1
|
Fan X, Gao X, Zang H, Liu Z, Jing X, Liu X, Guo S, Jiang H, Wu Y, Huang Z, Chen D, Guo R. Transcriptional dynamics and regulatory function of milRNAs in Ascosphaera apis invading Apis mellifera larvae. Front Microbiol 2024; 15:1355035. [PMID: 38650880 PMCID: PMC11033319 DOI: 10.3389/fmicb.2024.1355035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Jiang
- Jilin Apicultural Research Institute, Jilin, China
| | - Ying Wu
- Jilin Apicultural Research Institute, Jilin, China
| | - Zhijian Huang
- Animal Husbandry Terminus of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
2
|
Huang Z, Wu D, Yang S, Fu W, Ma D, Yao Y, Lin H, Yuan J, Yang Y, Zhuang Z. Regulation of Fungal Morphogenesis and Pathogenicity of Aspergillus flavus by Hexokinase AfHxk1 through Its Domain Hexokinase_2. J Fungi (Basel) 2023; 9:1077. [PMID: 37998882 PMCID: PMC10671980 DOI: 10.3390/jof9111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
As a filamentous pathogenic fungus with high-yield of aflatoxin B1, Aspergillus flavus is commonly found in various agricultural products. It is crucial to develop effective strategies aimed at the prevention of the contamination of A. flavus and aflatoxin. Hexokinase AfHxk1 is a critical enzyme in fungal glucose metabolism. However, the role of AfHxk1 in A. flavus development, aflatoxin biosynthesis, and virulence has not yet been explored. In this study, afHxk1 gene deletion mutant (ΔafHxk1), complementary strain (Com-afHxk1), and the domain deletion strains (afHxk1ΔD1 and afHxk1ΔD2) were constructed by homologous recombination. Phenotype study and RT-qPCR revealed that AfHxk1 upregulates mycelium growth and spore and sclerotia formation, but downregulates AFB1 biosynthesis through related classical signaling pathways. Invading models and environmental stress analysis revealed that through involvement in carbon source utilization, conidia germination, and the sensitivity response of A. flavus to a series of environmental stresses, AfHxk1 deeply participates in the regulation of pathogenicity of A. flavus to crop kernels and Galleria mellonella larvae. The construction of domain deletion strains, afHxk1ΔD1 and afHxk1ΔD2, further revealed that AfHxk1 regulates the morphogenesis, mycotoxin biosynthesis, and the fungal pathogenicity mainly through its domain, Hexokinase_2. The results of this study revealed the biological role of AfHxk1 in Aspergillus spp., and might provide a novel potential target for the early control of the contamination of A. flavus.
Collapse
Affiliation(s)
- Zongting Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Sile Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dongmei Ma
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| |
Collapse
|
3
|
Xu L, Liu H, Zhu S, Meng Y, Wang Y, Li J, Zhang F, Huang L. VmPacC-mediated pH regulation of Valsa mali confers to host acidification identified by comparative proteomics analysis. STRESS BIOLOGY 2023; 3:18. [PMID: 37676527 PMCID: PMC10441875 DOI: 10.1007/s44154-023-00097-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/24/2023] [Indexed: 09/06/2023]
Abstract
Apple valsa canker caused by the Ascomycete fungus Valsa mali is one of the most serious diseases of apple, resulting in huge economic losses in the apple-growing area of China. Previous study found that the pathogen could acidify the infected tissues to make lower ambient pH (from 6.0 to 3.5) for their successfully colonization. The pH signaling transcription factor VmPacC is required for acidification of its environment and for full virulence in V. mali. It is known that the functional cooperation of proteins secreted by V. mali plays pivotal role in its successful colonization of host plants. In this study, we used tandem mass tag (TMT) labeling coupled with LC-MS/MS-based quantitative proteomics to analyze the VmPacC-mediated pH regulation in V. mali, focusing on differentially expressed proteins (DEPs). We identified 222 DEPs specific to VmPacC deletion, and 921 DEPs specific to different pH conditions (pH 6.0 and 3.4). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEPs were mainly involved in pathways associated with carbon metabolism, biosynthesis of antibiotics, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, ribosomes, and pentose phosphate pathways. Additionally, we identified 119 DEPs that were shared among the VmPacC deletion mutant and different pH conditions, which were mainly related to energy metabolism pathways, providing the energy required for the hyphal growth and responses to environmental stresses. A protein-protein interaction (PPI) network analysis indicated that most of the shared proteins were mapped to an interaction network with a medium confidence score of 0.4. Notably, one uncharacterized protein (KUI69106.1), and two known proteins (heat shock protein 60 (KUI73579.1), aspartate aminotransferase (KUI73864.1)) located in the core of the network were highly connected (with ≥ 38 directed edges) with the other shared DEPs. Our results suggest that VmPacC participates in the pathogen's regulation to ambient pH through the regulation of energy metabolism pathways such as the glycolysis/gluconeogenesis pathway and TCA cycle. Finally, we proposed a sophisticated molecular regulatory network to explain pH decrease in V. mali. Our study, by providing insights into V. mali regulating pH, helps to elucidate the mechanisms of host acidification during pathogen infection.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hailong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shan Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Cytokinin Regulates Energy Utilization in Botrytis cinerea. Microbiol Spectr 2022; 10:e0028022. [PMID: 35894612 PMCID: PMC9430538 DOI: 10.1128/spectrum.00280-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The plant hormone cytokinin (CK) is an important developmental regulator. Previous work has demonstrated that CKs mediate plant immunity and disease resistance. Some phytopathogens have been reported to secrete CKs and may manipulate CK signaling to improve pathogenesis. In recent work, we demonstrated that CK directly inhibits the development and virulence of fungal phytopathogens by attenuating the cell cycle and reducing cytoskeleton organization. Here, focusing on Botrytis cinerea, we report that CK possesses a dual role in fungal biology, with role prioritization being based on sugar availability. In a sugar-rich environment, CK strongly inhibited B. cinerea growth and deregulated cytoskeleton organization. This effect diminished as sugar availability decreased. In its second role, we show using biochemical assays and transgenic redox-sensitive fungal lines that CK can promote glycolysis and energy consumption in B. cinerea, both in vitro and in planta. Glycolysis and increased oxidation mediated by CK were stronger in low sugar availability, indicating that sugar availability could indeed be one possible element determining the role of CK in the fungus. Transcriptomic data further support our findings, demonstrating significant upregulation to glycolysis, oxidative phosphorylation, and sucrose metabolism upon CK treatment. Thus, the effect of CK in fungal biology likely depends on energy status. In addition to the plant producing CK during its interaction with the pathogen for defense priming and pathogen inhibition, the pathogen may take advantage of this increased CK to boost its metabolism and energy production, in preparation for the necrotrophic phase of the infection. IMPORTANCE The hormone cytokinin (CK) is a plant developmental regulator. Previous research has highlighted the involvement of CK in plant defense. Here, we report that CK has a dual role in plant-fungus interactions, inhibiting fungal growth while positively regulating B. cinerea energy utilization, causing an increase in glucose utilization and energy consumption. The effect of CK on B. cinerea was dependent on sugar availability, with CK primarily causing increases in glycolysis when sugar availability was low, and growth inhibition in a high-sugar environment. We propose that CK acts as a signal to the fungus that plant tissue is present, causing it to activate energy metabolism pathways to take advantage of the available food source, while at the same time, CK is employed by the plant to inhibit the attacking pathogen.
Collapse
|
5
|
Neofunctionalization of Glycolytic Enzymes: An Evolutionary Route to Plant Parasitism in the Oomycete Phytophthora nicotianae. Microorganisms 2022; 10:microorganisms10020281. [PMID: 35208735 PMCID: PMC8879444 DOI: 10.3390/microorganisms10020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oomycetes, of the genus Phytophthora, comprise of some of the most devastating plant pathogens. Parasitism of Phytophthora results from evolution from an autotrophic ancestor and adaptation to a wide range of environments, involving metabolic adaptation. Sequence mining showed that Phytophthora spp. display an unusual repertoire of glycolytic enzymes, made of multigene families and enzyme replacements. To investigate the impact of these gene duplications on the biology of Phytophthora and, eventually, identify novel functions associated to gene expansion, we focused our study on the first glycolytic step on P. nicotianae, a broad host range pathogen. We reveal that this step is committed by a set of three glucokinase types that differ by their structure, enzymatic properties, and evolutionary histories. In addition, they are expressed differentially during the P. nicotianae life cycle, including plant infection. Last, we show that there is a strong association between the expression of a glucokinase member in planta and extent of plant infection. Together, these results suggest that metabolic adaptation is a component of the processes underlying evolution of parasitism in Phytophthora, which may possibly involve the neofunctionalization of metabolic enzymes.
Collapse
|
6
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
7
|
Gong D, Bi Y, Li Y, Zong Y, Han Y, Prusky D. Both Penicillium expansum and Trichothecim roseum Infections Promote the Ripening of Apples and Release Specific Volatile Compounds. FRONTIERS IN PLANT SCIENCE 2019; 10:338. [PMID: 30949192 PMCID: PMC6435981 DOI: 10.3389/fpls.2019.00338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Blue mold and core rot caused by Penicillium expansum and Trichothecium roseum are major diseases of apple fruit in China; however, their differential aggressiveness in apples and effect on fruit postharvest physiology are unclear. The effects of colonization of apples cv. Red Delicious by both pathogens were compared to physiological parameters of ripening and release of volatile compounds (VOCs). P. expansum colonization showed increased aggressiveness compared to T. roesum colonization of apple fruits. P. expansum enhanced colonization occurred with differential higher ethylene production and respiratory rate evolution, lower membrane integrity and fruit firmness in correspondence with the colonization pattern of inoculated apples. Moreover, P. expansum caused lower contents of total soluble solid and titratable acid, and higher malondialdehyde compared with T. roesum colonization. While both pathogen infections enhanced VOCs release, compared with T. roseum inoculated apples, P. expansum inoculated apple showed a higher total VOCs production including alcohols, aldehydes and esters, being the C6 alcohols, aldehydes and esters amount. PLS-DA analysis indicated that hexanoic acid was the most important factor to distinguish the inoculated fruits from the controls. Interestingly, propyl acetate and hexyl benzoate, and undecylenic acid and hexadecane were only identified in the P. expansum and T. roseum inoculated fruits, respectively. Taken together, our findings indicate that both fungi inoculations promote apple fruit ripening and release specific VOCs; moreover, apple fruits are more susceptible to P. expansum colonization than T. roesum.
Collapse
Affiliation(s)
- Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
8
|
Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C, Arce-Johnson P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. FRONTIERS IN PLANT SCIENCE 2016; 7:382. [PMID: 27066032 PMCID: PMC4811896 DOI: 10.3389/fpls.2016.00382] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant-pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
9
|
Zhang L, Li B, Zhang Y, Jia X, Zhou M. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2016; 17:16-28. [PMID: 25808544 PMCID: PMC6638496 DOI: 10.1111/mpp.12258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fusarium graminearum, the causal agent of Fusarium head blight, is a common pathogen on small grain cereals worldwide and produces various trichothecenes [deoxynivalenol (DON) is predominant] during infection. A previous study has revealed that DON production is positively correlated with the occurrence of carbendazim (MBC) resistance. Here, we identified and characterized two putative genes encoding hexokinase in F. graminearum (FgHXK1 and FgHXK2), which is a rate-limiting enzyme in DON biosynthesis. The expression level of hexokinase genes and the production of pyruvate, which is the precursor of DON, were up-regulated in the MBC-resistant strain, indicating that hexokinase genes might be involved in increased DON production. Phylogenetic and comparative analyses indicated that FgHXK1 was the predominant hexokinase gene. Gene disruption showed that ΔFgHXK1 severely affected DON production, indicating that FgHXK1 played a role in the regulation of DON biosynthesis. Morphological characterization showed that ΔFgHXK1 led to inhibited vegetative growth and conidiation. Sensitivity tests to MBC and various stresses indicated that both ΔFgHXK1 and ΔFgHXK2 mutants showed no significant difference from parental strains. Pathogencity assays showed that ΔFgHXK1 mutants lost virulence on wheat head and corn stigma; however, they showed no change in sexual reproduction. The FgHXK1-overexpressing transformants were obtained subsequently. Their pyruvate and DON production was confirmed to be increased, indicating that FgHXK1 positively regulated DON biosynthesis. Although additional defects appeared in overexpression mutants, MBC sensitivity showed no change. All of the results indicated that the transcriptional level of FgHXK1 regulated DON biosynthesis, but showed no direct relationship with MBC resistance.
Collapse
Affiliation(s)
- Leigang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baicun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojing Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Vatsa-Portugal P, Walker AS, Jacquens L, Clément C, Barka EA, Vaillant-Gaveau N. Inflorescences vs leaves: a distinct modulation of carbon metabolism process during Botrytis infection. PHYSIOLOGIA PLANTARUM 2015; 154:162-177. [PMID: 25251162 DOI: 10.1111/ppl.12287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/30/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Plant growth and survival depends critically on photo assimilates. Pathogen infection leads to changes in carbohydrate metabolism of plants. In this study, we monitored changes in the carbohydrate metabolism in the grapevine inflorescence and leaves using Botrytis cinerea and Botrytis pseudo cinerea. Fluctuations in gas exchange were correlated with variations in chlorophyll a fluorescence. During infection, the inflorescences showed an increase in net photosynthesis (Pn) with a stomatal limitation. In leaves, photosynthesis decreased, with a non-stomatal limitation. A decrease in the effective photosystem II (PSII) quantum yield (ΦPSII) was accompanied by an increase in photochemical quenching (qP) and non-photochemical quenching (qN). The enhancement of qP and ΦPSII could explain the observed increase in Pn. In leaves, the significant decline in ΦPSII and qP, and increase in qN suggest that energy was mostly oriented toward heat dissipation instead of CO2 fixation. The accumulation of glucose and sucrose in inflorescences and glucose and fructose in the leaves during infection indicate that the plant's carbon metabolism is differently regulated in these two organs. While a strong accumulation of starch was observed at 24 and 48 hours post-inoculation (hpi) with both species of Botrytis in the inflorescences, a significant decrease with B. cinerea at 24 hpi and a significant increase with B. pseudo cinerea at 48 hpi were observed in the leaves. On the basis of these results, it can be said that during pathogen attack, the metabolism of grapevine inflorescence and leaf is modified suggesting distinct mechanisms modifying gas exchange, PSII activity and sugar contents in these two organs.
Collapse
Affiliation(s)
- Parul Vatsa-Portugal
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vigne et Vin de Champagne URVVC EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, F-51687, France
| | | | | | | | | | | |
Collapse
|
11
|
Feng J, Zhao S, Chen X, Wang W, Dong W, Chen J, Shen JR, Liu L, Kuang T. Biochemical and structural study of Arabidopsis hexokinase 1. ACTA ACUST UNITED AC 2015; 71:367-75. [PMID: 25664748 DOI: 10.1107/s1399004714026091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/27/2014] [Indexed: 01/11/2023]
Abstract
Hexokinase 1 from Arabidopsis thaliana (AtHXK1) plays a dual role in glycolysis and sugar sensing for vital metabolic and physiological processes. The uncoupling of glucose signalling from glucose metabolism was demonstrated by the analysis of two mutants (AtHXK1(G104D) and AtHXK1(S177A)) that are catalytically inactive but still functional in signalling. In this study, substrate-binding experiments indicate that the two catalytically inactive mutants have a high affinity for glucose, and an ordered substrate-binding mechanism has been observed for wild-type AtHXK1. The structure of AtHXK1 was determined both in its inactive unliganded form and in its active glucose-bound form at resolutions of 1.8 and 2.0 Å, respectively. These structures reveal a domain rearrangement of AtHXK1 upon glucose binding. The 2.1 Å resolution structure of AtHXK1(S177A) in the glucose-bound form shows similar glucose-binding interactions as the wild type. A glucose-sensing network has been proposed based on these structures. Taken together, the results provide a structural explanation for the dual functions of AtHXK1.
Collapse
Affiliation(s)
- Juan Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Shun Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Xuemin Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Wei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Jinghua Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Lin Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| |
Collapse
|
12
|
Akum FN, Steinbrenner J, Biedenkopf D, Imani J, Kogel KH. The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. FRONTIERS IN PLANT SCIENCE 2015; 6:906. [PMID: 26579156 PMCID: PMC4620400 DOI: 10.3389/fpls.2015.00906] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/10/2015] [Indexed: 05/18/2023]
Abstract
Pathogenic and mutualistic microbes actively suppress plant defense by secreting effector proteins to manipulate the host responses for their own benefit. Current knowledge about fungal effectors has been mainly derived from biotrophic and hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We studied colonization strategies of the root endophytic basidiomycete Piriformospora indica that colonizes a wide range of plant species thereby establishing long-term mutualistic relationships. The release of P. indica's genome helped to identify hundreds of genes coding for candidate effectors and provides an opportunity to investigate the role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana roots. PIIN_08944 expression was detected during chlamydospore germination, and fungal deletion mutants (PiΔ08944) showed delayed root colonization. Constitutive over-expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression of flg22-induced marker genes of pattern-triggered immunity (PTI) and the salicylic acid (SA) defense pathway, and expression of PIIN_08944 in barley reduced the burst of reactive oxygen species (ROS) triggered by flg22 and chitin. These data suggest that PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and Fusarium graminearum on barley was not affected.
Collapse
|
13
|
Pérez EA, Fernández FJ, Fierro F, Mejía A, Marcos AT, Martín JF, Barrios-González J. Yeast HXK2 gene reverts glucose regulation mutation of penicillin biosynthesis in P. chrysogenum. Braz J Microbiol 2014; 45:873-83. [PMID: 25477921 PMCID: PMC4204972 DOI: 10.1590/s1517-83822014000300017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/14/2014] [Indexed: 11/25/2022] Open
Abstract
The mutant Penicillium chrysogenum strain dogR5, derived from strain AS-P-78, does not respond to glucose regulation of penicillin biosynthesis and β-galactosidase, and is partially deficient in D-glucose phosphorilating activity. We have transformed strain dogR5 with the (hexokinase) hxk2 gene from Saccharomyces cerevisiae. Transformants recovered glucose control of penicillin biosynthesis in different degrees, and acquired a hexokinase (fructose phosphorylating) activity absent in strains AS- P-78 and dogR5. Interestingly, they also recovered glucose regulation of β-galactosidase. On the other hand, glucokinase activity was affected in different ways in the transformants; one of which showed a lower activity than the parental dogR5, but normal glucose regulation of penicillin biosynthesis. Our results show that Penicillium chrysogenum AS-P-78 and dogR5 strains lack hexokinase, and suggest that an enzyme with glucokinase activity is involved in glucose regulation of penicillin biosynthesis and β-galactosidase, thus signaling glucose in both primary and secondary metabolism; however, catalytic and signaling activities seem to be independent.
Collapse
Affiliation(s)
- Edmundo A. Pérez
- Laboratorio de Ingeniería Genética y Metabolitos SecundariosDepartamento de BiotecnologíaUniversidad Autónoma MetropolitanaMexico D.F.MexicoLaboratorio de Ingeniería Genética y Metabolitos Secundarios, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Mexico D.F., Mexico.
| | - Francisco J. Fernández
- Laboratorio de Ingeniería Genética y Metabolitos SecundariosDepartamento de BiotecnologíaUniversidad Autónoma MetropolitanaMexico D.F.MexicoLaboratorio de Ingeniería Genética y Metabolitos Secundarios, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Mexico D.F., Mexico.
| | - Francisco Fierro
- Laboratorio de Ingeniería Genética y Metabolitos SecundariosDepartamento de BiotecnologíaUniversidad Autónoma MetropolitanaMexico D.F.MexicoLaboratorio de Ingeniería Genética y Metabolitos Secundarios, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Mexico D.F., Mexico.
| | - Armando Mejía
- Laboratorio de Ingeniería Genética y Metabolitos SecundariosDepartamento de BiotecnologíaUniversidad Autónoma MetropolitanaMexico D.F.MexicoLaboratorio de Ingeniería Genética y Metabolitos Secundarios, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Mexico D.F., Mexico.
| | - Ana T. Marcos
- Instituto de Biotecnología de LeónLeónSpainInstituto de Biotecnología de León, León, Spain.
| | - Juan F. Martín
- Instituto de Biotecnología de LeónLeónSpainInstituto de Biotecnología de León, León, Spain.
- Área de MicrobiologíaFacultad de Ciencias Biológicas y AmbientalesUniversidad de LeónLeónSpainÁrea de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain.
| | - Javier Barrios-González
- Laboratorio de Ingeniería Genética y Metabolitos SecundariosDepartamento de BiotecnologíaUniversidad Autónoma MetropolitanaMexico D.F.MexicoLaboratorio de Ingeniería Genética y Metabolitos Secundarios, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Mexico D.F., Mexico.
| |
Collapse
|
14
|
Proteomic profiling of Botrytis cinerea conidial germination. Arch Microbiol 2014; 197:117-33. [DOI: 10.1007/s00203-014-1029-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/21/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
|
15
|
Wang M, Zhao Q, Yang J, Jiang B, Wang F, Liu K, Fang X. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei. PLoS One 2013; 8:e72189. [PMID: 23991059 PMCID: PMC3753334 DOI: 10.1371/journal.pone.0072189] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/07/2013] [Indexed: 01/09/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei is evolved to favor solid state growth, bringing up the proposal that the submerged condition normally used during investigations on fungal physiology might be misleading.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Qiushuang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jinghua Yang
- Department of Surgery, VA Boston Healthcare System, Boston University, Boston, Massachusetts, United States of America
- Cancer Research Center, Shandong University School of Medicine, Jinan, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
16
|
Granot D, David-Schwartz R, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:44. [PMID: 23487525 PMCID: PMC3594732 DOI: 10.3389/fpls.2013.00044] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/20/2013] [Indexed: 05/18/2023]
Abstract
Hexose sugars, such as glucose and fructose produced in plants, are ubiquitous in most organisms and are the origin of most of the organic matter found in nature. To be utilized, hexose sugars must first be phosphorylated. The central role of hexose-phosphorylating enzymes has attracted the attention of many researchers, leading to novel discoveries. Only two families of enzymes capable of phosphorylating glucose and fructose have been identified in plants; hexokinases (HXKs), and fructokinases (FRKs). Intensive investigations of these two families in numerous plant species have yielded a wealth of knowledge regarding the genes number, enzymatic characterization, intracellular localization, and developmental and physiological roles of several HXKs and FRKs. The emerging picture indicates that HXK and FRK enzymes found at specific intracellular locations play distinct roles in plant metabolism and development. Individual HXKs were shown for the first time to be dual-function enzymes - sensing sugar levels independent of their catalytic activity and controlling gene expression and major developmental pathways, as well as hormonal interactions. FRK, on the other hand, seems to play a central metabolic role in vascular tissues, controlling the amounts of sugars allocated for vascular development. While a clearer picture of the roles of these two types of enzymes is emerging, many questions remain unsolved, such as the specific tissues and types of cells in which these enzymes function, the roles of individual HXK and FRK genes, and how these enzymes interact with hormones in the regulation of developmental processes. It is anticipated that ongoing efforts will broaden our knowledge of these important plant enzymes and their potential uses in the modification of plant traits.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
17
|
Zhang L, van Kan JAL. Botrytis cinerea mutants deficient in D-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato. MOLECULAR PLANT PATHOLOGY 2013; 14:19-29. [PMID: 22937823 PMCID: PMC6638916 DOI: 10.1111/j.1364-3703.2012.00825.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
D-Galacturonic acid is the most abundant monosaccharide component of pectic polysaccharides that comprise a significant part of most plant cell walls. Therefore, it is potentially an important nutritional factor for Botrytis cinerea when it grows in and through plant cell walls. The d-galacturonic acid catabolic pathway in B. cinerea consists of three catalytic steps converting d-galacturonic acid to pyruvate and l-glyceraldehyde, involving two nonhomologous galacturonate reductase genes (Bcgar1 and Bcgar2), a galactonate dehydratase gene (Bclgd1) and a 2-keto-3-deoxy-l-galactonate aldolase gene (Bclga1). Knockout mutants in each step of the pathway (ΔBcgar1/ΔBcgar2, ΔBclgd1 and ΔBclga1) showed reduced virulence on Nicotiana benthamiana and Arabidopsis thaliana leaves, but not on Solanum lycopersicum leaves. The cell walls of N. benthamiana and A. thaliana leaves were shown to have a higher d-galacturonic acid content relative to those of S. lycopersicum. The observation that mutants displayed a reduction in virulence, especially on plants with a high d-galacturonic acid content in the cell walls, suggests that, in these hosts, d-galacturonic acid has an important role as a carbon nutrient for B. cinerea. However, additional in vitro growth assays with the knockout mutants revealed that B. cinerea growth is reduced when d-galacturonic acid catabolic intermediates cannot proceed through the entire pathway, even when fructose is present as the major, alternative carbon source. These data suggest that the reduced virulence of d-galacturonic acid catabolism-deficient mutants on N. benthamiana and A. thaliana is not only a result of the inability of the mutants to utilize an abundant carbon source as nutrient, but also a result of the growth inhibition by catabolic intermediates.
Collapse
Affiliation(s)
- Lisha Zhang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Antal Z, Rascle C, Cimerman A, Viaud M, Billon-Grand G, Choquer M, Bruel C. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology. PLoS One 2012; 7:e48134. [PMID: 23133556 PMCID: PMC3485016 DOI: 10.1371/journal.pone.0048134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022] Open
Abstract
Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.
Collapse
Affiliation(s)
- Zsuzsanna Antal
- Unité Mixte de Recherche 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Christine Rascle
- Unité Mixte de Recherche 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Agnès Cimerman
- Biologie et Gestion des Risques en Agriculture - Champignons Pathogènes des Plantes, INRA 1290, Thiverval-Grignon, France
| | - Muriel Viaud
- Biologie et Gestion des Risques en Agriculture - Champignons Pathogènes des Plantes, INRA 1290, Thiverval-Grignon, France
| | - Geneviève Billon-Grand
- Unité Mixte de Recherche 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Mathias Choquer
- Unité Mixte de Recherche 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Christophe Bruel
- Unité Mixte de Recherche 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
- * E-mail:
| |
Collapse
|
19
|
The function of MoGlk1 in integration of glucose and ammonium utilization in Magnaporthe oryzae. PLoS One 2011; 6:e22809. [PMID: 21818394 PMCID: PMC3144931 DOI: 10.1371/journal.pone.0022809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/02/2011] [Indexed: 11/19/2022] Open
Abstract
Hexokinases are conserved proteins functioning in glucose sensing and signaling. The rice blast fungus Magnaporthe oryzae contains several hexokinases, including MoHxk1 (hexokinase) and MoGlk1 (glucokinase) encoded respectively by MoHXK1 and MoGLK1 genes. The heterologous expression of MoGlk1 and MoHxk1 in Saccharomyces cerevisiae confirmed their conserved functions. Disruption of MoHXK1 resulted in growth reduction in medium containing fructose as the sole carbon source, whereas disruption of MoGLK1 did not cause the similar defect. However, the ΔMoglk1 mutant displayed decreased proton extrusion and a lower biomass in the presence of ammonium, suggesting a decline in the utilization of ammonium. Additionally, the MoGLK1 allele lacking catalytic activity restored growth to the ΔMoglk1 mutant. Moreover, the expression of MoPMA1 encoding a plasma membrane H+-ATPase decreased in the ΔMoglk1 mutant that can be suppressed by glucose and G-6-P. Thus, MoGlk1, but not MoHxk1, regulates ammonium utilization through a mechanism that is independent from its catalytic activity.
Collapse
|
20
|
Kim H, Smith JE, Ridenour JB, Woloshuk CP, Bluhm BH. HXK1 regulates carbon catabolism, sporulation, fumonisin B₁ production and pathogenesis in Fusarium verticillioides. MICROBIOLOGY-SGM 2011; 157:2658-2669. [PMID: 21719539 DOI: 10.1099/mic.0.052506-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Fusarium verticillioides, a ubiquitous pathogen of maize, virulence and mycotoxigenesis are regulated in response to the types and amounts of carbohydrates present in maize kernels. In this study, we investigated the role of a putative hexokinase-encoding gene (HXK1) in growth, development and pathogenesis. A deletion mutant (Δhxk1) of HXK1 was not able to grow when supplied with fructose as the sole carbon source, and growth was impaired when glucose, sucrose or maltotriose was provided. Additionally, the Δhxk1 mutant produced unusual swollen hyphae when provided with fructose, but not glucose, as the sole carbon source. Moreover, the Δhxk1 mutant was impaired in fructose uptake, although glucose uptake was unaffected. On maize kernels, the Δhxk1 mutant was substantially less virulent than the wild-type, but virulence on maize stalks was not impaired, possibly indicating a metabolic response to tissue-specific differences in plant carbohydrate content. Finally, disruption of HXK1 had a pronounced effect on fungal metabolites produced during colonization of maize kernels; the Δhxk1 mutant produced approximately 50 % less trehalose and 80 % less fumonisin B₁ (FB₁) than the wild-type. The reduction in trehalose biosynthesis likely explains observations of increased sensitivity to osmotic stress in the Δhxk1 mutant. In summary, this study links early events in carbohydrate sensing and glycolysis to virulence and secondary metabolism in F. verticillioides, and thus provides a new foothold from which the genetic regulatory networks that underlie pathogenesis and mycotoxigenesis can be unravelled and defined.
Collapse
Affiliation(s)
- Hun Kim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.,Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jonathon E Smith
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - John B Ridenour
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Burton H Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
21
|
Acero FJF, Carbú M, El-Akhal MR, Garrido C, González-Rodríguez VE, Cantoral JM. Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int J Mol Sci 2011; 12:795-816. [PMID: 21340014 PMCID: PMC3039980 DOI: 10.3390/ijms12010795] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 01/22/2023] Open
Abstract
Proteomics has become one of the most relevant high-throughput technologies. Several approaches have been used for studying, for example, tumor development, biomarker discovery, or microbiology. In this "post-genomic" era, the relevance of these studies has been highlighted as the phenotypes determined by the proteins and not by the genotypes encoding them that is responsible for the final phenotypes. One of the most interesting outcomes of these technologies is the design of new drugs, due to the discovery of new disease factors that may be candidates for new therapeutic targets. To our knowledge, no commercial fungicides have been developed from targeted molecular research, this review will shed some light on future prospects. We will summarize previous research efforts and discuss future innovations, focused on the fight against one of the main agents causing a devastating crops disease, fungal phytopathogens.
Collapse
Affiliation(s)
- Francisco Javier Fernández Acero
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, 11510 Puerto Real, Spain
| | - María Carbú
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, 11510 Puerto Real, Spain
| | - Mohamed Rabie El-Akhal
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, 11510 Puerto Real, Spain
| | - Carlos Garrido
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, 11510 Puerto Real, Spain
| | - Victoria E. González-Rodríguez
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, 11510 Puerto Real, Spain
| | - Jesús M. Cantoral
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, 11510 Puerto Real, Spain
| |
Collapse
|
22
|
Kim H, Woloshuk CP. Functional characterization of fst1 in Fusarium verticillioides during colonization of maize kernels. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:18-24. [PMID: 20854112 DOI: 10.1094/mpmi-03-10-0074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The putative hexose transporter gene fst1 in Fusarium verticillioides was identified previously by microarray analysis as a gene that was more highly expressed during colonization of autoclaved maize endosperm than germ. In contrast to a previous study, in which disruption of fst1 did not affect growth of the pathogen on autoclaved maize kernels, in the current study, we demonstrated that disruption of fst1 delayed growth and symptom development on wounded maize ears. Characterization of the fst1 promoter revealed that regulation of fst1 expression was similar to that of fumonisin biosynthetic (fum) genes; expression was highest during growth on endosperm tissue and repressed by elevated concentrations of ammonium in the growth medium. With a fluorescent tag attached to FST1, the protein localized transiently to the periphery of the cells near the plasma membrane and in vacuole-like structures, suggesting that membrane-localized FST1 was internalized and degraded in vacuoles. Expression of fst1 in a yeast strain lacking hexose transporter genes did not complement the yeast mutation, suggesting that FST1 does not transport glucose, fructose, or mannose. The results indicate a functional role for FST1 in pathogenesis during the colonization of living kernels.
Collapse
Affiliation(s)
- Hun Kim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
23
|
Patel RM, Van Kan JAL, Bailey AM, Foster GD. Inadvertent gene silencing of argininosuccinate synthase (bcass1) in Botrytis cinerea by the pLOB1 vector system. MOLECULAR PLANT PATHOLOGY 2010; 11:613-24. [PMID: 20696000 PMCID: PMC6640230 DOI: 10.1111/j.1364-3703.2010.00632.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For several years, researchers working on the plant pathogen Botrytis cinerea and a number of other related fungi have routinely used the pLOB1 vector system, based on hygromycin resistance, under the control of the Aspergillus nidulans oliC promoter and what was reported to be the beta-tubulin (tubA) terminator. Recently, it has been demonstrated that this vector contains a 446-bp portion of the B. cinerea argininosuccinate synthase gene (bcass1) rather than the tubA terminator. As argininosuccinate synthase is essential for the production of L-arginine, inadvertent gene silencing of bcass1 may result in partial L-arginine auxotrophy and, indeed, may lead to altered phenotypes in planta. In this article, we report our findings relating to possible problems arising from this incorrect plasmid construction. As an absolute baseline, gene disruption of bcass1 was carried out and generated a strict auxotroph, unable to grow without exogenous arginine supplementation. The knockout displayed an alteration in host range in planta, showing a reduction in pathogenicity on strawberries, French bean leaves and tomatoes, but maintained wild-type growth on grape, which is in accordance with the reported arginine availability in such tissues. Deliberate gene silencing of bcass1 mirrored these effects, with strongly silenced lines showing reduced virulence. The degree of silencing as seen by partial auxotrophy was correlated with an observed reduction in virulence. We also showed that inadvertent silencing of bcass1 is possible when using the pLOB1 vector or derivatives thereof. Partial arginine auxotrophy and concomitant reductions in virulence were triggered in approximately 6% of transformants obtained when expressing enhanced green fluorescent protein, luciferase, monomeric red fluorescent protein or beta-glucuronidase using the pLOB1-based expression system, which inadvertently contains 446 bp of the bcass1 coding sequence. We recommend the testing of transformants obtained using this vector system for arginine auxotrophy in order to provide assurance that any observed effects on the development or virulence are a result of the desired genetic alteration rather than accidental bcass1 silencing.
Collapse
Affiliation(s)
- Risha M Patel
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
24
|
Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun 2010; 398:765-70. [PMID: 20633533 DOI: 10.1016/j.bbrc.2010.07.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/20/2022]
Abstract
We have studied the functions of the Trichoderma virens TmkB, a homologue of the yeast cell-wall integrity MAP kinase Slt2, using gene knockout. The functions of TmkB were compared to those of the pathogenicity MAP kinase homologue (TmkA). Like the tmkA loss-of-function mutants, tmkB mutants exhibited reduced radial growth and constitutive conidiation in dark as well as in liquid shake cultures. The tmkB mutants, in contrast to tmkA mutants, had cell-wall integrity defects, as shown by autolysis of the mycelia and increased sensitivity to cell-wall degrading enzymes. Interestingly, the tmkB mutants were not autolytic on the synthetic Vogels minimal medium. The tmkB mutants had attenuated ability to overgrow the plant pathogen Sclerotium rolfsii, while retaining the ability to overgrow Rhizoctonia solani and Pythium spp., a phenotype also exhibited by the tmkA mutants. This first functional analysis of a cell-wall integrity MAPK in Trichoderma spp., a group of economically important fungi, shows the importance of this signaling pathway in biocontrol. Common phenotypes of the TmkA and TmkB pathways suggest that the two MAPKs may share some substrates, perhaps subunits of key transcription factors, thus dependent on two phosphorylation events for their activity.
Collapse
|
25
|
Aspergillus fumigatus catalytic glucokinase and hexokinase: expression analysis and importance for germination, growth, and conidiation. EUKARYOTIC CELL 2010; 9:1120-35. [PMID: 20453072 DOI: 10.1128/ec.00362-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi contain several hexokinases, which are involved either in sugar phosphorylation or in carbon source sensing. Glucose and fructose phosphorylations appear to rely exclusively on glucokinase and hexokinase. Here, we characterized the catalytic glucokinase and hexokinase from the opportunistic human pathogen Aspergillus fumigatus and showed that both enzymes display different biochemical properties and play different roles during growth and development. Glucokinase efficiently activates glucose and mannose but activates fructose only to a minor extent. Hexokinase showed a high efficiency for fructose activation but also activated glucose and mannose. Transcript and activity determinations revealed high levels of glucokinase in resting conidia, whereas hexokinase was associated mainly with the mycelium. Consequentially, a glucokinase mutant showed delayed germination at low glucose concentrations, whereas colony growth was not overly affected. The deletion of hexokinase had only a minor impact on germination but reduced colony growth, especially on sugar-containing media. Transcript determinations from infected mouse lungs revealed the expression of both genes, indicating a contribution to virulence. Interestingly, a double-deletion mutant showed impaired growth not only on sugars but also on nonfermentable nutrients, and growth on gluconeogenic carbon sources was strongly suppressed in the presence of glucose. Furthermore, the glkA hxkA deletion affected cell wall integrity, implying that both enzymes contribute to the cell wall composition. Additionally, the absence of either enzyme deregulated carbon catabolite repression since mutants displayed an induction of isocitrate lyase activity during growth on glucose-ethanol medium. Therefore, both enzymes seem to be required for balancing carbon flux in A. fumigatus and are indispensable for growth under all nutritional conditions.
Collapse
|
26
|
Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2010; 11:105-19. [PMID: 20078780 PMCID: PMC6640347 DOI: 10.1111/j.1364-3703.2009.00579.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In all fungi studied so far, mitogen-activated protein (MAP) kinase cascades serve as central signalling complexes that are involved in various aspects of growth, stress response and infection. In this work, putative components of the yeast Fus3/Kss1-type MAP kinase cascade and the putative downstream transcription factor Ste12 were analysed in the grey mould fungus Botrytis cinerea. Deletion mutants of the MAP triple kinase Ste11, the MAP kinase kinase Ste7 and the MAP kinase adaptor protein Ste50 all resulted in phenotypes similar to that of the previously described BMP1 MAP kinase mutant, namely defects in germination, delayed vegetative growth, reduced size of conidia, lack of sclerotia formation and loss of pathogenicity. Mutants lacking Ste12 showed normal germination, but delayed infection as a result of low penetration efficiency. Two differently spliced ste12 transcripts were detected, and both were able to complement the ste12 mutant, except for a defect in sclerotium formation, which was only corrected by the full-sized transcript. Overexpression of the smaller ste12 transcript resulted in delayed germination and strongly reduced infection. Bc-Gas2, a homologue of Magnaporthe grisea Gas2 that is required for appressorial function, was found to be non-essential for growth and infection, but its expression was under the control of both Bmp1 and Ste12. In summary, the role and regulatory connections of the Fus3/Kss1-type MAP kinase cascade in B. cinerea revealed both common and unique properties compared with those of other plant pathogenic fungi, and provide evidence for a regulatory link between the BMP1 MAP kinase cascade and Ste12.
Collapse
Affiliation(s)
- Astrid Schamber
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
27
|
Dulermo T, Rascle C, Chinnici G, Gout E, Bligny R, Cotton P. Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. THE NEW PHYTOLOGIST 2009; 183:1149-1162. [PMID: 19500266 DOI: 10.1111/j.1469-8137.2009.02890.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The main steps for carbon acquisition and conversion by Botrytis cinerea during pathogenesis of sunflower cotyledon were investigated here. A sequential view of soluble carbon metabolites detected by NMR spectroscopy during infection is presented. Disappearance of plant hexoses and their conversion to fungal metabolites were investigated by expression analysis of an extended gene family of hexose transporters (Bchxts) and of the mannitol pathway, using quantitative PCR. In order to analyse the main fungal metabolic routes used by B. cinerea in real time, we performed, for the first time, in vivo NMR analyses during plant infection. During infection, B. cinerea converts plant hexoses into mannitol. Expression analysis of the sugar porter gene family suggested predominance for transcription induced upon low glucose conditions and regulated according to the developmental phase. Allocation of plant hexoses by the pathogen revealed a conversion to mannitol, trehalose and glycogen for glucose and a preponderant transformation of fructose to mannitol by a more efficient metabolic pathway. Uptake of plant hexoses by B. cinerea is based on a multigenic flexible hexose uptake system. Their conversion into mannitol, enabled by two simultaneously expressed pathways, generates a dynamic intracellular carbon pool.
Collapse
Affiliation(s)
- Thierry Dulermo
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Christine Rascle
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Gaetan Chinnici
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Elisabeth Gout
- UMR 5168 Réponse & Dynamique Cellulaires, Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier-CEA-CNRS-INRA, 17 rue des Martyrs, Grenoble F-38054, France
| | - Richard Bligny
- UMR 5168 Réponse & Dynamique Cellulaires, Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier-CEA-CNRS-INRA, 17 rue des Martyrs, Grenoble F-38054, France
| | - Pascale Cotton
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| |
Collapse
|
28
|
Granot D. Putting plant hexokinases in their proper place. PHYTOCHEMISTRY 2008; 69:2649-54. [PMID: 18922551 DOI: 10.1016/j.phytochem.2008.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/28/2008] [Indexed: 05/08/2023]
Abstract
Hexokinases (HXKs), catalysts of the first essential step in glucose metabolism, have emerged as important enzymes that mediate sugar sensing in many organisms, including plants. The presence of several types of plant HXK isozymes, located in different intracellular locations, has been suggested. However, recent studies have indicated that most plants have only two types of HXKs, a plastidic stromal isozyme and membrane-associated isozymes located mainly adjacent to the mitochondria, but also in the nucleus. The membrane-associated isozymes are involved in sugar sensing and regulate gene expression. The central role of HXKs in plant development and the increasing interest in their role necessitate the correction of inaccuracies that have spread concerning the substrate specificity and intracellular localization of HXK isozymes, as these inaccuracies are affecting the hypothesized roles presented for these isozymes and shaping future research in this active field.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|