1
|
Butassi E, Blanc AR, Svetaz LA. Phytolacca tetramera berries extracts and its main constituents as potentiators of antifungal drugs against Candida spp. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155569. [PMID: 38795695 DOI: 10.1016/j.phymed.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Extensive antifungal drug use has enhanced fungal resistance, resulting in persistent mycoses. Combining antifungal plant extracts/compounds with these drugs offers good alternatives to increase the activity of both partners, minimize side effects, and overcome drug resistance. In our previous study, Phytolacca tetramera berries extracts demonstrated activity against Candida spp., correlating with the amount of the main constituent phytolaccoside B and its genin, phytolaccagenin. The extracts and phytolaccagenin altered the fungal plasma membrane by binding to ergosterol, whereas phytolaccoside B increased chitin synthase activity. However, the presence of triterpenoid saponins in Phytolacca spp. has been linked to acute toxicity in humans. PURPOSE This study aimed to evaluate combinations of P. tetramera berries extracts, phytolaccoside B and phytolaccagenin, together with commercial antifungals [amphotericin B, fluconazole, itraconazole, posaconazole, and caspofungin] against Candida albicans and Candida glabrata, to find synergistic effects with multi-target actions, in which the doses of both partners are reduced, and therefore their toxicity. Additionally, we intended to explore their anti-virulence capacity, thereby hindering the development of drug-resistant strains. METHODS The effects of these combinations were evaluated using both the checkerboard and isobologram methods. Fractional Inhibitory Concentration Index and Dose Reduction Index were calculated to interpret the combination results. To confirm the multi-target effect, studies on mechanisms of action of synergistic mixtures were performed using ergosterol-binding and quantification assays. The ability to inhibit Candida virulence factors, including biofilm formation and eradication from inert surfaces, was also evaluated. Quantification of active markers was performed using a validated UHPLC-ESI-MS method. RESULTS Eight synergistic combinations of P. tetramera extracts or phytolaccagenin (but not phytolaccoside B) with itraconazole or posaconazole were obtained against C. albicans, including a resistant strain. These mixtures acted by binding to ergosterol, decreasing its whole content, and inhibiting Candida biofilm formation in 96-well microplates and feeding tubes in vitro, but were unable to eradicate preformed biofilms. CONCLUSIONS This study demonstrated the synergistic and anti-virulence effects of P. tetramera berries extracts and phytolaccagenin with antifungal drugs against Candida spp., providing novel treatment avenues for fungal infections with reduced doses of both natural products and commercial antifungals, thereby mitigating potential human toxicity concerns.
Collapse
Affiliation(s)
- Estefanía Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Alan Roy Blanc
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Laura Andrea Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
2
|
Grzywaczyk A, Smułek W, Kaczorek E. Saponaria officinalis saponins as a factor increasing permeability of Candida yeasts' biomembrane. World J Microbiol Biotechnol 2024; 40:152. [PMID: 38553646 DOI: 10.1007/s11274-024-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Saponins are a large group of compounds, produced mostly by plants as a side product of their metabolic activity. These compounds have attracted much attention over the years mostly because of their surface activity and antibacterial, anti-inflammatory and antifungal properties. On the other hand, most of the hitherto research has concerned the action of saponins against microbial cells as a whole. Therefore, knowing the possible interaction of saponins with biomembrane, we decided to check in-vitro the influence of saponin-rich extract of Saponaria officinalis on spheroplasts of two Candida sp. The obtained results show that 10 mg L- 1 of extract increased the permeability of spheroplasts up to 21.76% relative to that of the control sample. Moreover, the evaluation of surface potential has revealed a decrease by almost 10 mV relative to that of the untreated samples. Such results suggest its direct correlation to integration of saponins into the biomembrane structure. The obtained results have proved the antifungal potential of saponins and their ability of permeabilization of cells. This proves the high potential of saponins use as additives to antifungal pharmaceutics, which is expected to lead to improvement of their action or reduction of required dosage.
Collapse
Affiliation(s)
- Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland
| |
Collapse
|
3
|
Chandra P, Kaleem M, Sachan N, Pathak R, Alanazi AS, Alsaif NA, Alsanea S, Alsuwayt B, Alanazi MM, Kabra A. Gastroprotective evaluation of Medicago sativa L. (Fabaceae) on diabetic rats. Saudi Pharm J 2023; 31:101815. [PMID: 37860685 PMCID: PMC10582054 DOI: 10.1016/j.jsps.2023.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
Traditional uses for the plant Medicago sativa (M. sativa) (Alfalfa) (Family: Fabaceae) include liver protection, antioxidant activity, and the treatment of bleeding and digestive issues. This study aims to assess the effect of ethanol extract of M. sativa (EEMS) on experimental-induced ulcers in diabetic rats. By pylorus ligation and ethanol administration, gastric ulcers were induced in diabetic rats. Five groups each consisting of six rats in each model were used. All other groups except Group I were made diabetic by giving rats alloxan (140 mg/kg i.p.). Vehicles were given to Group I (normal control) and Group II (diabetes control) rats. Group III (positive control) received ranitidine 50 mg/kg, and Group IV and V received EEMS at doses of 100 and 400 mg/kg, respectively. In the pylorus ligation and ethanol-induced stomach ulcer model of rats, the findings demonstrated that EEMS (100 mg/kg) showed a decreased ulcer index of 2.01 ± 0.41 and was found statistically significant against the diabetes control group (p < 0.001) as well as, an ulcer index of 0.68 ± 0.22 by EEMS (400 mg/kg) with a significant reduction in the ulcer index (p < 0.001). EEMS (100 and 400 mg/kg) reduce free acidity by 13.16 ± 0.65 mEq/L and 9.83 ± 0.30 mEq/L, respectively. EEMS also showed a protective impact on the liver and kidneys of diabetic rats. Antihyperglycemic action was also discovered in diabetic animals. The findings of the current investigation demonstrated that ethanolic extract of M. sativa possesses anti-ulcer activity in diabetic rats. Ethanolic extract of M. sativa may be a treatment option for stomach ulcers that also have diabetes.
Collapse
Affiliation(s)
- Phool Chandra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, U.P. 244001, India
| | - Mohammad Kaleem
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad 244 102, U.P., India
| | - Neetu Sachan
- Maharana Pratap College of Pharmacy, Mandhana, Kanpur 209217, U.P., India
| | - Rashmi Pathak
- Department of Pharmacy, Invertis University, Bareilly 243123, U.P., India
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali 140301, Punjab, India
| |
Collapse
|
4
|
Orzoł A, Cruzado-Tafur E, Gołębiowski A, Rogowska A, Pomastowski P, Górecki RJ, Buszewski B, Szultka-Młyńska M, Głowacka K. Comprehensive Study of Si-Based Compounds in Selected Plants ( Pisum sativum L., Medicago sativa L., Triticum aestivum L.). Molecules 2023; 28:4311. [PMID: 37298792 PMCID: PMC10254194 DOI: 10.3390/molecules28114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This review describes the role of silicon (Si) in plants. Methods of silicon determination and speciation are also reported. The mechanisms of Si uptake by plants, silicon fractions in the soil, and the participation of flora and fauna in the Si cycle in terrestrial ecosystems have been overviewed. Plants of Fabaceae (especially Pisum sativum L. and Medicago sativa L.) and Poaceae (particularly Triticum aestivum L.) families with different Si accumulation capabilities were taken into consideration to describe the role of Si in the alleviation of the negative effects of biotic and abiotic stresses. The article focuses on sample preparation, which includes extraction methods and analytical techniques. The methods of isolation and the characterization of the Si-based biologically active compounds from plants have been overviewed. The antimicrobial properties and cytotoxic effects of known bioactive compounds obtained from pea, alfalfa, and wheat were also described.
Collapse
Affiliation(s)
- Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| |
Collapse
|
5
|
Loaiza-Oliva M, Arias-Durango L, Martínez-Pabón MC. The Cytotoxic and Inhibitory Effects of Plant Derivatives on Candida albicans Biofilms: A Scoping Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010130. [PMID: 36615324 PMCID: PMC9822484 DOI: 10.3390/molecules28010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Candida albicans infections are related to biofilm formation. The increase in antifungal resistance and their adverse effects have led to the search for therapeutic options as plant derivatives. This scoping review aims to identify the current status of in vitro research on the cytotoxicity and inhibitory effects of plant derivatives on C. albicans biofilms. In this study, PRISMA items were followed. After recognition of the inclusion criteria, full texts were read and disagreements were resolved with a third party. A risk of bias assessment was performed, and information was summarized using Microsoft Office Excel. Thirty-nine papers fulfilling the selection criteria were included. The risk of bias analysis identified most of the studies as low risk. Studies evaluated plant derivatives such as extracts, essential oils, terpenes, alkaloids, flavonoids and polyphenols. Some studies evaluated the inhibition of C. albicans biofilm formation, inhibition on preformed biofilms or both. The derivatives at concentrations greater than or equal to those that have an inhibitory effect on C. albicans biofilms, without showing cytotoxicity, include magnoflorin, ellagic acid, myricetin and eucarobustol from Eucalyptus robusta and, as the works in which these derivatives were studied are of good quality, it is desirable to carry out study in other experimental phases, with methodologies that generate comparable information.
Collapse
|
6
|
Chamachar MM, Fazeli MR, Salimi M, Samadi N. Growth promoting activity, anti-biofilm effect, and down regulation of papC and rcsA genes expression by Medicago sativa (alfalfa) extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Yu Z, Wu X, He J. Study on the antifungal activity and mechanism of tea saponin from Camellia oleifera cake. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03929-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res 2021; 254:126912. [PMID: 34742105 DOI: 10.1016/j.micres.2021.126912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Sapindus saponins extracted from Sapindus mukorossi Gaertn. have been reported to exert antibacterial activity against Cutibacterium acnes (C. acnes). However, there are no reports about their potentials against its biofilm, which is a major contributor to the antibiotic resistance of C. acnes. This study aimed to investigate the synergistic antibiofilm activity and action of the combination of Sapindoside A and B (SAB) against C. acnes. SAB with sub-MICs significantly inhibited the early-formed and mature biofilm of C. acnes and decreased the adhesion and cell surface hydrophobicity (p < 0.05). Also, SAB greatly reduced the production of exopolysaccharide and lipase (p < 0.05), and the binding mode of SAB and lipase was predicted by molecular docking, via hydrogen bonds and hydrophobic interactions. Biofilm observed with electron microscopies further confirmed the high antibiofilm activity of SAB against C. acnes. Furthermore, a significant down-regulation of biofilm biosynthesis-associated genes was observed. The combination index explained the synergistic effects of SAB leading to the above results, and the contribution of SA was greater than that of SB. The current results showed that SAB had synergistic antibiofilm activity against C. acnes, and the Sapindoside A played a major role, indicating that SAB could be a natural antiacne additive against C. acnes biofilm-associated infections.
Collapse
Affiliation(s)
- Min-Ping Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yu-Liang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
10
|
Potential and Prophylactic Use of Plants Containing Saponin-Type Compounds as Antibiofilm Agents against Respiratory Tract Infections. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6814215. [PMID: 34349828 PMCID: PMC8328696 DOI: 10.1155/2021/6814215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/05/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022]
Abstract
Epidemic diseases have been observed in every period of human history, and the treatment process has taken time. Causative microorganisms reproduce as biofilm and contribute to the emergence of various infectious diseases. The process that starts with respiratory disorders causes serious lung infections due to bacteria and viruses that accumulate and multiply. The biofilms are difficult to eliminate and show increased resistance to available antimicrobial agents. There is a need to identify and develop potential resources used in treatment. The search for novel biological agents from plants is gaining popularity due to the high abundance, accessibility with consequent lower cost for discovery, and lesser side effects and toxicity. Saponins found in some plants can be alternative to antibiotics, with antimicrobial activities. This review focused on the potency of saponin-containing plants with antimicrobial properties as antibiofilm agents against these infections. For this purpose, keywords were scanned in Web of Science, Scopus, and Google academics databases, and the related literature was compiled. Approximately, 25 plant taxa belonging to 18 families traditionally used in the treatment of respiratory diseases are listed. These taxa mostly belong to Fabaceae, Asteraceae, Apiaceae, and Asparagaceae families, respectively. Most of these taxa have antibacterial, antifungal, antitussive, and anti-inflammatory activities. Especially, plants with antibiofilm activity that can be effective against many microorganisms are compiled in this study. These plants can prevent or treat upper respiratory tract diseases caused by bacteria due to the phytochemicals they contain, especially saponins.
Collapse
|
11
|
Wang G, Wang J, Liu W, Nisar MF, El-Esawi MA, Wan C. Biological Activities and Chemistry of Triterpene Saponins from Medicago Species: An Update Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6617916. [PMID: 34122600 PMCID: PMC8172297 DOI: 10.1155/2021/6617916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Plants are known to be a great source of phytochemicals for centuries. Medicago, belonging to the Family Fabaceae, is a large and well spread genus comprising about 83 cosmopolitan species, of which one-third are annuals and span diverse ecological niches. Medicago species are rich in saponins mainly classified into three classes, namely, steroid alkaloid glycosides, triterpene glycosides, and steroid glycosides. These saponins are important compounds having diverse pharmacological and biological activities. As a whole, 95 of saponins are reported to date occurring in Medicago species using various latest extraction/isolation techniques. Considering the multiple biological and pharmacological potential of Medicago species due to saponins along with structural diversity, we compiled this review article to sum up the recent reports for the pharmacological potential of the Medicago's derived saponins in modern as well as traditional medication systems. The current manuscript produces data of chemical structures and molecular masses of all Medicago species saponins simultaneously. The toxicity of certain pure saponins (aglycones) has been reported in vitro; hederagenin appeared highly toxic in comparison to medicagenic acid and bayogenin against X. index, while soyasaponin I, containing soyasapogenol B as a glycone, appeared as the least toxic saponin. The diversity in the structural forms shows a close relationship for its biological and pharmacological actions. Moreover, saponins showed antioxidant properties and the mechanism behind antimicrobial potential also elaborated in this review article is mainly because of the side sugar groups on these compounds. The collected data presented herein include chemical structures and molecular masses of all saponins so far. Their biological activity and therapeutic potential are also discussed. This information can be the starting point for future research on this important genus.
Collapse
Affiliation(s)
- Guanzhen Wang
- 1Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Yining 835000, China
| | - Junlong Wang
- 1Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Yining 835000, China
| | - Wei Liu
- 1Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Yining 835000, China
| | - Muhammad Farrukh Nisar
- 2College of Agronomy, Jiangxi Agricultural University, Jiangxi Key Laboratory for Post-harvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Post-harvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China
- 3Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- 4Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mohamed A. El-Esawi
- 5Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Chunpeng Wan
- 2College of Agronomy, Jiangxi Agricultural University, Jiangxi Key Laboratory for Post-harvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Post-harvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China
| |
Collapse
|
12
|
Pacholak A, Simlat J, Zgoła-Grześkowiak A, Kaczorek E. Biodegradation of clotrimazole and modification of cell properties after metabolic stress and upon addition of saponins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:676-682. [PMID: 29935432 DOI: 10.1016/j.ecoenv.2018.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Azole fungicides constitute an extensive group of potential emerging pollutants which can be found in natural environment. This study focuses on the biodegradation of clotrimazole and the characterization of cell surface properties of microorganisms capable of degradation of this compound. The influence of long-term contact of bacteria with clotrimazole and the impact of the addition of Saponaria officinalis extract on cell surface modification was also checked. The biodegradation of clotrimazole did not exceed 70%. The presence of plant extract increased biodegradation of fungicide. The cells metabolic activity after one-month exposure to clotrimazole was the highest for each tested strain. Moreover, metabolic stress led to a strong modification of cell surface properties. The results are promising for determining the impact of clotrimazole on environmental microorganisms.
Collapse
Affiliation(s)
- A Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - J Simlat
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - A Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - E Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
13
|
Góral I, Jurek I, Wojciechowski K. How Does the Surface Activity of Soapwort (Saponaria officinalisL.) Extracts Depend on the Plant Organ? J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ilona Góral
- SaponLabs Ltd., Noakowskiego 3; 00-664 Warsaw Poland
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego 3; 00-664 Warsaw Poland
| | - Ilona Jurek
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego 3; 00-664 Warsaw Poland
| | - Kamil Wojciechowski
- SaponLabs Ltd., Noakowskiego 3; 00-664 Warsaw Poland
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego 3; 00-664 Warsaw Poland
| |
Collapse
|
14
|
Biogenic nanosilver synthesized in Metarhizium robertsii waste mycelium extract - As a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm. PLoS One 2018; 13:e0194254. [PMID: 29554119 PMCID: PMC5858827 DOI: 10.1371/journal.pone.0194254] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Due to low efficacy of classic antimicrobial drugs, finding new active preparations attracts much attention. In this study an innovative, cost-effective and environmentally friendly method was applied to produce silver nanoparticles (AgNPs) using filamentous fungi Metarhizium robertsii biomass waste. It was shown that these NPs possess prominent antifungal effects against C. albicans, C. glabrata and C. parapsilosis reference strains. Further detailed studies were performed on C. albicans ATCC 90028. AgNPs kill curve (CFU method and esterase-mediated reduction of fluorescein diacetate); fractionally inhibitory concentration index (FICI) with fluconazole (FLC); effect on fungal cell membrane permeability (propidium iodide (PI) staining), membrane lipids profile (HPLC-MS), yeast morphotypes and intracellular reactive oxygen species level (H2DCFDA probe) were investigated. Anti-adhesive and anti-biofilm properties of AgNPs (alone and in combination with FLC) were also tested. Biosafety of AgNPs use was assessed in vitro in cytotoxicity tests against L929 fibroblasts, pulmonary epithelial A549 cell line, and red blood cells. Significant reduction in the viability of yeast cells treated with AgNPs was shown within 6 h. The proportion of C. albicans PI-positive cells increased in a dose and time-dependent manner. Changes in the qualitative and quantitative profile of cell membrane lipids, including significant decline in the quantity of most phospholipid species containing C18:2 and an increase in the amount of phospholipids containing C18:1 acyl species were observed after yeast exposure to AgNPs. CLSM images showed an enhancement in ROS intracellular accumulation in C. albicans treated with biogenic nanosilver. C. albicans transformation from yeast to hyphal forms was also reduced. AgNPs decreased adhesion of yeast to abiotic surfaces, as well as acted synergistically with FLC against sessile population. At fungicidal and fungistatic concentrations, they were non-toxic to mammalian cells. Obtained results confirm suitability of our “green synthesis” method to produce AgNPs with therapeutic potential against fungal infections.
Collapse
|
15
|
Gaweł E, Grzelak M, Janyszek M. Lucerne ( Medicago sativa L.) in the human diet—Case reports and short reports. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Smułek W, Zdarta A, Pacholak A, Zgoła-Grześkowiak A, Marczak Ł, Jarzębski M, Kaczorek E. Saponaria officinalis L. extract: Surface active properties and impact on environmental bacterial strains. Colloids Surf B Biointerfaces 2016; 150:209-215. [PMID: 27918965 DOI: 10.1016/j.colsurfb.2016.11.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/03/2016] [Accepted: 11/25/2016] [Indexed: 11/28/2022]
Abstract
Plant-derived surfactants are characterised by low toxicity, high biodegradability and environmental compatibility. They therefore have many applications; for instance, they can be used in bioremediation to accelerate biodegradation processes, especially of hydrophobic pollutants. This paper analyses the properties of an extract from Saponaria officinalis L. containing saponins and its impact on bacterial strains isolated from soil, as well as its potential for application in hydrocarbon bioremediation. The tested extract from Saponaria officinalis L. contains gypsogenin, hederagenin, hydroxyhederagenin and quillaic acid aglycone structures and demonstrates good emulsification properties. Contact with the extract led to modification of bacterial cell surface properties. A decrease in cell surface hydrophobicity and an increase in membrane permeability were recorded in the experiments. An increase of up to 63% in diesel oil biodegradation was also recorded for Pseudomonas putida DA1 on addition of 1gL-1 of saponins from Saponaria officinalis L. Saponaria extract showed no toxic impact on the tested environmental bacterial strains at the concentration used in the biodegradation process.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Jarzębski
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland; Department of Physical Chemistry and Physicochemical Basis of Environmental Engineering Institute of Environmental Engineering Off-Campus Faculty of Low and Social Sciences in Stalowa Wola Catholic University of Lublin, Kwiatkowskiego 3A, 37-450 Stalowa Wola, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
17
|
Parai D, Islam E, Mitra J, Mukherjee SK. Effect of Bacoside A on growth and biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. Can J Microbiol 2016; 63:169-178. [PMID: 28099040 DOI: 10.1139/cjm-2016-0365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The goal of this study was to evaluate the antibiofilm and antimicrobial activities of Bacoside A, a formulation of phytochemicals from Bacopa monnieri, against Staphylococcus aureus and Pseudomonas aeruginosa, which are known to form biofilms as one of their virulence traits. The antimicrobial effects of Bacoside A were tested using the minimum inhibitory concentration and minimum bactericidal concentration assays. A cell membrane disruption assay was performed to find its possible target site. MTT assay, crystal violet assay, and microscopic studies were performed to assess the antibiofilm activity. Bacoside A showed antimicrobial activity against both test organisms in their planktonic and biofilm states. At a subminimum inhibitory concentration of 200 μg·mL-1, Bacoside A significantly removed ∼88%-93% of bacterial biofilm developed on microtiter plates. Biochemical and microscopic studies suggested that the eradication of biofilm might be due to the loss of extracellular polymeric substances and to a change in cell membrane integrity of the selected bacterial strains treated with Bacoside A. These results indicate that Bacoside A might be considered as an antimicrobial having the ability to disrupt biofilms. Thus, either alone or in combination with other therapeutics, Bacoside A could be useful to treat biofilm-related infections caused by opportunistic bacterial pathogens.
Collapse
Affiliation(s)
- Debaprasad Parai
- a Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Ekramul Islam
- a Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Jayati Mitra
- b Department of Pathology, Regional Institute of Ophthalmology, Kolkata 700073, India
| | | |
Collapse
|
18
|
Martínez R, Kapravelou G, Porres JM, Melesio AM, Heras L, Cantarero S, Gribble FM, Parker H, Aranda P, López-Jurado M. Medicago sativa L., a functional food to relieve hypertension and metabolic disorders in a spontaneously hypertensive rat model. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Sadowska B, Kuźma Ł, Micota B, Budzyńska A, Wysokińska H, Kłys A, Więckowska-Szakiel M, Różalska B. New biological potential of abietane diterpenoids isolated from Salvia austriaca against microbial virulence factors. Microb Pathog 2016; 98:132-9. [DOI: 10.1016/j.micpath.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/05/2016] [Indexed: 12/01/2022]
|
20
|
Moniuszko-Szajwaj B, Masullo M, Kowalczyk M, Pecio Ł, Szumacher-Strabel M, Cieślak A, Piacente S, Oleszek W, Stochmal A. Highly Polar Triterpenoid Saponins from the Roots ofSaponaria officinalisL. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201500224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Milena Masullo
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II, n. 132 IT-84084 Fisciano
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition and Feed Management; RUMEN PULS; Poznan University of Life Sciences; Wołyńska 33 PL-60-637 Poznań
| | - Adam Cieślak
- Department of Animal Nutrition and Feed Management; RUMEN PULS; Poznan University of Life Sciences; Wołyńska 33 PL-60-637 Poznań
| | - Sonia Piacente
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II, n. 132 IT-84084 Fisciano
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| |
Collapse
|
21
|
Natural Sources as Innovative Solutions Against Fungal Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:105-25. [PMID: 27115410 DOI: 10.1007/5584_2016_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungal cells are capable of adhering to biotic and abiotic surfaces and form biofilms containing one or more microbial species that are microbial reservoirs. These biofilms may cause chronic and acute infections. Fungal biofilms related to medical devices are particularly responsible for serious infections such as candidemia. Nowadays, only a few therapeutic agents have demonstrated activities against fungal biofilms in vitro and/or in vivo. So the discovery of new anti-biofilm molecules is definitely needed. In this context, biodiversity is a large source of original active compounds including some that have already proven effective in therapies such as antimicrobial compounds (antibacterial or antifungal agents). Bioactive metabolites from natural sources, useful for developing new anti-biofilm drugs, are of interest. In this chapter, the role of molecules isolated from plants, lichens, algae, microorganisms, or from animal or human origin in inhibition and/or dispersion of fungal biofilms (especially Candida and Aspergillus biofilms) is discussed. Some essential oils, phenolic compounds, saponins, peptides and proteins and alkaloids could be of particular interest in fighting fungal biofilms.
Collapse
|