1
|
Singh BK, Thakur K, Kumari H, Mahajan D, Sharma D, Sharma AK, Kumar S, Singh B, Pankaj PP, Kumar R. A review on comparative analysis of marine and freshwater fish gut microbiomes: insights into environmental impact on gut microbiota. FEMS Microbiol Ecol 2025; 101:fiae169. [PMID: 39719366 PMCID: PMC11730441 DOI: 10.1093/femsec/fiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
The gut microbiota, which includes prokaryotes, archaea, and eukaryotes such as yeasts, some protozoa, and fungi, significantly impacts fish by affecting digestion, metabolism, and the immune system. In this research, we combine various tasks carried out by various bacteria in the gut of fish. This study also examines the gut microbiome composition of marine and freshwater fish, identifying important bacterial species linked to different biological functions. The diversity within fish species highlights the importance of considering nutrition, habitat, and environmental factors in microbiological research on fish. The ever-changing gut microbiome of the fish indicates that microbial communities are specifically adapted to meet the needs of both the host and its environment. This indicates that the fish can adjust to a specific environment with the help of gut microbiota. This important research is crucial for comprehending the complex relationships between fish and their gut bacteria in different aquatic environments. These discoveries have implications for aquaculture practices, fisheries administration, and the broader ecological processes of both freshwater and marine environments. With further progress in this area of study, the knowledge acquired would offer a valuable standpoint to enhance our comprehension of aquatic microbiology and enhance the sustainability and nutrition of fish resources.
Collapse
Affiliation(s)
- Binoy Kumar Singh
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Hishani Kumari
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Birbal Singh
- ICAR—Indian Veterinary Research Institute (IVRI), Regional Station, Palampur 176061, India
| | - Pranay Punj Pankaj
- Department of Zoology, Nagaland University (A Central University), Lumami 798627, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| |
Collapse
|
2
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
3
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01432-5. [PMID: 39562408 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
4
|
Zhang J, Chen Y, Guo X, Li X, Zhang R, Wang M, Zhu W, Yu K. The gut microbial metabolite indole-3-aldehyde alleviates impaired intestinal development by promoting intestinal stem cell expansion in weaned piglets. J Anim Sci Biotechnol 2024; 15:150. [PMID: 39511673 PMCID: PMC11545576 DOI: 10.1186/s40104-024-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Weaning stress-induced diarrhea is widely recognized as being associated with gut microbiota dysbiosis. However, it has been challenging to clarify which specific intestinal microbiota and their metabolites play a crucial role in the antidiarrhea process of weaned piglets. RESULTS In this study, we first observed that piglets with diarrhea exhibited a lower average daily gain and higher diarrhea score, and elevated levels of lipopolysaccharide (LPS) and D-lactate (D-LA) compared to healthy piglets. Subsequently, we analyzed the differences in intestinal microbial composition and metabolite levels between healthy and diarrheal weaned piglets. Diarrheal piglets demonstrated intestinal microbiota dysbiosis, characterized primarily by a higher Firmicutes to Bacteroidota ratio, a deficiency of Lactobacillus amylovorus and Lactobacillus reuteri, and an increased abundance of Bacteroides sp.HF-5287 and Bacteroides thetaiotaomicron. Functional profiling of the gut microbiota based on Kyoto Encyclopedia of Genes and Genomes (KEGG) data was performed, and the results showed that tryptophan metabolism was the most significantly inhibited pathway in piglets with diarrhea. Most tryptophan metabolites were detected at lower concentrations in diarrheal piglets than in healthy piglets. Furthermore, we explored the effects of dietary indole-3-aldehyde (IAld), a key tryptophan metabolite, on intestinal development and gut barrier function in weaned piglets. Supplementation with 100 mg/kg IAld in the diet increased the small intestine index and improved intestinal barrier function by promoting intestinal stem cell (ISC) expansion in piglets. The promotion of ISC expansion by IAld was also confirmed in porcine intestinal organoids. CONCLUSIONS These findings revealed that intestinal microbial tryptophan metabolite IAld alleviates impaired intestinal development by promoting ISC expansion in weaned piglets.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yahui Chen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Wujiang Animal Health Inspection Institute, Suzhou, 215200, China
| | - Mengting Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Wang L, Wei S, Guan M, Li Y, Zheng X, Xu Z. Whole-Cell Biotransformation for the Preparation of Chromopyrrolic Acid and 5,5'-dichloro-Chromopyrrolic Acid in Escherichia coli. Chembiochem 2024:e202400718. [PMID: 39374106 DOI: 10.1002/cbic.202400718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Chromopyrrolic acid (CPA) and its congeners are important intermediates for the biosynthesis and synthesis of various dimeric tryptophan natural products. We have constructed two E. coli strains (CPA001/CPA002) harboring a single plasmid carrying genes coding for a combination of two enzymes (LaStaO/LzrO and VioB) that are able to convert L-tryptophan (L-Trp)/5-chloro-L-tryotophan (5-Cl-L-Trp) to chromopyrrolic acid (CPA)/5,5'-dichloro-chromopyrrolic acid (5,5'-diCl-CPA). Effect on the production of CPA were evaluated by varying the parameters of strain cultivation and biotransformation process. Under the optimized conditions, up to 325 mg/L of CPA and 275 mg/L of 5,5'-diCl-CPA could be obtained by supplementing L-Trp and 5-Cl-L-Trp, respectively, to a working culture of CPA001, or to a phosphate buffer-resuspended culture of CPA002. The practicability of this whole-cell biotransformation system could also be served as a potential platform for the preparation of CPA congeners.
Collapse
Affiliation(s)
- Lingyue Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Shilong Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Mengtie Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Xikang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
6
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Jiang H, Dong Y, Jiao X, Tang B, Feng T, Li P, Fang J. In vivo fitness of sul gene-dependent sulfonamide-resistant Escherichia coli in the mammalian gut. mSystems 2024; 9:e0083624. [PMID: 39140732 PMCID: PMC11406977 DOI: 10.1128/msystems.00836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
The widespread sulfonamide resistance genes sul1, sul2, and sul3 in food and gut bacteria have attracted considerable attention. In this study, we assessed the in vivo fitness of sul gene-dependent sulfonamide-resistant Escherichia coli, using a murine model. High fitness costs were incurred for sul1 and sul3 gene-dependent E. coli strains in vivo. A fitness advantage was found in three of the eight mice after intragastric administration of sul2 gene-dependent E. coli strains. We isolated three compensatory mutant strains (CMSs) independently from three mice that outcompeted the parent strain P2 in vivo. Whole-genome sequencing revealed seven identical single nucleotide polymorphism (SNP) mutations in the three CMSs compared with strain P2, an additional SNP mutation in strain S2-2, and two additional SNP mutations in strain S2-3. Furthermore, tandem mass tag-based quantitative proteomic analysis revealed abundant differentially expressed proteins (DEPs) in the CMSs compared with P2. Of these, seven key fitness-related DEPs distributed in two-component systems, galactose and tryptophan metabolism pathways, were verified using parallel reaction monitoring analysis. The DEPs in the CMSs influenced bacterial motility, environmental stress tolerance, colonization ability, carbohydrate utilization, cell morphology maintenance, and chemotaxis to restore fitness costs and adapt to the mammalian gut environment.IMPORTANCESulfonamides are traditional synthetic antimicrobial agents used in clinical and veterinary medical settings. Their long-term excessive overuse has resulted in widespread microbial resistance, limiting their application for medical interventions. Resistance to sulfonamides is primarily conferred by the alternative genes sul1, sul2, and sul3 encoding dihydropteroate synthase in bacteria. Studying the potential fitness cost of these sul genes is crucial for understanding the evolution and transmission of sulfonamide-resistant bacteria. In vitro studies have been conducted on the fitness cost of sul genes in bacteria. In this study, we provide critical insights into bacterial adaptation and transmission using an in vivo approach.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yuzhi Dong
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xue Jiao
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Biao Tang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Tao Feng
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Pham NN, Wu YH, Dai TA, Tu J, Liang RM, Hsieh HY, Chang CW, Hu YC. Auto-inducible synthetic pathway in E. coli enhanced sustainable indigo production from glucose. Metab Eng 2024; 85:14-25. [PMID: 38971492 DOI: 10.1016/j.ymben.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Indigo is widely used in textile industries for denim garments dyeing and is mainly produced by chemical synthesis which, however, raises environmental sustainability issues. Bio-indigo may be produced by fermentation of metabolically engineering bacteria, but current methods are economically incompetent due to low titer and the need for an inducer. To address these problems, we first characterized several synthetic promoters in E. coli and demonstrated the feasibility of inducer-free indigo production from tryptophan using the inducer-free promoter. We next coupled the tryptophan-to-indigo and glucose-to-tryptophan pathways to generate a de novo glucose-to-indigo pathway. By rational design and combinatorial screening, we identified the optimal promoter-gene combinations, which underscored the importance of promoter choice and expression levels of pathway genes. We thus created a new E. coli strain that exploited an indole pathway to enhance the indigo titer to 123 mg/L. We further assessed a panel of heterologous tryptophan synthase homologs and identified a plant indole lyase (TaIGL), which along with modified pathway design, improved the indigo titer to 235 mg/L while reducing the tryptophan byproduct accumulation. The optimal E. coli strain expressed 8 genes essential for rewiring carbon flux from glucose to indole and then to indigo: mFMO, ppsA, tktA, trpD, trpC, TaIGL and feedback-resistant aroG and trpE. Fed-batch fermentation in a 3-L bioreactor with glucose feeding further increased the indigo titer (≈965 mg/L) and total quantity (≈2183 mg) at 72 h. This new synthetic glucose-to-indigo pathway enables high-titer indigo production without the need of inducer and holds promise for bio-indigo production.
Collapse
Affiliation(s)
- Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsiu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-An Dai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jui Tu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ruei-Ming Liang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yun Hsieh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
9
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
10
|
Salama GG, El-Mahdy TS, Moustafa WH, Emara M. Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli. BMC Microbiol 2024; 24:312. [PMID: 39182027 PMCID: PMC11344464 DOI: 10.1186/s12866-024-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND More than a century has passed since it was discovered that many bacteria produce indole, but research into the actual biological roles of this molecule is just now beginning. The influence of indole on bacterial virulence was extensively investigated in indole-producing bacteria like Escherichia coli. To gain a deeper comprehension of its functional role, this study investigated how indole at concentrations of 0.5-1.0 mM found in the supernatant of Escherichia coli stationary phase culture was able to alter the virulence of non-indole-producing bacteria, such as Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, which are naturally exposed to indole in mixed infections with Escherichia coli. RESULTS Biofilm formation, antimicrobial susceptibility, and efflux pump activity were the three phenotypic tests that were assessed. Indole was found to influence antibiotic susceptibly of Pseudomonas aeruginosa, Proteus mirabilis and Klebsiella pneumoniae to ciprofloxacin, imipenem, ceftriaxone, ceftazidime, and amikacin through significant reduction in MIC with fold change ranged from 4 to 16. Biofilm production was partially abrogated in both 32/45 Pseudomonas aeruginosa and all eight Proteus mirabilis, while induced biofilm production was observed in 30/40 Klebsiella pneumoniae. Moreover, acrAB and oqxAB, which encode four genes responsible for resistance-nodulation-division multidrug efflux pumps in five isolates of Klebsiella pneumoniae were investigated genotypically using quantitative real-time (qRT)-PCR. This revealed that all four genes exhibited reduced expression indicated by 2^-ΔΔCT < 1 in indole-treated isolates compared to control group. CONCLUSION The outcomes of qRT-PCR investigation of efflux pump expression have established a novel clear correlation of the molecular mechanism that lies beneath the influence of indole on bacterial antibiotic tolerance. This research provides novel perspectives on the various mechanisms and diverse biological functions of indole signaling and how it impacts the pathogenicity of non-indole-producing bacteria.
Collapse
Affiliation(s)
- Galila G Salama
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Taghrid S El-Mahdy
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology, and Information (MTI), Cairo, Egypt
| | - Walaa H Moustafa
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Mohamed Emara
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt.
| |
Collapse
|
11
|
Li J, Gao J, Ai J, Yin Z, Lu F, Qin HM, Mao S. Production of 17α-hydroxyprogesterone using an engineered biocatalyst with efficient electron transfer and improved 5-aminolevulinic acid synthesis coupled with a P450 hydroxylase. Int J Biol Macromol 2024; 273:132831. [PMID: 38825287 DOI: 10.1016/j.ijbiomac.2024.132831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
17α-Hydroxyprogesterone (17α-OH-PROG) is an important intermediate with a wide range of applications in the pharmaceutical industry. Strategies based on efficient electron transfer and cofactor regeneration were used for the production of 17α-OH-PROG. Here, CYP260A1, Fpr and Adx were expressed using a double plasmid system, resulting in higher biotransformation efficiency. Further optimization of reaction conditions and addition of polymyxin B increased the production of 17α-OH-PROG from 12.52 mg/L to 102.37 mg/L after 12 h of biotransformation. To avoid the addition of external 5-aminolevulinic acid (ALA) as a heme precursor for the P450 enzyme, a modified C5 pathway was introduced into the engineered strain, further reducing the overall process cost. The resulting whole-cell biocatalyst achieved the highest biotransformation yield of 17α-OH-PROG reported to date, offering a promising strategy for commercial application of P450 enzymes in industrial production of hydroxylated intermediates.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jikai Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jiaying Ai
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Ziyang Yin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
12
|
Zhou X, Ji S, Chen L, Liu X, Deng Y, You Y, Wang M, He Q, Peng B, Yang Y, Chen X, Kwan HY, Zhou L, Chen J, Zhao X. Gut microbiota dysbiosis in hyperuricaemia promotes renal injury through the activation of NLRP3 inflammasome. MICROBIOME 2024; 12:109. [PMID: 38907332 PMCID: PMC11191305 DOI: 10.1186/s40168-024-01826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown. RESULTS A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3-/-) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated. CONCLUSION Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.
Collapse
Affiliation(s)
- Xinghong Zhou
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ming Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Qiuxing He
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lin Zhou
- Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Jieyu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoshan Zhao
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Kim HJ, Ham S, Shin N, Hwang JH, Oh SJ, Choi TR, Joo JC, Bhatia SK, Yang YH. Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters. J Microbiol Biotechnol 2024; 34:969-977. [PMID: 38213292 PMCID: PMC11091664 DOI: 10.4014/jmb.2308.08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Scheele R, Weber Y, Nintzel FEH, Herger M, Kaminski TS, Hollfelder F. Ultrahigh Throughput Evolution of Tryptophan Synthase in Droplets via an Aptamer Sensor. ACS Catal 2024; 14:6259-6271. [PMID: 38660603 PMCID: PMC11036396 DOI: 10.1021/acscatal.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Tryptophan synthase catalyzes the synthesis of a wide array of noncanonical amino acids and is an attractive target for directed evolution. Droplet microfluidics offers an ultrahigh throughput approach to directed evolution (up to 107 experiments per day), enabling the search for biocatalysts in wider regions of sequence space with reagent consumption minimized to the picoliter volume (per library member). While the majority of screening campaigns in this format on record relied on an optically active reaction product, a new assay is needed for tryptophan synthase. Tryptophan is not fluorogenic in the visible light spectrum and thus falls outside the scope of conventional droplet microfluidic readouts, which are incompatible with UV light detection at high throughput. Here, we engineer a tryptophan DNA aptamer into a sensor to quantitatively report on tryptophan production in droplets. The utility of the sensor was validated by identifying five-fold improved tryptophan synthases from ∼100,000 protein variants. More generally, this work establishes the use of DNA-aptamer sensors with a fluorogenic read-out in widening the scope of droplet microfluidic evolution.
Collapse
Affiliation(s)
- Remkes
A. Scheele
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Yanik Weber
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | | | - Michael Herger
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Tomasz S. Kaminski
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| |
Collapse
|
15
|
Atuahene D, Zuniga-Chaves I, Martello E, Stefanon B, Suen G, Balouei F, Meineri G. The Canine Gut Health: The Impact of a New Feed Supplement on Microbiota Composition. Animals (Basel) 2024; 14:1189. [PMID: 38672336 PMCID: PMC11047554 DOI: 10.3390/ani14081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to determine the impact of a novel formulation of a supplement composed of the natural ingredients, bromelain, quercetin, and Lentinula edodes, on the gut microbiota of healthy adult dogs. Adult healthy female dogs were administered either a placebo (CTR, n = 15) or the supplement (TRT, n = 15) over 28 days. Stool samples were collected for 16S rRNA sequencing before supplement administration (T0), at completion of supplement administration (T28), and one week after the end of supplement administration (T35) to characterize changes in the gut microbial communities. QIIME was used to determine both alpha- and beta-diversity, and ANCOM-BC was used to identify differences in taxonomic abundances before and after supplementation. We found a significant decrease in overall diversity in the CTR group but no significant differences in overall diversity in the TRT group over time. Furthermore, we found differences in the abundance of several taxa in both the CTR and TRT groups, but differences in the abundance of beneficial bacteria were more pronounced in the TRT group. Specifically, we found increases in the abundance of sequences belonging to the genera Bifidobacterium, Lactobacillus, and Pediococcus at T28 in the TRT group with significant increases in Bifidobacterium and Lactobacillus persisting at T35 when compared to T0. Importantly, members of these genera are considered important for their anti-inflammatory properties, vital for fostering a balanced and robust gut microbiota in dogs. The results of our study show the potential of our supplement to selectively enhance specific beneficial bacterial taxa, offering a targeted approach to modulating the gut microbiome without causing disruptions to the overall equilibrium.
Collapse
Affiliation(s)
- David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, 10095 Grugliasco, Italy;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
| | - Ibrahim Zuniga-Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (B.S.); (F.B.)
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
| | - Fatemeh Balouei
- Department of Agrifood, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (B.S.); (F.B.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, 10095 Grugliasco, Italy;
| |
Collapse
|
16
|
Wang L, Deng Y, Gao J, Wang B, Han H, Li Z, Zhang W, Wang Y, Fu X, Peng R, Yao Q, Tian Y, Xu J. Biosynthesis of melatonin from L-tryptophan by an engineered microbial cell factory. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:27. [PMID: 38369525 PMCID: PMC10874579 DOI: 10.1186/s13068-024-02476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The demand for melatonin is increasing due to its health-promoting bioactivities such as antioxidant and sleep benefits. Although melatonin is present in various organisms, its low content and high extraction cost make it unsustainable. Biosynthesis is a promising alternative method for melatonin production. However, the ectopic production of melatonin in microorganisms is very difficult due to the low or insoluble expression of melatonin synthesis genes. Hence, we aim to explore the biosynthesis of melatonin using Escherichia coli as a cell factory and ways to simultaneously coordinated express genes from different melatonin synthesis pathways. RESULTS In this study, the mXcP4H gene from Xanthomonas campestris, as well as the HsAADC, HsAANAT and HIOMT genes from human melatonin synthesis pathway were optimized and introduced into E. coli via a multi-monocistronic vector. The obtained strain BL7992 successfully synthesized 1.13 mg/L melatonin by utilizing L-tryptophan (L-Trp) as a substrate in a shake flask. It was determined that the rate-limiting enzyme for melatonin synthesis is the arylalkylamine N-acetyltransferase, which is encoded by the HsAANAT gene. Targeted metabolomics analysis of L-Trp revealed that the majority of L-Trp flowed to the indole pathway in BL7992, and knockout of the tnaA gene may be beneficial for increasing melatonin production. CONCLUSIONS A metabolic engineering approach was adopted and melatonin was successfully synthesized from low-cost L-Trp in E. coli. This study provides a rapid and economical strategy for the synthesis of melatonin.
Collapse
Affiliation(s)
- Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China.
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China.
| |
Collapse
|
17
|
Khaova EA, Tkachenko AG. Effects of polyamines and indole on the expression of ribosome hibernation factors in Escherichia coli at the translational level. Vavilovskii Zhurnal Genet Selektsii 2024; 28:24-32. [PMID: 38465244 PMCID: PMC10917681 DOI: 10.18699/vjgb-24-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 03/12/2024] Open
Abstract
Polyamines and indole are small regulatory molecules that are involved in the adaptation to stress in bacteria, including the regulation of gene expression. Genes, the translation of which is under the regulatory effects of polyamines, form the polyamine modulon. Previously, we showed that polyamines upregulated the transcription of genes encoding the ribosome hibernation factors RMF, RaiA, SRA, EttA and RsfS in Escherichia coli. At the same time, indole affected the expression at the transcriptional level of only the raiA and rmf genes. Ribosome hibernation factors reversibly inhibit translation under stress conditions, including exposure to antibiotics, to avoid resource waste and to conserve ribosomes for a quick restoration of their functions when favorable conditions occur. In this work, we have studied the influence of indole on the expression of the raiA and rmf genes at the translational level and regulatory effects of the polyamines putrescine, cadaverine and spermidine on the translation of the rmf, raiA, sra, ettA and rsfS genes. We have analyzed the mRNA primary structures of the studied genes and the predicted mRNA secondary structures obtained by using the RNAfold program for the availability of polyamine modulon features. We have found that all of the studied genes contain specific features typical of the polyamine modulon. Furthermore, to investigate the influence of polyamines and indole on the translation of the studied genes, we have constructed the translational reporter lacZ-fusions by using the pRS552/λRS45 system. According to the results obtained, polyamines upregulated the expression of the rmf, raiA and sra genes, the highest expression of which was observed at the stationary phase, but did not affect the translation of the ettA and rsfS genes, the highest expression of which took place during the exponential phase. The stimulatory effects were polyamine-specific and observed at the stationary phase, when bacteria are under multiple stresses. In addition, the data obtained demonstrated that indole significantly inhibited translation of the raiA and rmf genes, despite the stimulatory effect on their transcrip- tion. This can suggest the activity of a posttranscriptional regulatory mechanism of indole on gene expression.
Collapse
Affiliation(s)
- E A Khaova
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - A G Tkachenko
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
18
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
19
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
20
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
21
|
Sharma K, Ghiffary MR, Lee G, Kim HU. Efficient production of an antitumor precursor actinocin and other medicinal molecules from kynurenine pathway in Escherichia coli. Metab Eng 2024; 81:144-156. [PMID: 38043641 DOI: 10.1016/j.ymben.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Kynurenine pathway has a potential to convert L-tryptophan into multiple medicinal molecules. This study aims to explore the biosynthetic potential of kynurenine pathway for the efficient production of actinocin, an antitumor precursor selected as a proof-of-concept target molecule. Kynurenine pathway is first constructed in Escherichia coli by testing various combinations of biosynthetic genes from four different organisms. Metabolic engineering strategies are next performed to improve the production by inhibiting a competing pathway, and enhancing intracellular supply of a cofactor S-adenosyl-L-methionine, and ultimately to produce actinocin from glucose. Metabolome analysis further suggests additional gene overexpression targets, which finally leads to the actinocin titer of 719 mg/L. E. coli strain engineered to produce actinocin is further successfully utilized to produce 350 mg/L of kynurenic acid, a neuroprotectant, and 1401 mg/L of 3-hydroxyanthranilic acid, an antioxidant, also from glucose. These competitive production titers demonstrate the biosynthetic potential of kynurenine pathway as a source of multiple medicinal molecules. The approach undertaken in this study can be useful for the sustainable production of molecules derived from kynurenine pathway, which are otherwise chemically synthesized.
Collapse
Affiliation(s)
- Komal Sharma
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mohammad Rifqi Ghiffary
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - GaRyoung Lee
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
22
|
Jadhav A, Bajaj A, Xiao Y, Markandey M, Ahuja V, Kashyap PC. Role of Diet-Microbiome Interaction in Gastrointestinal Disorders and Strategies to Modulate Them with Microbiome-Targeted Therapies. Annu Rev Nutr 2023; 43:355-383. [PMID: 37380178 PMCID: PMC10577587 DOI: 10.1146/annurev-nutr-061121-094908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Diet is an important determinant of health and consequently is often implicated in the development of disease, particularly gastrointestinal (GI) diseases, given the high prevalence of meal-related symptoms. The mechanisms underlying diet-driven pathophysiology are not well understood, but recent studies suggest that gut microbiota may mediate the effect of diet on GI physiology. In this review, we focus primarily on two distinct GI diseases where the role of diet has been best studied: irritable bowel syndrome and inflammatory bowel disease. We discuss how the concurrent and sequential utilization of dietary nutrients by the host and gut microbiota determines the eventual bioactive metabolite profiles in the gut and the biological effect of these metabolites on GI physiology. We highlight several concepts that can be gleaned from these findings, such as how distinct effects of an individual metabolite can influence diverse GI diseases, the effect of similar dietary interventions on multiple disease states, and the need for extensive phenotyping and data collection to help make personalized diet recommendations.
Collapse
Affiliation(s)
- Ajita Jadhav
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| | - Aditya Bajaj
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Yang Xiao
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| | - Manasvini Markandey
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Purna C Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| |
Collapse
|
23
|
Popović MB, Medić DD, Velicki RS, Jovanović Galović AI. Purple Urine Bag Syndrome in a Home-Dwelling Elderly Female with Lumbar Compression Fracture: A Case Report. Healthcare (Basel) 2023; 11:2251. [PMID: 37628449 PMCID: PMC10454558 DOI: 10.3390/healthcare11162251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Purple urine bag syndrome (PUBS) is an uncommon, but usually benign, underrecognized clinical condition with the distressing presentation of purple, blue or reddish discoloration of a patient's catheter bag and tubing in the setting of catheter-associated urinary tract infections (UTIs). PUBS is the result of the complex metabolic pathway of the dietary essential amino acid tryptophan. Its urinary metabolite, indoxyl sulfate, is converted into red and blue byproducts (indirubin and indigo) in the presence of the bacterial enzymes indoxyl sulfatase and phosphatase. The typical predisposing factors are numerous and include the following: female gender, advanced age, long-term catheterization and immobilization, constipation, institutionalization, dementia, increased dietary intake of tryptophan, chronic kidney disease, alkaline urine, and spinal cord injury (SCI). Here, we present a case of PUBS in a home-dwelling elderly female patient with a history of long-term immobility after a pathological spinal fracture, long-term catheterization, constipation, and malignant disease in remission. Urine culture was positive for Proteus mirabilis. This state can be alarming to both patients and physicians, even if the patient is asymptomatic. Healthcare professionals and caregivers need to be aware of this unusual syndrome as an indicator of bacteriuria in order to initiate proper diagnostics and treatment.
Collapse
Affiliation(s)
- Milka B. Popović
- Department of Hygiene, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Hygiene and Human Ecology, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Deana D. Medić
- Department of Microbiology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Microbiology, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Radmila S. Velicki
- Department of Hygiene, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Hygiene and Human Ecology, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | | |
Collapse
|
24
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
26
|
GC B, Zhou P, Wu C. HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum. Appl Environ Microbiol 2023; 89:e0009123. [PMID: 37039662 PMCID: PMC10132090 DOI: 10.1128/aem.00091-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
The study of fusobacterial virulence factors has dramatically benefited from the creation of various genetic tools for DNA manipulation, including galK-based counterselection for in-frame deletion mutagenesis in Fusobacterium nucleatum, which was recently developed. However, this method requires a host lacking the galK gene, which is an inherent limitation. To circumvent this limitation, we explored the possibility of using the hicA gene that encodes a toxin consisting of a HicAB toxin-antitoxin module in Fusobacterium periodonticum as a new counterselective marker. Interestingly, the full-length hicA gene is not toxic in F. nucleatum, but a truncated hicA gene version lacking the first six amino acids is functional as a toxin. The toxin expression is driven by an rpsJ promoter and is controlled at its translational level by using a theophylline-responsive riboswitch unit. As a proof of concept, we created markerless in-frame deletions in the fusobacterial adhesin radD gene within the F. nucleatum rad operon and the tnaA gene that encodes the tryptophanase for indole production. After vector integration, plasmid excision after counterselection appeared to have occurred in 100% of colonies grown on theophylline-added plates and resulted in in-frame deletions in 50% of the screened isolates. This hicA-based counterselection system provides a robust and reliable counterselection in wild-type background F. nucleatum and should also be adapted for use in other bacteria. IMPORTANCE Fusobacterium nucleatum is an indole-producing human oral anaerobe associated with periodontal diseases, preterm birth, and several cancers. Little is known about the mechanisms of fusobacterial pathogenesis and associated factors, mainly due to the lack of robust genetic tools for this organism. Here, we showed that a mutated hicA gene from Fusobacterium periodonticum expresses an active toxin and was used as a counterselection marker. This hicA-based in-frame deletion system efficiently creates in-frame deletion mutations in the wild-type background of F. nucleatum. This is the first report to use the hicA gene as a counterselection marker in a bacterial genetic study.
Collapse
Affiliation(s)
- Bibek GC
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Peng Zhou
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
27
|
Wang L, Deng Y, Peng R, Gao J, Li Z, Zhang W, Xu J, Wang B, Wang Y, Han H, Fu X, Tian Y, Yao Q. Metabolic engineering for the biosynthesis of bis-indolylquinone terrequinone A in Escherichia coli from L-tryptophan and prenol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:34. [PMID: 36859334 PMCID: PMC9979454 DOI: 10.1186/s13068-023-02284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Terrequinone A is a bis-indolylquinone natural product with antitumor activity. Due to its unique asymmetric quinone core structure and multiple functional groups, biosynthesis is more efficient and environmentally friendly than traditional chemical synthesis. Currently, most bis-indolylquinones are obtained by direct extraction from fungi or by chemical synthesis. By focusing on the biosynthesis of terrequinone A, we hope to explore the way to synthesize bis-indolylquinones de novo using Escherichia coli as a cell factory. RESULTS In this study, a terrequinone A synthesis pathway containing the tdiA-tdiE genes was constructed into Escherichia coli and activated by a phosphopantetheinyl transferase gene sfp, enabling the strain to synthesize 1.54 mg/L of terrequinone A. Subsequently, a two-step isopentenol utilization pathway was introduced to enhance the supply of endogenous dimethylallyl diphosphate (DMAPP) in E. coli, increasing the level of terrequinone A to 20.1 mg/L. By adjusting the L-tryptophan (L-Trp)/prenol ratio, the major product could be changed from ochrindole D to terrequinone A, and the content of terrequinone A reached the highest 106.3 mg/L under the optimized culture conditions. Metabolic analysis of L-Trp indicated that the conversion of large amounts of L-Trp to indole was an important factor preventing the further improvement of terrequinone A yield. CONCLUSIONS A comprehensive approach was adopted and terrequinone A was successfully synthesized from low-cost L-Trp and prenol in E. coli. This study provides a metabolic engineering strategy for the efficient synthesis of terrequinone A and other similar bis-indolylquinones with asymmetric quinone cores. In addition, this is the first report on the de novo biosyhthesis of terrequinone A in an engineered strain.
Collapse
Affiliation(s)
- Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
28
|
Mindt M, Ferrer L, Bosch D, Cankar K, Wendisch VF. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2023; 107:1621-1634. [PMID: 36786915 PMCID: PMC10006044 DOI: 10.1007/s00253-023-12397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Indole has an increasing interest in the flavor and fragrance industry. It is used in dairy products, tea drinks, and fine fragrances due to its distinct floral odor typical of jasmine blossoms. The current production of indole based on isolation from coal tar is non-sustainable and its isolation from plants is often unprofitable due to low yields. To offer an alternative to the conventional production, biosynthesis of indole has been studied recently. A glucose-based indole production was achieved by employing the Corynebacterium glutamicum tryptophan synthase α-subunit (TrpA) or indole-3-glycerol phosphate lyase (IGL) from wheat Triticum aestivum in a genetically-engineered C. glutamicum strain. In addition, a highly efficient bioconversion process using C. glutamicum heterologously expressing tryptophanase gene (tnaA) from Providencia rettgeri as a biocatalyst was developed. In this work, de novo indole production from glucose was enabled by expressing the P. rettgeri tnaA in a tryptophan-producing C. glutamicum strain. By metabolic engineering of a C. glutamicum shikimate accumulating base strain, tryptophan production of 2.14 ± 0.02 g L-1 was achieved. Introduction of the tryptophanase form P. rettgeri enabled indole production, but to low titers, which could be improved by sequestering indole into the water-immiscible solvent tributyrin during fermentation and a titer of 1.38 ± 0.04 g L-1 was achieved. The process was accelerated by decoupling growth from production increasing the volumetric productivity about 4-fold to 0.08 g L-1 h-1. KEY POINTS: • Efficient de novo indole production via tryptophanases from glucose • Increased indole titers by product sequestration and improved precursor supply • Decoupling growth from production accelerated indole production.
Collapse
Affiliation(s)
- Melanie Mindt
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.,Translational Pharmacology, Faculty of Medicine OWL, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Katarina Cankar
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
29
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
30
|
Song C, Chang L, Wang B, Zhang Z, Wei Y, Dou Y, Qi K, Yang F, Li X, Li X, Wang K, Qiao R, Han X. Seminal plasma metabolomics analysis of differences in liquid preservation ability of boar sperm. J Anim Sci 2023; 101:skad392. [PMID: 38006391 PMCID: PMC10718801 DOI: 10.1093/jas/skad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023] Open
Abstract
The preservation of semen is pivotal in animal reproduction to ensure successful fertilization and genetic improvement of livestock and poultry. However, investigating the underlying causes of differences in sperm liquid preservation ability and identifying relevant biomarkers remains a challenge. This study utilized liquid chromatography-mass spectrometry (LC-MS) to analyze the metabolite composition of seminal plasma (SP) from two groups with extreme differences in sperm liquid preservation ability. The two groups namely the good liquid preservation ability (GPA) and the poor preservation ability (PPA). The aim was to explore the relationship between metabolite composition in SP and sperm liquid preservation ability, and to identify candidate biomarkers associated with this ability of sperm. The results revealed the identification of 756 metabolites and 70 differentially expressed metabolites (DEM) in the SP from two groups of boar semen with differing liquid preservation abilities at 17 °C. The majority of identified metabolites in the SP belonged to organic acids and derivatives as well as lipids and lipid-like molecules. The DEM in the SP primarily consisted of amino acids, peptides, and analogs. The Kyoto Encyclopedia of Genes and Genomes analysis also demonstrated that the DEM are mainly concentrated in amino acid synthesis and metabolism-related pathways (P < 0.05). Furthermore, eleven key metabolites were identified and six target amino acids were verified, and the results were consistent with the non-targeted metabolic analysis. These findings indicated that amino acids and their associated pathways play a potential role in determining boar sperm quality and liquid preservation ability. D-proline, arginine, L-citrulline, phenylalanine, leucine, DL-proline, DL-serine, and indole may serve as potential biomarkers for early assessment of boar sperm liquid preservation ability. The findings of this study are helpful in understanding the causes and mechanisms of differences in the liquid preservation ability of boar sperm, and provide valuable insights for improving semen quality assessment methods and developing novel extenders or protocols.
Collapse
Affiliation(s)
- Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lebin Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bingjie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
31
|
Xiao S, Wang Z, Wang B, Hou B, Cheng J, Bai T, Zhang Y, Wang W, Yan L, Zhang J. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives. Front Microbiol 2023; 14:1099098. [PMID: 37032885 PMCID: PMC10076799 DOI: 10.3389/fmicb.2023.1099098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Tryptophan derivatives are various aromatic compounds produced in the tryptophan metabolic pathway, such as 5-hydroxytryptophan, 5-hydroxytryptamine, melatonin, 7-chloro-tryptophan, 7-bromo-tryptophan, indigo, indirubin, indole-3-acetic acid, violamycin, and dexoyviolacein. They have high added value, widely used in chemical, food, polymer and pharmaceutical industry and play an important role in treating diseases and improving life. At present, most tryptophan derivatives are synthesized by biosynthesis. The biosynthesis method is to combine metabolic engineering with synthetic biology and system biology, and use the tryptophan biosynthesis pathway of Escherichia coli, Corynebacterium glutamicum and other related microorganisms to reconstruct the artificial biosynthesis pathway, and then produce various tryptophan derivatives. In this paper, the characteristics, applications and specific biosynthetic pathways and methods of these derivatives were reviewed, and some strategies to increase the yield of derivatives and reduce the production cost on the basis of biosynthesis were introduced in order to make some contributions to the development of tryptophan derivatives biosynthesis industry.
Collapse
Affiliation(s)
- Shujian Xiao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| |
Collapse
|
32
|
Khaova EA, Tkachenko AG. The Influence of Polyamines on the Expression of Escherichia Coli Ribosome Hibernation Factor Raia. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235702001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RaiA is one of the main ribosome hibernation factors in Escherichia coli. Like other ribosome hibernation factors, this protein reversibly inhibits translation under stress conditions. According to published data, being induced by indole, RaiA is involved in bacterial persistence, which is considered to play important role in the recalcitrance of chronic infections to antibiotics. Previously, we showed that the raiA expression on the transcriptional level is stimulated by polyamines, in addition to indole. In this work, we investigated the influence of polyamines on the raiA expression on the translational level. We obtained the predicted secondary structures of raiA mRNA, the analysis of which showed the presence of the bulged-out region in the initiation site with a high probability. This may be a sign of gene involvement in the polyamine modulon. We constructed translational raiA::lacZ reporter fusion. Using this genetic construct, we studied the effects of polyamines on the raiA expression through an addition of putrescine, cadaverine or spermidine at concentrations of 1 mM and 2 mM. According to the results, the raiA expression is primarily stimulated by cadaverine at the stationary phase.
Collapse
|
33
|
Rukavishnikov G, Leonova L, Kasyanov E, Leonov V, Neznanov N, Mazo G. Antimicrobial activity of antidepressants on normal gut microbiota: Results of the in vitro study. Front Behav Neurosci 2023; 17:1132127. [PMID: 37035624 PMCID: PMC10073483 DOI: 10.3389/fnbeh.2023.1132127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Currently, there is little published data on the effects of antidepressants on normal gut microbiota and the consequences of such effects on treatment outcomes. The aim of the study: was to evaluate the growth kinetics of normal human gut microorganisms with antidepressants most common in routine clinical practice. Materials and methods: Research objects were species of microorganisms representing normal gut microbiota: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Candida albicans ATCC 24433, Bifidobacterium 791, Enterococcus faecalis ATCC 29212, Lactobacillus rhamnosus ATCC 53103. All microorganisms were cultivated in Schaedler broth (HiMedia) under aerobic/anaerobic conditions. The active substances of all studied antidepressants (fluvoxamine, fluoxetine, escitalopram, duloxetine, venlafaxine, mirtazapine) were extracted from ground preparations by dimethyl sulfoxide and centrifuged. Each solution of antidepressants was added to a Schaedler broth containing a certain microorganism's strain and diluted to final concentrations-200 μg/ml, 500 μg/ml, and 700 μg/ml. For a quantitative assessment of the effect, the specific growth rates (μ, h-1) of microorganisms were calculated as the slope of the initial part of the growth curve in coordinates (lnA, t). To evaluate the antidepressant effects on representatives of the normal microbiota in vitro, the following parameters were chosen: specific growth rate and IC50. Results: All antidepressants had an inhibitory effect on the growth of all studied microorganisms. Fluvoxamine and venlafaxine had the least effect on the growth activity of all studied microorganisms. Fluoxetine showed a pronounced effect on growth activity against E. coli, E. feacalis, S. aureus, and the least effect against C. albicans. Escitalopram had a greater effect on the growth rate of E. coli, E. feacalis, B. bifidum, L. rhamnosus, and C. albicans, which puts it among the leaders in terms of its effect on the growth activity of the microorganisms we studied. Mirtazapine, according to the results of our experiment, showed the greatest activity against L. rhamnosus and C. albicans. Conclusions: Our results confirm the effects of antidepressants on the growth activity of the normal gut microbiota individual strains. Further study of the antimicrobial activity of antidepressants may become one of the new directions for optimizing the personalized therapy of patients with depression.
Collapse
Affiliation(s)
- Grigory Rukavishnikov
- Social Neuropsychiatry Department, Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint-Petersburg, Russia
- *Correspondence: Grigory Rukavishnikov
| | - Lubov Leonova
- Social Neuropsychiatry Department, Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint-Petersburg, Russia
| | - Evgeny Kasyanov
- Social Neuropsychiatry Department, Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint-Petersburg, Russia
| | - Vadim Leonov
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Stockholm, Sweden
| | - Nikholay Neznanov
- Geriatric Psychiatry Department, Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint-Petersburg, Russia
- Psychiatry and Addictions Department, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Galina Mazo
- Social Neuropsychiatry Department, Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint-Petersburg, Russia
| |
Collapse
|
34
|
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy 2022; 77:3513-3526. [PMID: 35892227 PMCID: PMC10087875 DOI: 10.1111/all.15455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Metabolic health and immune function are intimately connected via diet and the microbiota. Nearly 90% of all immune cells in the body are associated with the gastrointestinal tract and these immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important systemic ramifications. Microbial dysbiosis has consistently been observed in patients with atopic dermatitis, food allergy and asthma and the molecular mechanisms linking changes in microbial populations with disease risk and disease endotypes are being intensively investigated. The discovery of novel bacterial metabolites that impact immune function is at the forefront of host-microbe research. Co-evolution of microbial communities within their hosts has resulted in intertwined metabolic pathways that affect physiological and pathological processes. However, recent dietary and lifestyle changes are thought to negatively influence interactions between microbes and their host. This review provides an overview of some of the critical metabolite-receptor interactions that have been recently described, which may underpin the immunomodulatory effects of the microbiota, and are of relevance for allergy, asthma and infectious diseases.
Collapse
Affiliation(s)
- Brian Forde
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Lu Yao
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Rupin Shaha
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | | | - Nonhlanhla Lunjani
- APC Microbiome Ireland, UCC, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland.,Department of Medicine, UCC, Cork, Ireland
| |
Collapse
|
35
|
Núñez-Navarro N, Salazar Muñoz J, Castillo F, Ramírez-Sarmiento CA, Poblete-Castro I, Zacconi FC, Parra LP. Discovery of New Phenylacetone Monooxygenase Variants for the Development of Substituted Indigoids through Biocatalysis. Int J Mol Sci 2022; 23:ijms232012544. [PMID: 36293414 PMCID: PMC9604523 DOI: 10.3390/ijms232012544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.
Collapse
Affiliation(s)
- Nicolás Núñez-Navarro
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Javier Salazar Muñoz
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Francisco Castillo
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Universidad de Santiago de Chile (USACH), Santiago 8350709, Chile
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| | - Loreto P. Parra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| |
Collapse
|
36
|
Cui B, Chen X, Guo Q, Song S, Wang M, Liu J, Deng Y. The Cell-Cell Communication Signal Indole Controls the Physiology and Interspecies Communication of Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0102722. [PMID: 35862954 PMCID: PMC9431217 DOI: 10.1128/spectrum.01027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Many bacteria utilize quorum sensing (QS) to control group behavior in a cell density-dependent manner. Previous studies have demonstrated that Acinetobacter baumannii employs an N-acyl-L-homoserine lactone (AHL)-based QS system to control biological functions and virulence. Here, we report that indole controls biological functions, virulence and AHL signal production in A. baumannii. The biosynthesis of indole is performed by A1S_3160 (AbiS, Acinetobacter baumannii indole synthase), which is a novel indole synthase annotated as an alpha/beta hydrolase in A. baumannii. Heterologous expression of AbiS in an Escherichia coli indole-deficient mutant also rescued the production of indole by using a distinct biosynthetic pathway from the tryptophanase TnaA, which produces indole directly from tryptophan in E. coli. Moreover, we revealed that indole from A. baumannii reduced the competitive fitness of Pseudomonas aeruginosa by inhibiting its QS systems and type III secretion system (T3SS). As A. baumannii and P. aeruginosa usually coexist in human lungs, our results suggest the crucial roles of indole in both the bacterial physiology and interspecies communication. IMPORTANCE Acinetobacter baumannii is an important human opportunistic pathogen that usually causes high morbidity and mortality. It employs the N-acyl-L-homoserine lactone (AHL)-type quorum sensing (QS) system, AbaI/AbaR, to regulate biological functions and virulence. In this study, we found that A. baumannii utilizes another QS signal, indole, to modulate biological functions and virulence. It was further revealed that indole positively controls the production of AHL signals by regulating abaI expression at the transcriptional levels. Furthermore, indole represses the QS systems and type III secretion system (T3SS) of P. aeruginosa and enhances the competitive ability of A. baumannii. Together, our work describes a QS signaling network where a pathogen uses to control the bacterial physiology and pathogenesis, and the competitive ability in microbial community.
Collapse
Affiliation(s)
- Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jingyun Liu
- Department of Stomatology, Zhengzhou Shuqing Medical College, Zhenzhou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
37
|
Joffré E, Xiao X, Correia MSP, Nookaew I, Sasse S, Globisch D, Zhu B, Sjöling Å. Analysis of Growth Phases of Enterotoxigenic Escherichia coli Reveals a Distinct Transition Phase before Entry into Early Stationary Phase with Shifts in Tryptophan, Fucose, and Putrescine Metabolism and Degradation of Neurotransmitter Precursors. Microbiol Spectr 2022; 10:e0175521. [PMID: 35876501 PMCID: PMC9431495 DOI: 10.1128/spectrum.01755-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and adults in endemic areas. Gene regulation of ETEC during growth in vitro and in vivo needs to be further evaluated, and here we describe the full transcriptome and metabolome of ETEC during growth from mid-logarithmic growth to early stationary phase in rich medium (LB medium). We identified specific genes and pathways subjected to rapid transient alterations in gene expression and metabolite production during the transition from logarithmic to stationary growth. The transient phase was found to be different from the subsequent induction of early stationary phase-induced genes. The transient phase was characterized by the repression of genes and metabolites involved in organic substance transport. Genes involved in fucose and putrescine metabolism were upregulated, and genes involved in iron transport were repressed. Expression of toxins and colonization factors were not changed, suggesting retained virulence from mid-logarithmic to the start of the stationary phase. Metabolomic analyses showed that the transient phase was characterized by a drop of intracellular amino acids, e.g., l-tyrosine, l-tryptophan, l-phenylalanine, l-leucine, and l-glutamic acid, followed by increased levels at induction of stationary phase. A pathway enrichment analysis of the entire combined transcriptome and metabolome revealed that significant pathways during progression from logarithmic to early stationary phase are involved in the degradation of neurotransmitters aminobutyrate (GABA) and precursors of 5-hydroxytryptamine (serotonin). This work provides a comprehensive framework for further studies on transcriptional and metabolic regulation in pathogenic E. coli. IMPORTANCE We show that E. coli, exemplified by the pathogenic subspecies enterotoxigenic E. coli (ETEC), undergoes a stepwise transcriptional and metabolic transition into the stationary phase. At a specific entry point, E. coli induces activation and repression of specific pathways. This leads to a rapid decrease of intracellular levels of certain amino acids. The resulting metabolic activity leads to an intense but short peak of indole production, suggesting that this is the previously described "indole peak," rapid decrease of intermediate molecules of bacterial neurotransmitters, increased putrescine and fucose uptake, increased glutathione levels, and decreased iron uptake. This specific transient shift in gene expression and metabolome is short-lived and disappears when bacteria enter the early stationary phase. We suggest that these changes mainly prepare bacteria for ceased growth, but based on the pathways involved, we could suggest that this transient phase substantially influences survival and virulence.
Collapse
Affiliation(s)
- Enrique Joffré
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Xue Xiao
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mário S. P. Correia
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samantha Sasse
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
38
|
Bedell E, Harmon O, Fankhauser K, Shivers Z, Thomas E. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: Design, characterization and field validation. WATER RESEARCH 2022; 220:118644. [PMID: 35667167 DOI: 10.1016/j.watres.2022.118644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
We designed and validated a sensitive, continuous, in-situ, remotely reporting tryptophan-like fluorescence sensor and coupled it with a machine learning model to predict high-risk fecal contamination in water (>10 colony forming units (CFU)/100mL E. coli). We characterized the sensor's response to multiple fluorescence interferents with benchtop analysis. The sensor's minimum detection limit (MDL) of tryptophan dissolved in deionized water was 0.05 ppb (p <0.01) and its MDL of the correlation to E. coli present in wastewater effluent was 10 CFU/100 mL (p <0.01). Fluorescence response declined exponentially with increased water temperature and a correction factor was calculated. Inner filter effects, which cause signal attenuation at high concentrations, were shown to have negligible impact in an operational context. Biofouling was demonstrated to increase the fluorescence signal by approximately 82% in a certain context, while mineral scaling reduced the sensitivity of the sensor by approximately 5% after 24 hours with a scaling solution containing 8 times the mineral concentration of the Colorado River. A machine learning model was developed, with TLF measurements as the primary feature, to output fecal contamination risk levels established by the World Health Organization. A training and validation data set for the model was built by installing four sensors on Boulder Creek, Colorado for 88 days and enumerating 298 grab samples for E. coli with membrane filtration. The machine learning model incorporated a proxy feature for fouling (time since last cleaning) which improved model performance. A binary classification model was able to predict high risk fecal contamination with 83% accuracy (95% CI: 78% - 87%), sensitivity of 80%, and specificity of 86%. A model distinguishing between all World Health Organization established risk categories performed with an overall accuracy of 64%. Integrating TLF measurements into an ML model allows for anomaly detection and noise reduction, permitting contamination prediction despite biofilm or mineral scaling formation on the sensor's lenses. Real-time detection of high risk fecal contamination could contribute to a major step forward in terms of microbial water quality monitoring for human health.
Collapse
Affiliation(s)
- Emily Bedell
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA
| | - Olivia Harmon
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America
| | - Katie Fankhauser
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA
| | | | - Evan Thomas
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA.
| |
Collapse
|
39
|
Production of indole and hydrogen sulfide by the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 contributes to form a hypoxic microenvironment. Arch Microbiol 2022; 204:486. [PMID: 35834134 DOI: 10.1007/s00203-022-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.
Collapse
|
40
|
Regulatory effect of polyamines and indole on expression of stress adaptation genes in <i> Escherichia coli </i>. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Indole and polyamines are involved in the regulation of physiological processes in bacteria associated with adaptation to stress, biofilm formation, antibiotic tolerance, and bacterial persistence. However, the molecular targets and mechanisms of action of these metabolites are still poorly understood. In this work, we studied the effect of polyamines and indole on the expression of such genes as: rpoS, relA, and spoT, encoding regulators of the general stress responses and starvation; hns and stpA, encoding global regulators of gene expression; rmf, yqjD, hpf, raiA, rsfS, sra, ettA, encoding ribosome hibernation factors.The aim. To study the regulatory effects of polyamines and indole on the expression of these genes, which are responsible for the adaptation of Escherichia coli to stress.Materials and methods. We used strains of E. coli in this study. The amount of polyamines was studied by thin layer chromatography. The indole concentration was determined by high performance liquid chromatography. Gene expression was studied using real-time RT-PCR.Results. The addition of polyamines putrescine, cadaverine and spermidine to the medium stimulated the expression of all the studied genes. The maximal stimulation was observed at the stationary phase mostly. Putrescine and spermidine had the most significant effect. At 24 h of cultivation, an equimolar conversion of exogenous tryptophan into indole was showed. At this time, the expression of two genes – rmf and raiA – increased.Conclusions. We have shown that polyamines upregulate the expression of all the studied genes at the transcriptional level. The stimulating effect is specific for the phase of the batch culture and the type of polyamine. Indole has a positive effect on the expression of the rmf and raiA genes.
Collapse
|
41
|
Jayan H, Pu H, Sun DW. Detection of Bioactive Metabolites in Escherichia Coli Cultures Using Surface-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2022; 76:812-822. [PMID: 35255717 PMCID: PMC9277339 DOI: 10.1177/00037028221079661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 05/26/2023]
Abstract
Detection of bioactive metabolites produced by bacteria is important for identifying biomarkers for infectious diseases. In this study, a surface-enhanced Raman spectroscopy (SERS)-based technique was developed for the detection of bioactive metabolite indole produced by Escherichia coli (E. coli) in biological media. The use of highly sensitive Au@Ag core-shell nanoparticles resulted in the detection of indole concentration as low as 0.0886 mM in standard solution. The supplementation of growth media with 5 mM of exogenous tryptophan resulted in the production of a maximum yield of indole of 3.139 mM by E. coli O157:H7 at 37 °C. The growth of bacterial cells was reduced from 47.73 × 108 to 1.033 × 106 CFU/mL when the cells were grown in 0 and 10 mM exogenous tryptophan, respectively. The amount of indole in the Luria-Bertani (LB) media had an inverse correlation with the growth of cells, which resulted in a three-log reduction in the colony-forming unit when the indole concentration in the media was 20 times higher than normal. This work demonstrates that SERS is an effective and highly sensitive method for rapid detection of bioactive metabolites in biological matrix.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
- Food Refrigeration and Computerized
Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National
University of Ireland, Dublin, Ireland
| |
Collapse
|
42
|
Liu B, Yu D, Sun J, Wu X, Xin Z, Deng B, Fan L, Fu J, Ge L, Ren W. Characterizing the influence of gut microbiota on host tryptophan metabolism with germ-free pigs. ANIMAL NUTRITION 2022; 11:190-200. [PMID: 36263410 PMCID: PMC9562448 DOI: 10.1016/j.aninu.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/07/2022]
Abstract
Intestinal microbes are closely associated with host health, depending on metabolic crosstalk between the microbiota and host. Tryptophan metabolism is one of the best examples of metabolic crosstalk between intestinal microbiota and host; however, our understanding about the influence of intestinal microbiota on host tryptophan metabolism is limited. Thus, we established germ-free (GF) pig models to systemically explore the influence of intestinal microbiota on tryptophan metabolism. Five GF pigs were kept in GF conditions throughout the experiment (GF group). Six GF pigs were transplanted with fecal microbiota from donor sows to act as control pigs. Compared with control pigs, the GF pigs had remarkable alterations in tryptophan metabolism. The differential metabolites (P < 0.05) were mainly found in the liver, circulation system and large intestine. Notably, the alteration of metabolites in tryptophan metabolism varied among organs, especially for the serotonin pathway. In GF pigs, tryptophan and kynurenine in the large intestine and 5-hydroxytryptophan in most organs were increased (P < 0.05), while metabolites in the indole pathway in most organs were decreased (P < 0.05). Collectively, our study reveals changes in tryptophan metabolism in GF pigs, highlighting the critical role of gut microbes in shaping host tryptophan metabolism.
Collapse
|
43
|
Liang X, He J, Zhang N, Muhammad A, Lu X, Shao Y. Probiotic potentials of the silkworm gut symbiont Enterococcus casseliflavus ECB140, a promising L-tryptophan producer living inside the host. J Appl Microbiol 2022; 133:1620-1635. [PMID: 35717576 DOI: 10.1111/jam.15675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022]
Abstract
AIMS L-tryptophan is an essential aromatic amino acid for the growth and development of animals. Studies about enteric L-tryptophan-producing bacteria are scarce. In this report, we characterized the probiotic potential of Enterococcus casseliflavus ECB140, focusing on its L-tryptophan production abilities. METHODS AND RESULTS ECB140 strain was isolated from the silkworm gut and can survive under strong alkaline environmental conditions. Bacterial colonization traits (motility and biofilm) were examined and showed that only ECB140 produced flagellum and strong biofilms compared with other Enterococcus strains. Comparative genome sequence analyses showed that only ECB140 possessed a complete route for L-tryptophan synthesis among all 15 strains. High-performance liquid chromatography and qRT-PCR confirmed the capability of ECB140 to produce L-tryptophan. Besides, the genome also contains the biosynthesis pathways of several other essential amino acids, such as phenylalanine, threonine, valine, leucine, isoleucine and lysine. These results indicate that ECB140 has the ability to survive passage through the gut and could act as a candidate probiotic. CONCLUSIONS The study describes a novel, natural silkworm gut symbiont capable of producing L-tryptophan. Enterococcus casseliflavus ECB140 physical and genomic attributes offer possibilities for its colonization and provide L-tryptophan for lepidopteran insects.
Collapse
Affiliation(s)
- Xili Liang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Beijing, China
| |
Collapse
|
44
|
Ye X, Li H, Anjum K, Zhong X, Miao S, Zheng G, Liu W, Li L. Dual Role of Indoles Derived From Intestinal Microbiota on Human Health. Front Immunol 2022; 13:903526. [PMID: 35784338 PMCID: PMC9248744 DOI: 10.3389/fimmu.2022.903526] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Endogenous indole and its derivatives (indoles), considered as promising N-substituted heterocyclic compounds, are tryptophan metabolites derived from intestinal microbiota and exhibit a range of biological activities. Recent studies indicate that indoles contribute to maintaining the biological barrier of the human intestine, which exert the anti-inflammatory activities mainly through activating AhR and PXR receptors to affect the immune system’s function, significantly improving intestinal health (inflammatory bowel disease, hemorrhagic colitis, colorectal cancer) and further promote human health (diabetes mellitus, central system inflammation, and vascular regulation). However, the revealed toxic influences cannot be ignored. Indoxyl sulfate, an indole derivative, performs nephrotoxicity and cardiovascular toxicity. We addressed the interaction between indoles and intestinal microbiota and the indoles’ effects on human health as double-edged swords. This review provides scientific bases for the correlation of indoles with diseases moreover highlights several directions for subsequent indoles-related studies.
Collapse
Affiliation(s)
- Xuewei Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haiyi Li
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Komal Anjum
- Department of Medicine and pharmacy, Ocean University of China, Qingdao, China
| | - Xinye Zhong
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuping Miao
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guowan Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lanjuan Li, ; Wei Liu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- *Correspondence: Lanjuan Li, ; Wei Liu,
| |
Collapse
|
45
|
Abstract
Indole signaling in bacteria plays an important role in antibiotic resistance, persistence, and tolerance. Here, we used the nonlinear optical technique, second-harmonic light scattering (SHS), to examine the influence of exogenous indole on the bacterial uptake of the antimicrobial quaternary ammonium cation (qac), malachite green. The transport rates of the antimicrobial qac across the individual membranes of Escherichia coli and Pseudomonas aeruginosa, as well as liposomes composed of the polar lipid extract of E. coli, were directly measured using time-resolved SHS. Whereas exogenous indole was shown to induce a 2-fold increase in the transport rate of the qac across the cytoplasmic membranes of the wild-type bacteria, it had no influence on a knockout strain of E. coli lacking the tryptophan-specific transport protein (Δmtr). Likewise, indole did not affect the transport rate of the qac diffusing across the liposome membrane. Our findings suggest that indole increases the bacterial uptake of antimicrobials through an interaction with the Mtr permease.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Wilhelm
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Yujie Li
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jianqiang Ma
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
46
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Huang H, Feng G, Wang M, Liu C, Wu Y, Dong L, Feng L, Zheng X, Chen Y. Nitric Oxide: A Neglected Driver for the Conjugative Transfer of Antibiotic Resistance Genes among Wastewater Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6466-6478. [PMID: 35512279 DOI: 10.1021/acs.est.2c01889] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) in wastewater is becoming an urgent concern. Previous studies mainly focused on the effects of coexisting contaminants on plasmid conjugation, but ignored the potential contribution of some byproducts inevitably released from wastewater treatment processes. Herein, we demonstrate for the first time that nitric oxide (NO), an intermediate of the wastewater nitrogen cycle, can significantly boost the conjugative transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella typhimurium, and wastewater microbiota). Phenotypic and genotypic tests confirmed that NO-induced promotion was not attributed to the SOS response, a well-recognized driver for horizontal gene transfer. Instead, NO exposure increased the outer membrane permeability of both the donor and recipient by inhibiting the expression of key genes involved in lipopolysaccharide biosynthesis (such as waaJ), thereby lowering the membrane barrier for conjugation. On the other hand, NO exposure not only resulted in the accumulation of intracellular tryptophan but also triggered the deficiency of intracellular methionine, both of which were validated to play key roles in regulating the global regulatory genes (korA, korB, and trbA) of plasmid RP4, activating its encoding transfer apparatus (represented by trfAp and trbBp). Overall, our findings highlighted the risks of NO in spreading ARGs among wastewater microbiota and updated the regulation mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guanqun Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Wang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Municipal Engn Design Inst Grp Co. Ltd., 901 Zhongshan North Second Road, Shanghai 200092, P. R. China
| | - Leiyu Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiong Zheng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinguang Chen
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
48
|
Production of Indole and Indole-Related Compounds by the Intestinal Microbiota and Consequences for the Host: The Good, the Bad, and the Ugly. Microorganisms 2022; 10:microorganisms10050930. [PMID: 35630374 PMCID: PMC9145683 DOI: 10.3390/microorganisms10050930] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiota metabolic activity towards the available substrates generates myriad bacterial metabolites that may accumulate in the luminal fluid. Among them, indole and indole-related compounds are produced by specific bacterial species from tryptophan. Although indole-related compounds are, first, involved in intestinal microbial community communication, these molecules are also active on the intestinal mucosa, exerting generally beneficial effects in different experimental situations. After absorption, indole is partly metabolized in the liver into the co-metabolite indoxyl sulfate. Although some anti-inflammatory actions of indole on liver cells have been shown, indoxyl sulfate is a well-known uremic toxin that aggravates chronic kidney disease, through deleterious effects on kidney cells. Indoxyl sulfate is also known to provoke endothelial dysfunction. Regarding the central nervous system, emerging research indicates that indole at excessive concentrations displays a negative impact on emotional behavior. The indole-derived co-metabolite isatin appears, in pre-clinical studies, to accumulate in the brain, modulating brain function either positively or negatively, depending on the doses used. Oxindole, a bacterial metabolite that enters the brain, has shown deleterious effects on the central nervous system in experimental studies. Lastly, recent studies performed with indoxyl sulfate report either beneficial or deleterious effects depending once again on the dose used, with missing information on the physiological concentrations that are reaching the central nervous system. Any intervention aiming at modulating indole and indole-related compound concentrations in the biological fluids should crucially take into account the dual effects of these compounds according to the host tissues considered.
Collapse
|
49
|
Inczefi O, Bacsur P, Resál T, Keresztes C, Molnár T. The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Front Nutr 2022; 9:718710. [PMID: 35548572 PMCID: PMC9082752 DOI: 10.3389/fnut.2022.718710] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The leakage of the intestinal barrier and the disruption of the gut microbiome are increasingly recognized as key factors in different pathophysiological conditions, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), chronic liver diseases, obesity, diabetes mellitus, types of cancer, and neuropsychiatric disorders. In this study, the mechanisms leading to dysbiosis and "leaky gut" are reviewed, and a short summary of the current knowledge regarding different diseases is provided. The simplest way to restore intestinal permeability and the microbiota could be ideal nutrition. Further therapeutic options are also available, such as the administration of probiotics or postbiotics or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Orsolya Inczefi
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Péter Bacsur
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Resál
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csilla Keresztes
- Department for Medical Communication and Translation Studies, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Molnár
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary,*Correspondence: Tamás Molnár,
| |
Collapse
|
50
|
Loss of microbiota-derived protective metabolites after neutropenic fever. Sci Rep 2022; 12:6244. [PMID: 35428797 PMCID: PMC9012881 DOI: 10.1038/s41598-022-10282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Neutropenic fever (NF) is a common complication of chemotherapy in patients with cancer which often prolongs hospitalization and worsens the quality of life. Although an empiric antimicrobial approach is used to prevent and treat NF, a clear etiology cannot be found in most cases. Emerging data suggest an altered microbiota-host crosstalk leading to NF. We profiled the serum metabolome and gut microbiome in longitudinal samples before and after NF in patients with acute myeloid leukemia, a prototype setting with a high incidence of NF. We identified a circulating metabolomic shift after NF, with a minimal signature containing 18 metabolites, 13 of which were associated with the gut microbiota. Among these metabolites were markers of intestinal epithelial health and bacterial metabolites of dietary tryptophan with known anti-inflammatory and gut-protective effects. The level of these metabolites decreased after NF, in parallel with biologically consistent changes in the abundance of mucolytic and butyrogenic bacteria with known effects on the intestinal epithelium. Together, our findings indicate a metabolomic shift with NF which is primarily characterized by a loss of microbiota-derived protective metabolites rather than an increase in detrimental metabolites. This analysis suggests that the current antimicrobial approach to NF may need a revision to protect the commensal microbiota.
Collapse
|