1
|
Zhao C, Sinkkonen A, Jumpponen A, Hui N. Urban soils immobilize harmful microbes and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137419. [PMID: 39884039 DOI: 10.1016/j.jhazmat.2025.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Exposure to harmful microbiomes and antibiotic resistance genes (ARGs) can negatively affect human health. However, the contribution of vegetation and soils to the airborne microbiota transferred indoors (AMTI) remains unclear. We used our newly-developed airborne microbial sampler (VenTube) to collect AMTI samples from 72 neighborhoods in Shanghai. The AMTI sampling coincided with simultaneous adjacent phyllosphere and soil microbes. We characterized the microbial communities using next-generation sequencing and quantitative PCR, and employed traceability analysis to identify the sources of AMTI. Our findings revealed that both bacterial and fungal communities in AMTI predominantly originated from phyllosphere, which was estimated to contribute up to 52.3 % and 67.2 % of the bacterial and fungal communities, respectively. Notably, there was extensive co-transfer of potential human pathogens (PHP) between phyllosphere microbes and AMTI. Surprisingly, although the soil harbored higher levels of PHP and respiratory diseases (RDs)-associated ARGs than AMTI, it contained fewer RDs-associated microbes overall. Furthermore, soil sulfur enrichment due to an increase in Ligustrum trees influenced the release of RDs-associated microorganisms from the soil. Collectively, our study emphasizes that the elevated levels of RDs-associated microbes in AMTI primarily derived from phyllosphere microbes. We also highlight that soils may limit the spread of RDs-associated microbes and ARGs.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Aki Sinkkonen
- Horticulture Technologies, Unit of Production Systems, Natural Resources Institute Finland, Turku, Finland.
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
2
|
Stenger PL, Léopold A, Dinh K, Mournet P, Robert N, Drouin J, Wamejonengo J, Russet S, Ibanez T, Maggia L, Carriconde F. Advancing biomonitoring of eDNA studies with the Anaconda R package: Integrating soil and One Health perspectives in the face of evolving traditional agriculture practices. PLoS One 2025; 20:e0311986. [PMID: 39821144 PMCID: PMC11737689 DOI: 10.1371/journal.pone.0311986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/29/2024] [Indexed: 01/19/2025] Open
Abstract
Soil health and One Health are global concerns, necessitating the development of refined indicators for effective monitoring. In response, we present the Anaconda R Package, a novel tool designed to enhance the analysis of eDNA data for biomonitoring purposes. Employing a combination of different approaches, this package allows for a comprehensive investigation of species abundance and community composition under diverse conditions. This study applied the Anaconda package to examine the impact of two types of duration fire-fallow cropping systems, using natural forests as a reference, on soil fungal and bacterial communities in Maré Island (New Caledonia). Condition-specific taxa were identified, particularly pathogenic fungi and bacteria, demonstrating the importance of long-term fallowing efforts. Notably, this package also revealed the potential contributions of beneficial soil microbes, including saprophytes and plant-endophyte fungi, in suppressing soil-borne pathogens. Over-represented microbial ASVs associated with both plant and animal pathogens, including those of potential concern for human health, were identified. This underscores the importance of maintaining intrinsic balance for effective disease suppression. Importantly, the advanced analytical and statistical methods offered by this package should be harnessed to comprehensively investigate the effects of agricultural practice changes on soil health within the One Health framework. Looking ahead, the application of this method extends beyond the realm of One Health, offering valuable insights into various ecological scenarios. Its versatility holds promise for elucidating complex interactions and dynamics within ecosystems. By leveraging this tool, researchers can explore the broader implications of agricultural practice modifications, facilitating informed decisions and sustainable environmental management.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| | - Audrey Léopold
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| | - Kelly Dinh
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| | - Pierre Mournet
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Nadia Robert
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| | - Julien Drouin
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| | - Jacques Wamejonengo
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| | - Sylvie Russet
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| | - Thomas Ibanez
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, Université Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Laurent Maggia
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Nouméa, Nouvelle-Calédonie, France
- Institute for Exact and Applied Sciences, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Fabian Carriconde
- Équipe ‘ Sol & Végétation’ (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
| |
Collapse
|
3
|
Dinda SK, Hazra S, De A, Datta A, Das L, Pattanayak S, Kumar K, Dey MD, Basu A, Manna D. Amoebae: beyond pathogens- exploring their benefits and future potential. Front Cell Infect Microbiol 2024; 14:1518925. [PMID: 39744153 PMCID: PMC11688213 DOI: 10.3389/fcimb.2024.1518925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Amoebae, fascinatingly diverse protists, showcase a dual nature that positions them as both friends and foes in our world. These organisms, defined by their distinctive pseudopodia, span a spectrum from harmful to helpful. On the darker side, species like Entamoeba histolytica pose serious health risks, causing intestinal and liver diseases, while the infamous "brain-eating" Naegleria fowleri leads to fatal primary amoebic meningoencephalitis (PAM), with a daunting 97% mortality rate. Other free-living amoebae, including Acanthamoeba castellanii and Balamuthia mandrillaris, also threaten the human central nervous system. Yet, beyond these dangers, amoebae play critical ecological roles. They function as nature's recyclers, decomposing organic material and nourishing aquatic ecosystems, while also serving as food for various organisms. Moreover, certain amoebae help control plant pathogens and offer insight into human disease, proving valuable as model organisms in biomedical research. This review sheds light on the complex, multifaceted world of amoebae, highlighting their dual role as pathogens and as key contributors to vital ecological processes, as well as their significant impact on research and their promising potential for enhancing human well-being.
Collapse
Affiliation(s)
- Suman Kalyan Dinda
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Shreyasee Hazra
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Anwesha De
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Annurima Datta
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Lipika Das
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Santanu Pattanayak
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Kishor Kumar
- Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, India
| | - Manash Deep Dey
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Arnab Basu
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Dipak Manna
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
4
|
Wójcik-Fatla A, Farian E, Kowalczyk K, Sroka J, Skowron P, Siebielec G, Zdybel JM, Jadczyszyn T, Cencek T. Enterobacteriaceae in Sewage Sludge and Digestate Intended for Soil Fertilization. Pathogens 2024; 13:1056. [PMID: 39770316 PMCID: PMC11728692 DOI: 10.3390/pathogens13121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Substances of organic origin are seeing increasing use in agriculture as rich sources of nutrients for plants. The aim of this study was to determine the microbiological contamination of sewage sludge and digestate to assess their safe use as fertilizers in Poland. The assessment of microbial soil, sewage sludge and digestate contamination was based on the total number of mesophilic bacteria and Gram-negative bacteria from the Enterobacteriaceae family. The presence of Escherichia coli and Salmonella spp. was identified via culture and the presence of Enterobacteriaceae species was determined via biochemical and molecular methods. In laboratory conditions, the survival of E. coli in soil fertilized with sewage sludge or digestate inoculated with a reference strain was determined. The average concentration of Enterobacteriaceae in soil, sewage sludge and digestate samples was 1.1 × 104 CFU/g, 9.4 × 105 CFU/g and 5.6 × 106 CFU/g, respectively. Escherichia coli was detected in all sample types. From the soil samples, Serratia, Enterobacter, Pantoea, Citrobacter and Pseudomonas genera were identified the most frequently, while in sewage sludge and digestate, E. coli was predominant. Based on the results of our laboratory experiment, it can be concluded that after three weeks, fertilization with organic waste in acceptable doses does not significantly increase soil contamination with Enterobacteriaceae.
Collapse
Affiliation(s)
- Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Ewelina Farian
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Katarzyna Kowalczyk
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Jacek Sroka
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| | - Piotr Skowron
- Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (P.S.); (T.J.)
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Jolanta Małgorzata Zdybel
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| | - Tamara Jadczyszyn
- Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (P.S.); (T.J.)
| | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| |
Collapse
|
5
|
Schaffner U, Heimpel GE, Mills NJ, Muriithi BW, Thomas MB, Gc YD, Wyckhuys KAG. Biological control for One Health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175800. [PMID: 39197787 DOI: 10.1016/j.scitotenv.2024.175800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Biological control has been effectively exploited by mankind since 300 CE. By promoting the natural regulation of pests, weeds, and diseases, it produces societal benefits at the food-environment-health nexus. Here we scrutinize biological control endeavours and their social-ecological outcomes through a holistic 'One-Health' lens, recognizing that the health of humans, animals, plants, and the wider environment are linked and interdependent. Evidence shows that biological control generates desirable outcomes within all One Health dimensions, mitigating global change issues such as chemical pollution, biocide resistance, biodiversity loss, and habitat destruction. Yet, its cross-disciplinary achievements remain underappreciated. To remedy this, we advocate a systems-level, integrated approach to biological control research, policy, and practice. Framing biological control in a One Health context helps to unite medical and veterinary personnel, ecologists, conservationists and agricultural professionals in a joint quest for solutions to some of the most pressing issues in planetary health.
Collapse
Affiliation(s)
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Nicholas J Mills
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, USA
| | - Beatrice W Muriithi
- Social Science and Impact Assessment Unit, International Centre of Insect Physiology and Ecology (icipe), Duduville Campus, Nairobi, Kenya
| | - Matthew B Thomas
- Department of Biology, University of York, York, UK; Entomology & Nematology Department, and Invasion Science Research Institute, University of Florida, Gainesville, FL, USA
| | - Yubak D Gc
- United Nations Food and Agriculture Organization (FAO), Bangkok, Thailand
| | - Kris A G Wyckhuys
- Chrysalis Consulting, Danang, Viet Nam; Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China; School of the Environment, University of Queensland, Saint Lucia, Australia; United Nations Food and Agriculture Organization (FAO), Rome, Italy
| |
Collapse
|
6
|
Oliveira MCO, Alves A, Fidalgo C, de Freitas JGR, Pinheiro de Carvalho MAA. Variations in the structure and function of the soil fungal communities in the traditional cropping systems from Madeira Island. Front Microbiol 2024; 15:1426957. [PMID: 39411432 PMCID: PMC11473422 DOI: 10.3389/fmicb.2024.1426957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Agricultural soils are responsible for ecological functions and services that include primary production of food, fiber and fuel, nutrient cycling, carbon cycling and storage, water infiltration and purification, among others. Fungi are important drivers of most of those ecosystem services. Given the importance of fungi in agricultural soils, in this study, we aimed to characterize and analyse the changes of the soil fungal communities of three cropping systems from Madeira Island, where family farming is predominant, and investigate the response of fungi and its functional groups to soil physicochemical properties. To achieve that, we sequenced amplicons targeting the internal transcribed spacer 1 (ITS1) of the rRNA region, to analyse soil samples from 18 agrosystems: 6 vineyards (V), 6 banana plantations (B) and 6 vegetable plantations (H). Our results showed that alpha diversity indices of fungal communities are similar in the three cropping systems, but fungal composition and functional aspects varied among them, with more pronounced differences in B. Ascomycota, Basidiomycota, and Mortierellomycota were the main phyla found in the three cropping systems. Agaricomycetes and Sordariomycetes are the predominant classes in B, representing 23.8 and 22.4%, respectively, while Sordariomycetes (27.9%) followed by Eurotiomycetes (12.3%) were the predominant classes in V and Sordariomycetes (39.2%) followed by Tremellomycetes (8.9%) in the H. Saprotrophs are the fungal group showing higher relative abundance in the three cropping systems, followed by plant pathogens. Regarding symbionts, endophytes were highly observed in B, while mycorrhizal fungi was predominant in V and H. The structure of fungal communities was mainly correlated with soil content of P, K, N, Fe, and Cu. In addition, we identified bioindicators for each cropping system, which means that cultivated crops are also drivers of functional groups and the composition of communities. Overall, the three cropping systems favored diversity and growth of taxa that play important roles in soil, which highlights the importance of conservative management practices to maintain a healthy and resilient agrosystem.
Collapse
Affiliation(s)
- Maria Cristina O. Oliveira
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- ARDITI, Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Caminho da Penteada, Funchal, Portugal
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Artur Alves
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Cátia Fidalgo
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - José G. R. de Freitas
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
| | - Miguel A. A. Pinheiro de Carvalho
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
7
|
Swan T, McBratney A, Field D. Linkages between Soil Security and One Health: implications for the 2030 Sustainable Development Goals. Front Public Health 2024; 12:1447663. [PMID: 39360248 PMCID: PMC11445178 DOI: 10.3389/fpubh.2024.1447663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Soil provides multiple and diverse functions (e.g., the provision of food and the regulation of carbon), which underpin the health of animals, humans, the environment and the planet. However, the world's soils face existential challenges. To this end, the concept of Soil Security was developed, compelled to: "maintain and improve soils worldwide so that they can continue to provide food, fiber and fresh water, contribute to energy and climate sustainability and help to maintain biodiversity and the overall protection of ecosystem goods and services." In parallel, the concept of One Health likewise works across the human-animal-environment interface, highly relevant for the goals of Soil Security. In this review, we evaluated the roles which both the Soil Security and One Health concepts have served in the literature between 2012 and 2023 and explore the potential linkages between both concepts. We outline that both concepts are used in disparate fields, despite considerable overlap in aims and objectives. We highlight the Soil Health concept as a potential connector between Soil Security and One Health. Overall, we argue that both Soil Security and One Health are highly complementary fields of scientific inquiry with solid leverage for translation into policy and practice. However, there is a need to define One Health dimensions, as has been done for Soil Security. As such, we proffer five measurable dimensions for One Health, the "5Cs"-Capacity, Condition, Capital, Connectivity and Codification-to allow for an overall measure of One Health. Finally, we advocate for a biosphere-focused framework to collectively make progress toward the 2030 Sustainable Development Goals and other global existential challenges.
Collapse
Affiliation(s)
- Tom Swan
- The School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute of Agriculture, The University of Sydney, Camperdown, NSW, Australia
| | - Alex McBratney
- The School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute of Agriculture, The University of Sydney, Camperdown, NSW, Australia
| | - Damien Field
- The School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute of Agriculture, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
8
|
Scholthof KBG. The Greening of One Health: Plants, Pathogens, and the Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:401-421. [PMID: 38857537 DOI: 10.1146/annurev-phyto-121423-042102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
One Health has an aspirational goal of ensuring the health of humans, animals, plants, and the environment through transdisciplinary, collaborative research. At its essence, One Health addresses the human clash with Nature by formulating strategies to repair and restore a (globally) perturbed ecosystem. A more nuanced evaluation of humankind's impact on the environment (Nature, Earth, Gaia) would fully intercalate plants, plant pathogens, and beneficial plant microbes into One Health. Here, several examples point out how plants and plant microbes are keystones of One Health. Meaningful cross-pollination between plant, animal, and human health practitioners can drive discovery and application of innovative tools to address the many complex problems within the One Health framework.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
9
|
Zuo H, Morimoto Y, Muroi K, Baba T. Characteristics of soil origin Pseudomonas batumici Koz11 isolated from a remote island in Japan. Access Microbiol 2024; 6:000799.v3. [PMID: 39156885 PMCID: PMC11328868 DOI: 10.1099/acmi.0.000799.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Soil samples from a remote Japanese island (Kozushima) were processed and investigated for organisms exhibiting antimicrobial activity against pathogenic strains. A Pseudomonas strain demonstrating antimicrobial activity against Staphylococcus aureus (S. aureus) was identified, prompting further investigation. Whole-genome sequencing was employed to identify the species and conduct phylogenetic analysis, followed by in silico molecular analysis. Chemotaxonomic and biochemical analyses were conducted to further characterize the strain. Genomic analysis identified the strain of interest as Pseudomonas batumici (P. batumici), originally isolated from soil of the Black Sea coast of the Caucasus in 1980. P. batumici Koz11 is the second P. batumici strain to be isolated and identified outside its initial area of discovery. Similar to the type strain, P. batumici Koz11 showed antimicrobial activity against various S. aureus strains, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA). However, the previously reported 'batumin gene cluster', which synthesizes antimicrobial compounds, was absent from P. batumici Koz11. This study provides new insights into P. batumici. Since the type strain of P. batumici is exclusively deposited in the Ukrainian Collection of Microorganisms, the Koz11 strain may serve as a surrogate to facilitate continued study of P. batumici.
Collapse
Affiliation(s)
- Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, Tokyo, Japan
| | - Yuh Morimoto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Muroi
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tadashi Baba
- Graduate School of Nursing, Seisen Jogakuin College, 2277 Kurita, Nagano, Japan
| |
Collapse
|
10
|
Montgomery DR, Rabinowitz P, Sipos Y, Wheat EE. Soil health: A common focus for one health and planetary health interventions. One Health 2024; 18:100673. [PMID: 38283832 PMCID: PMC10820383 DOI: 10.1016/j.onehlt.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Proponents of both the One Health and Planetary Health paradigms have acknowledged that current methods of agricultural food production are driving many environmental changes with negative human health consequences, including climate change, deforestation, and the emergence of zoonotic disease and antimicrobial resistance. Currently, the training of human health, veterinary, and public health professionals typically does not include aspects of soil health. Much of the resultant discussion in One Health and Planetary Health circles regarding interventions to address the health impact of agricultural practices has focused on measures such as advocating for dietary change toward plant based diets and increasing food safety, biosecurity, disease surveillance and antimicrobial stewardship. A greater understanding of soil health and its relationship to agricultural practices could prove foundational to many of the problems that the One Health and Planetary Health perspectives aim to address, including antimicrobial resistance, zoonotic disease emergence, food security, and climate change. A consequent global focus on the health of soils offers a promise of specific opportunities for preventive interventions and a greater convergence between the One Health and Planetary Health approaches.
Collapse
Affiliation(s)
- David R. Montgomery
- Department of Earth and Space Sciences, University of Washington, United States of America
| | - Peter Rabinowitz
- Environmental and Occupational Health Sciences, University of Washington, United States of America
| | - Yona Sipos
- Environmental and Occupational Health Sciences, University of Washington, United States of America
| | - Eli E. Wheat
- School of Environmental and Forest Sciences, University of Washington, United States of America
| |
Collapse
|
11
|
Liu JL, Yao J, Li R, Liu H, Zhu JJ, Sunahara G, Duran R. Unraveling assemblage of microbial community dwelling in Dabaoshan As/Pb/Zn mine-impacted area: A typical mountain mining area of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168850. [PMID: 38043811 DOI: 10.1016/j.scitotenv.2023.168850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microbial community assemblage includes microorganisms from the three domains including Bacteria, Archaea, and Eukarya (Fungi), which play a crucial role in geochemical cycles of metal(loid)s in mine tailings. Mine tailings harbor vast proportions of metal(loid)s, representing a unique source of co-contamination of metal(loid)s that threaten the environment. The elucidation of the assembly patterns of microbial communities in mining-impacted ecospheres has received little attention. To decipher the microbial community assembly processes, the microbial communities from the five sites of the Dabaoshan mine-impacted area were profiled by the MiSeq sequencing of 16S rRNA (Bacteria and Archaea) genes and internal transcribed spacers (Fungi). Results indicated that the coexistence of 31 bacterial, 10 fungal, and 3 archaeal phyla, were mainly dominated by Mucilaginibacter, Cladophialophora, and Candidatus Nitrosotalea, respectively. The distribution of microorganisms was controlled by deterministic processes. The combination of Cu, Pb, and Sb was the main factor explaining the structure of microbial communities. Functional predicting analysis of bacteria and archaea based on the phylogenetic investigation of communities by reconstruction of unobserved states analyses revealed that the metabolic pathways related to arsenite transporter, arsenate reductase, and FeS cluster were important for metal detoxification. Furthermore, the ecological guilds (pathogens, symbiotrophs, and saprotrophs) of fungal communities explained 44.5 % of functional prediction. In addition, metal-induced oxidative stress may be alleviated by antioxidant enzymes of fungi communities, such as catalase. Such information provides new insights into the microbial assembly rules in co-contaminated sites.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Ruofei Li
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Houquan Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun-Jie Zhu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Geoffrey Sunahara
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec H9X3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
12
|
Wang Y, Cai J, Chen X, Guo B, Liu J, Qiu G, Li H. The connection between the antibiotic resistome and nitrogen-cycling microorganisms in paddy soil is enhanced by application of chemical and plant-derived organic fertilizers. ENVIRONMENTAL RESEARCH 2024; 243:117880. [PMID: 38070858 DOI: 10.1016/j.envres.2023.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
Antibiotic resistant genes (ARGs) present significant risks to environments and public health. In particular, there is increasing awareness of the role of soil nitrogen in ARG dissemination. Here, we investigated the connections between antibiotic resistome and nitrogen-cycling microbes in paddy soil by performing five-year field experiments with the treatments of no nitrogen fertilization (CK), reduced chemical nitrogen fertilization (LN), conventional chemical nitrogen fertilization (CN) and plant-derived organic nitrogen fertilization (ON). Compared with CK treatment, CN and ON treatments significantly increased soil NH4+ and TN concentrations by 25.4%-56.5% and 10.4%-20.1%, respectively. Redundancy analysis revealed significantly positive correlation of NH4+ with most ARGs, including tetA, macB and barA. Correspondingly, CN and ON treatments enhanced ARG abundances by 21.9%-23.2%. Moreover, CN and ON treatments promoted nitrate/nitrite-reducing bacteria and linked the corresponding N-cycling functional genes (narG, narH, nirK and nrfA) with most ARGs. Metagenomic binning was performed and identified Gemmatimonadaceae, Caulobacteraceae, Ilumatobacteraceae and Anaerolineaceae as hosts for both ARGs and nitrate/nitrite reduction genes that were enriched by CN and ON treatments. Soil resistome risk score analysis indicated that, although there was increased relation of ARG to nitrogen-cycling microorganisms with nitrogen fertilizer application, the environmental risk of ARGs was not increased due to the lower distribution of ARGs in pathogens. This study contributed to a deeper understanding of the role of soil nitrogen in shaping ARG profiles and controlling soil resistome risk.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jingjing Cai
- Zhejiang Sino-Geo Clean-Soil Company Limited, Zhuji, 311800, China
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
13
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
14
|
Li M, Chen L, Zhao F, Tang J, Bu Q, Feng Q, Yang L. An innovative risk evaluation method on soil pathogens in urban-rural ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132286. [PMID: 37595464 DOI: 10.1016/j.jhazmat.2023.132286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
D'Angelo EM. Diversity of virulence and antibiotic resistance genes expressed in Class A biosolids and biosolids-amended soil as revealed by metatranscriptomic analysis. Lett Appl Microbiol 2023; 76:ovad097. [PMID: 37596067 DOI: 10.1093/lambio/ovad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Class A biosolids is a treated sewage sludge, commonly applied to agricultural fields, home lawns/gardens, golf courses, forests, and remediation sites around the world. This practice is of public and agricultural concern due to the possibility that biosolids contain antibiotic-resistant bacteria and fungal pathogens that could persist for extended periods in soil. This possibility was determined by metatranscriptomic analysis of virulence, antibiotic resistance, and plasmid conjugation genes, a Class A biosolids, organically managed soil, and biosolids-amended soil under realistic conditions. Biosolids harbored numerous transcriptionally active pathogens, antibiotic resistance genes, and conjugative genes that annotated mostly to Gram-positive pathogens of animal hosts. Biosolids amendment to soil significantly increased the expression of virulence genes by numerous pathogens and antibiotic-resistant genes that were strongly associated with biosolids. Biosolids amendment also significantly increased the expression of virulence genes by native soil fungal pathogens of plant hosts, which suggests higher risks of crop damage by soil fungal pathogens in biosolids-amended soil. Although results are likely to be different in other soils, biosolids, and microbial growth conditions, they provide a more holistic, accurate view of potential health risks associated with biosolids and biosolids-amended soils than has been achievable with more selective cultivation and PCR-based techniques.
Collapse
Affiliation(s)
- Elisa Marie D'Angelo
- Plant and Soil Sciences Department, University of Kentucky, N-122 Agricultural Science Center North, Lexington, KY 40546, United States
| |
Collapse
|
16
|
Maqsood Q, Sumrin A, Waseem R, Hussain M, Imtiaz M, Hussain N. Bioengineered microbial strains for detoxification of toxic environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 227:115665. [PMID: 36907340 DOI: 10.1016/j.envres.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 05/08/2023]
Abstract
Industrialization and other anthropogenic human activities pose significant environmental risks. As a result of the hazardous pollution, numerous living organisms may suffer from undesirable diseases in their separate habitats. Bioremediation, which removes hazardous compounds from the environment using microbes or their biologically active metabolites, is one of the most successful remediation approaches. According to the United Nations Environment Program (UNEP), deteriorating soil health negatively impacts food security and human health over time. Soil health restoration is critical right now. Microbes are widely known for their importance in cleaning up toxins present in the soil, such as heavy metals, pesticides, and hydrocarbons. However, the capacity of local bacteria to digest these pollutants is limited, and the process takes an extended time. Genetically modified organisms (GMOs), whose altered metabolic pathways promote the over-secretion of a variety of proteins favorable to the bioremediation process, can speed up the breakdown process. The need for remediation procedures, degrees of soil contamination, site circumstances, broad adoptions, and numerous possibilities occurring at various cleaning stages are all studied in detail. Massive efforts to restore contaminated soils have also resulted in severe issues. This review focuses on the enzymatic removal of hazardous pollutants from the environment, such as pesticides, heavy metals, dyes, and plastics. There are also in-depth assessments of present discoveries and future plans for efficient enzymatic degradation of hazardous pollutants.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rafia Waseem
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mehwish Imtiaz
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
17
|
Qiu L, Wang Y, Du W, Ai F, Yin Y, Guo H. Efflux pumps activation caused by mercury contamination prompts antibiotic resistance and pathogen's virulence under ambient and elevated CO 2 concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160831. [PMID: 36526183 DOI: 10.1016/j.scitotenv.2022.160831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The occurrence and development of antibiotic resistance genes (ARGs) in pathogens poses serious threatens to global health. Agricultural soils provide reservoirs for pathogens and ARGs, closely related to public health and food safety. Especially, metals stress provides more long-standing selection pressure for ARGs, and climate change is a "threat multiplier" for the spread of ARGs. However, little is known about the impact of metals contamination on pathogens and ARGs in agricultural soils and their sensitivity to ongoing climate changes. To fill this gap, a pot experiment was conducted in open-top chambers (OTCs) to investigate the influence of mercury (Hg) contamination on the distribution of soil pathogens and ARGs under ambient and elevated CO2 concentration. Results showed that the relative abundance of common plant and human pathogens increased significantly in Hg-contaminated soil under two CO2 concentrations. Hg contamination was a positive effector of the activation of efflux pumps and offensive virulence factors (adhere and secretion system) under two CO2 levels. Activation of efflux pumps caused by Hg contamination might contribute to changes of virulence or fitness of certain pathogens. Overall, our study emphasizes the critical role of efflux pumps as an intersection of antibiotic resistance and pathogen's virulence under Hg stress.
Collapse
Affiliation(s)
- Linlin Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yabo Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Dague AL, Valeeva LR, McCann NM, Sharipova MR, Valentovic MA, Bogomolnaya LM, Shakirov EV. Identification and Analysis of Antimicrobial Activities from a Model Moss Ceratodon purpureus. Metabolites 2023; 13:350. [PMID: 36984790 PMCID: PMC10057591 DOI: 10.3390/metabo13030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence of bacterial drug resistance is often viewed as the next great health crisis of our time. While more antimicrobial agents are urgently needed, very few new antibiotics are currently in the production pipeline. Here, we aim to identify and characterize novel antimicrobial natural products from a model dioicous moss, Ceratodon purpureus. We collected secreted moss exudate fractions from two C. purpureus strains, male R40 and female GG1. Exudates from the female C. purpureus strain GG1 did not exhibit inhibitory activity against any tested bacteria. However, exudates from the male moss strain R40 exhibited strong inhibitory properties against several species of Gram-positive bacteria, including Staphylococcus aureus and Enterococcus faecium, though they did not inhibit the growth of Gram-negative bacteria. Antibacterial activity levels in C. purpureus R40 exudates significantly increased over four weeks of moss cultivation in liquid culture. Size fractionation experiments indicated that the secreted bioactive compounds have a relatively low molecular weight of less than 1 kDa. Additionally, the R40 exudate compounds are thermostable and not sensitive to proteinase K treatment. Overall, our results suggest that the bioactive compounds present in C. purpureus R40 exudates can potentially add new options for treating infections caused by antibiotic-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Ashley L. Dague
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lia R. Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Natalie M. McCann
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Margarita R. Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Monica A. Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lydia M. Bogomolnaya
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Eugene V. Shakirov
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
19
|
Xiong C, Lu Y. Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:833-849. [PMID: 36184075 DOI: 10.1111/1758-2229.13126] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Soils are a main repository of biodiversity harbouring immense diversity of microbial species that plays a central role in fundamental ecological processes and acts as the seed bank for emergence of the plant microbiome in cropland ecosystems. Crop-associated microbiomes play an important role in shaping plant performance, which includes but not limited to nutrient uptake, disease resistance, and abiotic stress tolerance. Although our understanding of structure and function of soil and plant microbiomes has been rapidly advancing, most of our knowledge comes from ecosystems in natural environment. In this review, we present an overview of the current knowledge of diversity and function of microbial communities along the soil-plant continuum in agroecosystems. To characterize the ecological mechanisms for community assembly of soil and crop microbiomes, we explore how crop host and environmental factors such as plant species and developmental stage, pathogen invasion, and land management shape microbiome structure, microbial co-occurrence patterns, and crop-microbiome interactions. Particularly, the relative importance of deterministic and stochastic processes in microbial community assembly is illustrated under different environmental conditions, and potential sources and keystone taxa of the crop microbiome are described. Finally, we highlight a few important questions and perspectives in future crop microbiome research.
Collapse
Affiliation(s)
- Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, People's Republic of China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Wyckhuys KA, Zhang W, Colmenarez YC, Simelton E, Sander BO, Lu Y. Tritrophic defenses as a central pivot of low-emission, pest-suppressive farming systems. CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY 2022; 58:101208. [PMID: 36320406 PMCID: PMC9611972 DOI: 10.1016/j.cosust.2022.101208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic has spotlighted the intricate connections between human and planetary health. Given that pesticide-centered crop protection degrades ecological resilience and (in-)directly harms human health, the adoption of ecologically sound, biodiversity-driven alternatives is imperative. In this Synthesis paper, we illuminate how ecological forces can be manipulated to bolster 'tritrophic defenses' against crop pests, pathogens, and weeds. Three distinct, yet mutually compatible approaches (habitat-mediated, breeding-dependent, and epigenetic tactics) can be deployed at different organizational levels, that is, from an individual seed to entire farming landscapes. Biodiversity can be harnessed for crop protection through ecological infrastructures, diversification tactics, and reconstituted soil health. Crop diversification is ideally guided by interorganismal interplay and plant-soil feedbacks, entailing resistant cultivars, rotation schemes, or multicrop arrangements. Rewarding opportunities also exist to prime plants for enhanced immunity or indirect defenses. As tritrophic defenses spawn multiple societal cobenefits, they could become core features of healthy, climate-resilient, and low-carbon food systems.
Collapse
Affiliation(s)
- Kris Ag Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Queensland, Brisbane, Australia
- Fujian Agriculture and Forestry University, Fuzhou, China
- Chrysalis Consulting, Hanoi, Viet Nam
| | - Wei Zhang
- International Food Policy Research Institute (IFPRI-CGIAR), Washington DC, USA
| | | | | | - Bjorn O Sander
- International Rice Research Institute (IRRI-CGIAR), Hanoi, Viet Nam
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 2022; 13:6. [PMID: 35468869 PMCID: PMC9036806 DOI: 10.1186/s43008-022-00092-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/30/2023] Open
Abstract
Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
Collapse
|
22
|
Muramoto J, Parr DM, Perez J, Wong DG. Integrated Soil Health Management for Plant Health and One Health: Lessons From Histories of Soil-borne Disease Management in California Strawberries and Arthropod Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.839648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many soil health assessment methods are being developed. However, they often lack assessment of soil-borne diseases. To better address management strategies for soil-borne disease and overall soil and plant health, the concept of Integrated Soil Health Management (ISHM) is explored. Applying the concept of Integrated Pest Management and an agroecological transdisciplinary approach, ISHM offers a framework under which a structure for developing and implementing biointensive soil health management strategies for a particular agroecosystem is defined. As a case study, a history of soil-borne disease management in California strawberries is reviewed and contrasted with a history of arthropod pest management to illustrate challenges associated with soil-borne disease management and the future directions of soil health research and soil-borne disease management. ISHM system consists of comprehensive soil health diagnostics, farmers' location-specific knowledge and adaptability, a suite of soil health management practices, and decision support tools. As we better understand plant-soil-microorganism interactions, including the mechanisms of soil suppressiveness, a range of diagnostic methodologies and indicators and their action thresholds may be developed. These knowledge-intensive and location-specific management systems require transdisciplinary approaches and social learning to be co-developed with stakeholders. The ISHM framework supports research into the broader implications of soil health such as the “One health” concept, which connects soil health to the health of plants, animals, humans, and ecosystems and research on microbiome and nutrient cycling that may better explain these interdependencies.
Collapse
|
23
|
Letarov AV, Letarova MA, Adler NL, Kulikov EE, Clokie M, Morozov AY, Galyov EE. Effect of Chemical Factors on Natural Biocontrol of the Melioidosis Agent by AMP1-Like Bacteriophages in Agricultural Ecosystems. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
ENTEROBACTERIACEAE IN SOILS AND ATMOSPHERIC DUST AEROSOL ACCUMULATIONS OF MOSCOW CITY. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100124. [PMID: 35909602 PMCID: PMC9325881 DOI: 10.1016/j.crmicr.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
The topsoils and atmospheric dust aerosols of the various areas of the city of Moscow were studied. Most of the dust samples contained a considerable number of particles enriched in phosphorus - a sign of contamination by feces. A variety of Enterobacteriaceae species, including opportunistic and pathogenic species, were isolated from the topsoil and dust samples and identified using 16S rDNA nucleotide sequences: Enterobacter aerogenes, E. agglomerans, E. cloacae, E. kobei, E. nimipressuralis, Escherichia coli, Citrobacter europaeus, Klebsiella granulomatis, K. grimontii, K. oxytoca, K. quasipneumoniae, K. variicola, Kluyvera ascorbate, Kluyvera intermedia, Leclercia adecarboxylata, Salmonella enterica and Trabulsiella guamensis. The greatest diversity of pathogens was isolated from spring soil and dust samples immediately after spring snowmelt. Antibiotic resistance of the isolated E. coli strains was tested using disks with a wide range of antimicrobial drugs: Amoxicillin, Ampicillin, Meropenem, Pefloxacin, Streptomycin, Ticarcillin+clavulanic acid, Fosfomycin, Ceftibuten, Ciprofloxacin. Resistance was observed in more than 22% of E. coli strains. The traffic area had a significant number of antibiotic-resistant E. coli strains, clearly indicating a high health risk from soil and dust exposure.
Collapse
|
25
|
Rebello S, Nathan VK, Sindhu R, Binod P, Awasthi MK, Pandey A. Bioengineered Microbes for Soil Health Restoration - Present Status and Future. Bioengineered 2021; 12:12839-12853. [PMID: 34775906 PMCID: PMC8810056 DOI: 10.1080/21655979.2021.2004645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
According to the United Nations Environment Programme (UNEP), soil health is declining over the decades and it has an adverse impact on human health and food security. Hence, soil health restoration is a need of the hour. It is known that microorganisms play a vital role in remediation of soil pollutants like heavy metals, pesticides, hydrocarbons, etc. However, the indigenous microbes have a limited capacity to degrade these pollutants and it will be a slow process. Genetically modified organisms (GMOs) can catalyze the degradation process as their altered metabolic pathways lead to hypersecretions of various biomolecules that favor the bioremediation process. This review provides an overview on the application of bioengineered microorganisms for the restoration of soil health by degradation of various pollutants. It also sheds light on the challenges of using GMOs in environmental application as their introduction may affect the normal microbial community in soil. Since soil health also refers to the potential of native organisms to survive, the possible changes in the native microbial community with the introduction of GMOs are also discussed. Finally, the future prospects of using bioengineered microorganisms in environmental engineering applications to make the soil fertile and healthy have been deciphered. With the alarming rates of soil health loss, the treatment of soil and soil health restoration need to be fastened to a greater pace and the combinatorial efforts unifying GMOs, plant growth-promoting rhizobacteria, and other soil amendments will provide an effective solution to soil heath restoration ten years ahead.
Collapse
Affiliation(s)
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi - 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow - 226 001, India.,Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| |
Collapse
|
26
|
Thiele-Bruhn S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200183. [PMID: 34365823 PMCID: PMC8349636 DOI: 10.1098/rstb.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Intact, 'healthy' soils provide indispensable ecosystem services that largely depend on the biotic activity. Soil health is connected with human health, yet, knowledge of the underlying soil functioning remains incomplete. This review highlights selected services, i.e. (i) soil as a genetic resource and hotspot of biodiversity, forming the basis for providing (ii) biochemical resources and (iii) medicinal services and goods. Soils harbour an unrivalled biodiversity of organisms, especially microorganisms. Some of the abilities of autochthonous microorganisms and their relevant enzymes serve (i) to improve natural soil functions and in particular plant growth, e.g. through beneficial plant growth-promoting, symbiotic and mycorrhizal microorganisms, (ii) to act as biopesticides, (iii) to facilitate biodegradation of pollutants for soil bioremediation and (iv) to yield enzymes or chemicals for industrial use. Soils also exert direct effects on human health. Contact with soil enriches the human microbiome, affords protection against allergies and promotes emotional well-being. Medicinally relevant are soil substrates such as loams, clays and various minerals with curative effects as well as pharmaceutically active organic chemicals like antibiotics that are formed by soil microorganisms. By contrast, irritating minerals, soil dust inhalation and misguided soil ingestion may adversely affect humans. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People.
Collapse
Affiliation(s)
- Sören Thiele-Bruhn
- Soil Science, University of Trier, Behringstrasse 21, D-54286 Trier, Germany
| |
Collapse
|
27
|
Smith P, Keesstra SD, Silver WL, Adhya TK. The role of soils in delivering Nature's Contributions to People. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200169. [PMID: 34365820 DOI: 10.1098/rstb.2020.0169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This theme issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). The papers in this issue show that soils can contribute positively to the delivery of all NCP. These contributions can be maximized through careful soil management to provide healthy soils, but poorly managed, degraded or polluted soils may contribute negatively to the delivery of NCP. Soils are also shown to contribute positively to the UN Sustainable Development Goals. Papers in the theme issue emphasize the need for careful soil management. Priorities for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation, (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health, productivity and sustainability and to prevent degradation, and (iii) for degraded soils, restore to full soil health. Our knowledge of what constitutes sustainable soil management is mature enough to implement best management practices, in order to maintain and improve soil health. The papers in this issue show the vast potential of soils to contribute to NCP. This is not only desirable, but essential to sustain a healthy planet and if we are to deliver sustainable development in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Pete Smith
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| | - Saskia D Keesstra
- Team Soil, Water and Land Use, Wageningen Environmental Research, Wageningen, The Netherlands.,Civil, Surveying and Environmental Engineering and Centre for Water Security and Environmental Sustainability, The University of Newcastle, Callaghan, Australia
| | - Whendee L Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Tapan K Adhya
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
28
|
Smith P, Keesstra SD, Silver WL, Adhya TK, De Deyn GB, Carvalheiro LG, Giltrap DL, Renforth P, Cheng K, Sarkar B, Saco PM, Scow K, Smith J, Morel JC, Thiele-Bruhn S, Lal R, McElwee P. Soil-derived Nature's Contributions to People and their contribution to the UN Sustainable Development Goals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200185. [PMID: 34365826 DOI: 10.1098/rstb.2020.0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This special issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). Here, we combine this assessment and previously published relationships between NCP and delivery on the UN Sustainable Development Goals (SDGs) to infer contributions of soils to the SDGs. We show that in addition to contributing positively to the delivery of all NCP, soils also have a role in underpinning all SDGs. While highlighting the great potential of soils to contribute to sustainable development, it is recognized that poorly managed, degraded or polluted soils may contribute negatively to both NCP and SDGs. The positive contribution, however, cannot be taken for granted, and soils must be managed carefully to keep them healthy and capable of playing this vital role. A priority for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation; (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health and sustainability and to prevent degradation; and (iii) for degraded soils, restore to full soil health. We have enough knowledge now to move forward with the implementation of best management practices to maintain and improve soil health. This analysis shows that this is not just desirable, it is essential if we are to meet the SDG targets by 2030 and achieve sustainable development more broadly in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Pete Smith
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Saskia D Keesstra
- Soil, Water and Land Use Team, Wageningen University and Research, Wageningen, The Netherlands.,Civil, Surveying and Environmental Engineering and Centre for Water Security and Environmental Sustainability, University of Newcastle, Callaghan, Australia
| | - Whendee L Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | | - Gerlinde B De Deyn
- Soil, Water and Land Use Team, Wageningen University and Research, Wageningen, The Netherlands
| | - Luísa G Carvalheiro
- Departamento de Ecologia, Universidade Federal de Goiás, 74001-970, Goiânia, Brazil.,Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Donna L Giltrap
- Manaaki Whenua Landcare Research, Palmerston North, New Zealand
| | - Phil Renforth
- Research Centre for Carbon Solutions, Heriot Watt University, Edinburgh, UK
| | - Kun Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Patricia M Saco
- Civil, Surveying and Environmental Engineering and Centre for Water Security and Environmental Sustainability, University of Newcastle, Callaghan, Australia
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Jo Smith
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Jean-Claude Morel
- Tribology and Systems Dynamics Laboratory (LTDS-UMR CNRS 5513), National School of Civil Engineering (ENTPE), University of Lyon, Lyon, France
| | | | - Rattan Lal
- Carbon Management and Sequestration Center, Ohio State University, Columbus, OH, USA
| | - Pam McElwee
- Department of Human Ecology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|