1
|
Kutter JS, Linster M, de Meulder D, Bestebroer TM, Lexmond P, Rosu ME, Richard M, de Vries RP, Fouchier RAM, Herfst S. Continued adaptation of A/H2N2 viruses during pandemic circulation in humans. J Gen Virol 2023; 104:001881. [PMID: 37650875 PMCID: PMC10721047 DOI: 10.1099/jgv.0.001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus.
Collapse
Affiliation(s)
- Jasmin S. Kutter
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin Linster
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
- Present address: Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Castro-Sanguinetti GR, Marques Simas PV, Apaza-Chiara AP, Callupe-Leyva JA, Rondon-Espinoza JA, Gavidia CM, More-Bayona JA, Gonzalez Veliz RI, Vakharia VN, Icochea ME. Genetic subtyping and phylogenetic analysis of HA and NA from avian influenza virus in wild birds from Peru reveals unique features among circulating strains in America. PLoS One 2022; 17:e0268957. [PMID: 35671300 PMCID: PMC9173603 DOI: 10.1371/journal.pone.0268957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Avian influenza virus (AIV) represents a major concern with productive implications in poultry systems but it is also a zoonotic agent that possesses an intrinsic pandemic risk. AIV is an enveloped, negative-sense and single-stranded RNA virus with a segmented genome. The eight genomic segments, comprising the whole genome, encode for eleven proteins. Within these proteins, Hemagglutinin (HA) and Neuraminidase (NA) are the most relevant for studies of evolution and pathogenesis considering their role in viral replication, and have also been used for classification purposes. Migratory birds are the main hosts and play a pivotal role in viral evolution and dissemination due to their migratory routes that comprise large regions worldwide. Altogether, viral and reservoir factors contribute to the emergence of avian influenza viruses with novel features and pathogenic potentials. The study aimed to conduct surveillance of AIVs in wild birds from Peru. A multi-site screening of feces of migratory birds was performed to isolate viruses and to characterize the whole genome sequences, especially the genes coding for HA and NA proteins. Four-hundred-twenty-one (421) fecal samples, collected between March 2019 and March 2020 in Lima, were obtained from 21 species of wild birds. From these, we isolated five AIV from whimbrel, kelp gull, Franklin’s gulls and Mallard, which were of low pathogenicity, including four subtypes as H6N8, H13N6, H6N2 and H2N6. Genetic analysis of HA and NA genes revealed novel features in these viruses and phylogenetic analysis exhibited a close relationship with those identified in North America (US and Canada). Furthermore, H2N6 isolate presented a NA sequence with higher genetic relationship to Chilean isolates. These results highlight that the geographical factor is of major relevance in the evolution of AIV, suggesting that AIV circulating in Peru might represent a new site for the emergence of reassortant AIVs.
Collapse
Affiliation(s)
- Gina R. Castro-Sanguinetti
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Paulo Vitor Marques Simas
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Ana Paola Apaza-Chiara
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Jose Alonso Callupe-Leyva
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Alexander Rondon-Espinoza
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Cesar M. Gavidia
- Laboratory of Epidemiology and Veterinary Economy, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Anderson More-Bayona
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- Laboratory of Microbiology and Parasitology, Virology Section, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Rosa Isabel Gonzalez Veliz
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Maria Eliana Icochea
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- * E-mail:
| |
Collapse
|
3
|
Spaulding F, McLaughlin JF, Glenn TC, Winker K. Estimating Movement Rates Between Eurasian and North American Birds That Are Vectors of Avian Influenza. Avian Dis 2022; 66:155-164. [PMID: 35510470 DOI: 10.1637/aviandiseases-d-21-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022]
Abstract
Avian influenza (AI) is a zoonotic disease that will likely be involved in future pandemics. Because waterbird movements are difficult to quantify, determining the host-specific risk of Eurasian-origin AI movements into North America is challenging. We estimated relative rates of movements, based on long-term evolutionary averages of gene flow, between Eurasian and North American waterbird populations to obtain bidirectional baseline rates of the intercontinental movements of these AI hosts. We used population genomics and coalescent-based demographic models to obtain these gene-flow-based movement estimates. Inferred rates of movement between these continental populations varies greatly among species. Within dabbling ducks, gene flow, relative to effective population size, varies from ∼3 to 24 individuals/generation between Eurasian and American wigeons (Mareca penelope and Mareca americana) to ∼100-300 individuals/generation between continental populations of northern pintails (Anas acuta). These are evolutionary long-term averages and provide a solid foundation for understanding the relative risks of each of these host species in potential intercontinental AI movements. We scale these values to census size for evaluation in that context. In addition to being AI hosts, many of these bird species are also important in the subsistence diets of Alaskans, increasing the risk of direct bird-to-human exposure to Eurasian-origin AI virus. We contrast species-specific rates of intercontinental movements with the importance of each species in Alaskan diets to understand the relative risk of these taxa to humans. Assuming roughly equivalent AI infection rates among ducks, greater scaup (Aythya marila), mallard (Anas platyrhynchos), and northern pintail (Anas acuta) were the top three species presenting the highest risks for intercontinental AI movement both within the natural system and through exposure to subsistence hunters. Improved data on AI infection rates in this region could further refine these relative risk assessments. These directly comparable, species-based intercontinental movement rates and relative risk rankings should help in modeling, monitoring, and mitigating the impacts of intercontinental host and AI movements.
Collapse
Affiliation(s)
- Fern Spaulding
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, .,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775
| | - Jessica F McLaughlin
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720
| | - Travis C Glenn
- Department of Environmental Health Science and Institute of Bioinformatics, University of Georgia, Athens, GA 30602
| | - Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775
| |
Collapse
|
4
|
Nambou K, Anakpa M, Tong YS. Human genes with codon usage bias similar to that of the nonstructural protein 1 gene of influenza A viruses are conjointly involved in the infectious pathogenesis of influenza A viruses. Genetica 2022; 150:97-115. [PMID: 35396627 PMCID: PMC8992787 DOI: 10.1007/s10709-022-00155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 11/27/2022]
Abstract
Molecular mechanisms of the non-structural protein 1 (NS1) in influenza A-induced pathological changes remain ambiguous. This study explored the pathogenesis of human infection by influenza A viruses (IAVs) through identifying human genes with codon usage bias (CUB) similar to NS1 gene of these viruses based on the relative synonymous codon usage (RSCU). CUB of the IAV subtypes H1N1, H3N2, H3N8, H5N1, H5N2, H5N8, H7N9 and H9N2 was analyzed and the correlation of RSCU values of NS1 sequences with those of the human genes was calculated. The CUB of NS1 was uneven and codons ending with A/U were preferred. The ENC-GC3 and neutrality plots suggested natural selection as the main determinant for CUB. The RCDI, CAI and SiD values showed that the viruses had a high degree of adaptability to human. A total of 2155 human genes showed significant RSCU-based correlation (p < 0.05 and r > 0.5) with NS1 coding sequences and was considered as human genes with CUB similar to NS1 gene of IAV subtypes. Differences and similarities in the subtype-specific human protein–protein interaction (PPI) networks and their functions were recorded among IAVs subtypes, indicating that NS1 of each IAV subtype has a specific pathogenic mechanism. Processes and pathways involved in influenza, transcription, immune response and cell cycle were enriched in human gene sets retrieved based on the CUB of NS1 gene of IAV subtypes. The present work may advance our understanding on the mechanism of NS1 in human infections of IAV subtypes and shed light on the therapeutic options.
Collapse
Affiliation(s)
- Komi Nambou
- Shenzhen Nambou1 Biotech Company Limited, 998 Wisdom Valley, No. 38-56 Zhenming Road, Guangming District, Shenzhen, 518106, China.
| | - Manawa Anakpa
- Centre d'Informatique et de Calcul, Université de Lomé, Boulevard Gnassingbé Eyadema, 01 B.P. 1515, Lomé, Togo
| | - Yin Selina Tong
- Shenzhen Nambou1 Biotech Company Limited, 998 Wisdom Valley, No. 38-56 Zhenming Road, Guangming District, Shenzhen, 518106, China
| |
Collapse
|
5
|
Bevins SN, Shriner SA, Cumbee JC, Dilione KE, Douglass KE, Ellis JW, Killian ML, Torchetti MK, Lenoch JB. Intercontinental Movement of Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4 Virus to the United States, 2021. Emerg Infect Dis 2022; 28:1006-1011. [PMID: 35302933 PMCID: PMC9045435 DOI: 10.3201/eid2805.220318] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We detected Eurasian-origin highly pathogenic avian influenza A(H5N1) virus belonging to the Gs/GD lineage, clade 2.3.4.4b, in wild waterfowl in 2 Atlantic coastal states in the United States. Bird banding data showed widespread movement of waterfowl within the Atlantic Flyway and between neighboring flyways and northern breeding grounds.
Collapse
|
6
|
Chung DH, Torchetti MK, Killian ML, Swayne DE, Lee DH. Transmission Dynamics of Low Pathogenicity Avian Influenza (H2N2) Viruses in Live Bird Markets of the Northeast United States of America, 2013-2019. Virus Evol 2022; 8:veac009. [PMID: 35494174 PMCID: PMC9048936 DOI: 10.1093/ve/veac009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Live bird market (LBM) surveillance was conducted in the Northeast United States (US) to monitor for the presence of avian influenza viruses (AIV) in domestic poultry and market environments. A total of 384 H2N2 low pathogenicity AIV (LPAIV) isolated from active surveillance efforts in the LBM system of New York, Connecticut, Rhode Island, New Jersey, Pennsylvania, and Maryland during 2013–2019 were included in this analysis. Comparative phylogenetic analysis showed that a wild-bird-origin H2N2 virus may have been introduced into the LBMs in Pennsylvania and independently evolved since March 2012 followed by spread to LBMs in New York City during late 2012–early 2013. LBMs in New York state played a key role in the maintenance and dissemination of the virus to LBMs in the Northeast US including reverse spread to Pennsylvania LBMs. The frequent detections in the domestic ducks and market environment with viral transmissions between birds and environment possibly led to viral adaptation and circulation in domestic gallinaceous poultry in LBMs, suggesting significant roles of domestic ducks and contaminated LBM environment as reservoirs in maintenance and dissemination of H2N2 LPAIV.
Collapse
Affiliation(s)
- David H Chung
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, Iowa, USA
| | - Mary L Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, Iowa, USA
| | - David E Swayne
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, Athens, Georgia, USA
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Mo J, Youk S, Pantin-Jackwood MJ, Suarez DL, Lee DH, Killian ML, Bergeson NH, Spackman E. The pathogenicity and transmission of live bird market H2N2 avian influenza viruses in chickens, Pekin ducks, and guinea fowl. Vet Microbiol 2021; 260:109180. [PMID: 34271303 PMCID: PMC8355142 DOI: 10.1016/j.vetmic.2021.109180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
H2N2 subtype low pathogenic avian influenza viruses (LPAIVs) have persisted in live bird markets (LBMs) in the Northeastern United States since 2014. Although unrelated to the 1957 pandemic H2N2 lineage, there is concern that the virus could have animal and public health consequences because of high contact with humans and numerous species in the LBM system. The pathogenicity, infectivity, and transmissibility of six LBM H2N2 viruses isolated from three avian species in LBMs were examined in chickens. Two of these isolates were also tested in Pekin ducks and guinea fowl. Full genome sequence was obtained from all 6 isolates and evaluated for genetic markers for host adaptation and pathogenicity in poultry. Clinical signs were not observed in any host with any of the isolates, however one recent isolate was shed at higher titers than the other isolates and had the lowest bird infectious dose of all the isolates tested in all three species. This isolate, A/chicken/NY/19-012787-1/2019, was also the only isolate with a deletion in the stalk region of the neuraminidase protein (NA). This supports the theory that the NA stalk deletion is evidence of adaptation to gallinaceous poultry.
Collapse
Affiliation(s)
- Jongseo Mo
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Rd., Athens, GA 30605, USA
| | - Sungsu Youk
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Rd., Athens, GA 30605, USA
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Rd., Athens, GA 30605, USA
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Rd., Athens, GA 30605, USA
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Unit-3089 Storrs, CT 06269, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Veterinary Services, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Nichole H Bergeson
- National Veterinary Services Laboratories, Veterinary Services, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Rd., Athens, GA 30605, USA.
| |
Collapse
|
8
|
Muzyka D, Rula O, Tkachenko S, Muzyka N, Köthe S, Pishchanskyi O, Stegniy B, Pantin-Jackwood M, Beer M. Highly Pathogenic and Low Pathogenic Avian Influenza H5 Subtype Viruses in Wild Birds in Ukraine. Avian Dis 2020; 63:219-229. [PMID: 31131580 DOI: 10.1637/11879-042718-resnote.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/09/2018] [Indexed: 11/05/2022]
Abstract
There have been three waves of highly pathogenic avian influenza (HPAI) outbreaks in commercial, backyard poultry, and wild birds in Ukraine. The first (2005-2006) and second (2008) waves were caused by H5N1 HPAI virus, with 45 outbreaks among commercial poultry (chickens) and backyard fowl (chickens, ducks, and geese) in four regions of Ukraine (AR Crimea, Kherson, Odesa, and Sumy Oblast). H5N1 HPAI viruses were isolated from dead wild birds: cormorants (Phalacrocorax carbo) and great crested grebes (Podiceps cristatus) in 2006 and 2008. The third HPAI wave consisted of nine outbreaks of H5N8 HPAI in wild and domestic birds, beginning in November 2016 in the central and south regions (Kherson, Odesa, Chernivtsi, Ternopil, and Mykolaiv Oblast). H5N8 HPAI virus was detected in dead mute swans (Cygnus olor), peacocks (Pavo cristatus) (in zoo), ruddy shelducks (Tadorna ferruginea), white-fronted geese (Anser albifrons), and from environmental samples in 2016 and 2017. Wide wild bird surveillance for avian influenza (AI) virus was conducted from 2006 to 2016 in Ukraine regions suspected of being intercontinental (north-south and east-west) flyways. A total of 21 511 samples were collected from 105 species of wild birds representing 27 families and 11 orders. Ninety-five avian influenza (AI) viruses were isolated (including one H5N2 LPAI virus in 2010) from wild birds with a total of 26 antigenic hemagglutinin (HA) and neuraminidase (NA) combinations. Fifteen of 16 known avian HA subtypes were isolated. Two H5N8 HPAI viruses (2016-2017) and two H5N2 LPAI viruses (2016) were isolated from wild birds and environmental samples (fresh bird feces) during surveillance before the outbreak in poultry in 2016-2017. The Ukrainian H5N1, H5N8 HPAI, and H5N2 LPAI viruses belong to different H5 phylogenetic groups. Our results demonstrate the great diversity of AI viruses in wild birds in Ukraine, as well as the importance of this region for studying the ecology of avian influenza.
Collapse
Affiliation(s)
- Denys Muzyka
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine,
| | - Oleksandr Rula
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Semen Tkachenko
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Nataliia Muzyka
- State Poultry Research Station, v. Birky, Kharkiv Region, 63422, Ukraine
| | - Susanne Köthe
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Oleksandr Pishchanskyi
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Borys Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Mary Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30677
| | - Martin Beer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
9
|
Diversity and distribution of type A influenza viruses: an updated panorama analysis based on protein sequences. Virol J 2019; 16:85. [PMID: 31242907 PMCID: PMC6595669 DOI: 10.1186/s12985-019-1188-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 01/09/2023] Open
Abstract
Background Type A influenza viruses (IAVs) cause significant infections in humans and multiple species of animals including pigs, horses, birds, dogs and some marine animals. They are of complicated phylogenetic diversity and distribution, and analysis of their phylogenetic diversity and distribution from a panorama view has not been updated for multiple years. Methods 139,872 protein sequences of IAVs from GenBank were selected, and they were aligned and phylogenetically analyzed using the software tool MEGA 7.0. Lineages and subordinate lineages were classified according to the topology of the phylogenetic trees and the host, temporal and spatial distribution of the viruses, and designated using a novel universal nomenclature system. Results Large phylogenetic trees of the two external viral genes (HA and NA) and six internal genes (PB2, PB1, PA, NP, MP and NS) were constructed, and the diversity and the host, temporal and spatial distribution of these genes were calculated and statistically analyzed. Various features regarding the diversity and distribution of IAVs were confirmed, revised or added through this study, as compared with previous reports. Lineages and subordinate lineages were classified and designated for each of the genes based on the updated panorama views. Conclusions The panorama views of phylogenetic diversity and distribution of IAVs and their nomenclature system were updated and assumed to be of significance for studies and communication of IAVs. Electronic supplementary material The online version of this article (10.1186/s12985-019-1188-7) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
La Sala LF, Burgos JM, Blanco DE, Stevens KB, Fernández AR, Capobianco G, Tohmé F, Pérez AM. Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transbound Emerg Dis 2019; 66:1493-1505. [PMID: 30698918 DOI: 10.1111/tbed.13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/28/2022]
Abstract
Low pathogenicity avian influenza virus (LPAIV) is endemic in wild birds and poultry in Argentina, and active surveillance has been in place to prevent any eventual virus mutation into a highly pathogenic avian influenza virus (HPAIV), which is exotic in this country. Risk mapping can contribute effectively to disease surveillance and control systems, but it has proven a very challenging task in the absence of disease data. We used a combination of expert opinion elicitation, multicriteria decision analysis (MCDA) and ecological niche modelling (ENM) to identify the most suitable areas for the occurrence of LPAIV at the interface between backyard domestic poultry and wild birds in Argentina. This was achieved by calculating a spatially explicit risk index. As evidenced by the validation and sensitivity analyses, our model was successful in identifying high-risk areas for LPAIV occurrence. Also, we show that the risk for virus occurrence is significantly higher in areas closer to commercial poultry farms. Although the active surveillance systems have been successful in detecting LPAIV-positive backyard farms and wild birds in Argentina, our predictions suggest that surveillance efforts in those compartments could be improved by including high-risk areas identified by our model. Our research provides a tool to guide surveillance activities in the future, and presents a mixed methodological approach which could be implemented in areas where the disease is exotic or rare and a knowledge-driven modelling method is necessary.
Collapse
Affiliation(s)
- Luciano F La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Julián M Burgos
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Daniel E Blanco
- Wetlands International/Fundación Humedales, Buenos Aires, Argentina
| | - Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK
| | - Andrea R Fernández
- Departamento de Ciencias de la Administración, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Guillermo Capobianco
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina.,Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Fernando Tohmé
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Andrés M Pérez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
11
|
Genetic evidence for the intercontinental movement of avian influenza viruses possessing North American-origin nonstructural gene allele B into South Korea. INFECTION GENETICS AND EVOLUTION 2018; 66:18-25. [PMID: 30196122 DOI: 10.1016/j.meegid.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Avian influenza viruses (AIVs) are genetically separated by geographical barriers, resulting in the independent evolution of North American and Eurasian lineages. In the present study, to determine whether AIVs possessing the North American-origin nonstructural (NS) gene were previously introduced into South Korea, we performed a genetic analysis of AIVs isolated from fecal samples of migratory birds. We detected seven viruses possessing the North American-origin NS allele B among 413 AIV-positive samples obtained during AI surveillance between 2012 and 2017. We found evidence for the intercontinental transmission of at least three genetically distinct clusters of the B allele of the North American-origin NS gene into Eurasia at a low frequency. The host species of three viruses were identified as the greater white-fronted goose (Anser albifrons) using a DNA barcoding technique. Moreover, we used GPS-CDMA-based telemetry to determine the migration route of the greater white-fronted goose between the Far East of Russia and South Korea and found that this species may play an important role as an intermediate vector in the intercontinental transmission of AIVs. To improve our understanding of the role of wild birds in the ecology of AIVs, advanced AIV surveillance is required in the Far East of Russia as well as in Alaska region of Beringia accompanied by host identification and wild bird tracking.
Collapse
|
12
|
Wille M, Latorre-Margalef N, Tolf C, Halpin R, Wentworth D, Fouchier RAM, Raghwani J, Pybus OG, Olsen B, Waldenström J. Where do all the subtypes go? Temporal dynamics of H8-H12 influenza A viruses in waterfowl. Virus Evol 2018; 4:vey025. [PMID: 30151242 PMCID: PMC6101617 DOI: 10.1093/ve/vey025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.
Collapse
Affiliation(s)
- Michelle Wille
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Neus Latorre-Margalef
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.,Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Rebecca Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - David Wentworth
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Björn Olsen
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
13
|
Muzyka D, Pantin-Jackwood M, Spackman E, Smith D, Rula O, Muzyka N, Stegniy B. Isolation and Genetic Characterization of Avian Influenza Viruses Isolated from Wild Birds in the Azov-Black Sea Region of Ukraine (2001-2012). Avian Dis 2017; 60:365-77. [PMID: 27309081 DOI: 10.1637/11114-050115-reg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wild bird surveillance for avian influenza virus (AIV) was conducted from 2001 to 2012 in the Azov - Black Sea region of the Ukraine, considered part of the transcontinental wild bird migration routes from northern Asia and Europe to the Mediterranean, Africa, and southwest Asia. A total of 6281 samples were collected from wild birds representing 27 families and eight orders for virus isolation. From these samples, 69 AIVs belonging to 15 of the 16 known hemagglutinin (HA) subtypes and seven of nine known neuraminidase (NA) subtypes were isolated. No H14, N5, or N9 subtypes were identified. In total, nine H6, eight H1, nine H5, seven H7, six H11, six H4, five H3, five H10, four H8, three H2, three H9, one H12, one H13, one H15, and one H16 HA subtypes were isolated. As for the NA subtypes, twelve N2, nine N6, eight N8, seven N7, six N3, four N4, and one undetermined were isolated. There were 27 HA and NA antigen combinations. All isolates were low pathogenic AIV except for eight highly pathogenic (HP) AIVs that were isolated during the H5N1 HPAI outbreaks of 2006-08. Sequencing and phylogenetic analysis of the HA genes revealed epidemiological connections between the Azov-Black Sea regions and Europe, Russia, Mongolia, and Southeast Asia. H1, H2, H3, H7, H8, H6, H9, and H13 AIV subtypes were closely related to European, Russian, Mongolian, and Georgian AIV isolates. H10, H11, and H12 AIV subtypes were epidemiologically linked to viruses from Europe and Southeast Asia. Serology conducted on serum and egg yolk samples also demonstrated previous exposure of many wild bird species to different AIVs. Our results demonstrate the great genetic diversity of AIVs in wild birds in the Azov-Black Sea region as well as the importance of this region for monitoring and studying the ecology of influenza viruses. This information furthers our understanding of the ecology of avian influenza viruses in wild bird species.
Collapse
Affiliation(s)
- Denys Muzyka
- A National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine," Kharkiv, 61023, Ukraine
| | - Mary Pantin-Jackwood
- B Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30677
| | - Erica Spackman
- B Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30677
| | - Diane Smith
- B Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30677
| | - Oleksandr Rula
- A National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine," Kharkiv, 61023, Ukraine
| | - Nataliia Muzyka
- A National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine," Kharkiv, 61023, Ukraine
| | - Borys Stegniy
- A National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine," Kharkiv, 61023, Ukraine
| |
Collapse
|
14
|
Gulyaeva M, Sharshov K, Suzuki M, Sobolev I, Sakoda Y, Alekseev A, Sivay M, Shestopalova L, Shchelkanov M, Shestopalov A. Genetic characterization of an H2N2 influenza virus isolated from a muskrat in Western Siberia. J Vet Med Sci 2017; 79:1461-1465. [PMID: 28690288 PMCID: PMC5573837 DOI: 10.1292/jvms.17-0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thirty-two muskrats (Ondatra zibethicus) were captured for surveillance
of avian influenza virus in wild waterfowl and mammals near Lake Chany, Western Siberia,
Russia. A/muskrat/Russia/63/2014 (H2N2) was isolated from an apparently healthy muskrat
using chicken embryos. Based on phylogenetic analysis, the hemagglutinin and neuraminidase
genes of this isolate were classified into the Eurasian avian-like influenza virus clade
and closely related to low pathogenic avian influenza viruses (LPAIVs) isolated from wild
water birds in Italy and Sweden, respectively. Other internal genes were also closely
related to LPAIVs isolated from Eurasian wild water birds. Results suggest that
interspecies transmission of LPAIVs from wild water birds to semiaquatic mammals occurs,
facilitating the spread and evolution of LPAIVs in wetland areas of Western Siberia.
Collapse
Affiliation(s)
- Marina Gulyaeva
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | - Mizuho Suzuki
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ivan Sobolev
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Alexander Alekseev
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | - Mariya Sivay
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | | | - Michael Shchelkanov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia.,Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Alexander Shestopalov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
15
|
Evaluation of multivalent H2 influenza pandemic vaccines in mice. Vaccine 2017; 35:1455-1463. [PMID: 28189402 DOI: 10.1016/j.vaccine.2017.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 12/16/2016] [Accepted: 01/11/2017] [Indexed: 11/23/2022]
Abstract
Subtype H2 Influenza A viruses were the cause of a severe pandemic in the winter of 1957. However, this subtype no longer circulates in humans and is no longer included in seasonal vaccines. As a result, individuals under 50years of age are immunologically naïve. H2 viruses persist in aquatic birds, which were a contributing source for the 1957 pandemic, and have also been isolated from swine. Reintroduction of the H2 via zoonotic transmission has been identified as a pandemic risk, so pre-pandemic planning should include preparation and testing of vaccine candidates against this subtype. We evaluated the immunogenicity of two inactivated, whole virus influenza vaccines (IVV) in mice: a monovalent IVV containing human pandemic virus A/Singapore/1/1957 (H2N2), and a multivalent IVV containing human A/Singapore/1/1957, avian A/Duck/HongKong/319/1978 (H2N2), and swine A/Swine/Missouri/2124514/2006 (H2N3) viruses. While both vaccines induced protective immunity compared to naïve animals, the multivalent formulation was advantageous over the monovalent in terms of level and breadth of serological responses, neutralization of infectious virus, and reduction of clinical disease and respiratory tissue replication in mice. Therefore, multivalent pandemic H2 vaccines containing diverse viruses from animal reservoirs, are a potential option to improve the immune responses in a pre-pandemic scenario where antigenic identity cannot be predicted.
Collapse
|
16
|
A Role of Influenza Virus Exposure History in Determining Pandemic Susceptibility and CD8+ T Cell Responses. J Virol 2016; 90:6936-6947. [PMID: 27226365 DOI: 10.1128/jvi.00349-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Novel influenza viruses often cause differential infection patterns across different age groups, an effect that is defined as heterogeneous demographic susceptibility. This occurred during the A/H2N2 pandemic, when children experienced higher influenza attack rates than adults. Since the recognition of conserved epitopes across influenza subtypes by CD8(+) cytotoxic T lymphocytes (CTLs) limit influenza disease, we hypothesized that conservation of CTL antigenic peptides (Ag-p) in viruses circulating before the pH2N2-1957 may have resulted in differential CTL immunity. We compared viruses isolated in the years preceding the pandemic (1941 to 1957) to which children and adults were exposed to viruses circulating decades earlier (1918 to 1940), which could infect adults only. Consistent with phylogenetic models, influenza viruses circulating from 1941 to 1957, which infected children, shared with pH2N2 the majority (∼89%) of the CTL peptides within the most immunogenic nucleoprotein, matrix 1, and polymerase basic 1, thus providing evidence for minimal pH2N2 CTL escape in children. Our study, however, identified potential CTL immune evasion from pH2N2 irrespective of age, within HLA-A*03:01(+) individuals for PB1471-L473V/N476I variants and HLA-B*15:01(+) population for NP404-414-V408I mutant. Further experiments using the murine model of B-cell-deficient mice showed that multiple influenza infections resulted in superior protection from influenza-induced morbidity, coinciding with accumulation of tissue-resident memory CD8(+) T cells in the lung. Our study suggests that protection against H2N2-1957 pandemic influenza was most likely linked to the number of influenza virus infections prior to the pandemic challenge rather than differential preexisting CTL immunity. Thus, the regimen of a CTL-based vaccine/vaccine-component may benefit from periodic boosting to achieve fully protective, asymptomatic influenza infection. IMPORTANCE Due to a lack of cross-reactive neutralizing antibodies, children are particularly susceptible to influenza infections caused by novel viral strains. Preexisting T cell immunity directed at conserved viral regions, however, can provide protection against influenza viruses, promote rapid recovery and better clinical outcomes. When we asked whether high susceptibility of children (compared to adults) to the pandemic H2N2 influenza strain was associated with immune evasion from T-cell immunity, we found high conservation within T-cell antigenic regions in pandemic H2N2. However, the number of influenza infections prior to the challenge was linked to protective, asymptomatic infections and establishment of tissue-resident memory T cells. Our study supports development of vaccines that prime and boost T cells to elicit cross-strain protective T cells, especially tissue-resident memory T cells, for lifelong immunity against distinct influenza viruses.
Collapse
|
17
|
Wu H, Peng X, Peng X, Cheng L, Wu N. Genetic and molecular characterization of a novel reassortant H2N8 subtype avian influenza virus isolated from a domestic duck in Zhejiang Province in China. Virus Genes 2016; 52:863-866. [PMID: 27379842 DOI: 10.1007/s11262-016-1368-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
Abstract
The circulation of the H2 subtype influenza viruses in domestic animals increases the risk of human exposure to these viruses. An H2N8 avian influenza virus (AIV) was isolated from a domestic duck during AIV surveillance of poultry in live poultry markets (LPMs) in Zhejiang Province, Eastern China, in 2013. The phylogenetic trees suggested that this strain is a novel reassortant virus derived from multiple AIV subtypes from aquatic birds and poultry in Eastern Asia. Although this reassortant strain exhibited low pathogenicity in mice, it was able to replicate in the lungs of the mice without prior adaptation. Continued surveillance of domestic ducks in LPMs is required for early detection of AIV outbreaks in poultry and humans.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
18
|
Gulyaeva MA, Sharshov KA, Zaykovskaia AV, Shestopalova LV, Shestopalov AM. Experimental infection and pathology of clade 2.2 H5N1 virus in gulls. J Vet Sci 2016; 17:179-88. [PMID: 26243601 PMCID: PMC4921666 DOI: 10.4142/jvs.2016.17.2.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/30/2015] [Accepted: 07/31/2015] [Indexed: 11/20/2022] Open
Abstract
During 2006, H5N1 HPAI caused an epizootic in wild birds, resulting in a die-off of Laridae in the Novosibirsk region at Chany Lake. In the present study, we infected common gulls (Larus canus) with a high dose of the H5N1 HPAI virus isolated from a common gull to determine if severe disease could be induced over the 28 day experimental period. Moderate clinical signs including diarrhea, conjunctivitis, respiratory distress and neurological signs were observed in virus-inoculated birds, and 50% died. The most common microscopic lesions observed were necrosis of the pancreas, mild encephalitis, mild myocarditis, liver parenchymal hemorrhages, lymphocytic hepatitis, parabronchi lumen hemorrhages and interstitial pneumonia. High viral titers were shed from the oropharyngeal route and virus was still detected in one bird at 25 days after infection. In the cloaca, the virus was detected sporadically in lower titers. The virus was transmitted to direct contact gulls. Thus, infected gulls can pose a significant risk of H5N1 HPAIV transmission to other wild migratory waterfowl and pose a risk to more susceptible poultry species. These findings have important implications regarding the mode of transmission and potential risks of H5N1 HPAI spread by gulls.
Collapse
Affiliation(s)
- Marina A Gulyaeva
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Kirill A Sharshov
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.,Institute of Experimental and Clinical Medicine, Russian Academy of Sciences, Novosibirsk 630117, Russia
| | - Anna V Zaykovskaia
- State Research Center of Virology and Biotechnology "Vector", Novosibirsk 630559, Russia
| | - Lidia V Shestopalova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksander M Shestopalov
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.,Institute of Experimental and Clinical Medicine, Russian Academy of Sciences, Novosibirsk 630117, Russia
| |
Collapse
|
19
|
Ramey AM, Walther P, Link P, Poulson RL, Wilcox BR, Newsome G, Spackman E, Brown JD, Stallknecht DE. Optimizing Surveillance for South American Origin Influenza A Viruses Along the United States Gulf Coast Through Genomic Characterization of Isolates from Blue-winged Teal (Anas discors). Transbound Emerg Dis 2016; 63:194-202. [PMID: 25056712 PMCID: PMC4305350 DOI: 10.1111/tbed.12244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 11/27/2022]
Abstract
Relative to research focused on inter-continental viral exchange between Eurasia and North America, less attention has been directed towards understanding the redistribution of influenza A viruses (IAVs) by wild birds between North America and South America. In this study, we genomically characterized 45 viruses isolated from blue-winged teal (Anas discors) along the Texas and Louisiana Gulf Coast during March of 2012 and 2013, coincident with northward migration of this species from Neotropical wintering areas to breeding grounds in the United States and Canada. No evidence of South American lineage genes was detected in IAVs isolated from blue-winged teal supporting restricted viral gene flow between the United States and southern South America. However, it is plausible that blue-winged teal redistribute IAVs between North American breeding grounds and wintering areas throughout the Neotropics, including northern South America, and that viral gene flow is limited by geographical barriers further south (e.g., the Amazon Basin). Surveillance for the introduction of IAVs from Central America and northern South America into the United States may be further optimized through genomic characterization of viruses resulting from coordinated, concurrent sampling efforts targeting blue-winged teal and sympatric species throughout the Neotropics and along the United States Gulf Coast.
Collapse
Affiliation(s)
- Andrew M. Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Patrick Walther
- US Fish and Wildlife Service, Texas Chenier Plain Refuge Complex, P.O. Box 278 4017 FM 563, Anahuac, Texas 77514, USA
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, 2000 Quail Drive, Room 436, Baton Rouge, Louisiana 70808, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Benjamin R. Wilcox
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - George Newsome
- City of Beaumont Wastewater Treatment Plant, 4900 Lafin Road, Beaumont, Texas 77705, USA
| | - Erica Spackman
- US Department of Agriculture, Agriculture Research Service, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| |
Collapse
|
20
|
Pappas C, Yang H, Carney PJ, Pearce MB, Katz JM, Stevens J, Tumpey TM. Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets. Virology 2015; 477:61-71. [PMID: 25659818 DOI: 10.1016/j.virol.2015.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/02/2014] [Accepted: 01/04/2015] [Indexed: 12/12/2022]
Abstract
After their disappearance from the human population in 1968, influenza H2 viruses have continued to circulate in the natural avian reservoir. The isolation of this virus subtype from multiple bird species as well as swine highlights the need to better understand the potential of these viruses to spread and cause disease in humans. Here we analyzed the virulence, transmissibility and receptor-binding preference of two avian influenza H2 viruses (H2N2 and H2N3) and compared them to a swine H2N3 (A/swine/Missouri/2124514/2006 [swMO]), and a human H2N2 (A/England/10/1967 [Eng/67]) virus using the ferret model as a mammalian host. Both avian H2 viruses possessed the capacity to spread efficiently between cohoused ferrets, and the swine (swMO) and human (Eng/67) viruses transmitted to naïve ferrets by respiratory droplets. Further characterization of the swMO hemagglutinin (HA) by x-ray crystallography and glycan microarray array identified receptor-specific adaptive mutations. As influenza virus quasispecies dynamics during transmission have not been well characterized, we sequenced nasal washes collected during transmission studies to better understand experimental adaptation of H2 HA. The avian H2 viruses isolated from ferret nasal washes contained mutations in the HA1, including a Gln226Leu substitution, which is a mutation associated with α2,6 sialic acid (human-like) binding preference. These results suggest that the molecular structure of HA in viruses of the H2 subtype continue to have the potential to adapt to a mammalian host and become transmissible, after acquiring additional genetic markers.
Collapse
Affiliation(s)
- Claudia Pappas
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Hua Yang
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Paul J Carney
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Melissa B Pearce
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Jacqueline M Katz
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - James Stevens
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Terrence M Tumpey
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| |
Collapse
|
21
|
Rudenko L, Isakova-Sivak I. Pandemic preparedness with live attenuated influenza vaccines based on A/Leningrad/134/17/57 master donor virus. Expert Rev Vaccines 2015; 14:395-412. [PMID: 25555687 DOI: 10.1586/14760584.2015.979159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Continuously evolving avian influenza viruses pose a constant threat to the human public health. In response to this threat, a number of pandemic vaccine candidates have been prepared and evaluated in animal models and clinical trials. This review summarizes the data from the development and preclinical and clinical evaluation of pandemic live attenuated influenza vaccines (LAIV) based on Russian master donor virus A/Leningrad/134/17/57. LAIV candidates of H5N1, H5N2, H7N3, H1N1 and H2N2 subtypes were safe, immunogenic and protected animals from challenge with homologous and heterologous viruses. Clinical trials of the pandemic LAIVs demonstrated their safety and immunogenicity for healthy adult volunteers. The vaccine viruses were infectious, genetically stable and did not transmit to unvaccinated contacts. In addition, here we discuss criteria for the assessment of pandemic LAIV immunogenicity and efficacy necessary for their licensure.
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg, 195220, Russia
| | | |
Collapse
|
22
|
Isakova-Sivak I, Stukova M, Erofeeva M, Naykhin A, Donina S, Petukhova G, Kuznetsova V, Kiseleva I, Smolonogina T, Dubrovina I, Pisareva M, Nikiforova A, Power M, Flores J, Rudenko L. H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers. Hum Vaccin Immunother 2015; 11:970-82. [PMID: 25831405 PMCID: PMC4514355 DOI: 10.1080/21645515.2015.1010859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 10/23/2022] Open
Abstract
H2N2 influenza viruses have not circulated in the human population since 1968, but they are still being regularly detected in the animal reservoir, suggesting their high pandemic potential. To prepare for a possible H2N2 pandemic, a number of H2N2 vaccine candidates have been generated and tested in preclinical and clinical studies. Here we describe the results of a randomized, double-blind placebo-controlled phase 1 clinical trial of an H2N2 live attenuated influenza vaccine (LAIV) candidate prepared from a human influenza virus isolated in 1966. The vaccine candidate was safe and well-tolerated by healthy adults, and did not cause serious adverse events or an increased rate of moderate or severe reactogenicities. The H2N2 vaccine virus was infectious for Humans. It was shed by 78.6% and 74.1% volunteers after the first and second dose, respectively, most probably due to the human origin of the virus. Importantly, no vaccine virus transmission to unvaccinated subjects was detected during the study. We employed multiple immunological tests to ensure the adequate assessment of the H2N2 pandemic LAIV candidate and demonstrated that the majority (92.6%) of the vaccinated subjects responded to the H2N2 LAIV in one or more immunological tests, including 85.2% of subjects with antibody responses and 55.6% volunteers with cell-mediated immune responses. In addition, we observed strong correlation between the H2N2 LAIV virus replication in the upper respiratory tract and the development of antibody responses.
Collapse
Affiliation(s)
| | - Marina Stukova
- Research Institute of Influenza; Saint Petersburg, Russia
| | | | - Anatoly Naykhin
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | - Svetlana Donina
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | - Galina Petukhova
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | | | - Irina Kiseleva
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | | | - Irina Dubrovina
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | - Maria Pisareva
- Research Institute of Influenza; Saint Petersburg, Russia
| | | | | | | | - Larisa Rudenko
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| |
Collapse
|
23
|
Broadbent AJ, Santos CP, Paskel M, Matsuoka Y, Lu J, Chen Z, Jin H, Subbarao K. Replication of live attenuated cold-adapted H2N2 influenza virus vaccine candidates in non human primates. Vaccine 2014; 33:193-200. [PMID: 25444799 DOI: 10.1016/j.vaccine.2014.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/10/2014] [Accepted: 10/27/2014] [Indexed: 11/30/2022]
Abstract
The development of an H2N2 vaccine is a priority in pandemic preparedness planning. We previously showed that a single dose of a cold-adapted (ca) H2N2 live attenuated influenza vaccine (LAIV) based on the influenza A/Ann Arbor/6/60 (AA ca) virus was immunogenic and efficacious in mice and ferrets. However, in a Phase I clinical trial, viral replication was restricted and immunogenicity was poor. In this study, we compared the replication of four H2N2 LAIV candidate viruses, AA ca, A/Tecumseh/3/67 (TEC67 ca), and two variants of A/Japan/305/57 (JAP57 ca) in three non-human primate (NHP) species: African green monkeys (AGM), cynomolgus macaques (CM) and rhesus macaques (RM). One JAP57 ca virus had glutamine and glycine at HA amino acid positions 226 and 228 (Q-G) that binds to α2-3 linked sialic acids, and one had leucine and serine that binds to α2-3 and α2-6 linked residues (L-S). The replication of all ca viruses was restricted, with low titers detected in the upper respiratory tract of all NHP species, however replication was detected in significantly more CMs than AGMs. The JAP57 ca Q-G and TEC67 ca viruses replicated in a significantly higher percentage of NHPs than the AA ca virus, with the TEC67 ca virus recovered from the greatest percentage of animals. Altering the receptor specificity of the JAP57 ca virus from α2-3 to both α2-3 and α2-6 linked sialic acid residues did not significantly increase the number of animals infected or the titer to which the virus replicated. Taken together, our data show that in NHPs the AA ca virus more closely reflects the human experience than mice or ferret studies. We suggest that CMs and RMs may be the preferred species for evaluating H2N2 LAIV viruses, and the TEC67 ca virus may be the most promising H2N2 LAIV candidate for further evaluation.
Collapse
Affiliation(s)
- Andrew J Broadbent
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia P Santos
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Myeisha Paskel
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yumiko Matsuoka
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janine Lu
- MedImmune LLC, Mountain View, CA, USA
| | | | - Hong Jin
- MedImmune LLC, Mountain View, CA, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Isakova-Sivak I, de Jonge J, Smolonogina T, Rekstin A, van Amerongen G, van Dijken H, Mouthaan J, Roholl P, Kuznetsova V, Doroshenko E, Tsvetnitsky V, Rudenko L. Development and pre-clinical evaluation of two LAIV strains against potentially pandemic H2N2 influenza virus. PLoS One 2014; 9:e102339. [PMID: 25058039 PMCID: PMC4109939 DOI: 10.1371/journal.pone.0102339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022] Open
Abstract
H2N2 Influenza A caused the Asian flu pandemic in 1957, circulated for more than 10 years and disappeared from the human population after 1968. Given that people born after 1968 are naïve to H2N2, that the virus still circulates in wild birds and that this influenza subtype has a proven pandemic track record, H2N2 is regarded as a potential pandemic threat. To prepare for an H2N2 pandemic, here we developed and tested in mice and ferrets two live attenuated influenza vaccines based on the haemagglutinins of the two different H2N2 lineages that circulated at the end of the cycle, using the well characterized A/Leningrad/134/17/57 (H2N2) master donor virus as the backbone. The vaccine strains containing the HA and NA of A/California/1/66 (clade 1) or A/Tokyo/3/67 (clade 2) showed a temperature sensitive and cold adapted phenotype and a reduced reproduction that was limited to the respiratory tract of mice, suggesting that the vaccines may be safe for use in humans. Both vaccine strains induced haemagglutination inhibition titers in mice. Vaccination abolished virus replication in the nose and lung and protected mice from weight loss after homologous and heterologous challenge with the respective donor wild type strains. In ferrets, the live attenuated vaccines induced high virus neutralizing, haemagglutination and neuraminidase inhibition titers, however; the vaccine based on the A/California/1/66 wt virus induced higher homologous and better cross-reactive antibody responses than the A/Tokyo/3/67 based vaccine. In line with this observation, was the higher virus reduction observed in the throat and nose of ferrets vaccinated with this vaccine after challenge with either of the wild type donor viruses. Moreover, both vaccines clearly reduced the infection-induced rhinitis observed in placebo-vaccinated ferrets. The results favor the vaccine based on the A/California/1/66 isolate, which will be evaluated in a clinical study.
Collapse
Affiliation(s)
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, RIVM, Bilthoven, the Netherlands
- * E-mail:
| | | | - Andrey Rekstin
- Institute for Experimental Medicine, Saint Petersburg, Russia
| | | | - Harry van Dijken
- Centre for Infectious Disease Control, RIVM, Bilthoven, the Netherlands
| | - Justin Mouthaan
- Centre for Infectious Disease Control, RIVM, Bilthoven, the Netherlands
| | - Paul Roholl
- Microscope Consultancy, Weesp, the Netherlands
| | | | | | - Vadim Tsvetnitsky
- PATH Vaccine Development Global Program, Seattle, Washington, United States of America
| | - Larisa Rudenko
- Institute for Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
25
|
Abstract
UNLABELLED Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The unusually high similarity of the chicken H5N2 viruses to the Mexican vaccine strain suggests that these viruses might have been introduced to Taiwan by using inadequately inactivated or attenuated vaccines. These chicken H5N2 viruses are developing varying levels of pathogenicity that could lead to significant consequences for the local poultry industry. These findings emphasize the need for strict quality control and competent oversight in the manufacture and usage of avian influenza virus vaccines and indicate that alternatives to widespread vaccination may be desirable.
Collapse
|
26
|
Miller RS, Sweeney SJ, Akkina JE, Saito EK. Potential Intercontinental Movement of Influenza A(H7N9) Virus into North America by Wild Birds: Application of a Rapid Assessment Framework. Transbound Emerg Dis 2014; 62:650-68. [PMID: 24589158 DOI: 10.1111/tbed.12213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Indexed: 11/28/2022]
Abstract
A critical question surrounding emergence of novel strains of avian influenza viruses (AIV) is the ability for wild migratory birds to translocate a complete (unreassorted whole genome) AIV intercontinentally. Virus translocation via migratory birds is suspected in outbreaks of highly pathogenic strain A(H5N1) in Asia, Africa and Europe. As a result, the potential intercontinental translocation of newly emerging AIV such as A(H7N9) from Eurasia to North America via migratory movements of birds remains a concern. An estimated 2.91 million aquatic birds move annually between Eurasia and North America with an estimated AIV prevalence as high as 32.2%. Here, we present a rapid assessment to address the likelihood of whole (unreassorted)-genome translocation of Eurasian strain AIV into North America. The scope of this assessment was limited specifically to assess the weight of evidence to support the movement of an unreassorted AIV intercontinentally by migratory aquatic birds. We developed a rapid assessment framework to assess the potential for intercontinental movement of avian influenzas by aquatic birds. This framework was iteratively reviewed by a multidisciplinary panel of scientific experts until a consensus was established. Our assessment framework identified four factors that may contribute to the potential for introduction of any AIV intercontinentally into North America by wild aquatic birds. These factors, in aggregate, provide a framework for evaluating the likelihood of new forms of AIV from Eurasia to be introduced by aquatic birds into North America. Based on our assessment, we determined that the potential for introduction of A(H7N9) into North America through aquatic migratory birds is possible, but the likelihood ranges from extremely low to low.
Collapse
Affiliation(s)
- R S Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - S J Sweeney
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - J E Akkina
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - E K Saito
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| |
Collapse
|
27
|
Huang Y, Wille M, Dobbin A, Walzthöni NM, Robertson GJ, Ojkic D, Whitney H, Lang AS. Genetic structure of avian influenza viruses from ducks of the Atlantic flyway of North America. PLoS One 2014; 9:e86999. [PMID: 24498009 PMCID: PMC3907406 DOI: 10.1371/journal.pone.0086999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV) genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008–2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006–2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Michelle Wille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ashley Dobbin
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Natasha M. Walzthöni
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Environment Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Hugh Whitney
- Newfoundland and Labrador Department of Natural Resources, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
28
|
Jones JC, Baranovich T, Marathe BM, Danner AF, Seiler JP, Franks J, Govorkova EA, Krauss S, Webster RG. Risk assessment of H2N2 influenza viruses from the avian reservoir. J Virol 2014; 88:1175-88. [PMID: 24227848 PMCID: PMC3911670 DOI: 10.1128/jvi.02526-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/24/2013] [Indexed: 11/20/2022] Open
Abstract
H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50. Thus, examination of these viruses, particularly those from the avian reservoir, must be addressed through surveillance, characterization, and antiviral testing. The data presented here are a risk assessment of 22 avian H2N2 viruses isolated from wild and domestic birds over 6 decades. Our data show that they have a low rate of genetic and antigenic evolution and remained similar to isolates circulating near the time of the pandemic. Most isolates replicated in mice and human bronchial epithelial cells, but replication in swine tissues was low or absent. Multiple isolates replicated in ferrets, and 3 viruses were transmitted to direct-contact cage mates. Markers of mammalian adaptation in hemagglutinin (HA) and PB2 proteins were absent from all isolates, and they retained a preference for avian-like α2,3-linked sialic acid receptors. Most isolates remained antigenically similar to pandemic A/Singapore/1/57 (H2N2) virus, suggesting they could be controlled by the pandemic vaccine candidate. All viruses were susceptible to neuraminidase inhibitors and adamantanes. Nonetheless, the sustained pathogenicity of avian H2N2 viruses in multiple mammalian models elevates their risk potential for human infections and stresses the need for continual surveillance as a component of prepandemic planning.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Evaluation of three live attenuated H2 pandemic influenza vaccine candidates in mice and ferrets. J Virol 2013; 88:2867-76. [PMID: 24371061 DOI: 10.1128/jvi.01829-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively). The vaccine candidates exhibited the in vitro phenotypes of temperature sensitivity and cold adaptation and were restricted in replication in the respiratory tract of ferrets. In mice and ferrets, the vaccines elicited neutralizing antibodies and conferred protection against homologous wild-type virus challenge. Of the three candidates, the sw/06 ca vaccine elicited cross-reactive antibodies and provided significant protection against the greatest number of heterologous viruses. These observations suggest that the sw/06 ca vaccine should be further evaluated in a clinical trial as an H2 pandemic influenza vaccine candidate. IMPORTANCE Influenza pandemics arise when novel influenza viruses are introduced into a population with little prior immunity to the new virus and often result in higher rates of illness and death than annual seasonal influenza epidemics. An influenza H2 subtype virus caused a pandemic in 1957, and H2 viruses circulated in humans till 1968. H2 influenza viruses continue to circulate in birds, and the development of an H2 influenza vaccine candidate is therefore considered a priority in preparing for future pandemics. However, we cannot predict whether a human H2 virus will reemerge or a novel avian H2 virus will emerge. We identified three viruses as suitable candidates for further evaluation as vaccines to protect against H2 influenza viruses and evaluated the immune responses and protection that these three vaccines provided in mice and ferrets.
Collapse
|
30
|
Nolting JM, Dennis P, Long L, Holtvoigt L, Brown D, King MJ, Shellbarger W, Hanley C, Killian ML, Slemons RD. Low pathogenic influenza A virus activity at avian interfaces in Ohio zoos, 2006-2009. Avian Dis 2013; 57:657-62. [PMID: 24283133 DOI: 10.1637/10528-031313-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This investigation to examine influenza A virus activity in avian species at four Ohio zoos was initiated to better understand the ecology of avian-origin influenza A (AIV) virus in wild aquatic birds and the possibility of spill-over of such viruses into captive zoo birds, both native and foreign species. Virus isolation efforts resulted in the recovery of three low pathogenic (LP) AIV isolates (one H7N3 and two H3N6) from oral-pharyngeal or cloacal swabs collected from over 1000 zoo birds representing 94 species. In addition, 21 LPAIV isolates possessing H3N6, H4N6, or H7N3 subtype combinations were recovered from 627 (3.3%) environmental fecal samples collected from outdoor habitats accessible to zoo and wild birds. Analysis of oral-pharyngeal and cloacal swabs collected from free-ranging mallards (Anas platyrhynchos) live-trapped at one zoo in 2007 resulted in the recovery of 164 LPAIV isolates (48% of samples) representing five HA and six NA subtypes and at least nine HA-NA combinations. The high frequency of isolate recovery is undoubtedly due to the capture and holding of wild ducks in a common pen before relocation. Serologic analyses using an agar gel immune diffusion assay detected antibodies to the influenza A virus type-specific antigen in 147 of 1237 (11.9%) zoo bird sera and in 14 of 154 (9%) wild mallard sera. Additional analyses of a limited number of zoo bird sera demonstrated HA- and NA-inhibition activity to 15 HA and nine NA subtypes. The spectrum of HA antibodies indicate antibody diversity of AIV infecting zoo birds; however, the contribution of heterologous cross-reactions and steric interference was not ruled out. This proactive investigation documented that antigenically diverse LPAIVs were active in all three components of the avian zoologic-wild bird interfaces at Ohio zoos (zoo birds, the environment, and wild birds). The resulting baseline data provides insight and justification for preventive medicine strategies for zoo birds.
Collapse
Affiliation(s)
- Jacqueline M Nolting
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pepin KM, Spackman E, Brown JD, Pabilonia KL, Garber LP, Weaver JT, Kennedy DA, Patyk KA, Huyvaert KP, Miller RS, Franklin AB, Pedersen K, Bogich TL, Rohani P, Shriner SA, Webb CT, Riley S. Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Prev Vet Med 2013; 113:376-97. [PMID: 24462191 PMCID: PMC3945821 DOI: 10.1016/j.prevetmed.2013.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/22/2013] [Accepted: 11/24/2013] [Indexed: 02/02/2023]
Abstract
Wild birds are the primary source of genetic diversity for influenza A viruses that eventually emerge in poultry and humans. Much progress has been made in the descriptive ecology of avian influenza viruses (AIVs), but contributions are less evident from quantitative studies (e.g., those including disease dynamic models). Transmission between host species, individuals and flocks has not been measured with sufficient accuracy to allow robust quantitative evaluation of alternate control protocols. We focused on the United States of America (USA) as a case study for determining the state of our quantitative knowledge of potential AIV emergence processes from wild hosts to poultry. We identified priorities for quantitative research that would build on existing tools for responding to AIV in poultry and concluded that the following knowledge gaps can be addressed with current empirical data: (1) quantification of the spatio-temporal relationships between AIV prevalence in wild hosts and poultry populations, (2) understanding how the structure of different poultry sectors impacts within-flock transmission, (3) determining mechanisms and rates of between-farm spread, and (4) validating current policy-decision tools with data. The modeling studies we recommend will improve our mechanistic understanding of potential AIV transmission patterns in USA poultry, leading to improved measures of accuracy and reduced uncertainty when evaluating alternative control strategies.
Collapse
Affiliation(s)
- K M Pepin
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Fogarty International Center, National Institute of Health, Bethesda, MD, USA.
| | - E Spackman
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA.
| | - J D Brown
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - K L Pabilonia
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - L P Garber
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - J T Weaver
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - D A Kennedy
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA, USA.
| | - K A Patyk
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - K P Huyvaert
- Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA.
| | - R S Miller
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - A B Franklin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - K Pedersen
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - T L Bogich
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - P Rohani
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; Department of Ecology and Evolutionary Biology, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA.
| | - S A Shriner
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - C T Webb
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Fogarty International Center, National Institute of Health, Bethesda, MD, USA.
| | - S Riley
- Fogarty International Center, National Institute of Health, Bethesda, MD, USA; MRC Centre for Outbreak Analysis and Disease Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, UK.
| |
Collapse
|
32
|
Bahl J, Krauss S, Kühnert D, Fourment M, Raven G, Pryor SP, Niles LJ, Danner A, Walker D, Mendenhall IH, Su YCF, Dugan VG, Halpin RA, Stockwell TB, Webby RJ, Wentworth DE, Drummond AJ, Smith GJD, Webster RG. Influenza a virus migration and persistence in North American wild birds. PLoS Pathog 2013; 9:e1003570. [PMID: 24009503 PMCID: PMC3757048 DOI: 10.1371/journal.ppat.1003570] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 06/18/2013] [Indexed: 12/15/2022] Open
Abstract
Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.
Collapse
Affiliation(s)
- Justin Bahl
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, United States of America
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Denise Kühnert
- Department of Computer Science, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| | - Mathieu Fourment
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Garnet Raven
- Environment Canada, Canadian Wildlife Service, Edmonton, Alberta, Canada
| | - S. Paul Pryor
- Environment Canada, Canadian Wildlife Service, Edmonton, Alberta, Canada
| | - Lawrence J. Niles
- Conserve Wildlife Foundation of New Jersey, Bordentown, New Jersey, United States of America
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David Walker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Ian H. Mendenhall
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Yvonne C. F. Su
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Vivien G. Dugan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Division of Microbiology and Infectious Diseases/National Institute of Allergy and Infectious Diseases/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Alexei J. Drummond
- Department of Computer Science, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| | - Gavin J. D. Smith
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail: (GJDS); (RGW)
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (GJDS); (RGW)
| |
Collapse
|
33
|
Abstract
Avian influenza virus (AIV) surveillance has been scarce in most countries of Latin America and the Caribbean. Historically, avian influenza surveillance efforts in Central and South America have been localized in places where outbreaks in poultry have occurred. Since the emergence of the H5N1 subtype in Asia, active surveillance in wild birds has increased in a number of Latin American countries, including Barbados, Guatemala, Argentina, Brazil, Mexico, and Peru. A broad diversity of virus subtypes has been detected; however, nucleotide sequence data are still limited in comparison to other regions of the world. Here we review the current knowledge of AIV in Latin America, including phylogenetic relationships among publicly available viral genomes. Overall AIV reports are sparse across the region and the cocirculation of two distinct genetic lineages is puzzling. Phylogenetic analysis reflects bias in time and location where sampling has been conducted. Increased surveillance is needed to address the major determinants for AIV ecology, evolution, and transmission in the region.
Collapse
Affiliation(s)
- Ana S Gonzalez-Reicheabc
- Department of Veterinary Medicine, University of Maryland College Park, and Virginia-Maryland Regional College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA.
| | | |
Collapse
|
34
|
Runstadler J, Hill N, Hussein ITM, Puryear W, Keogh M. Connecting the study of wild influenza with the potential for pandemic disease. INFECTION GENETICS AND EVOLUTION 2013; 17:162-87. [PMID: 23541413 DOI: 10.1016/j.meegid.2013.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV) variants that pose a threat to human health. In the last 4-5years, focus has been placed on the organization of large-scale surveillance programs to examine the phylogenetics of avian influenza virus (AIV) and host-virus relationships in domestic and wild animals. Here we review the current gaps in wild animal and environmental surveillance and the current understanding of genetic signatures in potentially pandemic strains.
Collapse
|
35
|
Piaggio AJ, Shriner SA, VanDalen KK, Franklin AB, Anderson TD, Kolokotronis SO. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene. PLoS One 2012; 7:e50834. [PMID: 23226543 PMCID: PMC3514193 DOI: 10.1371/journal.pone.0050834] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV) in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV). We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA) diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event), as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.
Collapse
Affiliation(s)
- Antoinette J Piaggio
- National Wildlife Research Center, Wildlife Services, United States Department of Agriculture, Fort Collins, Colorado, United States of America.
| | | | | | | | | | | |
Collapse
|
36
|
Hjulsager CK, Breum SØ, Trebbien R, Handberg KJ, Therkildsen OR, Madsen JJ, Thorup K, Baroch JA, DeLiberto TJ, Larsen LE, Jørgensen PH. Surveillance for Avian Influenza Viruses in Wild Birds in Denmark and Greenland, 2007–10. Avian Dis 2012; 56:992-8. [DOI: 10.1637/10190-041012-resnote.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Recently emerged swine influenza A virus (H2N3) causes severe pneumonia in Cynomolgus macaques. PLoS One 2012; 7:e39990. [PMID: 22808082 PMCID: PMC3394781 DOI: 10.1371/journal.pone.0039990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/30/2012] [Indexed: 12/03/2022] Open
Abstract
The triple reassortant H2N3 virus isolated from diseased pigs in the United States in 2006 is pathogenic for certain mammals without prior adaptation and transmits among swine and ferrets. Adaptation, in the H2 hemagglutinin derived from an avian virus, includes the ability to bind to the mammalian receptor, a significant prerequisite for infection of mammals, in particular humans, which poses a big concern for public health. Here we investigated the pathogenic potential of swine H2N3 in Cynomolgus macaques, a surrogate model for human influenza infection. In contrast to human H2N2 virus, which served as a control and largely caused mild pneumonia similar to seasonal influenza A viruses, the swine H2N3 virus was more pathogenic causing severe pneumonia in nonhuman primates. Both viruses replicated in the entire respiratory tract, but only swine H2N3 could be isolated from lung tissue on day 6 post infection. All animals cleared the infection whereas swine H2N3 infected macaques still presented with pathologic changes indicative of chronic pneumonia at day 14 post infection. Swine H2N3 virus was also detected to significantly higher titers in nasal and oral swabs indicating the potential for animal-to-animal transmission. Plasma levels of IL-6, IL-8, MCP-1 and IFNγ were significantly increased in swine H2N3 compared to human H2N2 infected animals supporting the previously published notion of increased IL-6 levels being a potential marker for severe influenza infections. In conclusion, the swine H2N3 virus represents a threat to humans with the potential for causing a larger outbreak in a non-immune or partially immune population. Furthermore, surveillance efforts in farmed pig populations need to become an integral part of any epidemic and pandemic influenza preparedness.
Collapse
|
38
|
Järhult JD. Oseltamivir (Tamiflu(®)) in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans - a review. Infect Ecol Epidemiol 2012; 2:IEE-2-18385. [PMID: 22957124 PMCID: PMC3426320 DOI: 10.3402/iee.v2i0.18385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 11/14/2022] Open
Abstract
The antiviral drug oseltamivir (Tamiflu(®)) is a cornerstone in influenza pandemic preparedness plans worldwide. However, resistance to the drug is a growing concern. The active metabolite oseltamivir carboxylate (OC) is not degraded in surface water or sewage treatment plants and has been detected in river water during seasonal influenza outbreaks. The natural influenza reservoir, dabbling ducks, can thus be exposed to OC in aquatic environments. Environmental-like levels of OC induce resistance development in influenza A/H1N1 virus in mallards. There is a risk of resistance accumulation in influenza viruses circulating among wild birds when oseltamivir is used extensively. By reassortment or direct transmission, oseltamivir resistance can be transmitted to humans potentially causing a resistant pandemic or human-adapted highly-pathogenic avian influenza virus. There is a need for more research on resistance development in the natural influenza reservoir and for a prudent use of antivirals.
Collapse
Affiliation(s)
- Josef D. Järhult
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
|
40
|
González-Reiche AS, Morales-Betoulle ME, Alvarez D, Betoulle JL, Müller ML, Sosa SM, Perez DR. Influenza a viruses from wild birds in Guatemala belong to the North American lineage. PLoS One 2012; 7:e32873. [PMID: 22427902 PMCID: PMC3302778 DOI: 10.1371/journal.pone.0032873] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/01/2012] [Indexed: 12/18/2022] Open
Abstract
The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population.
Collapse
Affiliation(s)
- Ana S. González-Reiche
- Department of Veterinary Medicine, University of Maryland College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
- * E-mail: (ASG); (DRP)
| | - María E. Morales-Betoulle
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Danilo Alvarez
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Jean-Luc Betoulle
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
- Fundación Para el Ecodesarrollo y la Conservación (FUNDAECO), Guatemala City, Guatemala
| | - Maria L. Müller
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Silvia M. Sosa
- Laboratorio de Ecología de Arbovirus y Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Veterinary Medicine, University of Maryland College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- * E-mail: (ASG); (DRP)
| |
Collapse
|
41
|
Chen Z, Zhou H, Kim L, Jin H. The receptor binding specificity of the live attenuated influenza H2 and H6 vaccine viruses contributes to vaccine immunogenicity and protection in ferrets. J Virol 2012; 86:2780-6. [PMID: 22190726 PMCID: PMC3302243 DOI: 10.1128/jvi.06219-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 12/07/2011] [Indexed: 12/16/2022] Open
Abstract
To prepare for influenza pandemics that may be caused by the H2 and H6 subtype influenza viruses, live attenuated influenza virus (LAIV) H2 and H6 vaccines are being developed and evaluated. The H2 and H6 vaccine candidates with different receptor binding preferences specified by amino acid substitutions at residues 226 and 228 were generated and evaluated for their growth in embryonated chicken eggs and their immunogenicity and protection against wild-type virus challenge in the ferret model. The viruses containing Q226 and G228 in the hemagglutinin (HA) protein bound to the avian-like α2,3-sialic acid (SA) receptor and replicated efficiently in chicken eggs. The viruses with L226 and G228 bound preferentially to the human-like α2,6-SA receptor. The viruses containing L226 and S228 displayed dual binding to both α2,3-SA and α2,6-SA receptors and replicated efficiently in eggs. The strains containing L226/G228 or L226/S228 that preferentially bound to α2,6-SA receptors replicated efficiently in the upper respiratory tract of ferrets, induced high levels of neutralizing antibody, and conferred a high level of protection against wild-type virus challenge infection compared to the strain with the Q226/G228 residues. Our data suggest that pandemic vaccines with receptor binding preference to both avian- and human-like receptors might be desired for efficient viral replication in eggs and for inducing protective immune responses in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Female
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/physiology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/metabolism
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Male
- N-Acetylneuraminic Acid/metabolism
- Protein Binding
- Receptors, Virus/metabolism
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/metabolism
- Virus Replication
Collapse
|
42
|
Zell R, Scholtissek C, Ludwig S. Genetics, evolution, and the zoonotic capacity of European Swine influenza viruses. Curr Top Microbiol Immunol 2012; 370:29-55. [PMID: 23011571 DOI: 10.1007/82_2012_267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The European swine influenza virus lineage differs genetically from the classical swine influenza viruses and the triple reassortants found in North America and Asia. The avian-like swine H1N1 viruses emerged in 1979 after an avian-to-swine transmission and spread to all major European pig-producing countries. Reassortment of these viruses with seasonal H3N2 viruses led to human-like swine H3N2 viruses which appeared in 1984. Finally, human-like swine H1N2 viruses emerged in 1994. These are triple reassortants comprising genes of avian-like H1N1, seasonal H1N1, and seasonal H3N2 viruses. All three subtypes established persistent infection chains and became prevalent in the European pig population. They successively replaced the circulating classical swine H1N1 viruses of that time and gave rise to a number of reassortant viruses including the pandemic (H1N1) 2009 virus. All three European lineages have the capacity to infect humans but zoonotic infections are benign.
Collapse
Affiliation(s)
- Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Germany.
| | | | | |
Collapse
|
43
|
Killian ML, Zhang Y, Panigrahy B, Trampel D, Yoon KJ. Identification and Characterization of H2N3 Avian Influenza Virus from Backyard Poultry and Comparison with Novel H2N3 Swine Influenza Virus. Avian Dis 2011; 55:611-9. [DOI: 10.1637/9749-040111-reg.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Deliberto TJ, Swafford SR, Nolte DL, Pedersen K, Lutman MW, Schmit BB, Baroch JA, Kohler DJ, Franklin A. Surveillance for highly pathogenic avian influenza in wild birds in the USA. Integr Zool 2011; 4:426-39. [PMID: 21392315 DOI: 10.1111/j.1749-4877.2009.00180.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As part of the USA's National Strategy for Pandemic Influenza, an Interagency Strategic Plan for the Early Detection of Highly Pathogenic H5N1 Avian Influenza in Wild Migratory Birds was developed and implemented. From 1 April 2006 through 31 March 2009, 261,946 samples from wild birds and 101,457 wild bird fecal samples were collected in the USA; no highly pathogenic avian influenza was detected. The United States Department of Agriculture, and state and tribal cooperators accounted for 213,115 (81%) of the wild bird samples collected; 31, 27, 21 and 21% of the samples were collected from the Atlantic, Pacific, Central and Mississippi flyways, respectively. More than 250 species of wild birds in all 50 states were sampled. The majority of wild birds (86%) were dabbling ducks, geese, swans and shorebirds. The apparent prevalence of low pathogenic avian influenza viruses during biological years 2007 and 2008 was 9.7 and 11.0%, respectively. The apparent prevalence of H5 and H7 subtypes across all species sampled were 0.5 and 0.06%, respectively. The pooled fecal samples (n= 101,539) positive for low pathogenic avian influenza were 4.0, 6.7 and 4.7% for biological years 2006, 2007 and 2008, respectively. The highly pathogenic early detection system for wild birds developed and implemented in the USA represents the largest coordinated wildlife disease surveillance system ever conducted. This effort provided evidence that wild birds in the USA were free of highly pathogenic avian influenza virus (given the expected minimum prevalence of 0.001%) at the 99.9% confidence level during the surveillance period.
Collapse
Affiliation(s)
- Thomas J Deliberto
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Karamendin K, Kydyrmanov A, Zhumatov K, Asanova S, Ishmukhametova N, Sayatov M. Phylogenetic analysis of avian influenza viruses of H11 subtype isolated in Kazakhstan. Virus Genes 2011; 43:46-54. [PMID: 21461588 DOI: 10.1007/s11262-011-0603-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/22/2011] [Indexed: 11/28/2022]
Abstract
Avian influenza viruses A/turkey/Almaty/535/04 (H11N9) and A/herring gull/Atyrau/2186/07 (H11N2) isolated in Kazakhstan were characterized as low pathogenic in biological and genetic studies. Putative glycosylation sites were identical to the putative sites in published H11, N2, and N9 isolates sequences. Compared with published data no additional basic amino acid residues were found in the hemagglutinin (HA) cleavage site of these Kazakhstan strains. Phylogenetic analysis revealed a rare case of Eurasian-American reassortment in the HA gene of A/herring gull/Atyrau/2186/07 (H11N2) virus and significant sequence difference of the HA and the neuraminidase genes of the virus A/turkey/Almaty/535/04 (H11N9) from the previously published GenBank viruses.
Collapse
Affiliation(s)
- Kobey Karamendin
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, 103 Bogenbay batyr st, Almaty, 050010, Kazakhstan.
| | | | | | | | | | | |
Collapse
|
46
|
Hall JS, Franson JC, Gill RE, Meteyer CU, TeSlaa JL, Nashold S, Dusek RJ, Ip HS. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species. Influenza Other Respir Viruses 2011; 5:365-72. [PMID: 21668687 PMCID: PMC4942049 DOI: 10.1111/j.1750-2659.2011.00238.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Please cite this paper as: Hall et al. (2011). Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species. Influenza and Other Respiratory Viruses 5(5), 365–372. Background Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Methods Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. Results The infectious dose of HPAIV H5N1 in dunlin was determined to be 101.7 EID50/100 μl and that the lethal dose was 101.83 EID50/100 μl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (104 EID50) and smaller amounts cloacally. Conclusions Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3–5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation.
Collapse
Affiliation(s)
- Jeffrey S Hall
- USGS National Wildlife Health Center, Madison, WI 53711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Girard G, Gultyaev AP, Olsthoorn RCL. Upstream start codon in segment 4 of North American H2 avian influenza A viruses. INFECTION GENETICS AND EVOLUTION 2011; 11:489-95. [PMID: 21232632 DOI: 10.1016/j.meegid.2010.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 11/17/2022]
Abstract
H2N2 influenza A virus was the cause of the 1957 pandemic. Due to its constant presence in birds, the H2 subtype remains a topic of interest. In this work, comparison of H2 leader sequences of influenza A segment 4 revealed the presence of an upstream in-frame start codon in a majority of North American avian strains. This AUG is located seven codons upstream of the conventional start codon and is in a good Kozak context. In vivo experiments, using a luciferase reporter gene fused to leader sequences derived from North American avian H2 strains, support the efficient use of the upstream start codon. These results were corroborated by in vitro translation data using full-length segment 4 mRNA. Phylogenic analyses indicate that the upstream AUG, first detected in 1976, is stably nested in the North American avian lineage of H2 strains nowadays. The possible consequences of the upstream AUG are discussed.
Collapse
Affiliation(s)
- Geneviève Girard
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
48
|
Shi W, Lei F, Zhu C, Sievers F, Higgins DG. A complete analysis of HA and NA genes of influenza A viruses. PLoS One 2010; 5:e14454. [PMID: 21209922 PMCID: PMC3012125 DOI: 10.1371/journal.pone.0014454] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND More and more nucleotide sequences of type A influenza virus are available in public databases. Although these sequences have been the focus of many molecular epidemiological and phylogenetic analyses, most studies only deal with a few representative sequences. In this paper, we present a complete analysis of all Haemagglutinin (HA) and Neuraminidase (NA) gene sequences available to allow large scale analyses of the evolution and epidemiology of type A influenza. METHODOLOGY/PRINCIPAL FINDINGS This paper describes an analysis and complete classification of all HA and NA gene sequences available in public databases using multivariate and phylogenetic methods. CONCLUSIONS/SIGNIFICANCE We analyzed 18,975 HA sequences and divided them into 280 subgroups according to multivariate and phylogenetic analyses. Similarly, we divided 11,362 NA sequences into 202 subgroups. Compared to previous analyses, this work is more detailed and comprehensive, especially for the bigger datasets. Therefore, it can be used to show the full and complex phylogenetic diversity and provides a framework for studying the molecular evolution and epidemiology of type A influenza virus. For more than 85% of type A influenza HA and NA sequences into GenBank, they are categorized in one unambiguous and unique group. Therefore, our results are a kind of genetic and phylogenetic annotation for influenza HA and NA sequences. In addition, sequences of swine influenza viruses come from 56 HA and 45 NA subgroups. Most of these subgroups also include viruses from other hosts indicating cross species transmission of the viruses between pigs and other hosts. Furthermore, the phylogenetic diversity of swine influenza viruses from Eurasia is greater than that of North American strains and both of them are becoming more diverse. Apart from viruses from human, pigs, birds and horses, viruses from other species show very low phylogenetic diversity. This might indicate that viruses have not become established in these species. Based on current evidence, there is no simple pattern of inter-hemisphere transmission of avian influenza viruses and it appears to happen sporadically. However, for H6 subtype avian influenza viruses, such transmissions might have happened very frequently and multiple and bidirectional transmission events might exist.
Collapse
Affiliation(s)
- Weifeng Shi
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
49
|
Wille M, Robertson GJ, Whitney H, Ojkic D, Lang AS. Reassortment of American and Eurasian genes in an influenza A virus isolated from a great black-backed gull (Larus marinus), a species demonstrated to move between these regions. Arch Virol 2010; 156:107-15. [PMID: 21053031 DOI: 10.1007/s00705-010-0839-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 10/14/2010] [Indexed: 11/24/2022]
Abstract
The primary hosts for influenza A viruses are waterfowl, although gulls and shorebirds are also important in global avian influenza dynamics. Avian influenza virus genes are separated phylogenetically into two geographic clades, American and Eurasian, which is caused by the geographic separation of the host species between these two regions. We surveyed a gregarious and cosmopolitan species, the Great Black-backed Gull (Larus marinus), in Newfoundland, Canada, for the presence of avian influenza viruses. We have isolated and determined the complete genome sequence of an H13N2 virus, A/Great Black-backed Gull/Newfoundland/296/2008(H13N2), from one of these birds. Phylogenetic analysis revealed that this virus contained two genes in the American gull clade (PB1, HA), two genes in the American avian clade (PA, NA), and four genes in the Eurasian gull clade (PB2, NP, M, NS). We analyzed bird band recovery information and found the first evidence of trans-Atlantic migration from Newfoundland to Europe (UK, Spain and Portugal) for this species. Thus, great black-backed gulls could be important for movement of avian influenza viruses across the Atlantic Ocean and within North America.
Collapse
Affiliation(s)
- Michelle Wille
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | |
Collapse
|
50
|
Viswanathan K, Koh X, Chandrasekaran A, Pappas C, Raman R, Srinivasan A, Shriver Z, Tumpey TM, Sasisekharan R. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin. PLoS One 2010; 5:e13768. [PMID: 21060797 PMCID: PMC2966429 DOI: 10.1371/journal.pone.0013768] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/07/2010] [Indexed: 12/02/2022] Open
Abstract
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.
Collapse
Affiliation(s)
- Karthik Viswanathan
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Xiaoying Koh
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Aarthi Chandrasekaran
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Claudia Pappas
- Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Rahul Raman
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Aravind Srinivasan
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Zachary Shriver
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Terrence M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Ram Sasisekharan
- Harvard-MIT Division of Health Sciences and Technology, Singapore-MIT Alliance for Research and Technology, Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|