1
|
Phillips LT, Bradshaw D, Packer S, Simmons R, Rosenberg WM, Sabin CA, Mbisa JL. Direct-acting antiviral treatment outcomes in people infected with endemic compared to epidemic hepatitis C virus subtypes in England. J Infect 2025; 90:106465. [PMID: 40054668 DOI: 10.1016/j.jinf.2025.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Current evidence suggests reduced efficacy of direct-acting antiviral (DAA) treatment among people with endemic Hepatitis C virus (HCV) subtypes rare to high-income countries. We aimed to determine real-world DAA treatment outcomes of people with endemic HCV subtypes in England. METHODS Data were collected through a national treatment program. People who had their virus subtyped between 2019-2023, were resident in England and had an outcome recorded for their first DAA treatment episode, were included. Subtypes were divided into epidemic and endemic in England; endemic subtypes were confirmed with whole genome sequencing and resistance associated substitutions (RAS) were determined. Logistic regression was used to determine associations between treatment outcome and exposure variables. RESULTS In people with an outcome recorded, 93 with an endemic and 8671 with an epidemic HCV subtype were identified, of whom 49.5% (46/93) and 91.8% (7953/8668) achieved a sustained virological response at 12 weeks post end of DAA treatment (SVR12), respectively. In the multivariable model, people with an endemic subtype had 93% (aOR 0.07 95%CI 0.04-0.12, P=<0.001) reduced odds of achieving SVR12. Treatment with sofosbuvir/velpatasvir or glecaprevir/pibrentasvir was successful for genotypes 1, 2, 4 and 5 (SVR12 100%, n=13) but not 3 (27.3%, n=22) endemic subtypes. Sofosbuvir/velpatasvir/voxilaprevir was successful for GT3 endemic subtypes at retreatment (SVR12 11/12, 91.7%). Treatment failures for genotypes 1, 3 and 4 were likely mediated by naturally occurring baseline NS5A RAS (median n=2). DISCUSSION This study provides further evidence that endemic HCV subtypes lead to sub-optimal DAA efficacy, which may impact global HCV elimination.
Collapse
Affiliation(s)
- Laura T Phillips
- UK Health Security Agency, London, UK; National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, London, UK
| | - Daniel Bradshaw
- UK Health Security Agency, London, UK; National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, London, UK.
| | | | - Ruth Simmons
- UK Health Security Agency, London, UK; National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, London, UK
| | - William M Rosenberg
- National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, London, UK; UCL Institute for Liver and Digestive Health, Royal Free London, UK
| | - Caroline A Sabin
- National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, London, UK; Institute for Global Health, UCL, Royal Free London, UK
| | - Jean L Mbisa
- UK Health Security Agency, London, UK; National Institute for Health and Care Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, London, UK
| |
Collapse
|
2
|
Mustafa A, Davlidova S, Abidi SH, Begimbetova D, Heimer R, Vermund SH, Ali S. Prevalence of resistance-associated substitutions (RAS) in hepatitis C virus in the Former Soviet Union countries. BMJ Open Gastroenterol 2025; 12:e001657. [PMID: 39848793 PMCID: PMC11758705 DOI: 10.1136/bmjgast-2024-001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE The emergence of resistance-associated substitutions (RASs) poses a significant challenge to the effective treatment of hepatitis C virus (HCV) infection using direct-acting antivirals. This study's objective was to observe the prevalence of HCV genotypes and RAS within the Former Soviet Union (FSU) countries. METHODS We analysed 60 NS3, 313 NS5A and 1119 NS5B sequences of HCV deposited in open-access databases from 11 FSU countries for the prevalence of genotypes and the presence of RAS using the Geno2Pheno software. RESULTS The following NS3 RASs were revealed through our analyses: 156P/S/T, 168del, 80K, 55A and 174S. The most prevalent NS5A RAS was 30K (12.69%) in genotype 3a, associated with resistance to daclatasvir, elbasvir and ledipasvir, followed by 62S (8.96% in genotype 3a), linked with resistance to daclatasvir, and 93H (3.95% and 6.72% in genotypes 1b and 3a, respectively), conferring resistance to daclatasvir, ombitasvir, elbasvir, ledipasvir and velpatasvir. The NS5B RASs found in this study were 451S and 556G, associated with resistance to dasabuvir. CONCLUSION The high prevalence of HCV genotypes 1b and 3a in the FSU region and the presence of specific RASs should be considered when determining the most effective treatment regimen for HCV-infected individuals in the FSU countries.
Collapse
Affiliation(s)
- Aidana Mustafa
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | | | - Syed Hani Abidi
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | | | | | | | - Syed Ali
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
3
|
Tung HD, Chen JJ. Genetic history of hepatitis C virus genotype 6 in Taiwan. J Formos Med Assoc 2024; 123:926-933. [PMID: 37996321 DOI: 10.1016/j.jfma.2023.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 03/09/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
Unlike hepatitis C virus (HCV) genotype (GT) 6, which is widely circulated in Southeast Asia and South China, GT 6 was not reported in Taiwan until 2006. GT 1b and 2a, also known as global HCV subtypes, have been reported as major GTs circulating in Taiwan. Because of improvement in genotyping kits and sequencing techniques for the subtyping of HCV, an increasing number of GT 6 subtypes have been reported, especially subtype 6a among intravenous drug users with human immunodeficiency virus infection after an outbreak since 2003. Thus, HCV GT 6 infection is regarded to be closely associated with injection drug use. However, recently, we found an unexpectedly high GT 6 prevalence in the general population in Tainan, southern Taiwan. Most of these GT 6 samples belonged to a putative novel subtype closely related to 6g and 6w instead of 6a. Phylogenetic analyses indicated that this putative 6g-related novel subtype and 6w could be indigenous in southern Taiwan for centuries. Southern Taiwan could be the origin of HCV subtype 6w. This finding might change the perspective of HCV epidemiology in Taiwan.
Collapse
Affiliation(s)
- Hung-Da Tung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Jyh-Jou Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan.
| |
Collapse
|
4
|
Vo-Quang E, Pawlotsky JM. 'Unusual' HCV genotype subtypes: origin, distribution, sensitivity to direct-acting antiviral drugs and behaviour on antiviral treatment and retreatment. Gut 2024; 73:1570-1582. [PMID: 38782565 PMCID: PMC11347264 DOI: 10.1136/gutjnl-2024-332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The high genetic diversity of hepatitis C virus (HCV) has led to the emergence of eight genotypes and a large number of subtypes in limited geographical areas. Currently approved pangenotypic DAA regimens have been designed and developed to be effective against the most common subtypes (1a, 1b, 2a, 2b, 2c, 3a, 4a, 5a and 6a). However, large populations living in Africa and Asia, or who have migrated from these regions to industrialised countries, are infected with 'unusual', non-epidemic HCV subtypes, including some that are inherently resistant to currently available direct-acting antiviral (DAA) drugs due to the presence of natural polymorphisms at resistance-associated substitution positions. In this review article, we describe the origin and subsequent global spread of HCV genotypes and subtypes, the current global distribution of common and unusual HCV subtypes, the polymorphisms naturally present in the genome sequences of unusual HCV subtypes that may confer inherently reduced susceptibility to DAA drugs and the available data on the response of unusual HCV subtypes to first-line HCV therapy and retreatment. We conclude that the problem of unusual HCV subtypes that are inherently resistant to DAAs and its threat to the global efforts to eliminate viral hepatitis are largely underestimated and warrant vigorous action.
Collapse
Affiliation(s)
- Erwan Vo-Quang
- National Reference Centre for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- Institut Mondor de Recherche Biomédicale (INSERM U955), Créteil, France
- Department of Hepatology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
| | - Jean-Michel Pawlotsky
- National Reference Centre for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- Institut Mondor de Recherche Biomédicale (INSERM U955), Créteil, France
| |
Collapse
|
5
|
Yang XC, Hong ZP, Wang Y, Meng N, Hu Y, Xiong QY, Qin DW, Shen D, Yang XL. Growth history of hepatitis C virus among HIV/HCV co-infected patients in Guizhou Province. Front Genet 2023; 14:1171892. [PMID: 37347053 PMCID: PMC10280012 DOI: 10.3389/fgene.2023.1171892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Background: The evolutionary and epidemiological history and the regional differences of various hepatitis C virus (HCV) genotypes are complex. Our aim was to better understand the molecular epidemiology and evolutionary dynamics of HCV among HIV/HCV co-infected individuals in Guizhou Province. This information could contribute to improve HCV prevention and control strategies in Guizhou and surrounding provinces. Methods: The HCV RNA was extracted from the serum of HIV/HCV co-infected patients, and reverse transcription/nested PCR was performed to amplify nucleotide sequences of the C-E1 region. Then, the successfully amplified sequences were selected for phylogenetic analysis. The available C-E1 region reference sequences from the surrounding provinces of Guizhou (Guangxi, Yunnan, Hunan, and Sichuan) were retrieved in GenBank, and the evolutionary analysis by Bayesian Markov chain Monte Carlo (MCMC) algorithm was performed using BEAST software to reconstruct a phylogeographic tree in order to explore their migration patterns. Finally, the epidemiological history of HCV in the Guizhou region was retraced by reconstructing Bayesian skyline plots (BSPs) after excluding sequences from surrounding provinces. Results: Among 186 HIV/HCV co-infected patients, the C-E1 region sequence was successfully amplified in 177 cases. Phylogenetic analysis classified these sequences into six subtypes: 1a, 1b, 3a, 3b, 6a, and 6n. Among them, subtype 6a was the most dominant strain (n = 70), followed by 3b (n = 55), 1b (n = 31), 3a (n = 11), 1a (n = 8), and 6n (n = 2). By reconstructing the phylogeographic tree, we estimated that the 6a strain in Guizhou mainly originated from Yunnan and Guangxi, while the 3b strain emerged due to transmission from the IDU network in Yunnan. Subtypes 1b, 3a, 3b, and 6a, as the major subtypes of HCV in HIV/HCV co-infected individuals in Guizhou, emerged and later grew more rapidly than the national average. Notably, BSPs of the currently prevalent HCV predominant strain subtype 6a in Guizhou have shown a rapid population growth since 2004. Although the growth rate slowed down around 2010, this growth has continued to date. Conclusion: Overall, despite the improvement and implementation of a series of HCV prevention and control policies and measures, a delayed growth pattern may indicate a unique history of the spread of 6a in Guizhou. Its trend as the dominant strain in Guizhou in recent years may continue to increase slowly over subsequent years.
Collapse
Affiliation(s)
- Xiu-Cheng Yang
- Department of Infectious Disease Control, Aba Center for Disease Control and Prevention, Aba, Sichuan, China
| | - Zhang-Ping Hong
- Department of Laboratory, Guiyang Medical Center for Public Health, Guiyang, Guizhou, China
| | - Yi Wang
- Department of Laboratory, Guiyang Medical Center for Public Health, Guiyang, Guizhou, China
| | - Nan Meng
- Department of Laboratory, Guiyang Medical Center for Public Health, Guiyang, Guizhou, China
| | - Yong Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian-Yu Xiong
- Department of Laboratory, Guiyang Medical Center for Public Health, Guiyang, Guizhou, China
| | - Da-Wen Qin
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Du Shen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xing-Lin Yang
- Department of Laboratory, Guiyang Medical Center for Public Health, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Kashnikova AD, Bystrova TN, Polyanina AV, Zalesskikh, AA. Genetic Monitoring as a Component of Hepatitis C Surveillance. ЗДОРОВЬЕ НАСЕЛЕНИЯ И СРЕДА ОБИТАНИЯ - ЗНИСО / PUBLIC HEALTH AND LIFE ENVIRONMENT 2022:76-81. [DOI: 10.35627/2219-5238/2022-30-11-76-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Background: The hepatitis C virus is known for its high spontaneous mutation rate and genetic heterogeneity. Genotype distribution varies greatly between different regions of Russia. This phenomenon reflects autonomous nature of the epidemic process of the hepatitis C infection.
Objective: To investigate and analyze the diversity of genetic variants of the hepatitis C virus currently circulating in the city of Nizhny Novgorod.
Material and methods: Official hepatitis C incidence data for the Nizhny Novgorod Region were analyzed retrospectively. From the blood serum bank, we obtained 142,254 serum samples from examined outpatients and patients admitted to hospitals for noninfectious diseases. Laboratory testing included detection of the following markers for hepatitis C virus infection: serum anti-HCV IgM and IgG, antibodies to structural and non-structural viral proteins. A part of seropositive samples was tested for HCV RNA and genotyped by real-time PCR.
Results: We observed stabilization of the trend in the incidence of acute hepatitis C in Nizhny Novgorod and a steady decrease in the incidence of newly diagnosed chronic hepatitis C. The antibody serology tests showed that the prevalence of anti-HCV was 3.1 ± 0.1 per 100 examined persons. HCV RNA was detected in 1.9 ± 0.1 % of adults, the most affected being those aged 40–49 years. Subtypes 1b and 3a prevailed while subtype 1a, genotype 2, and mixed variants were rare.
Conclusion: Introduction of advances in genetic diagnosis into the system of epidemiologic hepatitis C surveillance is determined by the relevance of conducting a comprehensive examination of people infected with HCV in order to monitor circulation of hepatitis C virus genotypes/subtypes and to understand the evolution and epidemiological features of the disease in different areas.
Collapse
|
7
|
Molecular Epidemiology and Baseline Resistance of Hepatitis C Virus to Direct Acting Antivirals in Croatia. Pathogens 2022; 11:pathogens11070808. [PMID: 35890052 PMCID: PMC9323280 DOI: 10.3390/pathogens11070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular epidemiology of hepatitis C virus (HCV) is exceptionally complex due to the highly diverse HCV genome. Genetic diversity, transmission dynamics, and epidemic history of the most common HCV genotypes were inferred by population sequencing of the HCV NS3, NS5A, and NS5B region followed by phylogenetic and phylodynamic analysis. The results of this research suggest high overall prevalence of baseline NS3 resistance associate substitutions (RAS) (33.0%), moderate prevalence of NS5A RAS (13.7%), and low prevalence of nucleoside inhibitor NS5B RAS (8.3%). Prevalence of RAS significantly differed according to HCV genotype, with the highest prevalence of baseline resistance to NS3 inhibitors and NS5A inhibitors observed in HCV subtype 1a (68.8%) and subtype 1b (21.3%), respectively. Phylogenetic tree reconstructions showed two distinct clades within the subtype 1a, clade I (62.4%) and clade II (37.6%). NS3 RAS were preferentially associated with clade I. Phylogenetic analysis demonstrated that 27 (9.0%) HCV sequences had a presumed epidemiological link with another sequence and classified into 13 transmission pairs or clusters which were predominantly comprised of subtype 3a viruses and commonly detected among intravenous drug users (IDU). Phylodynamic analyses highlighted an exponential increase in subtype 1a and 3a effective population size in the late 20th century, which is a period associated with an explosive increase in the number of IDU in Croatia.
Collapse
|
8
|
Sugrue JA, O’Farrelly C. Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort. Pathogens 2022; 11:pathogens11030306. [PMID: 35335630 PMCID: PMC8953313 DOI: 10.3390/pathogens11030306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Infections caused inadvertently during clinical intervention provide valuable insight into the spectrum of human responses to viruses. Delivery of hepatitis C virus (HCV)-contaminated blood products in the 70s (before HCV was identified) have dramatically increased our understanding of the natural history of HCV infection and the role that host immunity plays in the outcome to viral infection. In Ireland, HCV-contaminated anti-D immunoglobulin (Ig) preparations were administered to approximately 1700 pregnant Irish rhesus-negative women in 1977–1979. Though tragic in nature, this outbreak (alongside a smaller episode in 1993) has provided unique insight into the host factors that influence outcomes after HCV exposure and the subsequent development of disease in an otherwise healthy female population. Despite exposure to highly infectious batches of anti-D, almost 600 of the HCV-exposed women have never shown any evidence of infection (remaining negative for both viral RNA and anti-HCV antibodies). Detailed analysis of these individuals may shed light on innate immune pathways that effectively block HCV infection and potentially inform us more generally about the mechanisms that contribute to viral resistance in human populations.
Collapse
Affiliation(s)
- Jamie A. Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin, Ireland
- Correspondence: (J.A.S.); (C.O.)
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02R590 Dublin, Ireland
- Correspondence: (J.A.S.); (C.O.)
| |
Collapse
|
9
|
Xu R, Aranday-Cortes E, Leitch ECM, Hughes J, Singer JB, Sreenu V, Tong L, da Silva Filipe A, Bamford CGG, Rong X, Huang J, Wang M, Fu Y, McLauchlan J. The evolutionary dynamics and epidemiological history of hepatitis C virus genotype 6, including unique strains from the Li community of Hainan Island, China. Virus Evol 2022; 8:veac012. [PMID: 35600095 PMCID: PMC9115904 DOI: 10.1093/ve/veac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
Hepatitis C virus (HCV) is a highly diverse pathogen that frequently establishes a chronic long-term infection, but the origins and drivers of HCV diversity in the human population remain unclear. Previously unidentified strains of HCV genotype 6 (gt6) were recently discovered in chronically infected individuals of the Li ethnic group living in Baisha County, Hainan Island, China. The Li community, who were early settlers on Hainan Island, has a distinct host genetic background and cultural identity compared to other ethnic groups on the island and mainland China. In this report, we generated 33 whole virus genome sequences to conduct a comprehensive molecular epidemiological analysis of these novel gt6 strains in the context of gt6 isolates present in Southeast Asia. With the exception of one gt6a isolate, the Li gt6 sequences formed three novel clades from two lineages which constituted 3 newly assigned gt6 subtypes and 30 unassigned strains. Using Bayesian inference methods, we dated the most recent common ancestor for all available gt6 whole virus genome sequences to approximately 2767 bce (95 per cent highest posterior density (HPD) intervals, 3670-1397 bce), which is far earlier than previous estimates. The substitution rate was 1.20 × 10-4 substitutions/site/year (s/s/y), and this rate varied across the genome regions, from 1.02 × 10-5 s/s/y in the 5'untranslated region (UTR) region to 3.07 × 10-4 s/s/y in E2. Thus, our study on an isolated ethnic minority group within a small geographical area of Hainan Island has substantially increased the known diversity of HCV gt6, already acknowledged as the most diverse HCV genotype. The extant HCV gt6 sequences from this study were probably transmitted to the Li through at least three independent events dating perhaps from around 4,000 years ago. This analysis describes deeper insight into basic aspects of HCV gt6 molecular evolution including the extensive diversity of gt6 sequences in the isolated Li ethnic group.
Collapse
Affiliation(s)
| | - Elihu Aranday-Cortes
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - E Carol McWilliam Leitch
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Joshua B Singer
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Vattipally Sreenu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Connor G G Bamford
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Xia Rong
- Guangzhou Blood Center, Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 LuYuan Road, Guangzhou, Guangdong 510095, P.R. China
| | - Jieting Huang
- Guangzhou Blood Center, Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 LuYuan Road, Guangzhou, Guangdong 510095, P.R. China
| | - Min Wang
- Guangzhou Blood Center, Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 LuYuan Road, Guangzhou, Guangdong 510095, P.R. China
| | - Yongshui Fu
- Guangzhou Blood Center, Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 LuYuan Road, Guangzhou, Guangdong 510095, P.R. China
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
- Guangzhou Blood Center, Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 LuYuan Road, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
10
|
Ullah N, Kakakhel MA, Bai Y, Xi L, Khan I, Kalra BS, Kumar T, Ahmad H, Shah M, Guanlan L, Zhang C. Prevalence of active HCV infection and genotypic distribution among the general population of district Mardan, Pakistan. BRAZ J BIOL 2021; 83:e244977. [PMID: 34287506 DOI: 10.1590/1519-6984.244977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is the serious global public health burden of liver disease. Approximately 170 million people in the world are infected with (HCV). In Pakistan, where the disease has high occurrence rate. The present study envisages an up-to-date prevalence of HCV and genotypic distribution in the general population of Mardan District, Khyber Pakhtunkhwa (KP), Pakistan. The blood samples from 6,538 individuals including 3,263 males and 3,275 females were analyzed for hepatitis C surface antigen by Immuno-chromatographic test (ICT), Enzyme-linked immunosorbent assay (ELISA), and reverse transcription-polymerase chain reaction (PCR). It was found that 396 (12.13%) out of 3263 individuals contained antibodies in their blood against HCV, while among the different age groups, the highest incidences of HCV antibodies were found in the 31-40 age group (11.01%). The ICT positive samples were further screened by nested PCR to determine the existence of active HCV-RNA. It was identified that 7.11% (3263) of the total population (6538) tested was positive, among which the 461 (14.07%) females possessed antibodies in their blood against HCV. Our data showed total HCV infection in the investigated population was 5.78%. Higher percentage of HCV prevalence was detected in males than females in the age group 31-40 and 41-50. To compare the prevalence of HCV genotypes age-wise in male and female genotype 3a was found most prevalent genotype followed by 1a, 2a and 3b, respectively.
Collapse
Affiliation(s)
- N Ullah
- Lanzhou University, School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - M A Kakakhel
- Lanzhou University, School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - Y Bai
- Lanzhou University, School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - L Xi
- Lanzhou University, School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - I Khan
- Lanzhou University, School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - B S Kalra
- Virtual University of Pakistan, Department of Bioinformatics and Computational Biology, Lahore, Pakistan
| | - T Kumar
- Ministry of Agriculture, Key Laboratory of Grassland Livestock Industry Innovation, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P.R. China.,Lanzhou University, College of Pastoral Agriculture Science and Technology, Lanzhou, P.R. China
| | - H Ahmad
- Hazara University Mansehra, Department of Genetics, Mansehra, Pakistan
| | - M Shah
- University of Swat, Centre for Animal Sciences and Fisheries, Swat, Khyber Pakhtunkhwa, Pakistan
| | - L Guanlan
- Lanzhou University, School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - C Zhang
- Lanzhou University, School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Tisthammer KH, Dong W, Joy JB, Pennings PS. Comparative Analysis of Within-Host Mutation Patterns and Diversity of Hepatitis C Virus Subtypes 1a, 1b, and 3a. Viruses 2021; 13:511. [PMID: 33808782 PMCID: PMC8003410 DOI: 10.3390/v13030511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding within-host evolution is critical for predicting viral evolutionary outcomes, yet such studies are currently lacking due to difficulty involving human subjects. Hepatitis C virus (HCV) is an RNA virus with high mutation rates. Its complex evolutionary dynamics and extensive genetic diversity are demonstrated in over 67 known subtypes. In this study, we analyzed within-host mutation frequency patterns of three HCV subtypes, using a large number of samples obtained from treatment-naïve participants by next-generation sequencing. We report that overall mutation frequency patterns are similar among subtypes, yet subtype 3a consistently had lower mutation frequencies and nucleotide diversity, while subtype 1a had the highest. We found that about 50% of genomic sites are highly conserved across subtypes, which are likely under strong purifying selection. We also compared within-host and between-host selective pressures, which revealed that Hyper Variable Region 1 within hosts was under positive selection, but was under slightly negative selection between hosts, which indicates that many mutations created within hosts are removed during the transmission bottleneck. Examining the natural prevalence of known resistance-associated variants showed their consistent existence in the treatment-naïve participants. These results provide insights into the differences and similarities among HCV subtypes that may be used to develop and improve HCV therapies.
Collapse
Affiliation(s)
- Kaho H. Tisthammer
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| | - Weiyan Dong
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (W.D.); (J.B.J.)
| | - Jeffrey B. Joy
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (W.D.); (J.B.J.)
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 3J5, Canada
- Bioinformatics Programme, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| |
Collapse
|
12
|
Paraskevis D, Kostaki EG, Kramvis A, Magiorkinis G. Classification, Genetic Diversity and Global Distribution of Hepatitis C Virus (HCV) Genotypes and Subtypes. HEPATITIS C: EPIDEMIOLOGY, PREVENTION AND ELIMINATION 2021:55-69. [DOI: 10.1007/978-3-030-64649-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Simmonds P, Cuypers L, Irving WL, McLauchlan J, Cooke GS, Barnes E, Ansari MA. Impact of virus subtype and host IFNL4 genotype on large-scale RNA structure formation in the genome of hepatitis C virus. RNA (NEW YORK, N.Y.) 2020; 26:1541-1556. [PMID: 32747607 PMCID: PMC7566573 DOI: 10.1261/rna.075465.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/29/2020] [Indexed: 05/03/2023]
Abstract
Mechanisms underlying the ability of hepatitis C virus (HCV) to establish persistent infections and induce progressive liver disease remain poorly understood. HCV is one of several positive-stranded RNA viruses capable of establishing persistence in their immunocompetent vertebrate hosts, an attribute previously associated with formation of large-scale RNA structure in their genomic RNA. We developed novel methods to analyze and visualize genome-scale ordered RNA structure (GORS) predicted from the increasingly large data sets of complete genome sequences of HCV. Structurally conserved RNA secondary structure in coding regions of HCV localized exclusively to polyprotein ends (core, NS5B). Coding regions elsewhere were also intensely structured based on elevated minimum folding energy difference (MFED) values, but the actual stem-loop elements involved in genome folding were structurally poorly conserved, even between subtypes 1a and 1b. Dynamic remodeling was further evident from comparison of HCV strains in different host genetic backgrounds. Significantly higher MFED values, greater suppression of UpA dinucleotide frequencies, and restricted diversification were found in subjects with the TT genotype of the rs12979860 SNP in the IFNL4 gene compared to the CC (nonexpressing) allele. These structural and compositional associations with expression of interferon-λ4 were recapitulated on a larger scale by higher MFED values and greater UpA suppression of genotype 1 compared to genotype 3a, associated with previously reported HCV genotype-associated differences in hepatic interferon-stimulated gene induction. Associations between innate cellular responses with HCV structure and further evolutionary constraints represent an important new element in RNA virus evolution and the adaptive interplay between virus and host.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, OX1 3SY, Oxford, United Kingdom
| | - Lize Cuypers
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Research, BE 3000, Leuven, Belgium
| | - Will L Irving
- Faculty of Medicine and Health Sciences, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, United Kingdom
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, United Kingdom
| | | | - Ellie Barnes
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, OX1 3SY, Oxford, United Kingdom
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, OX1 3SY, Oxford, United Kingdom
| |
Collapse
|
14
|
Haqqi A, Munir R, Khalid M, Khurram M, Zaid M, Ali M, Shah ZH, Ahmed H, Afzal MS. Prevalence of Hepatitis C Virus Genotypes in Pakistan: Current Scenario and Review of Literature. Viral Immunol 2019; 32:402-413. [PMID: 31556811 DOI: 10.1089/vim.2019.0058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major public health concern globally, resulting in liver-related complications. Approximately 6% population of Pakistan is infected with HCV. HCV is error prone, due to which it is classified into 7 genotypes and 67 subtypes. HCV genotype determination is critical for treatment and therapy response. In this study, 3,539 samples were collected from 2015 to 2019 from all over Punjab. RNA was extracted from samples using QIA Amp Viral RNA MINI kit (Qiagen, Germany) and viral genotyping was performed. Furthermore, a systemized literature search (2009-2018) was done to analyze the HCV genotype distribution pattern in Pakistan. In Punjab, genotype 3a (86.46%) is most prevalent, followed by untypable (7.17%) and genotype 1a (3.84%) and 3b (1.04%). Mixed genotype constitutes only 0.67% of total infections. Genotype 2a, 2b, 3c, and 4 were found to be rare. Data available from literature review when compiled showed that HCV genotype 3a (58.16%) was predominant in Pakistan, followed by genotypes 3b (9.05%), 2a (6.70%), 1a (6.22%), and 1b (2.39%). The frequency of mixed genotypes was found to be 4% and 12% of untypable HCV variants. This study highlights the HCV genotype distribution pattern in different regions of Pakistan. Therapy response and disease management depend on genotype, so HCV genotype determination is crucial. In Pakistan, the most prevalent genotype is 3a, followed by untypable genotype. Both interferon and sofosbuvir are effective against genotype 3a, but treatment with sofosbuvir has comparatively high sustained virological response, less adverse effects, and more tolerability.
Collapse
Affiliation(s)
- Aleena Haqqi
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Rimsha Munir
- Cancer Biology Lab, MMG, University of the Punjab, Lahore, Pakistan
- Hormone Lab, Lahore, Pakistan
| | | | - Muhammad Khurram
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Zaheer Hussain Shah
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Haroon Ahmed
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
15
|
Spitz N, Barros JJ, do Ó KM, Brandão-Mello CE, Araujo NM. The First Complete Genome Sequences of Hepatitis C Virus Subtype 2b from Latin America: Molecular Characterization and Phylogeographic Analysis. Viruses 2019; 11:v11111000. [PMID: 31683566 PMCID: PMC6893431 DOI: 10.3390/v11111000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
The hepatitis C virus (HCV) has remarkable genetic diversity and exists as eight genotypes (1 to 8) with distinct geographic distributions. No complete genome sequence of HCV subtype 2b (HCV-2b) is available from Latin American countries, and the factors underlying its emergence and spread within the continent remain unknown. The present study was conducted to determine the first full-length genomic sequences of HCV-2b isolates from Latin America and reconstruct the spatial and temporal diversification of this subtype in Brazil. Nearly complete HCV-2b genomes isolated from two Brazilian patients were obtained by direct sequencing of long PCR fragments and analyzed together with reference sequences using the Bayesian coalescent and phylogeographic framework approaches. The two HCV-2b genomes were 9318 nucleotides (nt) in length (nt 37-9354). Interestingly, the long RT-PCR technique was able to detect co-circulation of viral variants that contained an in-frame deletion of 2022 nt encompassing E1, E2, and p7 proteins. Spatiotemporal reconstruction analyses suggest that HCV-2b had a single introduction in Brazil during the early 1980s, displaying an epidemic history characterized by a low and virtually constant population size until the present time. These results coincide with epidemiological data in Brazil and may explain the low national prevalence of this subtype.
Collapse
Affiliation(s)
- Natália Spitz
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro RJ 21040-360, Brazil.
| | - José J Barros
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro RJ 21040-360, Brazil.
| | - Kycia M do Ó
- Viral Hepatitis Advisory Committee of the Ministry of Health, Brasilia DF 70058-900, Brazil.
| | - Carlos E Brandão-Mello
- Gaffrée & Guinle Universitary Hospital, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro RJ 20270-901, Brazil.
| | - Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro RJ 21040-360, Brazil.
| |
Collapse
|
16
|
Cagliani R, Forni D, Sironi M. Mode and tempo of human hepatitis virus evolution. Comput Struct Biotechnol J 2019; 17:1384-1395. [PMID: 31768229 PMCID: PMC6872792 DOI: 10.1016/j.csbj.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human viral hepatitis, a major cause of morbidity and mortality worldwide, is caused by highly diverse viruses with different genetic, ecological, and pathogenetic features. Technological advances that allow throughput sequencing of viral genomes, as well as the development of computational tools to analyze such genome data, have largely expanded our knowledge on the host range and evolutionary history of human hepatitis viruses. Thus, with the exclusion of hepatitis D virus, close or distant relatives of these human pathogens were identified in a number of domestic and wild mammals. Also, sequences of human viral strains isolated from different geographic locations and over different time-spans have allowed the application of phylogeographic and molecular dating approaches to large viral phylogenies. In this review, we summarize the most recent insights into our understanding of the evolutionary events and ecological contexts that determined the origin and spread of human hepatitis viruses.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
17
|
Khedhiri M, Ghedira K, Chouikha A, Touzi H, Sadraoui A, Hammemi W, Triki H. Tracing the epidemic history of hepatitis C virus genotype 1b in Tunisia and in the world, using a Bayesian coalescent approach. INFECTION GENETICS AND EVOLUTION 2019; 75:103944. [PMID: 31260787 DOI: 10.1016/j.meegid.2019.103944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Marwa Khedhiri
- Laboratory of Clinical Virology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Research Laboratory: "Transmission Controle et Immunobiologie des Infections" (LR11-IPT02), Pasteur Institute of Tunis, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.
| | - Anissa Chouikha
- Laboratory of Clinical Virology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Research Laboratory: "Transmission Controle et Immunobiologie des Infections" (LR11-IPT02), Pasteur Institute of Tunis, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.
| | - Henda Touzi
- Laboratory of Clinical Virology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amel Sadraoui
- Laboratory of Clinical Virology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Walid Hammemi
- Laboratory of Clinical Virology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Research Laboratory: "Transmission Controle et Immunobiologie des Infections" (LR11-IPT02), Pasteur Institute of Tunis, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia; Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
18
|
Petruzziello A, Loquercio G, Sabatino R, Balaban DV, Ullah Khan N, Piccirillo M, Rodrigo L, di Capua L, Guzzo A, Labonia F, Botti G. Prevalence of Hepatitis C virus genotypes in nine selected European countries: A systematic review. J Clin Lab Anal 2019; 33:e22876. [PMID: 30843304 PMCID: PMC6595292 DOI: 10.1002/jcla.22876,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a global health problem especially for its increasing level of mortality. Detailed knowledge of HCV genotypes prevalence has clinical relevance since the efficacy of therapies is impacted by genotypes and subtypes distribution. Moreover, HCV exhibits a great genetic variability regionally. To date, there are no published studies assessing HCV genotypes distribution in specific countries of the Mediterranean basin. The aim of this study was to review data published from 2000 to 2017 with the purpose to estimate genotypes distribution of HCV infection in nine European countries all located in the Mediterranean basin. METHODS A systematic research of peer-reviewed journals indexed in PubMed, Scopus, and EMBASE databases selected if containing data regarding distribution of HCV genotypes in nine selected European countries (Albania, Bosnia, Croatia, France, Greece, Italy, Montenegro, Slovenia, and Spain) was performed. RESULTS Genotype 1 is the most common (61.0%), ranging from 80.0% in Croatia to 46.0% in Greece, followed by genotype 3 (20.0%), varying from 38.0% in Slovenia to 7.0% and 8.0%, respectively, in Italy and in Albania and by genotype 4 (10.0%) that shows an increase of 1.1% with respect to data obtained till 2014 probably due to the increasing migrants arrivals to Southern Europe. G2, the fourth most frequent genotype (8.5%), particularly common in Italy (27.0%) and Albania (18.0%) might be probably introduced in Southern Italy as a result of Albanian campaign during Second World War and more and more increased by the migration flows from Albania to Italy in the 90s. CONCLUSION Epidemiology of HCV infection shows a high variability across the European countries that border the Mediterranean Sea. HCV genotyping is a relevant tool to monitor the dynamic process influenced by both evolving transmission trends and new migration flows on HCV scenario.
Collapse
Affiliation(s)
| | - Giovanna Loquercio
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Rocco Sabatino
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Daniel Vasile Balaban
- Carol Davila" University of Medicine and Pharmacy, "Dr. Carol Davila" Central Military Emergency University HospitalBucharestRomania
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Davison)The University of AgriculturePeshawarPakistan
| | - Mauro Piccirillo
- Hepatobiliar and Pancreatic Unit, Department of Surgical OncologyIstituto Nazionale Tumori–Fondazione “G. Pascale”IRCCS ItaliaNaplesItaly
| | - Luis Rodrigo
- Gastroenterology ServiceHospital Universitario Central de Asturias, University of OviedoOviedoSpain
| | - Lucia di Capua
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Annunziata Guzzo
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Francesco Labonia
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Gerardo Botti
- Scientific DirectorIRCCS Fondazione PascaleNaplesItaly
| |
Collapse
|
19
|
Petruzziello A, Loquercio G, Sabatino R, Balaban DV, Ullah Khan N, Piccirillo M, Rodrigo L, di Capua L, Guzzo A, Labonia F, Botti G. Prevalence of Hepatitis C virus genotypes in nine selected European countries: A systematic review. J Clin Lab Anal 2019; 33:e22876. [PMID: 30843304 PMCID: PMC6595292 DOI: 10.1002/jcla.22876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a global health problem especially for its increasing level of mortality. Detailed knowledge of HCV genotypes prevalence has clinical relevance since the efficacy of therapies is impacted by genotypes and subtypes distribution. Moreover, HCV exhibits a great genetic variability regionally. To date, there are no published studies assessing HCV genotypes distribution in specific countries of the Mediterranean basin. The aim of this study was to review data published from 2000 to 2017 with the purpose to estimate genotypes distribution of HCV infection in nine European countries all located in the Mediterranean basin. METHODS A systematic research of peer-reviewed journals indexed in PubMed, Scopus, and EMBASE databases selected if containing data regarding distribution of HCV genotypes in nine selected European countries (Albania, Bosnia, Croatia, France, Greece, Italy, Montenegro, Slovenia, and Spain) was performed. RESULTS Genotype 1 is the most common (61.0%), ranging from 80.0% in Croatia to 46.0% in Greece, followed by genotype 3 (20.0%), varying from 38.0% in Slovenia to 7.0% and 8.0%, respectively, in Italy and in Albania and by genotype 4 (10.0%) that shows an increase of 1.1% with respect to data obtained till 2014 probably due to the increasing migrants arrivals to Southern Europe. G2, the fourth most frequent genotype (8.5%), particularly common in Italy (27.0%) and Albania (18.0%) might be probably introduced in Southern Italy as a result of Albanian campaign during Second World War and more and more increased by the migration flows from Albania to Italy in the 90s. CONCLUSION Epidemiology of HCV infection shows a high variability across the European countries that border the Mediterranean Sea. HCV genotyping is a relevant tool to monitor the dynamic process influenced by both evolving transmission trends and new migration flows on HCV scenario.
Collapse
Affiliation(s)
| | - Giovanna Loquercio
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Rocco Sabatino
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Daniel Vasile Balaban
- Carol Davila" University of Medicine and Pharmacy, "Dr. Carol Davila" Central Military Emergency University HospitalBucharestRomania
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Davison)The University of AgriculturePeshawarPakistan
| | - Mauro Piccirillo
- Hepatobiliar and Pancreatic Unit, Department of Surgical OncologyIstituto Nazionale Tumori–Fondazione “G. Pascale”IRCCS ItaliaNaplesItaly
| | - Luis Rodrigo
- Gastroenterology ServiceHospital Universitario Central de Asturias, University of OviedoOviedoSpain
| | - Lucia di Capua
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Annunziata Guzzo
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Francesco Labonia
- SSD Virology and Molecular Biology, Department of Diagnostic AreaIstituto Nazionale Tumori – Fondazione “G. Pascale”, IRCCS ItaliaNaplesItaly
| | - Gerardo Botti
- Scientific DirectorIRCCS Fondazione PascaleNaplesItaly
| |
Collapse
|
20
|
Petruzziello A, Sabatino R, Loquercio G, Guzzo A, Di Capua L, Labonia F, Cozzolino A, Azzaro R, Botti G. Nine-year distribution pattern of hepatitis C virus (HCV) genotypes in Southern Italy. PLoS One 2019; 14:e0212033. [PMID: 30785909 PMCID: PMC6382136 DOI: 10.1371/journal.pone.0212033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION It has been greatly described that different hepatitis C virus (HCV) genotypes are strictly correlated to various evolution, prognosis and response to therapy during the chronic liver disease. Aim of this study was to outline the changes in the epidemiology of Hepatitis C genotypes in Southern Italy regions from 2006 to 2014. MATERIAL/METHODS Prevalence of HCV genotypes was analyzed in 535 HCV-RNA positive patients with chronic Hepatitis C infection, selected during the period 2012-2014, and compared with our previous data, referred to periods 2006-2008 and 2009-2011. RESULTS In all the three periods analyzed, genotype 1b is predominant (51.8% in 2006-08, 48.3% in 2009-11 and 54.4% in 2012-14) while genotype 2 showed an increase in prevalence (27.9% in 2006-08, 31.7% in 2009-11 and 35.2% in 2012-14) and genotypes 3a and 1a a decrease during the same period (6.8% in 2006-08, 4.7% in 2009-11 and 3.2% in 2012-14 and 7.9% in 2006-08, 4.7% in 2009-11 and 2.6% in 2012-14, respectively). Subtype 1b seems to be equally distributed between males and females (52.7% vs 56.6%) and the prevalence in the age range 31-40 years is significantly higher in the 2012-14 period than in both previous periods (53.8% vs. 16.6% in 2009-11, p< 0.001 and 13.4% in 2006-08, p < 0.001). CONCLUSIONS Genotype 1b is still the most prevalent, even if shows a significantly increase in the under 40 years old population. Instead, genotype 3a seems to have a moderate increase among young people. Overall, the alarming finding is the "returning" role of the iatrogenic transmission as risk factor for the diffusion of Hepatitis C infection.
Collapse
Affiliation(s)
- Arnolfo Petruzziello
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Rocco Sabatino
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Giovanna Loquercio
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Annunziata Guzzo
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Lucia Di Capua
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Francesco Labonia
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Anna Cozzolino
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Rosa Azzaro
- Transfusion Service, Department of Hemathology, Istituto Nazionale Tumori—Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| | - Gerardo Botti
- SSD Virology and Molecular Biology, Department of Diagnostic Area, Istituto Nazionale Tumori, Fondazione “G. Pascale”, IRCCS Italia, Naples, Italy
| |
Collapse
|
21
|
Zając M, Muszalska I, Sobczak A, Dadej A, Tomczak S, Jelińska A. Hepatitis C - New drugs and treatment prospects. Eur J Med Chem 2019; 165:225-249. [PMID: 30685524 DOI: 10.1016/j.ejmech.2019.01.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) affects approx. 3% of the world's population and accounts for ca 300 000 deaths per year. 80% of individuals with HCV develop chronic symptoms which, when untreated, may cause cirrhosis (27%) or hepatocellular carcinoma (25%). The hepatitis C virus is a (+)ssRNA enveloped virus of the family Flaviviridae. Seven major HCV genotypes and their subtypes (a, b) have been identified. In the 1990s, interferons alpha-2 were used in the treatment of HCV and in the next decade HCV therapy was based on pegylated interferon alpha-2 in combination with ribavirin. Since 2011, interferons alpha, DNA and RNA polymerase inhibitors, NS3/4A RNA protease inhibitors, NS5 RNA serine protease inhibitors, NS5B RNA polymerase inhibitors have been approved for clinical use. Monotherapy is avoided in medication due to rapidly developing viral resistance. A total of 113 papers were included comprising original publications and reviews. The paper reviews the molecular targets and chemical structures of drugs used in HCV treatment. Indications and contraindications for anti-HCV drugs are also discussed together with application regimens.
Collapse
Affiliation(s)
- Marianna Zając
- Poznan University of Medicinal Sciences, Department of Pharmaceutical Chemistry, Grunwaldzka Str. 6, 60-780, Poznań, Poland
| | - Izabela Muszalska
- Poznan University of Medicinal Sciences, Department of Pharmaceutical Chemistry, Grunwaldzka Str. 6, 60-780, Poznań, Poland.
| | - Agnieszka Sobczak
- Poznan University of Medicinal Sciences, Department of Pharmaceutical Chemistry, Grunwaldzka Str. 6, 60-780, Poznań, Poland
| | - Adrianna Dadej
- Poznan University of Medicinal Sciences, Department of Pharmaceutical Chemistry, Grunwaldzka Str. 6, 60-780, Poznań, Poland
| | - Szymon Tomczak
- Poznan University of Medicinal Sciences, Department of Pharmaceutical Chemistry, Grunwaldzka Str. 6, 60-780, Poznań, Poland
| | - Anna Jelińska
- Poznan University of Medicinal Sciences, Department of Pharmaceutical Chemistry, Grunwaldzka Str. 6, 60-780, Poznań, Poland
| |
Collapse
|
22
|
Distribution of Hepatitis C Virus Genotypes and Related Risk Factors Among Iranian Blood Donors: A Penalized Logistic Regression. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.69136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Soria ME, Gregori J, Chen Q, García-Cehic D, Llorens M, de Ávila AI, Beach NM, Domingo E, Rodríguez-Frías F, Buti M, Esteban R, Esteban JI, Quer J, Perales C. Pipeline for specific subtype amplification and drug resistance detection in hepatitis C virus. BMC Infect Dis 2018; 18:446. [PMID: 30176817 PMCID: PMC6122477 DOI: 10.1186/s12879-018-3356-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite the high sustained virological response rates achieved with current directly-acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 5-10% of treated patients do not respond to current antiviral therapies, and basal resistance to DAAs is increasingly detected among treatment-naïve infected individuals. Identification of amino acid substitutions (including those in minority variants) associated with treatment failure requires analytical designs that take into account the high diversification of HCV in more than 86 subtypes according to the ICTV website (June 2017). METHODS The methodology has involved five sequential steps: (i) to design 280 oligonucleotide primers (some including a maximum of three degenerate positions), and of which 120 were tested to amplify NS3, NS5A-, and NS5B-coding regions in a subtype-specific manner, (ii) to define a reference sequence for each subtype, (iii) to perform experimental controls to define a cut-off value for detection of minority amino acids, (iv) to establish bioinformatics' tools to quantify amino acid replacements, and (v) to validate the procedure with patient samples. RESULTS A robust ultra-deep sequencing procedure to analyze HCV circulating in serum samples from patients infected with virus that belongs to the ten most prevalent subtypes worldwide: 1a, 1b, 2a, 2b, 2c, 2j, 3a, 4d, 4e, 4f has been developed. Oligonucleotide primers are subtype-specific. A cut-off value of 1% mutant frequency has been established for individual mutations and haplotypes. CONCLUSION The methodological pipeline described here is adequate to characterize in-depth mutant spectra of HCV populations, and it provides a tool to understand HCV diversification and treatment failures. The pipeline can be periodically extended in the event of HCV diversification into new genotypes or subtypes, and provides a framework applicable to other RNA viral pathogens, with potential to couple detection of drug-resistant mutations with treatment planning.
Collapse
Affiliation(s)
- María Eugenia Soria
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Josep Gregori
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Roche Diagnostics, S.L, Sant Cugat del Vallés, Barcelona, Spain
| | - Qian Chen
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Damir García-Cehic
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorens
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Ana I. de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Nathan M. Beach
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Liver Pathology Unit, Department of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - María Buti
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Rafael Esteban
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Celia Perales
- Liver Unit, Internal Medicine Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
24
|
Forni D, Cagliani R, Pontremoli C, Pozzoli U, Vertemara J, De Gioia L, Clerici M, Sironi M. Evolutionary Analysis Provides Insight Into the Origin and Adaptation of HCV. Front Microbiol 2018; 9:854. [PMID: 29765366 PMCID: PMC5938362 DOI: 10.3389/fmicb.2018.00854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) belongs to the Hepacivirus genus and is genetically heterogeneous, with seven major genotypes further divided into several recognized subtypes. HCV origin was previously dated in a range between ∼200 and 1000 years ago. Hepaciviruses have been identified in several domestic and wild mammals, the largest viral diversity being observed in bats and rodents. The closest relatives of HCV were found in horses/donkeys (equine hepaciviruses, EHV). However, the origin of HCV as a human pathogen is still an unsolved puzzle. Using a selection-informed evolutionary model, we show that the common ancestor of extant HCV genotypes existed at least 3000 years ago (CI: 3192–5221 years ago), with the oldest genotypes being endemic to Asia. EHV originated around 1100 CE (CI: 291–1640 CE). These time estimates exclude that EHV transmission was mainly sustained by widespread veterinary practices and suggest that HCV originated from a single zoonotic event with subsequent diversification in human populations. We also describe a number of biologically important sites in the major HCV genotypes that have been positively selected and indicate that drug resistance-associated variants are significantly enriched at positively selected sites. HCV exploits several cell-surface molecules for cell entry, but only two of these (CD81 and OCLN) determine the species-specificity of infection. Herein evolutionary analyses do not support a long-standing association between primates and hepaciviruses, and signals of positive selection at CD81 were only observed in Chiroptera. No evidence of selection was detected for OCLN in any mammalian order. These results shed light on the origin of HCV and provide a catalog of candidate genetic modulators of HCV phenotypic diversity.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics Laboratory, Scientific Institute IRCCS E.Medea, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics Laboratory, Scientific Institute IRCCS E.Medea, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics Laboratory, Scientific Institute IRCCS E.Medea, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics Laboratory, Scientific Institute IRCCS E.Medea, Bosisio Parini, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation Onlus, IRCCS, Milan, Italy
| | - Manuela Sironi
- Bioinformatics Laboratory, Scientific Institute IRCCS E.Medea, Bosisio Parini, Italy
| |
Collapse
|
25
|
Vopálenský V, Khawaja A, Rožnovský L, Mrázek J, Mašek T, Pospíšek M. Characterization of Hepatitis C Virus IRES Quasispecies - From the Individual to the Pool. Front Microbiol 2018; 9:731. [PMID: 29740402 PMCID: PMC5928756 DOI: 10.3389/fmicb.2018.00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus from the genus Hepacivirus. The viral genomic +RNA is 9.6 kb long and contains highly structured 5′ and 3′ untranslated regions (UTRs) and codes for a single large polyprotein, which is co- and post-translationally processed by viral and cellular proteases into at least 11 different polypeptides. Most of the 5′ UTR and an initial part of the polyprotein gene are occupied by an internal ribosome entry site (IRES), which mediates cap-independent translation of the viral proteins and allows the virus to overcome cellular antiviral defense based on the overall reduction of the cap-dependent translation initiation. We reconsidered published results concerning a search for possible correlation between patient response to interferon-based antiviral therapy and accumulation of nucleotide changes within the HCV IRES. However, we were unable to identify any such correlation. Rather than searching for individual mutations, we suggest to focus on determination of individual and collective activities of the HCV IRESs found in patient specimens. We developed a combined, fast, and undemanding approach based on high-throughput cloning of the HCV IRES species to a bicistronic plasmid followed by determination of the HCV IRES activity by flow cytometry. This approach can be adjusted for measurement of the individual HCV IRES activity and for estimation of the aggregate ability of the whole HCV population present in the specimen to synthesize viral proteins. To detect nucleotide variations in the individual IRESs, we used denaturing gradient gel electrophoresis (DGGE) analysis that greatly improved identification and classification of HCV IRES variants in the sample. We suggest that determination of the collective activity of the majority of HCV IRES variants present in one patient specimen in a given time represents possible functional relations among variant sequences within the complex population of viral quasispecies better than bare information about their nucleotide sequences. A similar approach might be used for monitoring of sequence variations in quasispecies populations of other RNA viruses in all cases when changes in primary sequence represent changes in measurable and easily quantifiable phenotypes.
Collapse
Affiliation(s)
- Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Anas Khawaja
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Luděk Rožnovský
- Clinic of Infectious Medicine, University Hospital Ostrava, Ostrava, Czechia
| | - Jakub Mrázek
- Institute of Public Health in Ostrava, Ostrava, Czechia
| | - Tomáš Mašek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
26
|
Oyaro M, Wylie J, Chen CY, Ondondo RO, Kramvis A. Human immunodeficiency virus infection predictors and genetic diversity of hepatitis B virus and hepatitis C virus co-infections among drug users in three major Kenyan cities. South Afr J HIV Med 2018; 19:737. [PMID: 29707384 PMCID: PMC5913779 DOI: 10.4102/sajhivmed.v19i1.737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
Background Drug users act as reservoirs and transmission channels for hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections to the general population worldwide. Periodic epidemiological studies to monitor the prevalence and genetic diversity of these infections to inform on interventions are limited. Objective of the study The objective of this study was to determine the predictors of HIV infection and genetic diversity of HBV and HCV among drug users in Kenya. Materials and methods A cross-sectional study on previous drug use history among drug users was conducted in three Kenyan cities using a respondent-driven sampling method between January 2011 and September 2012. Blood samples were collected and analysed for the presence of HBV, HCV and HIV serological markers and to determine the genotypes of HBV and HCV. Results The overall prevalence of HBV, HCV and HIV among drug users was 4.3%, 6.5% and 11.1%, respectively, with evidence of HBV/HIV, HCV/HIV and HBV/HCV/HIV co-infections. The HBV circulating genotypes were A1 (69%) and D6 (19%), whereas HCV genotypes were 1a (72%) and 4a (22%). Injection drug use was a significant predictor of HIV/HCV infections. Younger age (30 years; aOR (adjusted odds ratio) = 0.50, 95% CI (confidence interval): 0.33–0.76; p < 0.001) and early sexual debut (aOR = 0.54, 95% CI: 0.40–0.82; p < 0.05) were negatively associated with detection of any of the three infections. Injecting drug use was positively associated with HCV infection (aOR = 5.37, 95% CI: 2.61–11.06; p < 0.001). Conclusion This high level of genetic diversity exhibited by HBV and HCV isolates requires urgent implementation of harm reduction strategies and continuous monitoring for effective management of the patients.
Collapse
Affiliation(s)
- Micah Oyaro
- Immunology Unit, Department of Human Pathology, University of Nairobi, Kenya
| | - John Wylie
- Department of Medical Microbiology, University of Manitoba, Canada
| | - Chien-Yu Chen
- Hepatitis Virus Diversity Research Unit (HVDRU), Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Raphael O Ondondo
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kenya.,Kenya Medical Research Institute, Centre for Microbiology Research, Nairobi, Kenya
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit (HVDRU), Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| |
Collapse
|
27
|
Abstract
Hepaciviruses and pegiviruses constitute two closely related sister genera of the family Flaviviridae. In the past five years, the known phylogenetic diversity of the hepacivirus genera has absolutely exploded. What was once an isolated infection in humans (and possibly other primates) has now expanded to include horses, rodents, bats, colobus monkeys, cows, and, most recently, catsharks, shedding new light on the genetic diversity and host range of hepaciviruses. Interestingly, despite the identification of these many animal and primate hepaciviruses, the equine hepaciviruses remain the closest genetic relatives of the human hepaciviruses, providing an intriguing clue to the zoonotic source of hepatitis C virus. This review summarizes the significance of these studies and discusses current thinking about the origin and evolution of the animal hepaciviruses as well as their potential usage as surrogate models for the study of hepatitis C virus.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205;
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; .,Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
28
|
Petruzziello A, Marigliano S, Loquercio G, Coppola N, Piccirillo M, Leongito M, Azzaro R, Izzo F, Botti G. Hepatitis C Virus (HCV) genotypes distribution among hepatocellular carcinoma patients in Southern Italy: a three year retrospective study. Infect Agent Cancer 2017. [DOI: 10.1186/s13027-017-0162-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Mehmood A, Asad MJ, Ovais M, Zaman N, Aziz H, Irfan J, Ahmad I, Raza A. The Absence of HCV RNA and NS5A Protein in Peripheral Blood Mononuclear Cells Is a Prognostic Tool for Sustained Virological Response. Viral Immunol 2017; 30:568-575. [DOI: 10.1089/vim.2017.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Azhar Mehmood
- Nuclear Medicine, Oncology, and Radiotherapy, Institute NORI, Islamabad, Pakistan
- Department of Biochemistry, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Javaid Asad
- Department of Biochemistry, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Ovais
- Nuclear Medicine, Oncology, and Radiotherapy, Institute NORI, Islamabad, Pakistan
| | - Nasib Zaman
- Department of Biochemistry, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hafsa Aziz
- Nuclear Medicine, Oncology, and Radiotherapy, Institute NORI, Islamabad, Pakistan
| | - Javaid Irfan
- Nuclear Medicine, Oncology, and Radiotherapy, Institute NORI, Islamabad, Pakistan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Abida Raza
- Nuclear Medicine, Oncology, and Radiotherapy, Institute NORI, Islamabad, Pakistan
| |
Collapse
|
30
|
Weller R, Hueging K, Brown RJP, Todt D, Joecks S, Vondran FWR, Pietschmann T. Hepatitis C Virus Strain-Dependent Usage of Apolipoprotein E Modulates Assembly Efficiency and Specific Infectivity of Secreted Virions. J Virol 2017; 91:e00422-17. [PMID: 28659481 PMCID: PMC5571276 DOI: 10.1128/jvi.00422-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is extraordinarily diverse and uses entry factors in a strain-specific manner. Virus particles associate with lipoproteins, and apolipoprotein E (ApoE) is critical for HCV assembly and infectivity. However, whether ApoE dependency is common to all HCV genotypes remains unknown. Therefore, we compared the roles of ApoE utilizing 10 virus strains from genotypes 1 through 7. ApoA and ApoC also support HCV assembly, so they may contribute to virus production in a strain-dependent fashion. Transcriptome sequencing (RNA-seq) revealed abundant coexpression of ApoE, ApoB, ApoA1, ApoA2, ApoC1, ApoC2, and ApoC3 in primary hepatocytes and in Huh-7.5 cells. Virus production was examined in Huh-7.5 cells with and without ApoE expression and in 293T cells where individual apolipoproteins (ApoE1, -E2, -E3, -A1, -A2, -C1, and -C3) were provided in trans All strains were strictly ApoE dependent. However, ApoE involvement in virus production was strain and cell type specific, because some HCV strains poorly produced infectious virus in ApoE-expressing 293T cells and because ApoE knockout differentially affected virus production of HCV strains in Huh-7.5 cells. ApoE allelic isoforms (ApoE2, -E3, and -E4) complemented virus production of HCV strains to comparable degrees. All tested strains assembled infectious progeny with ApoE in preference to other exchangeable apolipoproteins (ApoA1, -A2, -C1, and -C3). The specific infectivity of HCV particles was similar for 293T- and Huh-7.5-derived particles for most strains; however, it differed by more than 100-fold in some viruses. Collectively, this study reveals strain-dependent and host cell-dependent use of ApoE during HCV assembly. These differences relate to the efficacy of virus production and also to the properties of released virus particles and therefore govern viral fitness at the level of assembly and cell entry.IMPORTANCE Chronic HCV infections are a major cause of liver disease. HCV is highly variable, and strain-specific determinants modulate the response to antiviral therapy, the natural course of infection, and cell entry factor usage. Here we explored whether host factor dependency of HCV in particle assembly is modulated by strain-dependent viral properties. We showed that all examined HCV strains, which represent all seven known genotypes, rely on ApoE expression for assembly of infectious progeny. However, the degree of ApoE dependence is modulated in a strain-specific and cell type-dependent manner. This indicates that HCV strains differ in their assembly properties and host factor usage during assembly of infectious progeny. Importantly, these differences relate not only to the efficiency of virus production and release but also to the infectiousness of virus particles. Thus, strain-dependent features of HCV modulate ApoE usage, with implications for virus fitness at the level of assembly and cell entry.
Collapse
Affiliation(s)
- Romy Weller
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Kathrin Hueging
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Richard J P Brown
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Daniel Todt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Sebastian Joecks
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, Hanover Medical School, Hanover, Germany
- German Centre for Infection Research, Partner Site Hanover-Braunschweig, Hanover, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hanover, Germany
- German Centre for Infection Research, Partner Site Hanover-Braunschweig, Hanover, Germany
| |
Collapse
|
31
|
Zayed RA, Omran D, Zayed AA, Elmessery LO. Determinants of Infection Outcome in HCV-Genotype 4. Viral Immunol 2017; 30:560-567. [PMID: 28731371 DOI: 10.1089/vim.2017.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection represents a worldwide health problem and has been for long an attractive point of research due to diversity among different genotypes regarding unique geographical distribution and diverse treatment outcome. HCV is considered a major cause of chronic liver disease and cirrhosis, which leads to liver failure and hepatocellular carcinoma requiring liver transplantation. Of the HCV genotypes identified, HCV genotype 4 (HCV-4) is the least studied. HCV-4 is responsible for ∼10% of HCV infections and is common in the Middle East and Africa; recently it is increasingly prevalent in European Countries. HCV-4 is a continuing epidemic in Egypt, having the highest prevalence of HCV worldwide. "Know your epidemic, know your response" concept necessitates better understanding of HCV-4 characteristics to control disease dissemination and progression, which compromises the life quality of chronic HCV-infected patients. In this review, we discuss the epidemiology, natural history, and treatment options for patients with HCV-4 infection.
Collapse
Affiliation(s)
- Rania A Zayed
- 1 Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University , Giza, Cairo, Egypt
| | - Dalia Omran
- 2 Department of Endemic Medicine and Hepato-gastroenterology, Faculty of Medicine, Cairo University , Giza, Cairo, Egypt
| | - Abeer A Zayed
- 3 Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University , Giza, Cairo, Egypt
| | - Lobna O Elmessery
- 1 Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University , Giza, Cairo, Egypt
| |
Collapse
|
32
|
Paolucci S, Premoli M, Ludovisi S, Mondelli MU, Baldanti F. HCV intergenotype 2k/1b recombinant detected in a DAA-treated patient in Italy. Antivir Ther 2017; 22:365-368. [PMID: 28085002 DOI: 10.3851/imp3130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
Direct-acting antiviral (DAA) combinations are potent and effective drugs currently recommended for treatment of chronic HCV infection. Difficult to treat genotypes are the most important predictors of treatment failure. We report a case of DAA treatment failure in an HCV-infected patient carrying a recombinant genotype 2k/1b. This strain, first isolated from a Russian patient in 2002, has now been observed for the first time in Italy.
Collapse
Affiliation(s)
- Stefania Paolucci
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Premoli
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Ludovisi
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario U Mondelli
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Petruzziello A, Marigliano S, Loquercio G, Cacciapuoti C. Hepatitis C virus (HCV) genotypes distribution: an epidemiological up-date in Europe. Infect Agent Cancer 2016; 11:53. [PMID: 27752280 PMCID: PMC5062817 DOI: 10.1186/s13027-016-0099-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major public health burden in Europe, causing an increasing level of liver-related morbidity and mortality, characterized by several regional variations in the genotypes distribution. A comprehensive review of the literature from 2000 to 2015 was used to gather country-specific data on prevalence and genotype distribution of HCV infection in 33 European countries (about 80 % of the European population), grouped in three geographical areas (Western, Eastern and Central Europe), as defined by the Global Burden of Diseases project (GBD). The estimated prevalence of HCV in Europe is 1.7 % showing a decrease than previously reported (− 0.6 %) and accounting over 13 million of estimated cases. The lowest prevalence (0.9 %) is reported from Western Europe (except for some rural areas of Southern Italy and Greece) and the highest (3.1 %) from Central Europe, especially Romania and Russia. The average HCV viraemic rate is 72.4 %, with a population of almost 10 million of HCV RNA positive patients. Genotype distribution does not show high variability among the three macro-areas studied, ranging between 70.0 % (Central Europe), 68.1 % (Eastern Europe) and 55.1 % (Western Europe) for genotype 1, 29.0 % (Western Europe), 26.6 % (Eastern Europe) and 21.0 % (Central Europe) for genotype 3. Genotype 2 seems, instead, to have a major prevalence in the Western Europe (8.9 %), if compared to Eastern (4.3 %) or Central (3.2 %), whereas genotype 4 is present especially in Central and Western area (4.9 % and 5.8 %, respectively). Despite the eradication of transmission by blood products, HCV infection continues to be one of the leading blood-borne infections in Europe. The aim of this review is, therefore, to provide an update on the epidemiology of HCV infection across Europe, and to foster the discussion about eventual potential strategies to eradicate it.
Collapse
Affiliation(s)
- Arnolfo Petruzziello
- Virology and Molecular Biology Unit "V. Tridente", Istituto Nazionale Tumori - Fondazione "G. Pascale", IRCCS Italia, Via Mariano Semmola, 80131 Naples, Italy
| | - Samantha Marigliano
- Virology and Molecular Biology Unit "V. Tridente", Istituto Nazionale Tumori - Fondazione "G. Pascale", IRCCS Italia, Via Mariano Semmola, 80131 Naples, Italy
| | - Giovanna Loquercio
- Virology and Molecular Biology Unit "V. Tridente", Istituto Nazionale Tumori - Fondazione "G. Pascale", IRCCS Italia, Via Mariano Semmola, 80131 Naples, Italy
| | - Carmela Cacciapuoti
- Virology and Molecular Biology Unit "V. Tridente", Istituto Nazionale Tumori - Fondazione "G. Pascale", IRCCS Italia, Via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|
34
|
Raghwani J, Rose R, Sheridan I, Lemey P, Suchard MA, Santantonio T, Farci P, Klenerman P, Pybus OG. Exceptional Heterogeneity in Viral Evolutionary Dynamics Characterises Chronic Hepatitis C Virus Infection. PLoS Pathog 2016; 12:e1005894. [PMID: 27631086 PMCID: PMC5025083 DOI: 10.1371/journal.ppat.1005894] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The treatment of HCV infection has seen significant progress, particularly since the approval of new direct-acting antiviral drugs. However these clinical achievements have been made despite an incomplete understanding of HCV replication and within-host evolution, especially compared with HIV-1. Here, we undertake a comprehensive analysis of HCV within-host evolution during chronic infection by investigating over 4000 viral sequences sampled longitudinally from 15 HCV-infected patients. We compare our HCV results to those from a well-studied HIV-1 cohort, revealing key differences in the evolutionary behaviour of these two chronic-infecting pathogens. Notably, we find an exceptional level of heterogeneity in the molecular evolution of HCV, both within and among infected individuals. Furthermore, these patterns are associated with the long-term maintenance of viral lineages within patients, which fluctuate in relative frequency in peripheral blood. Together, our findings demonstrate that HCV replication behavior is complex and likely comprises multiple viral subpopulations with distinct evolutionary dynamics. The presence of a structured viral population can explain apparent paradoxes in chronic HCV infection, such as rapid fluctuations in viral diversity and the reappearance of viral strains years after their initial detection. Our knowledge of HCV within-host evolution is substantially limited, which is surprising given that highly successful therapies against the virus have been developed. Key aspects of HCV infection, such as rapid fluctuations in viral diversity and the reappearance of viral strains years after their initial detection, remain unexplained. To better understand this problem, we analyse viral sequences from HCV-infected patients sampled over several years. Our findings suggest that the replication dynamics during chronic HCV infection are distinct from those of HIV-1, and dominated by the co-circulation of multiple viral strains. Although a major difference between the two chronic-infecting viruses is the level of recombination, our results indicate that HCV within-host evolution is most likely to be shaped by a structured viral population. Crucially, our study shows that HCV sampled from blood does not fully represent the within-host viral population at that time. This may have important implications for HCV treatment, especially in patients that have seemingly cleared the virus, as well as for molecular epidemiology studies investigating HCV transmission.
Collapse
Affiliation(s)
- Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| | - Rebecca Rose
- BioInfoExperts, Thibodaux, Los Angeles, California, United States of America
| | - Isabelle Sheridan
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven–University of Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Departments of Biomathematics, Biostatistics, Human Genetics, University of California, Los Angeles, California, United States of America
| | | | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| |
Collapse
|
35
|
Petruzziello A, Marigliano S, Loquercio G, Cozzolino A, Cacciapuoti C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol 2016; 22:7824-7840. [PMID: 27678366 PMCID: PMC5016383 DOI: 10.3748/wjg.v22.i34.7824] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To review Hepatitis C virus (HCV) prevalence and genotypes distribution worldwide.
METHODS We conducted a systematic study which represents one of the most comprehensive effort to quantify global HCV epidemiology, using the best available published data between 2000 and 2015 from 138 countries (about 90% of the global population), grouped in 20 geographical areas (with the exclusion of Oceania), as defined by the Global Burden of Diseases project (GBD). Countries for which we were unable to obtain HCV genotype prevalence data were excluded from calculations of regional proportions, although their populations were included in the total population size of each region when generating regional genotype prevalence estimates.
RESULTS Total global HCV prevalence is estimated at 2.5% (177.5 million of HCV infected adults), ranging from 2.9% in Africa and 1.3% in Americas, with a global viraemic rate of 67% (118.9 million of HCV RNA positive cases), varying from 64.4% in Asia to 74.8% in Australasia. HCV genotype 1 is the most prevalent worldwide (49.1%), followed by genotype 3 (17.9%), 4 (16.8%) and 2 (11.0%). Genotypes 5 and 6 are responsible for the remaining < 5%. While genotypes 1 and 3 are common worldwide, the largest proportion of genotypes 4 and 5 is in lower-income countries. Although HCV genotypes 1 and 3 infections are the most prevalent globally (67.0% if considered together), other genotypes are found more commonly in lower-income countries where still account for a significant proportion of HCV cases.
CONCLUSION A more precise knowledge of HCV genotype distribution will be helpful to best inform national healthcare models to improve access to new treatments.
Collapse
|
36
|
Floden EW, Khawaja A, Vopálenský V, Pospíšek M. HCVIVdb: The hepatitis-C IRES variation database. BMC Microbiol 2016; 16:187. [PMID: 27527702 PMCID: PMC4986321 DOI: 10.1186/s12866-016-0804-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/04/2016] [Indexed: 01/22/2023] Open
Abstract
Background Sequence variability in the hepatitis C virus (HCV) genome has led to the development and classification of six genotypes and a number of subtypes. The HCV 5′ untranslated region mainly comprises an internal ribosomal entry site (IRES) responsible for cap-independent synthesis of the viral polyprotein and is conserved among all HCV genotypes. Description Considering the possible high impact of variations in HCV IRES on viral protein production and thus virus replication, we decided to collect the available data on known nucleotide variants in the HCV IRES and their impact on IRES function in translation initiation. The HCV IRES variation database (HCVIVdb) is a collection of naturally occurring and engineered mutation entries for the HCV IRES. Each entry contains contextual information pertaining to the entry such as the HCV genotypic background and links to the original publication. Where available, quantitative data on the IRES efficiency in translation have been collated along with details on the reporter system used to generate the data. Data are displayed both in a tabular and graphical formats and allow direct comparison of results from different experiments. Together the data provide a central resource for researchers in the IRES and hepatitis C-oriented fields. Conclusion The collation of over 1900 mutations enables systematic analysis of the HCV IRES. The database is mainly dedicated to detailed comparative and functional analysis of all the HCV IRES domains, which can further lead to the development of site-specific drug designs and provide a guide for future experiments. HCVIVdb is available at http://www.hcvivdb.org. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0804-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evan W Floden
- Department of Genetics & Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anas Khawaja
- Department of Genetics & Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Václav Vopálenský
- Department of Genetics & Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Pospíšek
- Department of Genetics & Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
37
|
Chi PB, Chattopadhyay S, Lemey P, Sokurenko EV, Minin VN. Synonymous and nonsynonymous distances help untangle convergent evolution and recombination. Stat Appl Genet Mol Biol 2016; 14:375-89. [PMID: 26061623 DOI: 10.1515/sagmb-2014-0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When estimating a phylogeny from a multiple sequence alignment, researchers often assume the absence of recombination. However, if recombination is present, then tree estimation and all downstream analyses will be impacted, because different segments of the sequence alignment support different phylogenies. Similarly, convergent selective pressures at the molecular level can also lead to phylogenetic tree incongruence across the sequence alignment. Current methods for detection of phylogenetic incongruence are not equipped to distinguish between these two different mechanisms and assume that the incongruence is a result of recombination or other horizontal transfer of genetic information. We propose a new recombination detection method that can make this distinction, based on synonymous codon substitution distances. Although some power is lost by discarding the information contained in the nonsynonymous substitutions, our new method has lower false positive probabilities than the comparable recombination detection method when the phylogenetic incongruence signal is due to convergent evolution. We apply our method to three empirical examples, where we analyze: (1) sequences from a transmission network of the human immunodeficiency virus, (2) tlpB gene sequences from a geographically diverse set of 38 Helicobacter pylori strains, and (3) hepatitis C virus sequences sampled longitudinally from one patient.
Collapse
|
38
|
Provazzi PJS, Mukherjee S, Hanson AM, Nogueira ML, Carneiro BM, Frick DN, Rahal P. Analysis of the Enzymatic Activity of an NS3 Helicase Genotype 3a Variant Sequence Obtained from a Relapse Patient. PLoS One 2015; 10:e0144638. [PMID: 26658750 PMCID: PMC4684341 DOI: 10.1371/journal.pone.0144638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
The hepatitis C virus (HCV) is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.
Collapse
Affiliation(s)
- Paola J. S. Provazzi
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
- * E-mail:
| | - Sourav Mukherjee
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Alicia M. Hanson
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Mauricio L. Nogueira
- São José do Rio Preto Medical School, Laboratory of Virology, São José do Rio Preto/SP, CEP: 15090–000, Brazil
| | - Bruno M. Carneiro
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
| | - David N. Frick
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Paula Rahal
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
| |
Collapse
|
39
|
Analysis of Hepatitis C Virus Genotype 1b Resistance Variants in Japanese Patients Treated with Paritaprevir-Ritonavir and Ombitasvir. Antimicrob Agents Chemother 2015; 60:1106-13. [PMID: 26643326 PMCID: PMC4750684 DOI: 10.1128/aac.02606-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Treatment of HCV genotype 1b (GT1b)-infected Japanese patients with paritaprevir (NS3/4A inhibitor boosted with ritonavir) and ombitasvir (NS5A inhibitor) in studies M12-536 and GIFT-I demonstrated high sustained virologic response (SVR) rates. The virologic failure rate was 3% (13/436) across the two studies. Analyses were conducted to evaluate the impact of baseline resistance-associated variants (RAVs) on treatment outcome and the emergence and persistence of RAVs in patients experiencing virologic failure. Baseline paritaprevir resistance-conferring variants in NS3 were infrequent, while Y93H in NS5A was the most prevalent ombitasvir resistance-conferring variant at baseline. A comparison of baseline prevalence of polymorphisms in Japanese and western patients showed that Q80L and S122G in NS3 and L28M, R30Q, and Y93H in NS5A were significantly more prevalent in Japanese patients. In the GIFT-I study, the prevalence of Y93H in NS5A varied between 13% and 21% depending on the deep-sequencing detection threshold. Among patients with Y93H comprising <1%, 1 to 40%, or >40% of their preexisting viral population, the 24-week SVR (SVR24) rates were >99% (276/277), 93% (38/41), and 76% (25/33), respectively, indicating that the prevalence of Y93H within a patient's viral population is a good predictor of treatment response. The predominant RAVs at the time of virologic failure were D168A/V in NS3 and Y93H alone or in combination with other variants in NS5A. While levels of NS3 RAVs declined over time, NS5A RAVs persisted through posttreatment week 48. Results from these analyses are informative in understanding the resistance profile of an ombitasvir- plus paritaprevir/ritonavir-based regimen in Japanese GT1b-infected patients.
Collapse
|
40
|
Chen M, Ma Y, Chen H, Luo H, Dai J, Song L, Yang C, Mei J, Yang L, Dong L, Jia M, Lu L. Multiple Introduction and Naturally Occuring Drug Resistance of HCV among HIV-Infected Intravenous Drug Users in Yunnan: An Origin of China's HIV/HCV Epidemics. PLoS One 2015; 10:e0142543. [PMID: 26562015 PMCID: PMC4642981 DOI: 10.1371/journal.pone.0142543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023] Open
Abstract
Background The human immunodeficiency virus 1 (HIV-1) epidemic in China historically stemmed from intravenous drug users (IDUs) in Yunnan. Due to a shared transmission route, hepatitis C virus (HCV)/HIV-1 co-infection is common. Here, we investigated HCV genetic characteristics and baseline drug resistance among HIV-infected IDUs in Yunnan. Methods Blood samples of 432 HIV-1/HCV co-infected IDUs were collected from January to June 2014 in six prefectures of Yunnan Province. Partial E1E2 and NS5B genes were sequenced. Phylogenetic, evolutionary and genotypic drug resistance analyses were performed. Results Among the 293 specimens successfully genotyped, seven subtypes were identified, including subtypes 3b (37.9%, 111/293), 3a (21.8%, 64/293), 6n (14.0%, 41/293), 1b (10.6%, 31/293), 1a (8.2%, 24/293), 6a (5.1%, 15/293) and 6u (2.4%, 7/293). The distribution of HCV subtypes was mostly related to geographic location. Subtypes 3b, 3a, and 6n were detected in all six prefectures, however, the other four subtypes were detected only in parts of the six prefectures. Phylogeographic analyses indicated that 6n, 1a and 6u originated in the western prefecture (Dehong) and spread eastward and showed genetic relatedness with those detected in Burmese. However, 6a originated in the southeast prefectures (Honghe and Wenshan) bordering Vietnam and was transmitted westward. These subtypes exhibited different evolutionary rates (between 4.35×10−4 and 2.38×10−3 substitutions site-1 year-1) and times of most recent common ancestor (tMRCA, between 1790.3 and 1994.6), suggesting that HCV was multiply introduced into Yunnan. Naturally occurring resistance-associated mutations (C316N, A421V, C445F, I482L, V494A, and V499A) to NS5B polymerase inhibitors were detected in direct-acting antivirals (DAAs)-naïve IDUs. Conclusion This work reveals the temporal-spatial distribution of HCV subtypes and baseline HCV drug resistance among HIV-infected IDUs in Yunnan. The findings enhance our understanding of the characteristics and evolution of HCV in IDUs and are valuable for developing HCV prevention and management strategies for this population.
Collapse
Affiliation(s)
- Min Chen
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Yanling Ma
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Huichao Chen
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Hongbing Luo
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Jie Dai
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Lijun Song
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Chaojun Yang
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Jingyuan Mei
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Li Yang
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Lijuan Dong
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Manhong Jia
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
- * E-mail: (MJ); (LL)
| | - Lin Lu
- Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, 650022, China
- College of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
- * E-mail: (MJ); (LL)
| |
Collapse
|
41
|
Pybus OG, Thézé J. Hepacivirus cross-species transmission and the origins of the hepatitis C virus. Curr Opin Virol 2015; 16:1-7. [PMID: 26517843 DOI: 10.1016/j.coviro.2015.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022]
Abstract
Just 5 years ago the hepatitis C virus (HCV) - a major cause of liver disease infecting >3% of people worldwide - was the sole confirmed member of the Hepacivirus genus. Since then, genetically-diverse hepaciviruses have been isolated from bats, dogs, cows, horses, primates and rodents. Here we review current information on the hepaciviruses and speculate on the zoonotic origins of the viruses in humans, horses and dogs. Recent and direct cross-species transmission from horses to dogs appears plausible, but the zoonotic origins of HCV in humans remain opaque. Mechanical transmission by biting insects, notably tabanids, could, in theory, connect all three host species. Much further work is needed to understand the transmission and zoonotic potential of hepaciviruses in natural populations.
Collapse
Affiliation(s)
- Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Julien Thézé
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
42
|
Thézé J, Lowes S, Parker J, Pybus OG. Evolutionary and Phylogenetic Analysis of the Hepaciviruses and Pegiviruses. Genome Biol Evol 2015; 7:2996-3008. [PMID: 26494702 PMCID: PMC5635594 DOI: 10.1093/gbe/evv202] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The known genetic diversity of the hepaciviruses and pegiviruses has increased greatly in recent years through the discovery of viruses related to hepatitis C virus and human pegivirus in bats, bovines, equines, primates, and rodents. Analysis of these new species is important for research into animal models of hepatitis C virus infection and into the zoonotic origins of human viruses. Here, we provide the first systematic phylogenetic and evolutionary analysis of these two genera at the whole-genome level. Phylogenies confirmed that hepatitis C virus is most closely related to viruses from horses whereas human pegiviruses clustered with viruses from African primates. Within each genus, several well-supported lineages were identified and viral diversity was structured by both host species and location of sampling. Recombination analyses provided evidence of interspecific recombination in hepaciviruses, but none in the pegiviruses. Putative mosaic genome structures were identified in NS5B gene region and were supported by multiple tests. The identification of interspecific recombination in the hepaciviruses represents an important evolutionary event that could be clarified by future sampling of novel viruses. We also identified parallel amino acid changes shared by distantly related lineages that infect similar types of host. Notable parallel changes were clustered in the NS3 and NS4B genes and provide a useful starting point for experimental studies of the evolution of Hepacivirus host-virus interactions.
Collapse
Affiliation(s)
- Julien Thézé
- Department of Zoology, University of Oxford, United Kingdom
| | - Sophia Lowes
- Department of Zoology, University of Oxford, United Kingdom
| | - Joe Parker
- Biodiversity Informatics and Spatial Analysis, The Jodrell Laboratory, Royal Botanic Gardens, Kew, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, United Kingdom
| |
Collapse
|
43
|
Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity. PLoS One 2015; 10:e0138546. [PMID: 26405760 PMCID: PMC4583497 DOI: 10.1371/journal.pone.0138546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) variants characterized by genomic deletions in the structural protein region have been sporadically detected in liver and serum of hepatitis C patients. These defective genomes are capable of autonomous RNA replication and are packaged into infectious viral particles in cells co-infected with the wild-type virus. The prevalence of such forms in the chronically HCV-infected population and the impact on the severity of liver disease or treatment outcome are currently unknown. In order to determine the prevalence of HCV defective variants and to study their association with clinical characteristics, a screening campaign was performed on pre-therapy serum samples from a well-characterized cohort of previously untreated genotype 1 HCV-infected patients who received treatment with PEG-IFNα and RBV. 132 subjects were successfully analyzed for the presence of defective species exploiting a long-distance nested PCR assay. HCV forms with deletions predominantly affecting E1, E2 and p7 proteins were found in a surprising high fraction of the subjects (25/132, 19%). Their presence was associated with patient older age, higher viral load and increased necroinflammatory activity in the liver. While the presence of circulating HCV carrying deletions in the E1-p7 region did not appear to significantly influence sustained virological response rates to PEG-IFNα/RBV, our study indicates that the presence of these subgenomic HCV mutants could be associated with virological relapse in patients who did not have detectable viremia at the end of the treatment.
Collapse
|
44
|
Genotype- and Subtype-Independent Full-Genome Sequencing Assay for Hepatitis C Virus. J Clin Microbiol 2015; 53:2049-59. [PMID: 25878342 DOI: 10.1128/jcm.02624-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/09/2015] [Indexed: 01/27/2023] Open
Abstract
Hepatitis C virus (HCV) exhibits a high genetic diversity and is classified into 6 genotypes, which are further divided into 66 subtypes. Current sequencing strategies require prior knowledge of the HCV genotype and subtype for efficient amplification, making it difficult to sequence samples with a rare or unknown genotype and/or subtype. Here, we describe a subtype-independent full-genome sequencing assay based on a random amplification strategy coupled with next-generation sequencing. HCV genomes from 17 patient samples with both common subtypes (1a, 1b, 2a, 2b, and 3a) and rare subtypes (2c, 2j, 3i, 4a, 4d, 5a, 6a, 6e, and 6j) were successfully sequenced. On average, 3.7 million reads were generated per sample, with 15% showing HCV specificity. The assembled consensus sequences covered 99.3% to 100% of the HCV coding region, and the average coverage was 6,070 reads/position. The accuracy of the generated consensus sequence was estimated to be >99% based on results from in vitro HCV replicon amplification, with the same extrapolated amount of input RNA molecules as that for the patient samples. Taken together, the HCV genomes from 17 patient samples were successfully sequenced, including samples with subtypes that have limited sequence information. This method has the potential to sequence any HCV patient sample, independent of genotype or subtype. It may be especially useful in confounding cases, like those with rare subtypes, intergenotypic recombination, or multiple genotype infections, and may allow greater insight into HCV evolution, its genetic diversity, and drug resistance development.
Collapse
|
45
|
The full-length genome sequences of nine HCV genotype 4 variants representing a new subtype 4s and eight unclassified lineages. Virology 2015; 482:111-6. [PMID: 25854865 DOI: 10.1016/j.virol.2015.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 12/23/2022]
Abstract
We characterized the full-length genomes for nine novel variants of HCV genotype 4 (HCV-4), representing a new subtype 4s and eight unclassified lineages. They were obtained from patients who resided in Canada but all had origins in Africa. An extended maximum clade credibility (MCC) tree was reconstructed after the inclusion of 30 reference sequences. It differentiated 18 assigned subtypes and 10 unclassified lineages within HCV-4. Similar analysis of 102 partial NS5B sequences resulted in another MCC tree that revealed 22 assigned subtypes (4a-4t, 4w, and 4v) and 30 unclassified lineages at the subtype level. Our study shows that HCV-4 is taxonomically complex and it displays high genetic diversity to support an African origin.
Collapse
|
46
|
Abstract
The majority of new and existing cases of HCV infection in high-income countries occur among people who inject drugs (PWID). Ongoing high-risk behaviours can lead to HCV re-exposure, resulting in mixed HCV infection and reinfection. Assays used to screen for mixed infection vary widely in sensitivity, particularly with respect to their capacity for detecting minor variants (<20% of the viral population). The prevalence of mixed infection among PWID ranges from 14% to 39% when sensitive assays are used. Mixed infection compromises HCV treatment outcomes with interferon-based regimens. HCV reinfection can also occur after successful interferon-based treatment among PWID, but the rate of reinfection is low (0-5 cases per 100 person-years). A revolution in HCV therapeutic development has occurred in the past few years, with the advent of interferon-free, but still genotype-specific regiments based on direct acting antiviral agents. However, little is known about whether mixed infection and reinfection has an effect on HCV treatment outcomes in the setting of new direct-acting antiviral agents. This Review characterizes the epidemiology and natural history of mixed infection and reinfection among PWID, methodologies for detection, the potential implications for HCV treatment and considerations for the design of future studies.
Collapse
|
47
|
Scheel TKH, Simmonds P, Kapoor A. Surveying the global virome: identification and characterization of HCV-related animal hepaciviruses. Antiviral Res 2015; 115:83-93. [PMID: 25545071 PMCID: PMC5081135 DOI: 10.1016/j.antiviral.2014.12.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/25/2022]
Abstract
Recent advances in sequencing technologies have greatly enhanced our abilities to identify novel microbial sequences. Thus, our understanding of the global virome and the virome of specific host species in particular is rapidly expanding. Identification of animal viruses is important for understanding animal disease, the origin and evolution of human viruses, as well as zoonotic reservoirs for emerging infections. Although the human hepacivirus, hepatitis C virus (HCV), was identified 25years ago, its origin has remained elusive. In 2011, the first HCV homolog was reported in dogs but subsequent studies showed the virus to be widely distributed in horses. This indicated a wider hepacivirus host range and paved the way for identification of rodent, bat and non-human primate hepaciviruses. The equine non-primate hepacivirus (NPHV) remains the closest relative of HCV and is so far the best characterized. Identification and characterization of novel hepaciviruses may in addition lead to development of tractable animal models to study HCV persistence, immune responses and pathogenesis. This could be particular important, given the current shortage of immunocompetent models for robust HCV infection. Much remains to be learned on the novel hepaciviruses, including their association with disease, and thereby how relevant they will become as HCV model systems and for studies of animal disease. This review discusses how virome analysis led to identification of novel hepaci- and pegiviruses, their genetic relationship and characterization and the potential use of animal hepaciviruses as models to study hepaciviral infection, immunity and pathogenesis. This article forms part of a symposium in Antiviral Research on "Hepatitis C: Next steps toward global eradication."
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Disease and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amit Kapoor
- Center for Infection and Immunity, Columbia University, New York, NY, United States.
| |
Collapse
|
48
|
Hedskog C, Doehle B, Chodavarapu K, Gontcharova V, Crespo Garcia J, De Knegt R, Drenth JPH, McHutchison JG, Brainard D, Stamm LM, Miller MD, Svarovskaia E, Mo H. Characterization of hepatitis C virus intergenotypic recombinant strains and associated virological response to sofosbuvir/ribavirin. Hepatology 2015; 61:471-80. [PMID: 25099344 DOI: 10.1002/hep.27361] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED To date, intergenotypic recombinant hepatitis C viruses (HCVs) and their treatment outcomes have not been well characterized. This study characterized 12 novel HCV recombinant strains and their response to sofosbuvir in combination with ribavirin (SOF/RBV) treatment. Across the phase II/III studies of SOF, HCV samples were genotyped using both the Siemens VERSANT HCV Genotype INNO-LiPA 2.0 Assay (Innogenetics, Ghent, Belgium) and nonstructural (NS)5B sequencing. Among these patient samples, genotype assignment discordance between the two methods was found in 0.5% of all cases (12 of 2,363), of which all were identified as genotype 2 by INNO-LiPA (12 of 487; 2.5%). HCV full-genome sequences were obtained for these 12 samples by a sequence-independent amplification method coupled with next-generation sequencing. HCV full-genome sequencing revealed that these viruses were recombinant HCV strains, with the 5' part corresponding to genotype 2 and the 3' part corresponding to genotype 1. The recombination breakpoint between genotypes 2 and 1 was consistently located within 80 amino acids of the NS2/NS3 junction. Interestingly, one of the recombinant viruses had a 34-amino-acid duplication at the location of the recombination breakpoint. Eleven of these twelve patients were treated with a regimen for genotype 2 HCV infection, but responded as if they had genotype 1 infection; 1 patient had received placebo. CONCLUSION Twelve new HCV intergenotypic recombinant genotype 2/1 viruses have been characterized. The antiviral response to a 12- to 16-week course of SOF/RBV treatment in these patients was more similar to responses among genotype 1 patients than genotype 2 patients, consistent with their genotype 1 NS5B gene.
Collapse
|
49
|
Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, Barnes E. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 2015; 61:77-87. [PMID: 25069599 PMCID: PMC4303918 DOI: 10.1002/hep.27259] [Citation(s) in RCA: 1140] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) exhibits high genetic diversity, characterized by regional variations in genotype prevalence. This poses a challenge to the improved development of vaccines and pan-genotypic treatments, which require the consideration of global trends in HCV genotype prevalence. Here we provide the first comprehensive survey of these trends. To approximate national HCV genotype prevalence, studies published between 1989 and 2013 reporting HCV genotypes are reviewed and combined with overall HCV prevalence estimates from the Global Burden of Disease (GBD) project. We also generate regional and global genotype prevalence estimates, inferring data for countries lacking genotype information. We include 1,217 studies in our analysis, representing 117 countries and 90% of the global population. We calculate that HCV genotype 1 is the most prevalent worldwide, comprising 83.4 million cases (46.2% of all HCV cases), approximately one-third of which are in East Asia. Genotype 3 is the next most prevalent globally (54.3 million, 30.1%); genotypes 2, 4, and 6 are responsible for a total 22.8% of all cases; genotype 5 comprises the remaining <1%. While genotypes 1 and 3 dominate in most countries irrespective of economic status, the largest proportions of genotypes 4 and 5 are in lower-income countries. CONCLUSION Although genotype 1 is most common worldwide, nongenotype 1 HCV cases—which are less well served by advances in vaccine and drug development—still comprise over half of all HCV cases. Relative genotype proportions are needed to inform healthcare models, which must be geographically tailored to specific countries or regions in order to improve access to new treatments. Genotype surveillance data are needed from many countries to improve estimates of unmet need.
Collapse
Affiliation(s)
- Jane P Messina
- Spatial Epidemiology and Ecology Group, Department of Zoology, University of OxfordOxford, UK
| | - Isla Humphreys
- Peter Medawar Building for Pathogen Research, University of Oxford, and Oxford NHIR BRCOxford, UK
| | | | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, and Oxford NHIR BRCOxford, UK
| | - Graham S Cooke
- Division of Infectious Diseases, St Mary's Campus, Imperial CollegeLondon, UK
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, and Oxford NHIR BRCOxford, UK
| |
Collapse
|
50
|
Ancient pathogen genomics: insights into timing and adaptation. J Hum Evol 2014; 79:137-49. [PMID: 25532802 DOI: 10.1016/j.jhevol.2014.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 09/08/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022]
Abstract
Disease is a major cause of natural selection affecting human evolution, whether through a sudden pandemic or persistent morbidity and mortality. Recent contributions in the field of ancient pathogen genomics have advanced our understanding of the antiquity and nature of human-pathogen interactions through time. Technical advancements have facilitated the recovery, enrichment, and high-throughput sequencing of pathogen and parasite DNA from archived and archaeological remains. These time-stamped genomes are crucial for calibrating molecular clocks to infer the timing of evolutionary events, while providing finer-grain resolution to phylogenetic reconstructions and complex biogeographical patterns. Additionally, genome scale data allow better identification of substitutions linked to adaptations of the pathogen to their human hosts. As methodology continues to improve, ancient genomes of humans and their diverse microbiomes from a range of eras and archaeological contexts will enable population-level ancient analyses in the near future and a better understanding of their co-evolutionary history.
Collapse
|