1
|
Pavkova I, Bavlovic J, Kubelkova K, Stulik J, Klimentova J. Protective potential of outer membrane vesicles derived from a virulent strain of Francisella tularensis. Front Microbiol 2024; 15:1355872. [PMID: 38533334 PMCID: PMC10963506 DOI: 10.3389/fmicb.2024.1355872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Francisella tularensis secretes tubular outer membrane vesicles (OMVs) that contain a number of immunoreactive proteins as well as virulence factors. We have reported previously that isolated Francisella OMVs enter macrophages, cumulate inside, and induce a strong pro-inflammatory response. In the current article, we present that OMVs treatment of macrophages also enhances phagocytosis of the bacteria and suppresses their intracellular replication. On the other hand, the subsequent infection with Francisella is able to revert to some extent the strong pro-inflammatory effect induced by OMVs in macrophages. Being derived from the bacterial surface, isolated OMVs may be considered a "non-viable mixture of Francisella antigens" and as such, they present a promising protective material. Immunization of mice with OMVs isolated from a virulent F. tularensis subsp. holarctica strain FSC200 prolonged the survival time but did not fully protect against the infection with a lethal dose of the parent strain. However, the sera of the immunized animals revealed unambiguous cytokine and antibody responses and proved to recognize a set of well-known Francisella immunoreactive proteins. For these reasons, Francisella OMVs present an interesting material for future protective studies.
Collapse
Affiliation(s)
| | | | | | | | - Jana Klimentova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
2
|
Clarke A, Llabona IM, Khalid N, Hulvey D, Irvin A, Adams N, Heine HS, Eshraghi A. Tolfenpyrad displays Francisella-targeted antibiotic activity that requires an oxidative stress response regulator for sensitivity. Microbiol Spectr 2023; 11:e0271323. [PMID: 37800934 PMCID: PMC10848828 DOI: 10.1128/spectrum.02713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Francisella species are highly pathogenic bacteria that pose a threat to global health security. These bacteria can be made resistant to antibiotics through facile methods, and we lack a safe and protective vaccine. Given their history of development as bioweapons, new treatment options must be developed to bolster public health preparedness. Here, we report that tolfenpyrad, a pesticide that is currently in use worldwide, effectively inhibits the growth of Francisella. This drug has an extensive history of use and a plethora of safety and toxicity data, making it a good candidate for development as an antibiotic. We identified mutations in Francisella novicida that confer resistance to tolfenpyrad and characterized a transcriptional regulator that is required for sensitivity to both tolfenpyrad and reactive oxygen species.
Collapse
Affiliation(s)
- Ashley Clarke
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Isabelle M. Llabona
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nimra Khalid
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Danielle Hulvey
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Alexis Irvin
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nicole Adams
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Henry S. Heine
- Institute for Therapeutic Innovation, University of Florida, Orlando, Florida, USA
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
4
|
Benziger PT, Kopping EJ, McLaughlin PA, Thanassi DG. Francisella tularensis disrupts TLR2-MYD88-p38 signaling early during infection to delay apoptosis of macrophages and promote virulence in the host. mBio 2023; 14:e0113623. [PMID: 37404047 PMCID: PMC10470500 DOI: 10.1128/mbio.01136-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Francisella tularensis is a zoonotic pathogen and the causative agent of tularemia. F. tularensis replicates to high levels within the cytosol of macrophages and other host cells while subverting the host response to infection. Critical to the success of F. tularensis is its ability to delay macrophage apoptosis to maintain its intracellular replicative niche. However, the host-signaling pathway(s) modulated by F. tularensis to delay apoptosis are poorly characterized. The outer membrane channel protein TolC is required for F. tularensis virulence and its ability to suppress apoptosis and cytokine expression during infection of macrophages. We took advantage of the F. tularensis ∆tolC mutant phenotype to identify host pathways that are important for activating macrophage apoptosis and that are disrupted by the bacteria. Comparison of macrophages infected with wild-type or ∆tolC F. tularensis revealed that the bacteria interfere with TLR2-MYD88-p38 signaling at early times post infection to delay apoptosis, dampen innate host responses, and preserve the intracellular replicative niche. Experiments using the mouse pneumonic tularemia model confirmed the in vivo relevance of these findings, revealing contributions of TLR2 and MYD88 signaling to the protective host response to F. tularensis, which is modulated by the bacteria to promote virulence. IMPORTANCE Francisella tularensis is a Gram-negative intracellular bacterial pathogen and the causative agent of the zoonotic disease tularemia. F. tularensis, like other intracellular pathogens, modulates host-programmed cell death pathways to ensure its replication and survival. We previously identified the outer membrane channel protein TolC as required for the ability of F. tularensis to delay host cell death. However, the mechanism by which F. tularensis delays cell death pathways during intracellular replication is unclear despite being critical to pathogenesis. In the present study, we address this gap in knowledge by taking advantage of ∆tolC mutants of F. tularensis to uncover signaling pathways governing host apoptotic responses to F. tularensis and which are modulated by the bacteria during infection to promote virulence. These findings reveal mechanisms by which intracellular pathogens subvert host responses and enhance our understanding of the pathogenesis of tularemia.
Collapse
Affiliation(s)
- P. Todd Benziger
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Erik J. Kopping
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Patrick A. McLaughlin
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Mohammadi N, Lindgren H, Yamamoto M, Martin A, Henry T, Sjöstedt A. Macrophages Demonstrate Guanylate-Binding Protein-Dependent and Bacterial Strain-Dependent Responses to Francisella tularensis. Front Cell Infect Microbiol 2022; 11:784101. [PMID: 35004352 PMCID: PMC8738097 DOI: 10.3389/fcimb.2021.784101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium and the etiological agent of tularemia, a zoonotic disease. Infection of monocytic cells by F. tularensis can be controlled after activation with IFN-γ; however, the molecular mechanisms whereby the control is executed are incompletely understood. Recently, a key role has been attributed to the Guanylate-binding proteins (GBPs), interferon-inducible proteins involved in the cell-specific immunity against various intracellular pathogens. Here, we assessed the responses of bone marrow-derived murine macrophages (BMDM) and GBP-deficient BMDM to F. tularensis strains of variable virulence; the highly virulent SCHU S4 strain, the human live vaccine strain (LVS), or the widely used surrogate for F. tularensis, the low virulent F. novicida. Each of the strains multiplied rapidly in BMDM, but after addition of IFN-γ, significant GBP-dependent control of infection was observed for the LVS and F. novicida strains, whereas there was no control of the SCHU S4 infection. However, no differences in GBP transcription or translation were observed in the infected cell cultures. During co-infection with F. novicida and SCHU S4, significant control of both strains was observed. Patterns of 18 cytokines were very distinct between infected cell cultures and high levels were observed for almost all cytokines in F. novicida-infected cultures and very low levels in SCHU S4-infected cultures, whereas levels in co-infected cultures for a majority of cytokines showed intermediate levels, or levels similar to those of F. novicida-infected cultures. We conclude that the control of BMDM infection with F. tularensis LVS or F. novicida is GBP-dependent, whereas SCHU S4 was only controlled during co-infection. Since expression of GBP was similar regardless of infecting agent, the findings imply that SCHU S4 has an inherent ability to evade the GBP-dependent anti-bacterial mechanisms.
Collapse
Affiliation(s)
- Nasibeh Mohammadi
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Helena Lindgren
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Amandine Martin
- Inserm, U1111, Centre International de Recherche en Infectiologie, Lyon, France
| | - Thomas Henry
- Inserm, U1111, Centre International de Recherche en Infectiologie, Lyon, France
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Markley RL, Restori KH, Katkere B, Sumner SE, Nicol MJ, Tyryshkina A, Nettleford SK, Williamson DR, Place DE, Dewan KK, Shay AE, Carlson BA, Girirajan S, Prabhu KS, Kirimanjeswara GS. Macrophage Selenoproteins Restrict Intracellular Replication of Francisella tularensis and Are Essential for Host Immunity. Front Immunol 2021; 12:701341. [PMID: 34777335 PMCID: PMC8586653 DOI: 10.3389/fimmu.2021.701341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.
Collapse
Affiliation(s)
- Rachel L. Markley
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katherine H. Restori
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Sarah E. Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - McKayla J. Nicol
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Anastasia Tyryshkina
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shaneice K. Nettleford
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David E. Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kalyan K. Dewan
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Ashley E. Shay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley A. Carlson
- Office of Research Support, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States,*Correspondence: Girish S. Kirimanjeswara,
| |
Collapse
|
7
|
Differential Immune Response Following Intranasal and Intradermal Infection with Francisella tularensis: Implications for Vaccine Development. Microorganisms 2021; 9:microorganisms9050973. [PMID: 33946283 PMCID: PMC8145380 DOI: 10.3390/microorganisms9050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular coccobacillus that is the etiological agent of tularemia. Interestingly, the disease tularemia has variable clinical presentations that are dependent upon the route of infection with Ft. Two of the most likely routes of Ft infection include intranasal and intradermal, which result in pneumonic and ulceroglandular tularemia, respectively. While there are several differences between these two forms of tularemia, the most notable disparity is between mortality rates: the mortality rate following pneumonic tularemia is over ten times that of the ulceroglandular disease. Understanding the differences between intradermal and intranasal Ft infections is important not only for clinical diagnoses and treatment but also for the development of a safe and effective vaccine. However, the immune correlates of protection against Ft, especially within the context of infection by disparate routes, are not yet fully understood. Recent advances in different animal models have revealed new insights in the complex interplay of innate and adaptive immune responses, indicating dissimilar patterns in both responses following infection with Ft via different routes. Further investigation of these differences will be crucial to predicting disease outcomes and inducing protective immunity via vaccination or natural infection.
Collapse
|
8
|
Mohammadi N, Lindgren H, Golovliov I, Eneslätt K, Yamamoto M, Martin A, Henry T, Sjöstedt A. Guanylate-Binding Proteins Are Critical for Effective Control of Francisella tularensis Strains in a Mouse Co-Culture System of Adaptive Immunity. Front Cell Infect Microbiol 2020; 10:594063. [PMID: 33363054 PMCID: PMC7758253 DOI: 10.3389/fcimb.2020.594063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/06/2020] [Indexed: 11/14/2022] Open
Abstract
Francisella tularensis is a Select Agent that causes the severe disease tularemia in humans and many animal species. The bacterium demonstrates rapid intracellular replication, however, macrophages can control its replication if primed and activation with IFN-γ is known to be essential, although alone not sufficient, to mediate such control. To further investigate the mechanisms that control intracellular F. tularensis replication, an in vitro co-culture system was utilized containing splenocytes obtained from naïve or immunized C57BL/6 mice as effectors and infected bone marrow-derived wild-type or chromosome-3-deficient guanylate-binding protein (GBP)-deficient macrophages. Cells were infected either with the F. tularensis live vaccine strain (LVS), the highly virulent SCHU S4 strain, or the surrogate for F. tularensis, F. novicida. Regardless of strain, significant control of the bacterial replication was observed in co-cultures with wild-type macrophages and immune splenocytes, but not in cultures with immune splenocytes and GBPchr3-deficient macrophages. Supernatants demonstrated very distinct, infectious agent-dependent patterns of 23 cytokines, whereas the cytokine patterns were only marginally affected by the presence or absence of GBPs. Levels of a majority of cytokines were inversely correlated to the degree of control of the SCHU S4 and LVS infections, but this was not the case for the F. novicida infection. Collectively, the co-culture assay based on immune mouse-derived splenocytes identified a dominant role of GBPs for the control of intracellular replication of various F. tularensis strains, regardless of their virulence, whereas the cytokine patterns markedly were dependent on the infectious agents, but less so on GBPs.
Collapse
Affiliation(s)
- Nasibeh Mohammadi
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Helena Lindgren
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Kjell Eneslätt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Bradford MK, Elkins KL. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci Rep 2020; 10:12023. [PMID: 32694562 PMCID: PMC7374111 DOI: 10.1038/s41598-020-68798-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes tularemia by invading and replicating in mammalian myeloid cells. Francisella primarily invades host macrophages, where it escapes phagosomes within a few hours and replicates in the cytoplasm. Less is known about how Francisella traffics within macrophages or exits into the extracellular environment for further infection. Immune T lymphocytes control the replication of Francisella within macrophages in vitro by a variety of mechanisms, but nothing is known about intracellular bacterial trafficking in the face of such immune pressure. Here we used a murine model of infection with a Francisella attenuated live vaccine strain (LVS), which is under study as a human vaccine, to evaluate the hypothesis that immune T cells control intramacrophage bacterial growth by re-directing bacteria into toxic intracellular compartments of infected macrophages. We visualized the interactions of lymphocytes and LVS-infected macrophages using confocal microscopy and characterized LVS intramacrophage trafficking when co-cultured with immune lymphocytes. We focused on the late stages of infection after bacteria escape from phagosomes, through bacterial replication and the death of macrophages. We found that the majority of LVS remained cytosolic in the absence of immune pressure, eventually resulting in macrophage death. In contrast, co-culture of LVS-infected macrophages with LVS-immune lymphocytes halted LVS replication and inhibited the spread of LVS infection between macrophages, but bacteria did not return to vacuoles such as lysosomes or autophagosomes and macrophages did not die. Therefore, immune lymphocytes directly limit intracellular bacterial replication within the cytoplasm of infected macrophages.
Collapse
Affiliation(s)
- Mary Katherine Bradford
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.,Johns Hopkins University Professional Development and Career Office, 1830 E. Monument, 2-107, Baltimore, MD, 21287, USA
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
10
|
Vaccine-Mediated Mechanisms Controlling Francisella tularensis SCHU S4 Growth in a Rat Co-Culture System. Pathogens 2020; 9:pathogens9050338. [PMID: 32365846 PMCID: PMC7280961 DOI: 10.3390/pathogens9050338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Francisella tularensis causes the severe disease tularemia. In the present study, the aim was to identify correlates of protection in the rat co-culture model by investigating the immune responses using two vaccine candidates conferring distinct degrees of protection in rat and mouse models. The immune responses were characterized by use of splenocytes from naïve or Live vaccine strain- (LVS) or ∆clpB/∆wbtC-immunized Fischer 344 rats as effectors and bone marrow-derived macrophages infected with the highly virulent strain SCHU S4. A complex immune response was elicited, resulting in cytokine secretion, nitric oxide production, and efficient control of the intracellular bacterial growth. Addition of LVS-immune splenocytes elicited a significantly better control of bacterial growth than ∆clpB/∆wbtC splenocytes. This mirrored the efficacy of the vaccine candidates in the rat model. Lower levels of IFN-γ, TNF, fractalkine, IL-2, and nitrite were present in the co-cultures with ∆clpB/∆wbtC splenocytes than in those with splenocytes from LVS-immunized rats. Nitric oxide was found to be a correlate of protection, since the levels inversely correlated to the degree of protection and inhibition of nitric oxide production completely reversed the growth inhibition of SCHU S4. Overall, the results demonstrate that the co-culture assay with rat-derived cells is a suitable model to identify correlates of protection against highly virulent strains of F. tularensis
Collapse
|
11
|
Interferon Gamma Reprograms Host Mitochondrial Metabolism through Inhibition of Complex II To Control Intracellular Bacterial Replication. Infect Immun 2020; 88:IAI.00744-19. [PMID: 31740527 DOI: 10.1128/iai.00744-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms by which interferon gamma (IFN-γ) controls the replication of cytosolic pathogens independent of responses, such as the generation of reactive oxygen species/reactive nitrogen species (ROS/RNS), have not been fully elucidated. In the current study, we developed a model using Francisella tularensis, the causative agent of tularemia, in which pathways triggered by IFN-γ commonly associated with bacterial control were not required. Using this model, we demonstrated that IFN-γ-mediated production of itaconate and its ability to impair host mitochondrial function, independent of activity on the pathogen, were central for the restriction of bacterial replication in vitro and in vivo We then demonstrate that IFN-γ-driven itaconate production was dispensable, as directly targeting complex II using cell membrane-permeable metabolites also controlled infection. Together, these findings show that while reprogramming of mitochondrial metabolism is a key factor in IFN-γ control of intracellular bacteria, the development of antimicrobial strategies based on targeting host mitochondrial metabolism independent of this cytokine may be an effective therapeutic approach.
Collapse
|
12
|
Roberts LM, Powell DA, Frelinger JA. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development. Front Cell Infect Microbiol 2018; 8:115. [PMID: 29682484 PMCID: PMC5898179 DOI: 10.3389/fcimb.2018.00115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Daniel A Powell
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
13
|
Fletcher JR, Crane DD, Wehrly TD, Martens CA, Bosio CM, Jones BD. The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain. Front Microbiol 2018; 9:607. [PMID: 29670588 PMCID: PMC5893802 DOI: 10.3389/fmicb.2018.00607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 02/02/2023] Open
Abstract
Francisella tularensis is a highly infectious bacterial pathogen that causes the potentially fatal disease tularemia. The Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica, while no longer licensed as a vaccine, is used as a model organism for identifying correlates of immunity and bacterial factors that mediate a productive immune response against F. tularensis. Recently, it was reported that two biovars of LVS differed in their virulence and vaccine efficacy. Genetic analysis showed that they differ in ferrous iron homeostasis; lower Fe2+ levels contributed to increased resistance to hydrogen peroxide in the vaccine efficacious LVS biovar. This also correlated with resistance to the bactericidal activity of interferon γ-stimulated murine bone marrow-derived macrophages. We have extended these findings further by showing that a mutant lacking bacterioferritin stimulates poor protection against Schu S4 challenge in a mouse model of tularemia. Together these results suggest that the efficacious biovar of LVS stimulates productive immunity by a mechanism that is dependent on its ability to limit the toxic effects of oxidative stress by maintaining optimally low levels of intracellular Fe2+.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| | - Deborah D. Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Tara D. Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Craig A. Martens
- Genomics Core, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, MT, United States
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Bradley D. Jones
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Eneslätt K, Golovliov I, Rydén P, Sjöstedt A. Vaccine-Mediated Mechanisms Controlling Replication of Francisella tularensis in Human Peripheral Blood Mononuclear Cells Using a Co-culture System. Front Cell Infect Microbiol 2018; 8:27. [PMID: 29468144 PMCID: PMC5808333 DOI: 10.3389/fcimb.2018.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Cell-mediated immunity (CMI) is normally required for efficient protection against intracellular infections, however, identification of correlates is challenging and they are generally lacking. Francisella tularensis is a highly virulent, facultative intracellular bacterium and CMI is critically required for protection against the pathogen, but how this is effectuated in humans is poorly understood. To understand the protective mechanisms, we established an in vitro co-culture assay to identify how control of infection of F. tularensis is accomplished by human cells and hypothesized that the model will mimic in vivo immune mechanisms. Non-adherent peripheral blood mononuclear cells (PBMCs) were expanded with antigen and added to cultures with adherent PBMC infected with the human vaccine strain, LVS, or the highly virulent SCHU S4 strain. Intracellular numbers of F. tularensis was followed for 72 h and secreted and intracellular cytokines were analyzed. Addition of PBMC expanded from naïve individuals, i.e., those with no record of immunization to F. tularensis, generally resulted in little or no control of intracellular bacterial growth, whereas addition of PBMC from a majority of F. tularensis-immune individuals executed static and sometimes cidal effects on intracellular bacteria. Regardless of infecting strain, statistical differences between the two groups were significant, P < 0.05. Secretion of 11 cytokines was analyzed after 72 h of infection and significant differences with regard to secretion of IFN-γ, TNF, and MIP-1β was observed between immune and naïve individuals for LVS-infected cultures. Also, in LVS-infected cultures, CD4 T cells from vaccinees, but not CD8 T cells, showed significantly higher expression of IFN-γ, MIP-1β, TNF, and CD107a than cells from naïve individuals. The co-culture system appears to identify correlates of immunity that are relevant for the understanding of mechanisms of the protective host immunity to F. tularensis.
Collapse
Affiliation(s)
- Kjell Eneslätt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Place DE, Williamson DR, Yuzefpolskiy Y, Katkere B, Sarkar S, Kalia V, Kirimanjeswara GS. Development of a novel Francisella tularensis Live Vaccine Strain expressing ovalbumin provides insight into antigen-specific CD8+ T cell responses. PLoS One 2017; 12:e0190384. [PMID: 29284034 PMCID: PMC5746256 DOI: 10.1371/journal.pone.0190384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023] Open
Abstract
Progress towards a safe and effective vaccine for the prevention of tularemia has been hindered by a lack of knowledge regarding the correlates of protective adaptive immunity and a lack of tools to generate this knowledge. CD8+ T cells are essential for protective immunity against virulent strains of Francisella tularensis, but to-date, it has not been possible to study these cells in an antigen-specific manner. Here, we report the development of a tool for expression of the model antigen ovalbumin (OVA) in F. tularensis, which allows for the study of CD8+ T cell responses to the bacterium. We demonstrate that in response to intranasal infection with the F. tularensis Live Vaccine Strain, adoptively transferred OVA-specific CD8+ T cells expand after the first week and produce IFN-γ but not IL-17. Effector and central memory subsets develop with disparate kinetics in the lungs, draining lymph node and spleen. Notably, OVA-specific cells are poorly retained in the lungs after clearance of infection. We also show that intranasal vaccination leads to more antigen-specific CD8+ T cells in the lung-draining lymph node compared to scarification vaccination, but that an intranasal booster overcomes this difference. Together, our data show that this novel tool can be used to study multiple aspects of the CD8+ T cell response to F. tularensis. Use of this tool will enhance our understanding of immunity to this deadly pathogen.
Collapse
Affiliation(s)
- David E. Place
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yevgeniy Yuzefpolskiy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Surojit Sarkar
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Vandana Kalia
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gregory DJ, Kramnik I, Kobzik L. Protection of macrophages from intracellular pathogens by miR-182-5p mimic-a gene expression meta-analysis approach. FEBS J 2017; 285:244-260. [PMID: 29197182 DOI: 10.1111/febs.14348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
The goals of this study were to (a) define which host genes are of particular importance during the interactions between macrophages and intracellular pathogens, and (b) use this knowledge to gain fresh, experimental understanding of how macrophage activities may be manipulated during host defense. We designed an in silico method for meta-analysis of microarray gene expression data, and used this to combine data from 16 different studies of cells in the monocyte-macrophage lineage infected with seven different pathogens. Three thousand four hundred ninety-eight genes were identified, which we call the macrophage intracellular pathogen response (macIPR) gene set. As expected, the macIPR gene set showed a strong bias toward genes previously associated with the immune response. Predicted target sites for miR-182-5p (miR-182) were strongly over-represented among macIPR genes, indicating an unexpected role for miR-182-regulatable genes during intracellular pathogenesis. We therefore transfected primary human alveolar macrophage-like monocyte-derived macrophages from multiple different donors with synthetic miR-182, and found that miR-182 overexpression (a) increases proinflammatory gene induction during infection with Francisella tularensis live vaccine strain (LVS), (b) primes macrophages for increased autophagy, and (c) enhances macrophage control of both gram negative F. tularensisLVS and gram positive Bacillus anthracisANR-1 spores. These data therefore suggest a new application for miR-182 in promoting resistance to intracellular pathogens.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, MA, USA
| | - Lester Kobzik
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Wallet P, Benaoudia S, Mosnier A, Lagrange B, Martin A, Lindgren H, Golovliov I, Michal F, Basso P, Djebali S, Provost A, Allatif O, Meunier E, Broz P, Yamamoto M, Py BF, Faudry E, Sjöstedt A, Henry T. IFN-γ extends the immune functions of Guanylate Binding Proteins to inflammasome-independent antibacterial activities during Francisella novicida infection. PLoS Pathog 2017; 13:e1006630. [PMID: 28968459 PMCID: PMC5624647 DOI: 10.1371/journal.ppat.1006630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022] Open
Abstract
Guanylate binding proteins (GBPs) are interferon-inducible proteins involved in the cell-intrinsic immunity against numerous intracellular pathogens. The molecular mechanisms underlying the potent antibacterial activity of GBPs are still unclear. GBPs have been functionally linked to the NLRP3, the AIM2 and the caspase-11 inflammasomes. Two opposing models are currently proposed to explain the GBPs-inflammasome link: i) GBPs would target intracellular bacteria or bacteria-containing vacuoles to increase cytosolic PAMPs release ii) GBPs would directly facilitate inflammasome complex assembly. Using Francisella novicida infection, we investigated the functional interactions between GBPs and the inflammasome. GBPs, induced in a type I IFN-dependent manner, are required for the F. novicida-mediated AIM2-inflammasome pathway. Here, we demonstrate that GBPs action is not restricted to the AIM2 inflammasome, but controls in a hierarchical manner the activation of different inflammasomes complexes and apoptotic caspases. IFN-γ induces a quantitative switch in GBPs levels and redirects pyroptotic and apoptotic pathways under the control of GBPs. Furthermore, upon IFN-γ priming, F. novicida-infected macrophages restrict cytosolic bacterial replication in a GBP-dependent and inflammasome-independent manner. Finally, in a mouse model of tularemia, we demonstrate that the inflammasome and the GBPs are two key immune pathways functioning largely independently to control F. novicida infection. Altogether, our results indicate that GBPs are the master effectors of IFN-γ-mediated responses against F. novicida to control antibacterial immune responses in inflammasome-dependent and independent manners. The cell-intrinsic immunity is defined as the mechanisms allowing a host cell infected by an intracellular pathogen to mount effective immune mechanisms to detect and eliminate pathogens without any help from other immune cells. In infected macrophages, the Guanylate Binding Proteins (GBPs) are immune proteins, induced at low levels in a cell autonomous manner by endogenous type I IFN or at high levels following IFN-γ production by innate and adaptive lymphocytes. The antibacterial activity of GBPs has been recently tightly linked to the inflammasomes. Inflammasomes are innate immune complexes leading to inflammatory caspases activation and death of the infected cell. Francisella novicida, a bacterium replicating in the macrophage cytosol, is closely related to F. tularensis, the agent of tularemia and is used as a model to study cytosolic immunity. GBPs contribute to F. novicida lysis within the host cytosol leading to DNA release and AIM2 inflammasome activation. In addition to their regulation of the AIM2 inflammasome, we identified that GBPs also control several other pyroptotic and apoptotic pathways activated in a hierarchical manner. Furthermore, we demonstrate that IFN-γ priming extends GBPs anti-microbial responses from the inflammasome-dependent control of cell death to an inflammasome-independent control of cytosolic bacterial replication. Our results, validated in a mouse model of tularemia, thus segregate the antimicrobial activities of inflammasomes and GBPs as well as highlight GBPs as the master effectors of IFN-γ-mediated cytosolic immunity.
Collapse
Affiliation(s)
- Pierre Wallet
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Sacha Benaoudia
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Amandine Mosnier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Brice Lagrange
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Helena Lindgren
- Laboratory for Molecular Infection Medicine Sweden and Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Laboratory for Molecular Infection Medicine Sweden and Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Fanny Michal
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Pauline Basso
- University of Grenoble Alpes, CNRS, ERL5261, CEA, BIG-BCI, Inserm, U1036, Grenoble, France
| | - Sophia Djebali
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Angelina Provost
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, Université Paul Sabatier (UPS), Toulouse, France
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Bénédicte F. Py
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Eric Faudry
- University of Grenoble Alpes, CNRS, ERL5261, CEA, BIG-BCI, Inserm, U1036, Grenoble, France
| | - Anders Sjöstedt
- Laboratory for Molecular Infection Medicine Sweden and Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
18
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
19
|
Pyrin-only protein 2 limits inflammation but improves protection against bacteria. Nat Commun 2017; 8:15564. [PMID: 28580947 PMCID: PMC5512670 DOI: 10.1038/ncomms15564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Pyrin domain-only proteins (POPs) are recently evolved, primate-specific proteins demonstrated in vitro as negative regulators of inflammatory responses. However, their in vivo function is not understood. Of the four known POPs, only POP2 is reported to regulate NF-κB-dependent transcription and multiple inflammasomes. Here we use a transgenic mouse-expressing POP2 controlled by its endogenous human promotor to study the immunological functions of POP2. Despite having significantly reduced inflammatory cytokine responses to LPS and bacterial infection, POP2 transgenic mice are more resistant to bacterial infection than wild-type mice. In a pulmonary tularaemia model, POP2 enhances IFN-γ production, modulates neutrophil numbers, improves macrophage functions, increases bacterial control and diminishes lung pathology. Thus, unlike other POPs thought to diminish innate protection, POP2 reduces detrimental inflammation while preserving and enhancing protective immunity. Our findings suggest that POP2 acts as a high-order regulator balancing cellular function and inflammation with broad implications for inflammation-associated diseases and therapeutic intervention. Pyrin-only proteins (POPs) are primate-specific negative regulators of inflammasome activation. Here the authors generate transgenic mice expressing POP2 under the control of the human promoter, and show that POP2 is important for balancing antibacterial inflammatory responses in vivo.
Collapse
|
20
|
Honn M, Lindgren H, Bharath GK, Sjöstedt A. Lack of OxyR and KatG Results in Extreme Susceptibility of Francisella tularensis LVS to Oxidative Stress and Marked Attenuation In vivo. Front Cell Infect Microbiol 2017; 7:14. [PMID: 28174696 PMCID: PMC5258697 DOI: 10.3389/fcimb.2017.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium and as such is expected to encounter a continuous attack by reactive oxygen species (ROS) in its intracellular habitat and efficiently coping with oxidative stress is therefore essential for its survival. The oxidative stress response system of F. tularensis is complex and includes multiple antioxidant enzymes and pathways, including the transcriptional regulator OxyR and the H2O2-decomposing enzyme catalase, encoded by katG. The latter is regulated by OxyR. A deletion of either of these genes, however, does not severely compromise the virulence of F. tularensis and we hypothesized that if the bacterium would be deficient of both catalase and OxyR, then the oxidative defense and virulence of F. tularensis would become severely hampered. To test this hypothesis, we generated a double deletion mutant, ΔoxyR/ΔkatG, of F. tularensis LVS and compared its phenotype to the parental LVS strain and the corresponding single deletion mutants. In accordance with the hypothesis, ΔoxyR/ΔkatG was distinctly more susceptible than ΔoxyR and ΔkatG to H2O2, ONOO−, and O2-, moreover, it hardly grew in mouse-derived BMDM or in mice, whereas ΔkatG and ΔoxyR grew as well as F. tularensis LVS in BMDM and exhibited only slight attenuation in mice. Altogether, the results demonstrate the importance of catalase and OxyR for a robust oxidative stress defense system and that they act cooperatively. The lack of both functions render F. tularensis severely crippled to handle oxidative stress and also much attenuated for intracellular growth and virulence.
Collapse
Affiliation(s)
- Marie Honn
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Helena Lindgren
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Gurram K Bharath
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Anders Sjöstedt
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| |
Collapse
|
21
|
Golovliov I, Lindgren H, Eneslätt K, Conlan W, Mosnier A, Henry T, Sjöstedt A. An In Vitro Co-culture Mouse Model Demonstrates Efficient Vaccine-Mediated Control of Francisella tularensis SCHU S4 and Identifies Nitric Oxide as a Predictor of Efficacy. Front Cell Infect Microbiol 2016; 6:152. [PMID: 27933275 PMCID: PMC5122580 DOI: 10.3389/fcimb.2016.00152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/01/2016] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a highly virulent intracellular bacterium and cell-mediated immunity is critical for protection, but mechanisms of protection against highly virulent variants, such as the prototypic strain F. tularensis strain SCHU S4, are poorly understood. To this end, we established a co-culture system, based on splenocytes from naïve, or immunized mice and in vitro infected bone marrow-derived macrophages that allowed assessment of mechanisms controlling infection with F. tularensis. We utilized the system to understand why the clpB gene deletion mutant, ΔclpB, of SCHU S4 shows superior efficacy as a vaccine in the mouse model as compared to the existing human vaccine, the live vaccine strain (LVS). Compared to naïve splenocytes, ΔclpB-, or LVS-immune splenocytes conferred very significant control of a SCHU S4 infection and the ΔclpB-immune splenocytes were superior to the LVS-immune splenocytes. Cultures with the ΔclpB-immune splenocytes also contained higher levels of IFN-γ, IL-17, and GM-CSF and nitric oxide, and T cells expressing combinations of IFN-γ, TNF-α, and IL-17, than did cultures with LVS-immune splenocytes. There was strong inverse correlation between bacterial replication and levels of nitrite, an end product of nitric oxide, and essentially no control was observed when BMDM from iNOS-/- mice were infected. Collectively, the co-culture model identified a critical role of nitric oxide for protection against a highly virulent strain of F. tularensis.
Collapse
Affiliation(s)
- Igor Golovliov
- Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Clinical Bacteriology, and Umeå University Umeå, Sweden
| | - Helena Lindgren
- Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Clinical Bacteriology, and Umeå University Umeå, Sweden
| | - Kjell Eneslätt
- Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Clinical Bacteriology, and Umeå University Umeå, Sweden
| | - Wayne Conlan
- National Research Council Canada, Institute for Biological Sciences Ottawa, ON, Canada
| | - Amandine Mosnier
- Centre International de Recherche en Infectiologie, Institut national de la santé et de la recherche médicale, U1111 Lyon, France
| | - Thomas Henry
- Centre International de Recherche en Infectiologie, Institut national de la santé et de la recherche médicale, U1111 Lyon, France
| | - Anders Sjöstedt
- Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Clinical Bacteriology, and Umeå University Umeå, Sweden
| |
Collapse
|
22
|
Bakkemo KR, Mikkelsen H, Johansen A, Robertsen B, Seppola M. Francisella noatunensis subsp. noatunensis invades, survives and replicates in Atlantic cod cells. DISEASES OF AQUATIC ORGANISMS 2016; 121:149-159. [PMID: 27667812 DOI: 10.3354/dao03043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Systemic infection caused by the facultative intracellular bacterium Francisella noatunensis subsp. noatunensis remains a disease threat to Atlantic cod Gadus morhua L. Future prophylactics could benefit from better knowledge on how the bacterium invades, survives and establishes infection in its host cells. Here, facilitated by the use of a gentamicin protection assay, this was studied in primary monocyte/macrophage cultures and an epithelial-like cell line derived from Atlantic cod larvae (ACL cells). The results showed that F. noatunensis subsp. noatunensis is able to invade primary monocyte/macrophages, and that the actin-polymerisation inhibitor cytochalasin D blocked internalisation, demonstrating that the invasion is mediated through phagocytosis. Interferon gamma (IFNγ) treatment of cod macrophages prior to infection enhanced bacterial invasion, potentially by stimulating macrophage activation in an early step in host defence against F. noatunensis subsp. noatunensis infections. We measured a rapid drop of the initial high levels of internalised bacteria in macrophages, indicating the presence and action of a cellular immune defence mechanism before intracellular bacterial replication took place. Low levels of bacterial internalisation and replication were detected in the epithelial-like ACL cells. The capacity of F. noatunensis subsp. noatunensis to enter, survive and even replicate within an epithelial cell line may play an important role in its ability to infect live fish and transverse epithelial barriers to reach the bacterium's main target cells-the macrophage.
Collapse
|
23
|
Miller C, Celli J. Avoidance and Subversion of Eukaryotic Homeostatic Autophagy Mechanisms by Bacterial Pathogens. J Mol Biol 2016; 428:3387-98. [PMID: 27456933 PMCID: PMC5010449 DOI: 10.1016/j.jmb.2016.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
Autophagy is a conserved lysosomal recycling process, which maintains cellular homeostasis during stress and starvation conditions by degrading and recycling proteins, lipids, and carbohydrates, ultimately increasing nutrient availability in eukaryotes. An additional function of autophagy, termed xenophagy, is to detect, capture, and destroy invading microorganisms, such as viruses, bacteria, and protozoa, providing autophagy with a role in innate immunity. Many intracellular pathogens have, however, developed mechanisms to avoid xenophagy and have evolved strategies to take advantage of select autophagic processes to undergo their intracellular life cycle. This review article will discuss the molecular mechanisms used by the intracellular bacterial pathogens Francisella spp. and Brucella spp. to manipulate components of the autophagic pathway, promoting cytosolic growth in the case of Francisella spp. and facilitating cellular egress and cell-to-cell spread in the case of Brucella spp. These examples highlight how successful, highly infectious bacterial pathogens avoid or subvert host autophagy mechanisms normally employed to maintain eukaryotic homeostasis.
Collapse
Affiliation(s)
- Cheryl Miller
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, 99164-7090 WA, USA.
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, 99164-7090 WA, USA.
| |
Collapse
|
24
|
Maggio S, Takeda K, Stark F, Meierovics AI, Yabe I, Cowley SC. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells. PLoS One 2015; 10:e0138565. [PMID: 26379269 PMCID: PMC4575024 DOI: 10.1371/journal.pone.0138565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates.
Collapse
Affiliation(s)
- Savannah Maggio
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Felicity Stark
- National Research Council Canada, Human Health Therapeutics Portfolio, Ontario, Canada
| | - Anda I. Meierovics
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Idalia Yabe
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Siobhan C. Cowley
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Roles of reactive oxygen species-degrading enzymes of Francisella tularensis SCHU S4. Infect Immun 2015; 83:2255-63. [PMID: 25802058 DOI: 10.1128/iai.02488-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium utilizing macrophages as its primary intracellular habitat and is therefore highly capable of resisting the effects of reactive oxygen species (ROS), potent mediators of the bactericidal activity of macrophages. We investigated the roles of enzymes presumed to be important for protection against ROS. Four mutants of the highly virulent SCHU S4 strain with deletions of the genes encoding catalase (katG), glutathione peroxidase (gpx), a DyP-type peroxidase (FTT0086), or double deletion of FTT0086 and katG showed much increased susceptibility to hydrogen peroxide (H2O2) and slightly increased susceptibility to paraquat but not to peroxynitrite (ONOO(-)) and displayed intact intramacrophage replication. Nevertheless, mice infected with the double deletion mutant showed significantly longer survival than SCHU S4-infected mice. Unlike the aforementioned mutants, deletion of the gene coding for alkyl-hydroperoxide reductase subunit C (ahpC) generated a mutant much more susceptible to paraquat and ONOO(-) but not to H2O2. It showed intact replication in J774 cells but impaired replication in bone marrow-derived macrophages and in internal organs of mice. The live vaccine strain, LVS, is more susceptible than virulent strains to ROS-mediated killing and possesses a truncated form of FTT0086. Expression of the SCHU S4 FTT0086 gene rendered LVS more resistant to H2O2, which demonstrates that the SCHU S4 strain possesses additional detoxifying mechanisms. Collectively, the results demonstrate that SCHU S4 ROS-detoxifying enzymes have overlapping functions, and therefore, deletion of one or the other does not critically impair the intracellular replication or virulence, although AhpC appears to have a unique function.
Collapse
|
26
|
Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L, Rühl S, Dussurgey S, Dick MS, Kistner A, Rigard M, Degrandi D, Pfeffer K, Yamamoto M, Henry T, Broz P. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol 2015; 16:476-484. [PMID: 25774716 PMCID: PMC4568307 DOI: 10.1038/ni.3119] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines IL-1β and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella novicida. AIM2 activation by F. novicida requires bacteriolysis, yet whether this process is accidental or a host-driven immune mechanism remained unclear. Using siRNA screening for nearly 500 interferon-stimulated genes, we identified guanylate-binding proteins GBP2 and GBP5 as key AIM2 activators during F. novicida infection. Their prominent role was validated in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs target cytosolic F. novicida and promote bacteriolysis. Thus, besides their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.
Collapse
Affiliation(s)
- Etienne Meunier
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Pierre Wallet
- CIRI, Inserm U1111, CNRS UMR 5308, Université Claude Bernard Lyon-1, Ecole Normale Supérieure, Lyon, France
| | - Roland F Dreier
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Stéphanie Costanzo
- CIRI, Inserm U1111, CNRS UMR 5308, Université Claude Bernard Lyon-1, Ecole Normale Supérieure, Lyon, France
| | - Leonie Anton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Sebastian Rühl
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Sébastien Dussurgey
- SFR Biosciences, UMS344/US8, Inserm, CNRS, Université Claude Bernard Lyon-1, Ecole Normale Supérieure, Lyon, France
| | - Mathias S Dick
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne Kistner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Mélanie Rigard
- CIRI, Inserm U1111, CNRS UMR 5308, Université Claude Bernard Lyon-1, Ecole Normale Supérieure, Lyon, France
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Duesseldorf 40225, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Duesseldorf 40225, Germany
| | - Masahiro Yamamoto
- Department of Microbiology and Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Thomas Henry
- CIRI, Inserm U1111, CNRS UMR 5308, Université Claude Bernard Lyon-1, Ecole Normale Supérieure, Lyon, France
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Gillard JJ, Laws TR, Lythe G, Molina-París C. Modeling early events in Francisella tularensis pathogenesis. Front Cell Infect Microbiol 2014; 4:169. [PMID: 25566509 PMCID: PMC4263195 DOI: 10.3389/fcimb.2014.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 11/24/2022] Open
Abstract
Computational models can provide valuable insights into the mechanisms of infection and be used as investigative tools to support development of medical treatments. We develop a stochastic, within-host, computational model of the infection process in the BALB/c mouse, following inhalational exposure to Francisella tularensis SCHU S4. The model is mechanistic and governed by a small number of experimentally verifiable parameters. Given an initial dose, the model generates bacterial load profiles corresponding to those produced experimentally, with a doubling time of approximately 5 h during the first 48 h of infection. Analytical approximations for the mean number of bacteria in phagosomes and cytosols for the first 24 h post-infection are derived and used to verify the stochastic model. In our description of the dynamics of macrophage infection, the number of bacteria released per rupturing macrophage is a geometrically-distributed random variable. When combined with doubling time, this provides a distribution for the time taken for infected macrophages to rupture and release their intracellular bacteria. The mean and variance of these distributions are determined by model parameters with a precise biological interpretation, providing new mechanistic insights into the determinants of immune and bacterial kinetics. Insights into the dynamics of macrophage suppression and activation gained by the model can be used to explore the potential benefits of interventions that stimulate macrophage activation.
Collapse
Affiliation(s)
- Joseph J Gillard
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - Thomas R Laws
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds Leeds, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds Leeds, UK
| |
Collapse
|
28
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
29
|
The impact of "omic" and imaging technologies on assessing the host immune response to biodefence agents. J Immunol Res 2014; 2014:237043. [PMID: 25333059 PMCID: PMC4182007 DOI: 10.1155/2014/237043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of “omic” technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.
Collapse
|
30
|
Control of intracellular Francisella tularensis by different cell types and the role of nitric oxide. J Immunol Res 2014; 2014:694717. [PMID: 25170518 PMCID: PMC4129157 DOI: 10.1155/2014/694717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/14/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022] Open
Abstract
Reactive nitrogen is critical for the clearance of Francisella tularensis infections. Here we assess the role of nitric oxide in control of intracellular infections in two murine macrophage cell lines of different provenance: the alveolar macrophage cell line, MH-S, and the widely used peritoneal macrophage cell line, J774A.1. Cells were infected with the highly virulent Schu S4 strain or with the avirulent live vaccine strain (LVS) with and without stimuli. Compared to MH-S cells, J774A.1 cells were unresponsive to stimulation and were able to control the intracellular replication of LVS bacteria, but not of Schu S4. In MH-S cells, Schu S4 demonstrated control over cellular NO production. Despite this, MH-S cells stimulated with LPS or LPS and IFN-γ were able to control intracellular Schu S4 numbers. However, only stimulation with LPS induced significant cellular NO production. Combined stimulation with LPS and IFN-γ produced a significant reduction in intracellular bacteria that occurred whether high levels of NO were produced or not, indicating that NO secretion is not the only defensive cellular mechanism operating in virulent Francisella infections. Understanding how F. tularensis interacts with host macrophages will help in the rational design of new and effective therapies.
Collapse
|
31
|
Identification of mechanisms for attenuation of the FSC043 mutant of Francisella tularensis SCHU S4. Infect Immun 2014; 82:3622-35. [PMID: 24935978 DOI: 10.1128/iai.01406-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we identified a spontaneous, essentially avirulent mutant, FSC043, of the highly virulent strain SCHU S4 of Francisella tularensis subsp. tularensis. We have now characterized the phenotype of the mutant and the mechanisms of its attenuation in more detail. Genetic and proteomic analyses revealed that the pdpE gene and most of the pdpC gene were very markedly downregulated and, as previously demonstrated, that the strain expressed partially deleted and fused fupA and fupB genes. FSC043 showed minimal intracellular replication and induced no cell cytotoxicity. The mutant showed delayed phagosomal escape; at 18 h, colocalization with LAMP-1 was 80%, indicating phagosomal localization, whereas the corresponding percentages for SCHU S4 and the ΔfupA mutant were <10%. However, a small subset of the FSC043-infected cells contained up to 100 bacteria with LAMP-1 colocalization of around 30%. The unusual intracellular phenotype was similar to that of the ΔpdpC and ΔpdpC ΔpdpE mutants. Complementation of FSC043 with the intact fupA and fupB genes did not affect the phenotype, whereas complementation with the pdpC and pdpE genes restored intracellular replication and led to marked virulence. Even higher virulence was observed after complementation with both double-gene constructs. After immunization with the FSC043 strain, moderate protection against respiratory challenge with the SCHU S4 strain was observed. In summary, FSC043 showed a highly unusual intracellular phenotype, and based on our findings, we hypothesize that the mutation in the pdpC gene makes an essential contribution to the phenotype.
Collapse
|
32
|
Gillette DD, Curry HM, Cremer T, Ravneberg D, Fatehchand K, Shah PA, Wewers MD, Schlesinger LS, Butchar JP, Tridandapani S, Gavrilin MA. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes. Front Cell Infect Microbiol 2014; 4:45. [PMID: 24783062 PMCID: PMC3988375 DOI: 10.3389/fcimb.2014.00045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. RESULTS A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. CONCLUSION F. tularensis dampens inflammatory response by an active process. SIGNIFICANCE This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.
Collapse
Affiliation(s)
- Devyn D Gillette
- Integrated Biomedical Graduate Program, The Ohio State University Columbus, OH, USA
| | - Heather M Curry
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA ; Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| | - Thomas Cremer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - David Ravneberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Kavin Fatehchand
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Prexy A Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Mark D Wewers
- Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA ; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA ; Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| | - Jonathan P Butchar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Susheela Tridandapani
- Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA ; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - Mikhail A Gavrilin
- Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA ; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| |
Collapse
|
33
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
Affiliation(s)
- Bradley D Jones
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, Washington University St. Louis, MO, USA
| | - Matthew Faron
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Jed A Rasmussen
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
34
|
Zauberman A, Flashner Y, Levy Y, Vagima Y, Tidhar A, Cohen O, Bar-Haim E, Gur D, Aftalion M, Halperin G, Shafferman A, Mamroud E. YopP-expressing variant of Y. pestis activates a potent innate immune response affording cross-protection against yersiniosis and tularemia [corrected]. PLoS One 2013; 8:e83560. [PMID: 24358292 PMCID: PMC3865221 DOI: 10.1371/journal.pone.0083560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/13/2013] [Indexed: 01/12/2023] Open
Abstract
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.
Collapse
Affiliation(s)
- Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Gideon Halperin
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
35
|
Pávková I, Brychta M, Strašková A, Schmidt M, Macela A, Stulík J. Comparative proteome profiling of host–pathogen interactions: insights into the adaptation mechanisms of Francisella tularensis in the host cell environment. Appl Microbiol Biotechnol 2013; 97:10103-15. [DOI: 10.1007/s00253-013-5321-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
|
36
|
IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of type A Francisella tularensis. Infect Immun 2013; 81:4026-40. [PMID: 23959721 DOI: 10.1128/iai.00595-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under the control of the Francisella rpsL promoter, thereby establishing that the loss of iglE, and not polar effects on downstream vgrG gene expression, was responsible for the defect. IglE is exported to the Francisella outer membrane as an ∼13.9-kDa lipoprotein, determined on the basis of a combination of selective Triton X-114 solubilization, radiolabeling with [(3)H]palmitic acid, and sucrose density gradient membrane partitioning studies. Lastly, a genetic screen using the iglE-null live vaccine strain resulted in the identification of key regions in the carboxyl terminus of IglE that are required for intracellular replication of Francisella tularensis in J774A.1 macrophages. Thus, IglE is essential for Francisella tularensis virulence. Our data support a model that likely includes protein-protein interactions at or near the bacterial cell surface that are unknown at present.
Collapse
|
37
|
Pohanka M, Pavlis O, Pikula J. Galantamine effect on tularemia pathogenesis in a BALB/c mouse model. IRANIAN BIOMEDICAL JOURNAL 2013; 16:156-61. [PMID: 23023217 DOI: 10.6091/ibj.993.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Galantamine is a drug used for the treatment of Alzheimer's disease and some other cognitive disorders. It is an inhibitor of acetylcholinesterase; however, interaction with nicotinic acetylcholine receptors has also been reported. Owing to the significant role of cholinergic anti-inflammatory pathways in neuro-immunomodulation, we decided to examine the effect of galantamine on tularemia-infected BALB/c mice. METHODS Animals were infected with Francisella tularensis LVS and treated with galantamine (0.1 mg/kg of body weight). Total mortality over the course of tularemia infection was assessed and interleukin 6 (IL-6) and interferon gamma (IFN-gamma) in plasma samples were measured by enzyme-linked immunosorbent assays. Apart from the cytokine assays, biochemical markers such as inorganic phosphate, uric acid, lactate dehydrogenase, gamma glutamyltransferase, creatinine phosphokinase and amylase were assayed. RESULTS The modulation of immunity by galantamine depended on two opposing processes: up-regulation of IFN-gamma and down-regulation of IL-6. Tularemia infection resulted in significant nephropathy, as hyperphosphataemia and hyperuricaemia occurred in infected animals. In addition, galantamine resulted in the mitigation of nephropathy, and markers of kidney dysfunction were modulated. Alterations in mortality were also found in this study. CONCLUSIONS Galantamine can significantly influence the immune response via the cholinergic anti-inflammatory pathway. Despite the decrease in IL-6 levels, galantamine treatment enhanced protection against the intracellular pathogen F. tularensis, resulting in the remission of some pathology and reduced mortality.
Collapse
Affiliation(s)
- Miroslav Pohanka
- University of Defence, Trebesska, Hradec Kralove, Czech Republic
| | - Oto Pavlis
- University of Defence, Trebesska, Hradec Kralove, Czech Republic.,Centre of Biological Defence, 56166 Techonin, Czech Republic
| | - Jiri Pikula
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| |
Collapse
|
38
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
39
|
Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 2013; 3:a010314. [PMID: 23545572 DOI: 10.1101/cshperspect.a010314] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Francisella tularensis is a zoonotic intracellular pathogen and the causative agent of the debilitating febrile illness tularemia. Although natural infections by F. tularensis are sporadic and generally localized, the low infectious dose, with the ability to be transmitted to humans via multiple routes and the potential to cause life-threatening infections, has led to concerns that this bacterium could be used as an agent of bioterror and released intentionally into the environment. Recent studies of F. tularensis and other closely related Francisella species have greatly increased our understanding of mechanisms used by this organism to infect and cause disease within the host. Here, we review the intracellular life cycle of Francisella and highlight key genetic determinants and/or pathways that contribute to the survival and proliferation of this bacterium within host cells.
Collapse
Affiliation(s)
- Jean Celli
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | | |
Collapse
|
40
|
Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirey KA, Reutterer B, Kernbauer E, Stockinger S, Decker T, Miyairi I, Vogel SN, Salgame P, Rock CO, Murray PJ. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 2013; 12:313-23. [PMID: 22980328 DOI: 10.1016/j.chom.2012.07.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/07/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) defends against intracellular pathogens, but its synthesis must be regulated due to cell and tissue toxicity. During infection, macrophages import extracellular arginine to synthesize NO, generating the byproduct citrulline. Accumulated intracellular citrulline is thought to fuel arginine synthesis catalyzed by argininosuccinate synthase (Ass1) and argininosuccinate lyase (Asl), which would lead to abundant NO production. Instead, we find that citrulline is exported from macrophages during early stages of NO production with <2% retained for recycling via the Ass1-Asl pathway. Later, extracellular arginine is depleted, and Ass1 expression allows macrophages to synthesize arginine from imported citrulline to sustain NO output. Ass1-deficient macrophages fail to salvage citrulline in arginine-scarce conditions, leading to their inability to control mycobacteria infection. Thus, extracellular arginine fuels rapid NO production in activated macrophages, and citrulline recycling via Ass1 and Asl is a fail-safe system that sustains optimum NO production.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
42
|
Jehl SP, Nogueira CV, Zhang X, Starnbach MN. IFNγ inhibits the cytosolic replication of Shigella flexneri via the cytoplasmic RNA sensor RIG-I. PLoS Pathog 2012; 8:e1002809. [PMID: 22912573 PMCID: PMC3415441 DOI: 10.1371/journal.ppat.1002809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 06/05/2012] [Indexed: 12/02/2022] Open
Abstract
The activation of host cells by interferon gamma (IFNγ) is essential for inhibiting the intracellular replication of most microbial pathogens. Although significant advances have been made in identifying IFNγ-dependent host factors that suppress intracellular bacteria, little is known about how IFNγ enables cells to recognize, or restrict, the growth of pathogens that replicate in the host cytoplasm. The replication of the cytosolic bacterial pathogen Shigella flexneri is significantly inhibited in IFNγ-stimulated cells, however the specific mechanisms that mediate this inhibition have remained elusive. We found that S. flexneri efficiently invades IFNγ-activated mouse embryonic fibroblasts (MEFs) and escapes from the vacuole, suggesting that IFNγ acts by blocking S. flexneri replication in the cytosol. This restriction on cytosolic growth was dependent on interferon regulatory factor 1 (IRF1), an IFNγ-inducible transcription factor capable of inducing IFNγ-mediated cell-autonomous immunity. To identify host factors that restrict S. flexneri growth, we used whole genome microarrays to identify mammalian genes whose expression in S. flexneri-infected cells is controlled by IFNγ and IRF1. Among the genes we identified was the pattern recognition receptor (PRR) retanoic acid-inducible gene I (RIG-I), a cytoplasmic sensor of foreign RNA that had not been previously known to play a role in S. flexneri infection. We found that RIG-I and its downstream signaling adaptor mitochondrial antiviral signaling protein (MAVS)—but not cytosolic Nod-like receptors (NLRs)—are critically important for IFNγ-mediated S. flexneri growth restriction. The recently described RNA polymerase III pathway, which transcribes foreign cytosolic DNA into the RIG-I ligand 5′-triphosphate RNA, appeared to be involved in this restriction. The finding that RIG-I responds to S. flexneri infection during the IFNγ response extends the range of PRRs that are capable of recognizing this bacterium. Additionally, these findings expand our understanding of how IFNγ recognizes, and ultimately restricts, bacterial pathogens within host cells. Shigella flexneri, the major cause of bacillary dysentery worldwide, invades and replicates within the cytoplasm of intestinal epithelial cells, where it disseminates to neighboring cells and ultimately increases the likelihood of transmission to uninfected hosts. A hallmark of the mammalian immune system is its ability to inhibit the growth of such intracellular pathogens by upregulating intracellular resistance mechanisms in response to the cytokine IFNγ. We found that in non-myeloid host cells stimulated with IFNγ S. flexneri remains able to invade the cells efficiently and gain access to the host cytoplasm. Once in the cytoplasm of IFγ-activated cells, the RIG-I/ MAVS immunosurveillance pathway is activated, enabling the stimulated host cells to inhibit S. flexneri replication. Interestingly, RIG-I only played a minor role in the cellular response to this pathogen in the absence of IFNγ, suggesting that the IFNγ response ensures the recognition of the infection through an immunosurveillance pathway that is otherwise dispensable for controlling S. flexneri growth. Together, these findings implicate the RIG-I pathway as a crucial component in the cellular response to this devastating bacterial pathogen.
Collapse
Affiliation(s)
- Stephanie P. Jehl
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catarina V. Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael N. Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chong A, Wehrly TD, Child R, Hansen B, Hwang S, Virgin HW, Celli J. Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy 2012; 8:1342-56. [PMID: 22863802 DOI: 10.4161/auto.20808] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytosolic bacterial pathogens must evade intracellular innate immune recognition and clearance systems such as autophagy to ensure their survival and proliferation. The intracellular cycle of the bacterium Francisella tularensis is characterized by rapid phagosomal escape followed by extensive proliferation in the macrophage cytoplasm. Cytosolic replication, but not phagosomal escape, requires the locus FTT0369c, which encodes the dipA gene (deficient in intracellular replication A). Here, we show that a replication-deficient, ∆dipA mutant of the prototypical SchuS4 strain is eventually captured from the cytosol of murine and human macrophages into double-membrane vacuoles displaying the late endosomal marker, LAMP1, and the autophagy-associated protein, LC3, coinciding with a reduction in viable intracellular bacteria. Capture of SchuS4ΔdipA was not dipA-specific as other replication-deficient bacteria, such as chloramphenicol-treated SchuS4 and a purine auxotroph mutant SchuS4ΔpurMCD, were similarly targeted to autophagic vacuoles. Vacuoles containing replication-deficient bacteria were labeled with ubiquitin and the autophagy receptors SQSTM1/p62 and NBR1, and their formation was decreased in macrophages from either ATG5-, LC3B- or SQSTM1-deficient mice, indicating recognition by the ubiquitin-SQSTM1-LC3 pathway. While a fraction of both the wild-type and the replication-impaired strains were ubiquitinated and recruited SQSTM1, only the replication-defective strains progressed to autophagic capture, suggesting that wild-type Francisella interferes with the autophagic cascade. Survival of replication-deficient strains was not restored in autophagy-deficient macrophages, as these bacteria died in the cytosol prior to autophagic capture. Collectively, our results demonstrate that replication-impaired strains of Francisella are cleared by autophagy, while replication-competent bacteria seem to interfere with autophagic recognition, therefore ensuring survival and proliferation.
Collapse
Affiliation(s)
- Audrey Chong
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012; 8:e1002587. [PMID: 22438809 PMCID: PMC3305411 DOI: 10.1371/journal.ppat.1002587] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/30/2012] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Genome-wide RNAi screen in IFN-γ-treated human macrophages identifies genes mediating resistance to the intracellular pathogen Francisella tularensis. PLoS One 2012; 7:e31752. [PMID: 22359626 PMCID: PMC3281001 DOI: 10.1371/journal.pone.0031752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/12/2012] [Indexed: 12/29/2022] Open
Abstract
Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ∼200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included ‘druggable’ targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis.
Collapse
|
46
|
Eisele NA, Anderson DM. Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia. J Pathog 2011; 2011:249802. [PMID: 22567325 PMCID: PMC3335569 DOI: 10.4061/2011/249802] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/31/2023] Open
Abstract
Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia.
Collapse
Affiliation(s)
- Nicholas A. Eisele
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
47
|
Peng K, Broz P, Jones J, Joubert LM, Monack D. Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis. Cell Microbiol 2011; 13:1586-600. [PMID: 21883803 DOI: 10.1111/j.1462-5822.2011.01643.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intracellular bacterial pathogens Francisella novicida and the Live Vaccine Strain (LVS) are recognized in the macrophage cytosol by the AIM2 inflammasome, which leads to the activation of caspase-1 and the processing and secretion of active IL-1β, IL-18 and pyroptosis. Previous studies have reported that F. novicida and LVS mutants in specific genes (e.g. FTT0584, mviN and ripA) induce elevated inflammasome activation and hypercytotoxicity in host cells, leading to the proposal that F. novicida and LVS may have proteins that actively modulate inflammasome activation. However, there has been no direct evidence of such inflammasome evasion mechanisms. Here, we demonstrate for the first time that the above mutants, along with a wide range of F. novicida hypercytotoxic mutants that are deficient for membrane-associated proteins (ΔFTT0584, ΔmviN, ΔripA, ΔfopA and ΔFTN1217) or deficient for genes involved in O-antigen or LPS biosynthesis (ΔwbtA and ΔlpxH) lyse more intracellularly, thus activating increased levels of AIM2-dependent pyroptosis and other innate immune signalling pathways. This suggests that an inflammasome-specific evasion mechanism may not be present in F. novicida and LVS. Furthermore, future studies may need to consider increased bacterial lysis as a possible cause of elevated stimulation of multiple innate immune pathways when the protein composition or surface carbohydrates of the bacterial membrane is altered.
Collapse
Affiliation(s)
- Kaitian Peng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
48
|
Zarrella TM, Singh A, Bitsaktsis C, Rahman T, Sahay B, Feustel PJ, Gosselin EJ, Sellati TJ, Hazlett KRO. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 2011; 6:e22335. [PMID: 21799828 PMCID: PMC3142145 DOI: 10.1371/journal.pone.0022335] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. METHODS/FINDINGS SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. CONCLUSION F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anju Singh
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tabassum Rahman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Bikash Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Edmund J. Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Karsten R. O. Hazlett
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
49
|
Tancred L, Telepnev MV, Golovliov I, Andersson B, Andersson H, Lindgren H, Sjöstedt A. Administration of a nitric oxide donor inhibits mglA expression by intracellular Francisella tularensis and counteracts phagosomal escape and subversion of TNF-α secretion. J Med Microbiol 2011; 60:1570-1583. [PMID: 21700740 DOI: 10.1099/jmm.0.032870-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis is a highly virulent intracellular bacterium capable of rapid multiplication in phagocytic cells. Previous studies have revealed that activation of F. tularensis-infected macrophages leads to control of infection and reactive nitrogen and oxygen species make important contributions to the bacterial killing. We investigated the effects of adding S-nitroso-acetyl-penicillamine (SNAP), which generates nitric oxide, or 3-morpholinosydnonimine hydrochloride, which indirectly leads to formation of peroxynitrite, to J774 murine macrophage-like cell cultures infected with F. tularensis LVS. Addition of SNAP led to significantly increased colocalization between LAMP-1 and bacteria, indicating containment of F. tularensis in the phagosome within 2 h, although no killing occurred within 4 h. A specific inhibitory effect on bacterial transcription was observed since the gene encoding the global regulator MglA was inhibited 50-100-fold. F. tularensis-infected J774 cells were incapable of secreting TNF-α in response to Escherichia coli LPS but addition of SNAP almost completely reversed the suppression. Similarly, infection with an MglA mutant did not inhibit LPS-induced TNF-α secretion of J774 cells. Strong staining of nitrotyrosine was observed in SNAP-treated bacteria, and MS identified nitration of two ribosomal 50S proteins, a CBS domain pair protein and bacterioferritin. The results demonstrated that addition of SNAP initially did not affect the viability of intracellular F. tularensis LVS but led to containment of the bacteria in the phagosome. Moreover, the treatment resulted in modification by nitration of several F. tularensis proteins.
Collapse
Affiliation(s)
- Linda Tancred
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Maxim V Telepnev
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Blanka Andersson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Henrik Andersson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
50
|
A Francisella tularensis locus required for spermine responsiveness is necessary for virulence. Infect Immun 2011; 79:3665-76. [PMID: 21670171 DOI: 10.1128/iai.00135-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tularemia is a debilitating febrile illness caused by the category A biodefense agent Francisella tularensis. This pathogen infects over 250 different hosts, has a low infectious dose, and causes high morbidity and mortality. Our understanding of the mechanisms by which F. tularensis senses and adapts to host environments is incomplete. Polyamines, including spermine, regulate the interactions of F. tularensis with host cells. However, it is not known whether responsiveness to polyamines is necessary for the virulence of the organism. Through transposon mutagenesis of F. tularensis subsp. holarctica live vaccine strain (LVS), we identified FTL_0883 as a gene important for spermine responsiveness. In-frame deletion mutants of FTL_0883 and FTT_0615c, the homologue of FTL_0883 in F. tularensis subsp. tularensis Schu S4 (Schu S4), elicited higher levels of cytokines from human and murine macrophages compared to wild-type strains. Although deletion of FTL_0883 attenuated LVS replication within macrophages in vitro, the Schu S4 mutant with a deletion in FTT_0615c replicated similarly to wild-type Schu S4. Nevertheless, both the LVS and the Schu S4 mutants were significantly attenuated in vivo. Growth and dissemination of the Schu S4 mutant was severely reduced in the murine model of pneumonic tularemia. This attenuation depended on host responses to elevated levels of proinflammatory cytokines. These data associate responsiveness to polyamines with tularemia pathogenesis and define FTL_0883/FTT_0615c as an F. tularensis gene important for virulence and evasion of the host immune response.
Collapse
|