins to assemble the AJC remains unclear. We employed synthetic biology strategies to express the basic membrane elements of a simple AJC-the adhesive extracellular domains of junctional adhesion molecule A (JAM-A), epithelial cadherin, claudin 1, and occludin-to study their interactions. Our results suggest that calcium concentration fluctuations and JAM-A, acting as an interface molecule between the TJ and AJ, orchestrate their interplay. Calcium affects the secondary structure, oligomerization, and binding affinity of homotypic and heterotypic interactions of TJ and AJ components, thus acting as a molecular switch influencing AJC dynamics.
Collapse
Affiliation(s)
- Christopher Mendoza
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Sai Harsha Nagidi
- Department of Molecular Microbiology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Kjetil Collett
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Jacob Mckell
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
17
|
Hanisch FG, Aydogan C, Schroten H. Fucoidan and Derived Oligo-Fucoses: Structural Features with Relevance in Competitive Inhibition of Gastrointestinal Norovirus Binding. Mar Drugs 2021; 19:591. [PMID: 34822462 PMCID: PMC8617971 DOI: 10.3390/md19110591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Norovirus infections belong to the most common causes of human gastroenteritis worldwide and epidemic outbreaks are responsible for hundreds of thousands of deaths annually. In humans, noroviruses are known to bind to gastrointestinal epithelia via recognition of blood-group active mucin-type O-glycans. Considering the involvement of l-α-fucose residues in these glycans, their high valency on epithelial surfaces far surpasses the low affinity, though specific interactions of monovalent milk oligosaccharides. Based on these findings, we attempted to identify polyfucoses (fucans) with the capacity to block binding of the currently most prevalent norovirus strain GII.4 (Sydney, 2012, JX459908) to human and animal gastrointestinal mucins. We provide evidence that inhibitory effects on capsid binding are exerted in a competitive manner by α-fucosyl residues on Fucus vesiculosus fucoidan, but also on the galacto-fucan from Undaria pinnatifida and their oligo-fucose processing products. Insight into novel structural aspects of fucoidan and derived oligosaccharides from low-mass Undaria pinnatifida were revealed by GCMS and MALDI mass spectrometry. In targeting noroviral spread attenuation, this study provides first steps towards a prophylactic food additive that is produced from algal species.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Medical Faculty, Institute of Biochemistry II, University of Cologne, 50931 Köln, Germany
| | - Cem Aydogan
- PhytoNet AG, 8834 Schindellegi-Feusisberg, Switzerland;
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University Children’s Hospital Mannheim, 68167 Mannheim, Germany;
| |
Collapse
|
18
|
Weaver DB, Cantarel BL, Elsik CG, Boncristiani DL, Evans JD. Multi-tiered analyses of honey bees that resist or succumb to parasitic mites and viruses. BMC Genomics 2021; 22:720. [PMID: 34610790 PMCID: PMC8493683 DOI: 10.1186/s12864-021-08032-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Varroa destructor mites, and the numerous viruses they vector to their honey bee hosts, are among the most serious threats to honey bee populations, causing mortality and morbidity to both the individual honey bee and colony, the negative effects of which convey to the pollination services provided by honey bees worldwide. Here we use a combination of targeted assays and deep RNA sequencing to determine host and microbial changes in resistant and susceptible honey bee lineages. We focus on three study sets. The first involves field sampling of sympatric western bees, some derived from resistant stock and some from stock susceptible to mites. The second experiment contrasts three colonies more deeply, two from susceptible stock from the southeastern U.S. and one from mite-resistant bee stock from Eastern Texas. Finally, to decouple the effects of mites from those of the viruses they vector, we experimentally expose honey bees to DWV in the laboratory, measuring viral growth and host responses. Results We find strong differences between resistant and susceptible bees in terms of both viral loads and bee gene expression. Interestingly, lineages of bees with naturally low levels of the mite-vectored Deformed wing virus, also carried lower levels of viruses not vectored by mites. By mapping gene expression results against current ontologies and other studies, we describe the impacts of mite parasitism, as well as viruses on bee health against two genetic backgrounds. We identify numerous genes and processes seen in other studies of stress and disease in honey bee colonies, alongside novel genes and new patterns of expression. Conclusions We provide evidence that honey bees surviving in the face of parasitic mites do so through their abilities to resist the presence of devastating viruses vectored by these mites. In all cases, the most divergence between stocks was seen when bees were exposed to live mites or viruses, suggesting that gene activation, rather than constitutive expression, is key for these interactions. By revealing responses to viral infection and mite parasitism in different lineages, our data identify candidate proteins for the evolution of mite tolerance and virus resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08032-z.
Collapse
Affiliation(s)
| | - Brandi L Cantarel
- Bioinformatics Core Facility, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Christine G Elsik
- University of Missouri, Division of Animal Sciences, Division of Plant Sciences & Technology, and Institute for Data Science and Informatics, Columbia, MO, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA.
| |
Collapse
|
19
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
20
|
Large EE, Silveria MA, Zane GM, Weerakoon O, Chapman MS. Adeno-Associated Virus (AAV) Gene Delivery: Dissecting Molecular Interactions upon Cell Entry. Viruses 2021; 13:1336. [PMID: 34372542 PMCID: PMC8310307 DOI: 10.3390/v13071336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human gene therapy has advanced from twentieth-century conception to twenty-first-century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector. Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibodies, attachment factor interactions and receptor binding. Advances in understanding the molecular interactions during rAAV cell entry combined with improved capsid modulation strategies will help guide the design and engineering of safer and more efficient rAAV gene therapy vectors.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65201, USA; (E.E.L.); (M.A.S.); (G.M.Z.); (O.W.)
| |
Collapse
|
21
|
Giron CC, Laaksonen A, Barroso da Silva FL. Up State of the SARS-COV-2 Spike Homotrimer Favors an Increased Virulence for New Variants. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:694347. [PMID: 35047936 PMCID: PMC8757851 DOI: 10.3389/fmedt.2021.694347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has spread worldwide. However, as soon as the first vaccines-the only scientifically verified and efficient therapeutic option thus far-were released, mutations combined into variants of SARS-CoV-2 that are more transmissible and virulent emerged, raising doubts about their efficiency. This study aims to explain possible molecular mechanisms responsible for the increased transmissibility and the increased rate of hospitalizations related to the new variants. A combination of theoretical methods was employed. Constant-pH Monte Carlo simulations were carried out to quantify the stability of several spike trimeric structures at different conformational states and the free energy of interactions between the receptor-binding domain (RBD) and angiotensin-converting enzyme II (ACE2) for the most worrying variants. Electrostatic epitopes were mapped using the PROCEEDpKa method. These analyses showed that the increased virulence is more likely to be due to the improved stability to the S trimer in the opened state, in which the virus can interact with the cellular receptor, ACE2, rather than due to alterations in the complexation RBD-ACE2, since the difference observed in the free energy values was small (although more attractive in general). Conversely, the South African/Beta variant (B.1.351), compared with the SARS-CoV-2 wild type (wt), is much more stable in the opened state with one or two RBDs in the up position than in the closed state with three RBDs in the down position favoring the infection. Such results contribute to understanding the natural history of disease and indicate possible strategies for developing new therapeutic molecules and adjusting the vaccine doses for higher B-cell antibody production.
Collapse
Affiliation(s)
- Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Aatto Laaksonen
- Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, China
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
- Division of Energy Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
22
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
23
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
24
|
Hassanzadeh P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J Control Release 2020; 328:112-126. [PMID: 32882269 PMCID: PMC7457914 DOI: 10.1016/j.jconrel.2020.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Destructive impacts of COVID-19 pandemic worldwide necessitates taking more appropriate measures for mitigating virus spread and development of the effective theranostic agents. In general, high heterogeneity of viruses is a major challenging issue towards the development of effective antiviral agents. Regarding the coronavirus, its high mutation rates can negatively affect virus detection process or the efficiency of drugs and vaccines in development or induce drug resistance. Bioengineered nanomaterials with suitable physicochemical characteristics for site-specific therapeutic delivery, highly-sensitive nanobiosensors for detection of very low virus concentration, and real-time protections using the nanorobots can provide roadmaps towards the imminent breakthroughs in theranostics of a variety of diseases including the COVID-19. Besides revolutionizing the classical disinfection procedures, state-of-the-art nanotechnology-based approaches enable providing the analytical tools for accelerated monitoring of coronavirus and associated biomarkers or drug delivery towards the pulmonary system or other affected organs. Multivalent nanomaterials capable of interaction with multivalent pathogens including the viruses could be suitable candidates for viral detection and prevention of further infections. Besides the inactivation or destruction of the virus, functionalized nanoparticles capable of modulating patient's immune response might be of great significance for attenuating the exaggerated inflammatory reactions or development of the effective nanovaccines and medications against the virus pandemics including the COVID-19.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
25
|
Klein ML, Romero A, Kaltner H, Percec V, Gabius HJ. From examining the relationship between (corona)viral adhesins and galectins to glyco-perspectives. Biophys J 2020; 120:1031-1039. [PMID: 33248129 DOI: 10.1016/j.bpj.2020.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Glycan-lectin recognition is vital to processes that impact human health, including viral infections. Proceeding from crystallographical evidence of case studies on adeno-, corona-, and rotaviral spike proteins, the relationship of these adhesins to mammalian galectins was examined by computational similarity assessments. Intrafamily diversity among human galectins was in the range of that to these viral surface proteins. Our findings are offered to inspire the consideration of lectin-based approaches to thwart infection by present and future viral threats, also mentioning possible implications for vaccine development.
Collapse
Affiliation(s)
- Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania.
| | - Antonio Romero
- Department of Structural and Chemical Biology, CIB Margarita Salas, CSIC, Madrid, Spain
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
26
|
Amraei R, Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020; 9:E1652. [PMID: 32660065 PMCID: PMC7407648 DOI: 10.3390/cells9071652] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
27
|
Lactoferrin-Hexon Interactions Mediate CAR-Independent Adenovirus Infection of Human Respiratory Cells. J Virol 2020; 94:JVI.00542-20. [PMID: 32376620 PMCID: PMC7343212 DOI: 10.1128/jvi.00542-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023] Open
Abstract
Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell—apical or lateral/basolateral—is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors. Virus entry into host cells is a complex process that is largely regulated by access to specific cellular receptors. Human adenoviruses (HAdVs) and many other viruses use cell adhesion molecules such as the coxsackievirus and adenovirus receptor (CAR) for attachment to and entry into target cells. These molecules are rarely expressed on the apical side of polarized epithelial cells, which raises the question of how adenoviruses—and other viruses that engage cell adhesion molecules—enter polarized cells from the apical side to initiate infection. We have previously shown that species C HAdVs utilize lactoferrin—a common innate immune component secreted to respiratory mucosa—for infection via unknown mechanisms. Using a series of biochemical, cellular, and molecular biology approaches, we mapped this effect to the proteolytically cleavable, positively charged, N-terminal 49 residues of human lactoferrin (hLF) known as human lactoferricin (hLfcin). Lactoferricin (Lfcin) binds to the hexon protein on the viral capsid and anchors the virus to an unknown receptor structure of target cells, resulting in infection. These findings suggest that HAdVs use distinct cell entry mechanisms at different stages of infection. To initiate infection, entry is likely to occur at the apical side of polarized epithelial cells, largely by means of hLF and hLfcin bridging HAdV capsids via hexons to as-yet-unknown receptors; when infection is established, progeny virions released from the basolateral side enter neighboring cells by means of hLF/hLfcin and CAR in parallel. IMPORTANCE Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell—apical or lateral/basolateral—is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors.
Collapse
|
28
|
Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res 2020; 106:39-84. [PMID: 32327148 DOI: 10.1016/bs.aivir.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV) is a nonenveloped, ssDNA virus in the parvovirus family, which has become one of the leading candidate vectors for human gene therapy. AAV has been studied extensively to identify host cellular factors involved in infection, as well as to identify capsid variants that confer clinically favorable transduction profiles ex vivo and in vivo. Recent advances in technology have allowed for direct genetic approaches to be used to more comprehensively characterize host factors required for AAV infection and allowed for identification of a critical multi-serotype receptor, adeno-associated virus receptor (AAVR). In this chapter, we will discuss the interactions of AAV with its glycan and proteinaceous receptors and describe the host and viral components involved in AAV entry, which requires cellular attachment, endocytosis, trafficking to the trans-Golgi network and nuclear import. AAV serves as a paradigm for entry of nonenveloped viruses. Furthermore, we will discuss the potential of utilizing our increased understanding of virus-host interactions during AAV entry to develop better AAV-based therapeutics, with a focus on host factors and capsid interactions involved in in vivo tropism.
Collapse
|
29
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
30
|
Evans JP, Liu SL. Multifaceted Roles of TIM-Family Proteins in Virus-Host Interactions. Trends Microbiol 2019; 28:224-235. [PMID: 31732320 DOI: 10.1016/j.tim.2019.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
Abstract
To enhance infection, enveloped viruses exploit adhesion molecules expressed on the surface of host cells. Specifically, phosphatidylserine (PS) receptors - including members of the human T cell immunoglobulin and mucin domain (TIM)-family - have gained attention for their ability to mediate the entry of many enveloped viruses. However, recent evidence that TIM-1 can restrict viral release reveals a new role for these PS receptors. Additionally, viral factors such as the HIV-1 accessory protein Nef can antagonize this antiviral activity of TIM-1 while host restriction factors such as SERINC5 can enhance it. In this review, we examine the various roles of PS receptors, specifically TIM-family proteins, and the intricate relationship between host and viral factors. Elucidating the multifunctional roles of PS receptors in virus-host interaction is important for understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- John P Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
32
|
Vedururu RK, Neave MJ, Sundaramoorthy V, Green D, Harper JA, Gorry PR, Duchemin JB, Paradkar PN. Whole Transcriptome Analysis of Aedes albopictus Mosquito Head and Thorax Post-Chikungunya Virus Infection. Pathogens 2019; 8:pathogens8030132. [PMID: 31461898 PMCID: PMC6789441 DOI: 10.3390/pathogens8030132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 01/11/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by Aedes mosquitoes and causes prolonged arthralgia in patients. After crossing the mosquito midgut barrier, the virus disseminates to tissues including the head and salivary glands. To better understand the interaction between Aedes albopictus and CHIKV, we performed RNASeq analysis on pools of mosquito heads and parts of the thorax 8 days post infection, which identified 159 differentially expressed transcripts in infected mosquitos compared to uninfected controls. After validation using RT-qPCR (reverse transcriptase-quantitative polymerase chain reaction), inhibitor of Bruton’s tyrosine kinase (BTKi), which has previously been shown to be anti-inflammatory in mammals after viral infection, was further evaluated for its functional significance. Knockdown of BTKi using double-stranded RNA in a mosquito cell line showed no significant difference in viral RNA or infectivity titer. However, BTKi gene knocked-down cells showed increased apoptosis 24 hours post-infection compared with control cells, suggesting involvement of BTKi in the mosquito response to viral infection. Since BTK in mammals promotes an inflammatory response and has been shown to be involved in osteoclastogenesis, a hallmark of CHIKV pathogenesis, our results suggest a possible conserved mechanism at play between mosquitoes and mammals. Taken together, these results will add to our understanding of Aedes Albopictus interactions with CHIKV.
Collapse
Affiliation(s)
- Ravi Kiran Vedururu
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong 3220, Australia
- School of Sciences, RMIT University, Bundoora 3083, Australia
| | - Matthew J Neave
- CSIRO, Australian Animal Health Laboratory, Geelong 3220, Australia
| | | | - Diane Green
- CSIRO, Australian Animal Health Laboratory, Geelong 3220, Australia
| | | | - Paul R Gorry
- School of Health and Biomedical Science, RMIT University, Bundoora 3083, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong 3220, Australia
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong 3220, Australia.
| |
Collapse
|
33
|
Hamilton BA, Li X, Pezzulo AA, Abou Alaiwa MH, Zabner J. Polarized AAVR expression determines infectivity by AAV gene therapy vectors. Gene Ther 2019; 26:240-249. [PMID: 30962536 PMCID: PMC6588428 DOI: 10.1038/s41434-019-0078-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) has been investigated to transfer the cystic fibrosis transmembrane conductance regulator (CFTR) to airways. Inhaled AAV2-CFTR in people with cystic fibrosis (CF) is safe, but inefficient. In vitro, AAV2 transduction of human airway epithelia on the apical (luminal) side is inefficient, but efficient basolaterally. We previously selected AAV2.5T, a novel capsid that apically transduces CF human airway epithelia and efficiently restores CFTR function. We hypothesize the AAV receptor (AAVR) is basolaterally localized, and that AAV2.5T utilizes an alternative apical receptor. We found AAVR in human airway epithelia by western blot and RNA-Seq analyses. Using immunocytochemistry we did not find endogenous AAVR at membranes but overexpression localized AAVR to the basolateral membrane, where it preferentially increased transduction. Anti-AAVR antibodies blocked transduction by AAV2 from the basolateral side but not AAV2.5T from the apical side, suggesting a unique apical receptor. Finally, we found infection by AAV2 but not AAV2.5T was blocked by CRISPR knockout of AAVR in cell lines. Our data suggest the absence of apical AAVR is rate limiting for AAV2, and efficient transduction by AAV2.5T is accomplished using an AAVR independent pathway. Our findings inform the development of gene therapy for CF, and AAV vectors in general.
Collapse
Affiliation(s)
- Bradley A Hamilton
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
- Molecular Medicine Program, The University of Iowa, Iowa City, IA, USA
| | - Xiaopeng Li
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA.
- Molecular Medicine Program, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Chicken Organic Anion-Transporting Polypeptide 1A2, a Novel Avian Hepatitis E Virus (HEV) ORF2-Interacting Protein, Is Involved in Avian HEV Infection. J Virol 2019; 93:JVI.02205-18. [PMID: 30894478 DOI: 10.1128/jvi.02205-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease in chickens. Due to the absence of a highly effective cell culture system, there are few reports about the interaction between avian HEV and host cells. In this study, organic anion-transporting polypeptide 1A2 (OATP1A2) from chicken liver cells was identified to interact with ap237, a truncated avian HEV capsid protein spanning amino acids 313 to 549, by a glutathione S-transferase (GST) pulldown assay. GST pulldown and indirect enzyme-linked immunosorbent assays (ELISAs) further confirmed that the extracellular domain of OATP1A2 directly binds with ap237. The expression levels of OATP1A2 in host cells are positively correlated with the amounts of ap237 attachment and virus infection. The distribution of OATP1A2 in different tissues is consistent with avian HEV infection in vivo Finally, when the functions of OATP1A2 in cells are inhibited by its substrates or an inhibitor or blocked by ap237 or anti-OATP1A2 sera, attachment to and infection of host cells by avian HEV are significantly reduced. Collectively, these results displayed for the first time that OATP1A2 interacts with the avian HEV capsid protein and can influence viral infection in host cells. The present study provides new insight to understand the process of avian HEV infection of host cells.IMPORTANCE The process of viral infection is centered around the interaction between the virus and host cells. Due to the lack of a highly effective cell culture system in vitro, there is little understanding about the interaction between avian HEV and its host cells. In this study, a total of seven host proteins were screened in chicken liver cells by a truncated avian HEV capsid protein (ap237) in which the host protein OATP1A2 interacted with ap237. Overexpression of OATP1A2 in the cells can promote ap237 adsorption as well as avian HEV adsorption and infection of the cells. When the function of OATP1A2 in cells was inhibited by substrates or inhibitors, attachment and infection by avian HEV significantly decreased. The distribution of OATP1A2 in different chicken tissues corresponded with that in tissues during avian HEV infection. This is the first finding that OATP1A2 is involved in viral infection of host cells.
Collapse
|
35
|
Li M, Wang J, Huang Q, Li C. Proteomic analysis highlights the immune responses of the hepatopancreas against Hematodinium infection in Portunus trituberculatus. J Proteomics 2019; 197:92-105. [DOI: 10.1016/j.jprot.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
|
36
|
Niu GJ, Wang S, Xu JD, Yang MC, Sun JJ, He ZH, Zhao XF, Wang JX. The polymeric immunoglobulin receptor-like protein from Marsupenaeus japonicus is a receptor for white spot syndrome virus infection. PLoS Pathog 2019; 15:e1007558. [PMID: 30726286 PMCID: PMC6380602 DOI: 10.1371/journal.ppat.1007558] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 02/19/2019] [Accepted: 01/03/2019] [Indexed: 12/03/2022] Open
Abstract
Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. White Spot Syndrome Virus (WSSV) is one of the most virulent pathogens in shrimp farming. Several viral candidate receptors, or attachment factors were reported in previous studies, however, most of them are not authentic transmembrane proteins. In particular, the protein receptor(s) required the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a polymeric immunoglobulin receptor (pIgR) like protein, a bona fide transmembrane receptor, was identified in kuruma shrimp, Marsupenaeus japonicus (MjpIgR for short). Knockdown of MjpIgR by RNA interference, and blocking it by its antibody prevented WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further study found that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular cellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis, indicating that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. This study provides a new target for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ji-Dong Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhong-Hua He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
37
|
Early Porcine Sapovirus Infection Disrupts Tight Junctions and Uses Occludin as a Coreceptor. J Virol 2019; 93:JVI.01773-18. [PMID: 30463963 PMCID: PMC6364031 DOI: 10.1128/jvi.01773-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
The genus Sapovirus belongs to the family Caliciviridae, and its members are common causative agents of severe acute gastroenteritis in both humans and animals. Some caliciviruses are known to use either terminal sialic acids or histo-blood group antigens as attachment factors and/or cell surface proteins, such as CD300lf, CD300ld, and junctional adhesion molecule 1 of tight junctions (TJs), as receptors. However, the roles of TJs and their proteins in sapovirus entry have not been examined. In this study, we found that porcine sapovirus (PSaV) significantly decreased transepithelial electrical resistance and increased paracellular permeability early in infection of LLC-PK cells, suggesting that PSaV dissociates TJs of cells. This led to the interaction between PSaV particles and occludin, which traveled in a complex into late endosomes via Rab5- and Rab7-dependent trafficking. Inhibition of occludin using small interfering RNA (siRNA), a specific antibody, or a dominant-negative mutant significantly blocked the entry of PSaV. Transient expression of occludin in nonpermissive Chinese hamster ovary (CHO) cells conferred susceptibility to PSaV, but only for a limited time. Although claudin-1, another TJ protein, neither directly interacted nor was internalized with PSaV particles, it facilitated PSaV entry and replication in the LLC-PK cells. We conclude that PSaV particles enter LLC-PK cells by binding to occludin as a coreceptor in PSaV-dissociated TJs. PSaV and occludin then form a complex that moves to late endosomes via Rab5- and Rab7-dependent trafficking. In addition, claudin-1 in the TJs opened by PSaV infection facilitates PSaV entry and infection as an entry factor.IMPORTANCE Sapoviruses (SaVs) cause severe acute gastroenteritis in humans and animals. Although they replicate in intestinal epithelial cells, which are tightly sealed by apical-junctional complexes, such as tight junctions (TJs), the mechanisms by which SaVs hijack TJs and their proteins for successful entry and infection remain largely unknown. Here, we demonstrate that porcine SaVs (PSaVs) induce early dissociation of TJs, allowing them to bind to the TJ protein occludin as a functional coreceptor. PSaVs then travel in a complex with occludin into late endosomes through Rab5- and Rab7-dependent trafficking. Claudin-1, another TJ protein, does not directly interact with PSaV but facilitates the entry of PSaV into cells as an entry factor. This work contributes to our understanding of the entry of SaV and other caliciviruses into cells and may aid in the development of efficient and affordable drugs to treat SaV infections.
Collapse
|
38
|
Conley MJ, McElwee M, Azmi L, Gabrielsen M, Byron O, Goodfellow IG, Bhella D. Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 2019; 565:377-381. [PMID: 30626974 DOI: 10.1038/s41586-018-0852-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
To initiate infection, many viruses enter their host cells by triggering endocytosis following receptor engagement. However, the mechanisms by which non-enveloped viruses escape the endosome are poorly understood. Here we present near-atomic-resolution cryo-electron microscopy structures for feline calicivirus both undecorated and labelled with a soluble fragment of its cellular receptor, feline junctional adhesion molecule A. We show that VP2, a minor capsid protein encoded by all caliciviruses1,2, forms a large portal-like assembly at a unique three-fold axis of symmetry, following receptor engagement. This assembly-which was not detected in undecorated virions-is formed of twelve copies of VP2, arranged with their hydrophobic N termini pointing away from the virion surface. Local rearrangement at the portal site leads to the opening of a pore in the capsid shell. We hypothesize that the portal-like assembly functions as a channel for the delivery of the calicivirus genome, through the endosomal membrane, into the cytoplasm of a host cell, thereby initiating infection. VP2 was previously known to be critical for the production of infectious virus3; our findings provide insights into its structure and function that advance our understanding of the Caliciviridae.
Collapse
Affiliation(s)
- Michaela J Conley
- Medical Research Council University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marion McElwee
- Medical Research Council University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Liyana Azmi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Olwyn Byron
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Bhella
- Medical Research Council University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
39
|
Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol 2018; 430:2590-2611. [PMID: 29924965 PMCID: PMC6083867 DOI: 10.1016/j.jmb.2018.06.024] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics. Viral receptors are key regulators of host range, tissue tropism, and viral pathogenesis. Many viruses utilize common viral receptors including sialic acid, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. Detailed molecular interactions between viruses and receptors have been defined through elegant biochemical analyses including glycan array screens, structural–functional analyses, and cell-based approaches providing tremendous insights into these initial events in viral infection. Commonalities in virus–receptor interactions present promising targets for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469-5735, USA.
| |
Collapse
|
40
|
Ono E, Uede T. Implication of Soluble Forms of Cell Adhesion Molecules in Infectious Disease and Tumor: Insights from Transgenic Animal Models. Int J Mol Sci 2018; 19:ijms19010239. [PMID: 29342882 PMCID: PMC5796187 DOI: 10.3390/ijms19010239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Cell adhesion molecules (CAMs) are surface ligands, usually glycoproteins, which mediate cell-to-cell adhesion. They play a critical role in maintaining tissue integrity and mediating migration of cells, and some of them also act as viral receptors. It has been known that soluble forms of the viral receptors bind to the surface glycoproteins of the viruses and neutralize them, resulting in inhibition of the viral entry into cells. Nectin-1 is one of important CAMs belonging to immunoglobulin superfamily and herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family. Both CAMs also act as alphaherpesvirus receptor. Transgenic mice expressing the soluble form of nectin-1 or HVEM showed almost complete resistance against the alphaherpesviruses. As another CAM, sialic acid-binding immunoglobulin-like lectins (Siglecs) that recognize sialic acids are also known as an immunoglobulin superfamily member. Siglecs play an important role in the regulation of immune cell functions in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer. Siglec-9 is one of Siglecs and capsular polysaccharide (CPS) of group B Streptococcus (GBS) binds to Siglec-9 on neutrophils, leading to suppress host immune response and provide a survival advantage to the pathogen. In addition, Siglec-9 also binds to tumor-produced mucins such as MUC1 to lead negative immunomodulation. Transgenic mice expressing the soluble form of Siglec-9 showed significant resistance against GBS infection and remarkable suppression of MUC1 expressing tumor proliferation. This review describes recent developments in the understanding of the potency of soluble forms of CAMs in the transgenic mice and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.
Collapse
Affiliation(s)
- Etsuro Ono
- Department of Biomedicine, Center of Biomedical Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
41
|
Sutherland DM, Aravamudhan P, Dermody TS. An Orchestra of Reovirus Receptors: Still Searching for the Conductor. Adv Virus Res 2017; 100:223-246. [PMID: 29551138 DOI: 10.1016/bs.aivir.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viruses are constantly engaged in a molecular arms race with the host, where efficient and tactical use of cellular receptors benefits critical steps in infection. Receptor use dictates initiation, establishment, and spread of viral infection to new tissues and hosts. Mammalian orthoreoviruses (reoviruses) are pervasive pathogens that use multiple receptors to overcome protective host barriers to disseminate from sites of initial infection and cause disease in young mammals. In particular, reovirus invades the central nervous system (CNS) with serotype-dependent tropism and disease. A single viral gene, encoding the attachment protein σ1, segregates with distinct patterns of CNS injury. Despite the identification and characterization of several reovirus receptors, host factors that dictate tropism via interaction with σ1 remain undefined. Here, we summarize the state of the reovirus receptor field and discuss open questions toward understanding how the reovirus attachment protein dictates CNS tropism.
Collapse
Affiliation(s)
| | | | - Terence S Dermody
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
42
|
Adeno-associated Virus (AAV) Serotypes Have Distinctive Interactions with Domains of the Cellular AAV Receptor. J Virol 2017; 91:JVI.00391-17. [PMID: 28679762 PMCID: PMC5571256 DOI: 10.1128/jvi.00391-17] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and a proteinaceous receptor(s). Adeno-associated virus receptor (AAVR) (also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes, including the evolutionarily distant serotypes AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. By using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a molecular mass of 150 kDa. By establishing a purification procedure, performing further protein separation by two-dimensional electrophoresis, and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is an N-linked glycosylated protein, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and virus overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like polycystic kidney disease (PKD) repeat domain (PKD2) present in the ectodomain of AAVR. In contrast, AAV5 interacts primarily through the first, most membrane-distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes, including AAV1 and -8, require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor. IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. However, fundamental aspects of the AAV life cycle, including how AAV interacts with host cellular factors to facilitate infection, are only partly understood. In particular, AAV receptors contribute significantly to AAV vector transduction efficiency and tropism. The recently identified AAV receptor (AAVR) is a key host receptor for multiple serotypes, including the most studied serotype, AAV2. AAVR binds directly to AAV2 particles and is rate limiting for viral transduction. Defining the AAV-AAVR interface in more detail is important to understand how AAV engages with its cellular receptor and how the receptor facilitates the entry process. Here, we further define AAV-AAVR interactions, genetically and biochemically, and show that different AAV serotypes have discrete interactions with the Ig-like PKD domains of AAVR. These findings reveal an unexpected divergence of AAVR engagement within these parvoviruses.
Collapse
|
43
|
Pillay S, Carette JE. Host determinants of adeno-associated viral vector entry. Curr Opin Virol 2017; 24:124-131. [PMID: 28672171 DOI: 10.1016/j.coviro.2017.06.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/28/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022]
Abstract
Viral vectors based on adeno-associated virus (AAV) are leading candidates for therapeutic gene delivery. Understanding rate-limiting steps in the entry of AAV vectors may be used in a rational approach to improve efficiency and specificity of transduction. This review describes our current understanding of AAV entry, a key step during infection. We discuss the identity and functions of AAV receptors and attachment factors, including the recently discovered multi-serotype receptor AAVR. We further provide an overview of other host factors that act during the trafficking stage of AAV vector transduction. In particular, we focus on cellular protein complexes associated with retrograde transport from endosomes to the trans-Golgi network. The novel insights in AAV-host interactions facilitated by technological advances in genetic screening approaches provide a greater depth in our understanding how AAV vectors exploit host factors to deliver its genetic cargo to the nucleus.
Collapse
Affiliation(s)
- Sirika Pillay
- Stanford University, Department of Microbiology and Immunology, Stanford, CA 94305, USA
| | - Jan E Carette
- Stanford University, Department of Microbiology and Immunology, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Ziem B, Rahn J, Donskyi I, Silberreis K, Cuellar L, Dernedde J, Keil G, Mettenleiter TC, Haag R. Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus. Macromol Biosci 2017; 17. [PMID: 28296132 DOI: 10.1002/mabi.201600499] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/07/2017] [Indexed: 01/04/2023]
Abstract
African swine fever virus (ASFV) is one of the most dangerous viruses for pigs and is endemic in Africa but recently also spread into the Russian Federation and the Eastern border of the EU. So far there is no vaccine or antiviral drug available to curtail the infection. Thus, control strategies based on novel inhibitors are urgently needed. Another highly relevant virus infection in pigs is Aujeszky's disease caused by the alphaherpesvirus pseudorabies virus (PrV). This article reports the synthesis and biological evaluation of novel extracellular matrix-inspired entry inhibitors based on polyglycerol sulfate-functionalized graphene sheets. The developed 2D architectures bind enveloped viruses during the adhesion process and thereby exhibit strong inhibitory effects, which are equal or better than the common standards enrofloxacin and heparin as demonstrated for ASFV and PrV. Overall, the developed polyvalent 2D entry inhibitors are nontoxic and efficient nanoarchitectures, which interact with various types of enveloped viruses. Therefore they prevent viral adhesion to the host cell and especially target viruses that rely on a heparan sulfate-dependent cell entry mechanism.
Collapse
Affiliation(s)
- Benjamin Ziem
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| | - Jessica Rahn
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Ievgen Donskyi
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Luis Cuellar
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Günther Keil
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| |
Collapse
|
45
|
The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. J Virol 2017; 91:JVI.02255-16. [PMID: 28100610 PMCID: PMC5355598 DOI: 10.1128/jvi.02255-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.
Collapse
|
46
|
Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells. mBio 2017; 8:mBio.00031-17. [PMID: 28196955 PMCID: PMC5312078 DOI: 10.1128/mbio.00031-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1), was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO) cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin) were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.IMPORTANCE Vesiviruses, such as San Miguel sea lion virus and feline calicivirus, are typically associated with infection in animal hosts. Following the accidental infection of a laboratory worker with San Miguel sea lion virus, a related virus was isolated in cell culture and named Hom-1. In this study, we found that Hom-1 could be propagated in a number of human cell lines, making it the first calicivirus to replicate efficiently in cultured human cells. Screening of a library of human cell surface membrane proteins showed that the virus could utilize human junctional adhesion molecule 1 as a receptor to enter cells and initiate replication. The Hom-1 virus presents a new system for the study of calicivirus biology and species specificity.
Collapse
|
47
|
Bochkov YA, Gern JE. Rhinoviruses and Their Receptors: Implications for Allergic Disease. Curr Allergy Asthma Rep 2016; 16:30. [PMID: 26960297 DOI: 10.1007/s11882-016-0608-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human rhinoviruses (RVs) are picornaviruses that can cause a variety of illnesses including the common cold, lower respiratory tract illnesses such as bronchitis and pneumonia, and exacerbations of asthma. RVs are classified into three species, RV-A, B, and C, which include over 160 types. They utilize three major types of cellular membrane glycoproteins to gain entry into the host cell: intercellular adhesion molecule 1 (ICAM-1) (the majority of RV-A and all RV-B), low-density lipoprotein receptor (LDLR) family members (12 RV-A types), and cadherin-related family member 3 (CDHR3) (RV-C). CDHR3 is a member of cadherin superfamily of transmembrane proteins with yet unknown biological function, and there is relatively little information available about the mechanisms of RV-C interaction with CDHR3. A coding single nucleotide polymorphism (rs6967330) in CDHR3 could promote RV-C infections and illnesses in infancy, which could in turn adversely affect the developing lung to increase the risk of asthma. Further studies are needed to determine how RV infections contribute to pathogenesis of asthma and to develop the optimal treatment approach to control asthma exacerbations.
Collapse
Affiliation(s)
- Yury A Bochkov
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
| | - James E Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| |
Collapse
|
48
|
Usardi A, Iyer K, Sigoillot SM, Dusonchet A, Selimi F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev Neurobiol 2016; 77:75-92. [PMID: 27328461 DOI: 10.1002/dneu.22412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017.
Collapse
Affiliation(s)
- Alessia Usardi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Keerthana Iyer
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Séverine M Sigoillot
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Antoine Dusonchet
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Fekrije Selimi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| |
Collapse
|
49
|
Bhatia S, Camacho LC, Haag R. Pathogen Inhibition by Multivalent Ligand Architectures. J Am Chem Soc 2016; 138:8654-66. [DOI: 10.1021/jacs.5b12950] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sumati Bhatia
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Luis Cuellar Camacho
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
50
|
Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, Jae LT, Wosen JE, Nagamine CM, Chapman MS, Carette JE. An essential receptor for adeno-associated virus infection. Nature 2016; 530:108-12. [PMID: 26814968 PMCID: PMC4962915 DOI: 10.1038/nature16465] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/18/2015] [Indexed: 01/20/2023]
Affiliation(s)
- S Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA
| | - N L Meyer
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health &Science University, 3181 Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - A S Puschnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA
| | - O Davulcu
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health &Science University, 3181 Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - J Diep
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA
| | - Y Ishikawa
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health &Science University, 3181 Sam Jackson Park Road, Portland, Oregon 97239-3098, USA.,Shriners Hospital for Children, 3101 Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - L T Jae
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - J E Wosen
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA
| | - C M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, 287 Campus Drive, Stanford, California 94305, USA
| | - M S Chapman
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health &Science University, 3181 Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - J E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|