1
|
Lalbiaktluangi C, Yadav MK, Singh PK, Singh A, Iyer M, Vellingiri B, Zomuansangi R, Zothanpuia, Ram H. A cooperativity between virus and bacteria during respiratory infections. Front Microbiol 2023; 14:1279159. [PMID: 38098657 PMCID: PMC10720647 DOI: 10.3389/fmicb.2023.1279159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Respiratory tract infections remain the leading cause of morbidity and mortality worldwide. The burden is further increased by polymicrobial infection or viral and bacterial co-infection, often exacerbating the existing condition. Way back in 1918, high morbidity due to secondary pneumonia caused by bacterial infection was known, and a similar phenomenon was observed during the recent COVID-19 pandemic in which secondary bacterial infection worsens the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) condition. It has been observed that viruses paved the way for subsequent bacterial infection; similarly, bacteria have also been found to aid in viral infection. Viruses elevate bacterial infection by impairing the host's immune response, disrupting epithelial barrier integrity, expression of surface receptors and adhesion proteins, direct binding of virus to bacteria, altering nutritional immunity, and effecting the bacterial biofilm. Similarly, the bacteria enhance viral infection by altering the host's immune response, up-regulation of adhesion proteins, and activation of viral proteins. During co-infection, respiratory bacterial and viral pathogens were found to adapt and co-exist in the airways of their survival and to benefit from each other, i.e., there is a cooperative existence between the two. This review comprehensively reviews the mechanisms involved in the synergistic/cooperativity relationship between viruses and bacteria and their interaction in clinically relevant respiratory infections.
Collapse
Affiliation(s)
- C. Lalbiaktluangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ruth Zomuansangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| |
Collapse
|
2
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
4
|
McIntosh EDG, Feemster K, Rello J. Protecting adults at risk of pneumococcal infection and influenza from exposure to SARS-CoV-2. Hum Vaccin Immunother 2022; 18:1-7. [PMID: 34406914 PMCID: PMC8920219 DOI: 10.1080/21645515.2021.1957647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
There is a paucity of evidence linking pneumococcal infection and influenza with SARS-CoV-2 and COVID-19. There is circumstantial evidence of the possibility of an association between S. pneumoniae and SARS-CoV-2 such as the increased binding of S. pneumoniae to coronavirus-infected human airway epithelium, the frequent use of broad-spectrum antibiotics in the management of COVID-19 which could mask secondary bacterial infection, and the observation that pneumococcal vaccination is associated with decreased SARS-CoV-2 nasopharyngeal swab positivity. We performed a targeted literature review for the year 2020, using search terms S. pneumoniae, influenza, SARS-CoV-2, and found 25 relevant articles of a total of 291. Pneumococcal and influenza vaccinations have the potential to contribute toward efforts aimed at reducing the health burden of SARS-CoV-2, especially by reducing preventable admissions to hospital for pneumonia and the consequent risk of nosocomial SARS-CoV-2 transmission.
Collapse
Affiliation(s)
| | - K. Feemster
- Medical Affairs, Pneumococcal Vaccines, Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc, Kenilworth, NJ, USA
| | - J. Rello
- Universitat Internacional de Catalunya, Head Research Group, Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES) and Head, Clinical Research/Epidemiology in Pneumonia & Sepsis (CRIPS), Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
| |
Collapse
|
5
|
The Prevalence and Impact of Coinfection and Superinfection on the Severity and Outcome of COVID-19 Infection: An Updated Literature Review. Pathogens 2022; 11:pathogens11040445. [PMID: 35456120 PMCID: PMC9027948 DOI: 10.3390/pathogens11040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Patients with viral illness are at higher risk of secondary infections—whether bacterial, viral, or parasitic—that usually lead to a worse prognosis. In the setting of Corona Virus Disease 2019 (COVID-19), the Severe Acute Respiratory Syndrome Coronavirus-type 2 (SARS-CoV-2) infection may be preceded by a prior microbial infection or has a concurrent or superinfection. Previous reports documented a significantly higher risk of microbial coinfection in SARS-CoV-2-positive patients. Initial results from the United States (U.S.) and Europe found a significantly higher risk of mortality and severe illness among hospitalized patients with SARS-CoV-2 and bacterial coinfection. However, later studies found contradictory results concerning the impact of coinfection on the outcomes of COVID-19. Thus, we conducted the present literature review to provide updated evidence regarding the prevalence of coinfection and superinfection amongst patients with SARS-CoV-2, possible mechanisms underlying the higher risk of coinfection and superinfection in SARS-CoV-2 patients, and the impact of coinfection and superinfection on the outcomes of patients with COVID-19.
Collapse
|
6
|
Loke MF, Yadav I, Lim TK, van der Maarel JRC, Sham LT, Chow VT. SARS-CoV-2 Spike Protein and Mouse Coronavirus Inhibit Biofilm Formation by Streptococcus pneumoniae and Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23063291. [PMID: 35328711 PMCID: PMC8950232 DOI: 10.3390/ijms23063291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of co-infections or superinfections with bacterial pathogens in COVID-19 patients is associated with poor outcomes, including increased morbidity and mortality. We hypothesized that SARS-CoV-2 and its components interact with the biofilms generated by commensal bacteria, which may contribute to co-infections. This study employed crystal violet staining and particle-tracking microrheology to characterize the formation of biofilms by Streptococcus pneumoniae and Staphylococcus aureus that commonly cause secondary bacterial pneumonia. Microrheology analyses suggested that these biofilms were inhomogeneous soft solids, consistent with their dynamic characteristics. Biofilm formation by both bacteria was significantly inhibited by co-incubation with recombinant SARS-CoV-2 spike S1 subunit and both S1 + S2 subunits, but not with S2 extracellular domain nor nucleocapsid protein. Addition of spike S1 and S2 antibodies to spike protein could partially restore bacterial biofilm production. Furthermore, biofilm formation in vitro was also compromised by live murine hepatitis virus, a related beta-coronavirus. Supporting data from LC-MS-based proteomics of spike-biofilm interactions revealed differential expression of proteins involved in quorum sensing and biofilm maturation, such as the AI-2E family transporter and LuxS, a key enzyme for AI-2 biosynthesis. Our findings suggest that these opportunistic pathogens may egress from biofilms to resume a more virulent planktonic lifestyle during coronavirus infections. The dispersion of pathogens from biofilms may culminate in potentially severe secondary infections with poor prognosis. Further detailed investigations are warranted to establish bacterial biofilms as risk factors for secondary pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Mun Fai Loke
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (M.F.L.); (L.-T.S.)
| | - Indresh Yadav
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; (I.Y.); (J.R.C.v.d.M.)
| | - Teck Kwang Lim
- Protein and Proteomics Centre, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore;
| | - Johan R. C. van der Maarel
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; (I.Y.); (J.R.C.v.d.M.)
| | - Lok-To Sham
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (M.F.L.); (L.-T.S.)
| | - Vincent T. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (M.F.L.); (L.-T.S.)
- Correspondence:
| |
Collapse
|
7
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Mateen BA, Samanta S, Tullie S, O'Neill S, Cargill Z, Kelly G, Brennan E, Patel M, Al-Agil M, Galloway J, Teo J, Shawcross DL, Kent AJ, Hayee B. Diarrhoea and preadmission antibiotic exposure in COVID-19: a retrospective cohort study of 1153 hospitalised patients. BMJ Open Gastroenterol 2021; 8:e000593. [PMID: 34489301 PMCID: PMC8423520 DOI: 10.1136/bmjgast-2020-000593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/14/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The aims of this study were to describe community antibiotic prescribing patterns in individuals hospitalised with COVID-19, and to determine the association between experiencing diarrhoea, stratified by preadmission exposure to antibiotics, and mortality risk in this cohort. DESIGN/METHODS Retrospective study of the index presentations of 1153 adult patients with COVID-19, admitted between 1 March 2020 and 29 June 2020 in a South London NHS Trust. Data on patients' medical history (presence of diarrhoea, antibiotic use in the previous 14 days, comorbidities); demographics (age, ethnicity, and body mass index); and blood test results were extracted. Time to event modelling was used to determine the risk of mortality for patients with diarrhoea and/or exposure to antibiotics. RESULTS 19.2% of the cohort reported diarrhoea on presentation; these patients tended to be younger, and were less likely to have recent exposure to antibiotics (unadjusted OR 0.64, 95% CI 0.42 to 0.97). 19.1% of the cohort had a course of antibiotics in the 2 weeks preceding admission; this was associated with dementia (unadjusted OR 2.92, 95% CI 1.14 to 7.49). After adjusting for confounders, neither diarrhoea nor recent antibiotic exposure was associated with increased mortality risk. However, the absence of diarrhoea in the presence of recent antibiotic exposure was associated with a 30% increased risk of mortality. CONCLUSION Community antibiotic use in patients with COVID-19, prior to hospitalisation, is relatively common, and absence of diarrhoea in antibiotic-exposed patients may be associated with increased risk of mortality. However, it is unclear whether this represents a causal physiological relationship or residual confounding.
Collapse
Affiliation(s)
- Bilal Akhter Mateen
- Institute of Health Informatics, University College London, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sandip Samanta
- King's College Hospital NHS Foundation Trust, London, UK
| | | | - Sarah O'Neill
- King's College Hospital NHS Foundation Trust, London, UK
| | - Zillah Cargill
- King's College Hospital NHS Foundation Trust, London, UK
| | - Gillian Kelly
- King's College Hospital NHS Foundation Trust, London, UK
| | - Ewen Brennan
- King's College Hospital NHS Foundation Trust, London, UK
| | - Mehul Patel
- King's College Hospital NHS Foundation Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - James Galloway
- King's College Hospital NHS Foundation Trust, London, UK
| | - James Teo
- King's College Hospital NHS Foundation Trust, London, UK
| | - Debbie L Shawcross
- King's College Hospital NHS Foundation Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Alexandra J Kent
- King's College Hospital NHS Foundation Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Bu'Hussain Hayee
- King's College Hospital NHS Foundation Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons. Viruses 2021; 13:v13091725. [PMID: 34578306 PMCID: PMC8472850 DOI: 10.3390/v13091725] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Respiratory tract infections constitute a significant public health problem, with a therapeutic arsenal that remains relatively limited and that is threatened by the emergence of antiviral and/or antibiotic resistance. Viral–bacterial co-infections are very often associated with the severity of these respiratory infections and have been explored mainly in the context of bacterial superinfections following primary influenza infection. This review summarizes our current knowledge of the mechanisms underlying these co-infections between respiratory viruses (influenza viruses, RSV, and SARS-CoV-2) and bacteria, at both the physiological and immunological levels. This review also explores the importance of the microbiome and the pathological context in the evolution of these respiratory tract co-infections and presents the different in vitro and in vivo experimental models available. A better understanding of the complex functional interactions between viruses/bacteria and host cells will allow the development of new, specific, and more effective diagnostic and therapeutic approaches.
Collapse
|
10
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
11
|
Park DE, Higdon MM, Prosperi C, Baggett HC, Brooks WA, Feikin DR, Hammitt LL, Howie SRC, Kotloff KL, Levine OS, Madhi SA, Murdoch DR, O’Brien KL, Scott JAG, Thea DM, Antonio M, Awori JO, Baillie VL, Bunthi C, Kwenda G, Mackenzie GA, Moore DP, Morpeth SC, Mwananyanda L, Paveenkittiporn W, Ziaur Rahman M, Rahman M, Rhodes J, Sow SO, Tapia MD, Deloria Knoll M. Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatr Infect Dis J 2021; 40:503-512. [PMID: 33883479 PMCID: PMC8104011 DOI: 10.1097/inf.0000000000003139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Severity of viral respiratory illnesses can be increased with bacterial coinfection and can vary by sex, but influence of coinfection and sex on human endemic coronavirus (CoV) species, which generally cause mild to moderate respiratory illness, is unknown. We evaluated CoV and pneumococcal co-detection by sex in childhood pneumonia. METHODS In the 2011-2014 Pneumonia Etiology Research for Child Health study, nasopharyngeal and oropharyngeal (NP/OP) swabs and other samples were collected from 3981 children <5 years hospitalized with severe or very severe pneumonia in 7 countries. Severity by NP/OP detection status of CoV (NL63, 229E, OC43 or HKU1) and high-density (≥6.9 log10 copies/mL) pneumococcus (HDSpn) by real-time polymerase chain reaction was assessed by sex using logistic regression adjusted for age and site. RESULTS There were 43 (1.1%) CoV+/HDSpn+, 247 CoV+/HDSpn-, 449 CoV-/HDSpn+ and 3149 CoV-/HDSpn- cases with no significant difference in co-detection frequency by sex (range 51.2%-64.0% male, P = 0.06). More CoV+/HDSpn+ pneumonia was very severe compared with other groups for both males (13/22, 59.1% versus range 29.1%-34.7%, P = 0.04) and females (10/21, 47.6% versus 32.5%-43.5%, P = 0.009), but only male CoV+/HDSpn+ required supplemental oxygen more frequently (45.0% versus 20.6%-28.6%, P < 0.001) and had higher mortality (35.0% versus 5.3%-7.1%, P = 0.004) than other groups. For females with CoV+/HDSpn+, supplemental oxygen was 25.0% versus 24.8%-33.3% (P = 0.58) and mortality was 10.0% versus 9.2%-12.9% (P = 0.69). CONCLUSIONS Co-detection of endemic CoV and HDSpn was rare in children hospitalized with pneumonia, but associated with higher severity and mortality in males. Findings may warrant investigation of differences in severity by sex with co-detection of HDSpn and SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel E. Park
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | - Melissa M. Higdon
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christine Prosperi
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Henry C. Baggett
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - W. Abdullah Brooks
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
| | - Daniel R. Feikin
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Laura L. Hammitt
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Steve R. C. Howie
- Medical Research Council Unit, Basse, The Gambia
- Department of Paediatrics, University of Auckland, New Zealand
| | - Karen L. Kotloff
- Department of Pediatrics and Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orin S. Levine
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Bill & Melinda Gates Foundation, Seattle, Washington
| | - Shabir A. Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - David R. Murdoch
- Department of Pathology and Biomedical Sciences, University of Otago
- Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Katherine L. O’Brien
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - J. Anthony G. Scott
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Donald M. Thea
- Department of Global Health and Development, Boston University School of Public Health, Boston, Massachusetts
| | - Martin Antonio
- Medical Research Council Unit, Basse, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Juliet O. Awori
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Vicky L. Baillie
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit
| | - Charatdao Bunthi
- Division of Global Health Protection, Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Geoffrey Kwenda
- Right to Care-Zambia
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Grant A. Mackenzie
- Medical Research Council Unit, Basse, The Gambia
- Murdoch Children’s Research Institute, Melbourne, Australia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Paediatrics, University of Melbourne, Australia
| | - David P. Moore
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit
- Department of Paediatrics & Child Health, Chris Hani Baragwanath Academic Hospital and University of the Witwatersrand, South Africa
| | - Susan C. Morpeth
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Microbiology Laboratory, Middlemore Hospital, Counties Manukau District Health Board, Auckland, New Zealand
| | - Lawrence Mwananyanda
- Department of Global Health and Development, Boston University School of Public Health, Boston, Massachusetts
- EQUIP-Zambia, Lusaka, Zambia
| | | | - Mohammed Ziaur Rahman
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
| | - Mustafizur Rahman
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
| | - Julia Rhodes
- Division of Global Health Protection, Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Samba O. Sow
- Centre pour le Développement des Vaccins (CVD-Mali), Bamako, Mali
| | - Milagritos D. Tapia
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria Deloria Knoll
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
12
|
de Menezes BRC, Rodrigues KF, Schatkoski VM, Pereira RM, Ribas RG, Montanheiro TLDA, Thim GP. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 2021; 9:1745-1761. [PMID: 33508058 DOI: 10.1039/d0tb01783c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cases of respiratory diseases have been increasing around the world, affecting the health and quality of life of millions of people every year. Chronic respiratory diseases (CRDs) and acute respiratory infections (ARIs) are responsible for many hospital admissions and deaths, requiring sophisticated treatments that facilitate the delivery of therapeutics to specific target sites with controlled release. In this context, different nanoparticles (NPs) have been explored to match this demand, such as lipid, liposome, protein, carbon-based, polymeric, metallic, oxide, and magnetic NPs. The use of NPs as drug delivery systems can improve the efficacy of commercial drugs due to their advantages related to sustained drug release, targeting effects, and patient compliance. The current review presents an updated summary of recent advances regarding the use of NPs as drug delivery systems to treat diseases related to the respiratory tract, such as CRDs and ARIs. The latest applications presented in the literature were considered, and the opportunities and challenges of NPs in the drug delivery field are discussed.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Karla Faquine Rodrigues
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Vanessa Modelski Schatkoski
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Raíssa Monteiro Pereira
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Renata Guimarães Ribas
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Thaís Larissa do Amaral Montanheiro
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Gilmar Patrocínio Thim
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| |
Collapse
|
13
|
Nicol MP, MacGinty R, Workman L, Stadler JAM, Myer L, Allen V, Ah Tow Edries L, Zar HJ. A Longitudinal Study of the Epidemiology of Seasonal Coronaviruses in an African Birth Cohort. J Pediatric Infect Dis Soc 2021; 10:607-614. [PMID: 33528016 PMCID: PMC7928775 DOI: 10.1093/jpids/piaa168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Since non-epidemic, seasonal human coronaviruses (sHCoV) commonly infect children, an improved understanding of the epidemiology of these infections may offer insights into the context of severe acute respiratory syndrome (SARS)-CoV-2. We investigated the epidemiology of sHCoV infection during the first year of life, including risk factors and association with lower respiratory tract infection (LRTI). METHODS We conducted a nested case-control study of infants enrolled in a birth cohort near Cape Town, South Africa, from 2012 to 2015. LRTI surveillance was implemented, and nasopharyngeal swabs were collected fortnightly over infancy. Quantitative PCR detected respiratory pathogens, including coronaviruses-229E, -NL63, -OC43, and -HKU1. Swabs were tested from infants at the time of LRTI and from the 90 days prior as well as from age-matched control infants from the cohort over the equivalent period. RESULTS In total, 885 infants were included, among whom 464 LRTI events occurred. Of the 4751 samples tested for sHCoV, 9% tested positive, with HCoV-NL63 the most common. Seasonal HCoV detection was associated with LRTI; this association was strongest for coronavirus-OC43, which was also found in all sHCoV-associated hospitalizations. Birth in winter was associated with sHCoV-LRTI, but there were no clear seasonal differences in detection. Co-detection of Streptococcus pneumoniae was weakly associated with sHCoV-LRTI (odds ratio: 1.8; 95% confidence interval: 0.9-3.6); detection of other respiratory viruses or bacteria was not associated with sHCoV status. CONCLUSIONS Seasonal HCoV infections were common and associated with LRTI, particularly sHCoV-OC43, which is most closely related to the SARS group of coronaviruses. Interactions of coronaviruses with bacteria in the pathogenesis of LRTI require further study.
Collapse
Affiliation(s)
- Mark P Nicol
- Division of Infection and Immunity, School of Biomedical Sciences, Faculty of Health Sciences, University of Western Australia, Perth, Australia
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rae MacGinty
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| | - Jacob A M Stadler
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| | - Landon Myer
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Veronica Allen
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lemese Ah Tow Edries
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Weerts EAWS, Matthijs MGR, Bonhof J, van Haarlem DA, Dwars RM, Gröne A, Verheije MH, Jansen CA. The contribution of the immune response to enhanced colibacillosis upon preceding viral respiratory infection in broiler chicken in a dual infection model. Vet Immunol Immunopathol 2021; 238:110276. [PMID: 34126552 DOI: 10.1016/j.vetimm.2021.110276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023]
Abstract
Colibacillosis in chickens caused by avian pathogenic Escherichia coli (APEC) is known to be aggravated by preceding infections with infectious bronchitis virus (IBV), Newcastle disease virus (NDV) and avian metapneumovirus (aMPV). The mechanism behind these virus-induced predispositions for secondary bacterial infections is poorly understood. Here we set out to investigate the immunopathogenesis of enhanced respiratory colibacillosis after preceding infections with these three viruses. Broilers were inoculated intratracheally with APEC six days after oculonasal and intratracheal inoculation with IBV, NDV, aMPV or buffered saline. After euthanasia at 1 and 8 days post infection (dpi) with APEC, birds were macroscopically examined and tissue samples were taken from the trachea, lungs and air sacs. In none of the groups differences in body weight were observed during the course of infection. Macroscopic lesion scoring revealed most severe tissue changes after NDV-APEC and IBV-APEC infection. Histologically, persistent tracheitis was detected in all virus-APEC groups, but not after APEC-only infection. In the lungs, mostly APEC-associated transient pneumonia was observed. Severe and persistent airsacculitis was present after NDV-APEC and IBV-APEC infection. Bacterial antigen was detected by immunohistochemistry only at 1 dpi APEC, predominantly in NDV-APEC- and IBV-APEC-infected lungs. Higher numbers of CD4+ and CD8+ lymphocytes persisted over time in NDV-APEC- and IBV-APEC-infected tracheas, as did CD4+ lymphocytes in NBV-APEC- and IBV-APEC-infected air sacs. KUL01+ cells, which include monocytes and macrophages, and TCRγδ+ lymphocytes were observed mostly in lung tissue in all infected groups with transient higher numbers of KUL01+ cells over time and higher numbers of TCRγδ+ lymphocytes mainly at 8 dpi. qPCR analysis revealed mostly trends of transient higher levels of IL-6 and IFNγ mRNA in lung tissue after IBV-APEC and also NDV-APEC infection and persistent higher levels of IL-6 mRNA after aMPV-APEC infection. In spleens, transient higher levels of IL-17 mRNA and more persistent higher levels of IL-6 mRNA were observed after all co-infections. No changes in IL-10 mRNA expression were seen. These results demonstrate a major impact of dual infections with respiratory viruses and APEC, compared to a single infection with APEC, on the chicken respiratory tract and suggest that immunopathogenesis contributes to lesion persistence.
Collapse
Affiliation(s)
- Erik A W S Weerts
- Division of Pathology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | - Mieke G R Matthijs
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Josette Bonhof
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Daphne A van Haarlem
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - R Marius Dwars
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Andrea Gröne
- Division of Pathology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - M Hélène Verheije
- Division of Pathology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
15
|
Feldman C, Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia (Nathan) 2021; 13:5. [PMID: 33894790 PMCID: PMC8068564 DOI: 10.1186/s41479-021-00083-w] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND It has been recognised for a considerable time-period, that viral respiratory infections predispose patients to bacterial infections, and that these co-infections have a worse outcome than either infection on its own. However, it is still unclear what exact roles co-infections and/or superinfections play in patients with COVID-19 infection. MAIN BODY This was an extensive review of the current literature regarding co-infections and superinfections in patients with SARS-CoV-2 infection. The definitions used were those of the Centers for Disease Control and Prevention (US), which defines coinfection as one occurring concurrently with the initial infection, while superinfections are those infections that follow on a previous infection, especially when caused by microorganisms that are resistant, or have become resistant, to the antibiotics used earlier. Some researchers have envisioned three potential scenarios of bacterial/SARS-CoV-2 co-infection; namely, secondary SARS-CoV-2 infection following bacterial infection or colonisation, combined viral/bacterial pneumonia, or secondary bacterial superinfection following SARS-CoV-2. There are a myriad of published articles ranging from letters to the editor to systematic reviews and meta-analyses describing varying ranges of co-infection and/or superinfection in patients with COVID-19. The concomitant infections described included other respiratory viruses, bacteria, including mycobacteria, fungi, as well as other, more unusual, pathogens. However, as will be seen in this review, there is often not a clear distinction made in the literature as to what the authors are referring to, whether true concomitant/co-infections or superinfections. In addition, possible mechanisms of the interactions between viral infections, including SARS-CoV-2, and other infections, particularly bacterial infections are discussed further. Lastly, the impact of these co-infections and superinfections in the severity of COVID-19 infections and their outcome is also described. CONCLUSION The current review describes varying rates of co-infections and/or superinfections in patients with COVID-19 infections, although often a clear distinction between the two is not clear in the literature. When they occur, these infections appear to be associated with both severity of COVID-19 as well as poorer outcomes.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Bovine respiratory coronavirus enhances bacterial adherence by upregulating expression of cellular receptors on bovine respiratory epithelial cells. Vet Microbiol 2021; 255:109017. [PMID: 33639390 DOI: 10.1016/j.vetmic.2021.109017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/14/2021] [Indexed: 11/22/2022]
Abstract
Bovine coronavirus (BCoV) is one of the agents causing bovine respiratory disease complex (BRDC), with single infection tending to be mild to moderate; the probability of developing pneumonia in BRDC may be affected by viral and bacterial combinations. Previously, we reported that bovine respiratory syncytial virus (BRSV) infection enhances adherence of Pasteurella multocida (PM) to cells derived from the bovine lower respiratory tract but that BRSV infection in cells derived from the upper respiratory tract reduces PM adherence. In this study, we sought to clarify whether the modulation of bacterial adherence to cells derived from the bovine upper and lower respiratory tract is shared by other BRDC-related viruses by infecting bovine epithelial cells from the trachea, bronchus and lung with BCoV and/or PM. The results showed that cells derived from both the upper and lower respiratory tract were susceptible to BCoV infection. Furthermore, all cells infected with BCoV exhibited increased PM adherence via upregulation of two major bacterial adhesion molecules, intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAF-R), suggesting that compared with BRSV infection, BCoV infection differentially modulates bacterial adherence. In summary, we identified distinct interaction between bovine respiratory viruses and bacterial infections.
Collapse
|
17
|
Pneumococcal Conjugate Vaccine Protection against Coronavirus-Associated Pneumonia Hospitalization in Children Living with and without HIV. mBio 2021; 12:mBio.02347-20. [PMID: 33419872 PMCID: PMC7845626 DOI: 10.1128/mbio.02347-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SARS-CoV-2 may cause severe hospitalization, but little is known about the role of secondary bacterial infection in these severe cases, beyond the observation of high levels of reported inflammatory markers, associated with bacterial infection, such as procalcitonin. We did a secondary analysis of a double-blind randomized trial of pneumococcal conjugate vaccine (PCV) to examine its impact on human coronavirus (CoV) infections before the pandemic. In December 2019 a new coronavirus (CoV) emerged as a human pathogen, SARS-CoV-2. There are few data on human coronavirus infections among individuals living with HIV. In this study we probed the role of pneumococcal coinfections with seasonal CoVs among children living with and without HIV hospitalized for pneumonia. We also described the prevalence and clinical manifestations of these infections. A total of 39,836 children who participated in a randomized, double-blind, placebo-controlled clinical trial on the efficacy of a 9-valent pneumococcal conjugate vaccine (PCV9) were followed for lower respiratory tract infection hospitalizations until 2 years of age. Nasopharyngeal aspirates were collected at the time of hospitalization and were screened by PCR for four seasonal CoVs. The frequency of CoV-associated pneumonia was higher in children living with HIV (19.9%) than in those without HIV (7.6%, P < 0.001). Serial CoV infections were detected in children living with HIV. The case fatality risk among children with CoV-associated pneumonia was higher in those living with HIV (30.4%) than without HIV (2.9%, P = 0.001). C-reactive protein and procalcitonin levels were elevated in 36.8% (≥40 mg/liter) and 64.7% (≥0.5 ng/ml), respectively, of the fatal cases living with HIV. Among children without HIV, there was a 64.0% (95% CI: 22.9% to 83.2%) lower incidence of CoV-associated pneumonia hospitalizations among PCV9 recipients compared to placebo recipients. These data suggest that Streptococcus pneumoniae infections might have a role in the development of pneumonia associated with endemic CoVs, that PCV may prevent pediatric CoV-associated hospitalization, and that children living with HIV with CoV infections develop more severe outcomes.
Collapse
|
18
|
Anjorin AA, Abioye AI, Asowata OE, Soipe A, Kazeem MI, Adesanya IO, Raji MA, Adesanya M, Oke FA, Lawal FJ, Kasali BA, Omotayo MO. Comorbidities and the COVID-19 pandemic dynamics in Africa. Trop Med Int Health 2020; 26:2-13. [PMID: 33012053 PMCID: PMC7675305 DOI: 10.1111/tmi.13504] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The debate around the COVID‐19 response in Africa has mostly focused on effects and implications of public health measures, in light of the socio‐economic peculiarities of the continent. However, there has been limited exploration of the impact of differences in epidemiology of key comorbidities, and related healthcare factors, on the course and parameters of the pandemic. We summarise what is known about (a) the pathophysiological processes underlying the interaction of coinfections and comorbidities in shaping prognosis of COVID‐19 patients, (b) the epidemiology of key coinfections and comorbidities, and the state of related healthcare infrastructure that might shape the course of the pandemic, and (c) implications of (a) and (b) for pandemic management and post‐pandemic priorities. There is a critical need to generate empirical data on clinical profiles and the predictors of morbidity and mortality from COVID‐19. Improved protocols for acute febrile illness and access to diagnostic facilities, not just for SARS‐CoV‐2 but also other viral infections, are of urgent importance. The role of malaria, HIV/TB and chronic malnutrition on pandemic dynamics should be further investigated. Although chronic non‐communicable diseases account for a relatively lighter burden, they have a significant effect on COVID‐19 prognosis, and the fragility of care delivery systems implies that adjustments to clinical procedures and re‐organisation of care delivery that have been useful in other regions are unlikely to be feasible. Africa is a large region with local variations in factors that can shape pandemic dynamics. A one‐size‐fits‐all response is not optimal, but there are broad lessons relating to differences in epidemiology and healthcare delivery factors, that should be considered as part of a regional COVID‐19 response framework.
Collapse
Affiliation(s)
- A A Anjorin
- Department of Microbiology (Virology Research), Lagos State University, Ojo, Lagos, Nigeria
| | - A I Abioye
- Population Health Science Program & Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - O E Asowata
- Africa Health Research Institute, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - A Soipe
- Department of Medicine, Division of Nephrology, Upstate Medical University, Syracuse, NY, USA
| | - M I Kazeem
- Department of Biochemistry, Lagos State University, Ojo, Lagos, Nigeria
| | | | - M A Raji
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - M Adesanya
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,CPT US Army Reserve, Houston, TX, USA.,Nursing Department, University of Texas at Arlington, Arlington, TX, USA
| | - F A Oke
- Department of Internal Medicine, Brookdale University Hospital Medical Centre, New York City, NY, USA
| | - F J Lawal
- Department of Infectious Diseases, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - B A Kasali
- Independent Researcher, Seattle, WA, USA
| | - M O Omotayo
- Centre for Global Health and Division of Pediatric Global Health, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HAA, Jeda AS, Dashtbin S, Jalalifar S, Mohammadzadeh R, Teimoori A, Tari K, Salari M, Ghiasvand S, Kazemi S, Yousefimashouf R, Keyvani H, Karampoor S. Bacterial co-infections with SARS-CoV-2. IUBMB Life 2020; 72:2097-2111. [PMID: 32770825 PMCID: PMC7436231 DOI: 10.1002/iub.2356] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
The pandemic coronavirus disease 2019 (COVID‐19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID‐19 are underway. Respiratory viral infections, such as influenza, predispose patients to co‐infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co‐infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS‐CoV‐2). Although antibiotics do not directly affect SARS‐CoV‐2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co‐infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co‐infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID‐19. Also, the antibiotic‐resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co‐infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID‐19.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pedram Goodarzi
- Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ayda Soltani
- School of Basic Sciences, Ale-Taha Institute of Higher Education, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Alnahrain University College of Medicine, Iraq
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamran Tari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Salari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Ghiasvand
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Sudaryatma PE, Saito A, Mekata H, Kubo M, Fahkrajang W, Mazimpaka E, Okabayashi T. Bovine Respiratory Syncytial Virus Enhances the Adherence of Pasteurella multocida to Bovine Lower Respiratory Tract Epithelial Cells by Upregulating the Platelet-Activating Factor Receptor. Front Microbiol 2020; 11:1676. [PMID: 32849350 PMCID: PMC7411089 DOI: 10.3389/fmicb.2020.01676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Coinfection by bovine respiratory syncytial virus (BRSV) and Pasteurella multocida (PM) frequently has been observed in cattle that develop severe pneumonia. We recently reported that BRSV infection significantly increased PM adherence to bovine lower respiratory tract epithelial cells. However, the molecular mechanisms of enhanced PM adherence are not completely understood. To investigate whether BRSV infection regulates any cellular adherence receptors on bovine bronchus- and lung-epithelial cells, we performed proteomic and functional analyses. The proteomic analysis showed that BRSV infection increased the accumulation of the platelet-activating factor receptor (PAFR) in both cell types. Molecular experiments, including specific blockade, knockdown, and overexpression of PAFR, indicated that PM adherence to these cell types depended on PAFR expression. These findings highlight the role, in cattle with severe pneumonia, of the synergistic effect of coinfection by BRSV and PM in the lower respiratory tract.
Collapse
Affiliation(s)
- Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Akatsuki Saito
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.,Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan
| | - Meiko Kubo
- Takazaki Meat Inspection Center, Miyazaki, Japan
| | - Watcharapong Fahkrajang
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Eugene Mazimpaka
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tamaki Okabayashi
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
21
|
Sampson V, Kamona N, Sampson A. Could there be a link between oral hygiene and the severity of SARS-CoV-2 infections? Br Dent J 2020; 228:971-975. [PMID: 32591714 PMCID: PMC7319209 DOI: 10.1038/s41415-020-1747-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
On 30 January 2020, the World Health Organisation identified COVID-19, caused by the virus SARS-CoV-2, to be a global emergency. The risk factors already identified for developing complications from a COVID-19 infection are age, gender and comorbidities such as diabetes, hypertension, obesity and cardiovascular disease. These risk factors, however, do not account for the other 52% of deaths arising from COVID-19 in often seemingly healthy individuals. This paper investigates the potential link between SARS-CoV-2 and bacterial load, questioning whether bacteria may play a role in bacterial superinfections and complications such as pneumonia, acute respiratory distress syndrome and sepsis. The connection between COVID-19 complications and oral health and periodontal disease is also examined, as the comorbidities at highest risk of COVID-19 complications also cause imbalances in the oral microbiome and increase the risk of periodontal disease. We explore the connection between high bacterial load in the mouth and post-viral complications, and how improving oral health may reduce the risk of complications from COVID-19.
Collapse
Affiliation(s)
| | - Nawar Kamona
- Centre for Nutrition Education & Lifestyle Management, London, RG40 1DH, UK
| | - Ariane Sampson
- Orthodontics, Cambridge University Hospital Trust, Cambridge, CB1 00Q, UK
| |
Collapse
|
22
|
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Tsatsakis A, Tinkov AA. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med 2020; 46:17-26. [PMID: 32319538 PMCID: PMC7255455 DOI: 10.3892/ijmm.2020.4575] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
In view of the emerging COVID‑19 pandemic caused by SARS‑CoV‑2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID‑19. In vitro experiments demonstrate that Zn2+ possesses antiviral activity through inhibition of SARS‑CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn2+ may decrease the activity of angiotensin‑converting enzyme 2 (ACE2), known to be the receptor for SARS‑CoV‑2. Improved antiviral immunity by zinc may also occur through up‑regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti‑inflammatory activity by inhibiting NF‑κB signaling and modulation of regulatory T‑cell functions that may limit the cytokine storm in COVID‑19. Improved Zn status may also reduce the risk of bacterial co‑infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID‑19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID‑19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator‑induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, D-52062 Aachen, Germany
| | - Olga P. Ajsuvakova
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Michael Aschner
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| | - Svetlana I. Alekseenko
- I.I. Mechnikov North-Western State Medical University, 191015 St. Petersburg
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, 191000 St. Petersburg, Russia
| | - Andrey A. Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Jan Aaseth
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Research Department, Innlandet Hospital Trust, 3159894 Brumunddal, Norway
| | - Aristidis Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Center of Toxicology Science and Research
| | - Alexey A. Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| |
Collapse
|
23
|
Sudaryatma PE, Saito A, Mekata H, Kubo M, Fahkrajang W, Okabayashi T. Bovine Respiratory Syncytial Virus Decreased Pasteurella multocida Adherence by Downregulating the Expression of Intercellular Adhesion Molecule-1 on the Surface of Upper Respiratory Epithelial Cells. Vet Microbiol 2020; 246:108748. [PMID: 32605748 PMCID: PMC7265823 DOI: 10.1016/j.vetmic.2020.108748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022]
Abstract
The synergistic infection of bovine respiratory syncytial virus (BRSV) and Pasteurella multocida (PM) may predispose cattle to develop severe pneumonia. Previously, we reported that BRSV infection significantly decreased PM adherence to the upper respiratory epithelial cells. It may allow bacteria to invade into the lower respiratory tract and lead to severe pneumonia. To investigate whether BRSV infection regulates the cell surface adherence receptor on bovine trachea epithelial cells (bTECs), we performed proteomic and functional analyses. BRSV infection decreased the expression of intercellular adhesion molecule-1 (ICAM1) on bTECs. Inhibition and knockdown experiments using anti-ICAM1 antibody and siRNAs targeting ICAM1 indicated that PM adherence to bTECs was dependent on ICAM1 expression. These data suggest that under normal conditions bTECs may capture PM in the upper respiratory tract, while BRSV infection reverses this mechanism. The proposed gateway function of bTECs is disrupted by BRSV infection that may facilitate bacterial invasion into the lower respiratory tract and lead to secondary or more severe respiratory infection.
Collapse
Affiliation(s)
- Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Akatsuki Saito
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan
| | - Meiko Kubo
- Takazaki Meat Inspection Center, Miyazaki, Japan
| | - Watcharapong Fahkrajang
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tamaki Okabayashi
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
24
|
LeMessurier KS, Tiwary M, Morin NP, Samarasinghe AE. Respiratory Barrier as a Safeguard and Regulator of Defense Against Influenza A Virus and Streptococcus pneumoniae. Front Immunol 2020; 11:3. [PMID: 32117216 PMCID: PMC7011736 DOI: 10.3389/fimmu.2020.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
The primary function of the respiratory system of gas exchange renders it vulnerable to environmental pathogens that circulate in the air. Physical and cellular barriers of the respiratory tract mucosal surface utilize a variety of strategies to obstruct microbe entry. Physical barrier defenses including the surface fluid replete with antimicrobials, neutralizing immunoglobulins, mucus, and the epithelial cell layer with rapidly beating cilia form a near impenetrable wall that separates the external environment from the internal soft tissue of the host. Resident leukocytes, primarily of the innate immune branch, also maintain airway integrity by constant surveillance and the maintenance of homeostasis through the release of cytokines and growth factors. Unfortunately, pathogens such as influenza virus and Streptococcus pneumoniae require hosts for their replication and dissemination, and prey on the respiratory tract as an ideal environment causing severe damage to the host during their invasion. In this review, we outline the host-pathogen interactions during influenza and post-influenza bacterial pneumonia with a focus on inter- and intra-cellular crosstalk important in pulmonary immune responses.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Meenakshi Tiwary
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Nicholas P Morin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Critical Care Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| |
Collapse
|
25
|
Sudaryatma PE, Nakamura K, Mekata H, Sekiguchi S, Kubo M, Kobayashi I, Subangkit M, Goto Y, Okabayashi T. Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Vet Microbiol 2018; 220:33-38. [PMID: 29885798 PMCID: PMC7117154 DOI: 10.1016/j.vetmic.2018.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/20/2018] [Accepted: 04/28/2018] [Indexed: 01/27/2023]
Abstract
Primary infection with bovine respiratory syncytial virus (BRSV) predisposes cattle to secondary infection with bacteria that cause bovine respiratory disease complex (BRDC). However, the interaction between BRSV and bacteria is unclear. This in vitro study examined the adherence of Pasteurella multocida (PM) to BRSV-infected cells was assessed in colony forming unit assays, by flow cytometry analysis, and by indirect immunofluorescence analysis (IFA) of epithelial cells (A549, HEp-2, and MDBK). An in vitro model based on infection of BRSV-infected epithelial cells revealed that PM adherence to BRSV-infected cells was 2- to 8-fold higher than uninfected cells. This was confirmed by flow cytometry analysis and IFA. Epithelial cell expression of mRNA encoding cytokines and chemokines increased after exposure to PM, but increased further after co-infection with BRSV and PM. BRSV-mediated adherence of PM to epithelial cells may underlie the serious symptoms of BRDC.
Collapse
Affiliation(s)
- Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kimika Nakamura
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Organization for Promotion of Tenure Track University of Miyazaki, Miyazaki, Japan
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Meiko Kubo
- Miyakonojo Meat Inspection Center Miyazaki Prefecture Government, Miyazaki, Japan
| | - Ikuo Kobayashi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Sumiyoshi education farm, University of Miyazaki, Miyazaki, Japan
| | - Mawar Subangkit
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Goto
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
26
|
Bellinghausen C, Rohde GGU, Savelkoul PHM, Wouters EFM, Stassen FRM. Viral-bacterial interactions in the respiratory tract. J Gen Virol 2016; 97:3089-3102. [PMID: 27902340 DOI: 10.1099/jgv.0.000627] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the respiratory tract, viruses and bacteria can interact on multiple levels. It is well known that respiratory viruses, particularly influenza viruses, increase the susceptibility to secondary bacterial infections. Numerous mechanisms, including compromised physical and immunological barriers, and changes in the microenvironment have hereby been shown to contribute to the development of secondary bacterial infections. In contrast, our understanding of how bacteria shape a response to subsequent viral infection is still limited. There is emerging evidence that persistent infection (or colonization) of the lower respiratory tract (LRT) with potential pathogenic bacteria, as observed in diseases like chronic obstructive pulmonary disease or cystic fibrosis, modulates subsequent viral infections by increasing viral entry receptors and modulating the inflammatory response. Moreover, recent studies suggest that even healthy lungs are not, as had long been assumed, sterile. The composition of the lung microbiome may thus modulate responses to viral infections. Here we summarize the current knowledge on the co-pathogenesis between viruses and bacteria in LRT infections.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
27
|
Kim HC, Choi SH, Huh JW, Sung H, Hong SB, Lim CM, Koh Y. Different pattern of viral infections and clinical outcomes in patient with acute exacerbation of chronic obstructive pulmonary disease and chronic obstructive pulmonary disease with pneumonia. J Med Virol 2016; 88:2092-2099. [PMID: 27187664 PMCID: PMC7166762 DOI: 10.1002/jmv.24577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2016] [Indexed: 02/01/2023]
Abstract
Respiratory viruses are well‐known causes of acute exacerbation of chronic obstructive pulmonary disease (AE‐COPD) and also important pathogens for concomitant pneumonia in COPD (CP‐COPD). However, the differences in a viral infection pattern and clinical impacts of respiratory viruses between the two groups have not been well investigated. The clinical and microbiological data from COPD patients admitted with AE‐COPD (n = 281) or CP‐COPD (n = 284) between January 2010 and December 2012 were reviewed. After excluding 88 patients (40 with AE‐COPD and 48 with CP‐COPD) who did not undergo a multiplex RT‐PCR test for respiratory viruses, the demographic characteristics, identified viruses, and clinical outcomes of the AE‐COPD and CP‐COPD groups were compared. Respiratory viruses were identified in 41.9% of AE‐COPD group and 33.5% of the CP‐COPD groups. The most common virus was influenza virus in the AE‐COPD group (33.7%) versus human coronavirus (24.1%) in the CP‐COPD group. Influenza virus was significantly more common in the AE‐ACOPD group than in the CP‐COPD group (P < 0.01). In‐hospital mortality of AE‐COPD and CP‐COPD were 1.2% and 12.3%, respectively (P < 0.01). Among CP‐COPD patients, in‐hospital mortality of patients with only viral infection group, only bacterial infection group, and viral‐bacterial co‐infection were 2.6%, 25.8%, and 17.5%, respectively (P = 0.01). Respiratory viruses were commonly identified in both AE‐COPD and CP‐COPD, influenza virus and human coronavirus were the most common viruses identified in AE‐COPD and CP‐COPD patients, respectively. The mortality rates of only viral infection group was significantly lower than only bacterial infection or viral‐bacterial co‐infection group in CP‐COPD patients. J. Med. Virol. 88:2092–2099, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ho-Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin-Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
28
|
Detection of respiratory viruses and bacteria in children using a twenty-two target reverse-transcription real-time PCR (RT-qPCR) panel. World J Pediatr 2016; 12:183-9. [PMID: 26684315 PMCID: PMC7091212 DOI: 10.1007/s12519-015-0069-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/12/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rapid detection of the wide range of viruses and bacteria that cause respiratory infection in children is important for patient care and antibiotic stewardship. We therefore designed and evaluated a ready-to-use 22 target respiratory infection reverse-transcription real-time polymerase chain reaction (RT-qPCR) panel to determine if this would improve detection of these agents at our pediatric hospital. METHODS RT-qPCR assays for twenty-two target organisms were dried-down in individual wells of 96 well plates and saved at room temperature. Targets included 18 respiratory viruses and 4 bacteria. After automated nucleic acid extraction of nasopharyngeal aspirate (NPA) samples, rapid qPCR was performed. RT-qPCR results were compared with those obtained by the testing methods used at our hospital laboratories. RESULTS One hundred fifty-nine pediatric NPA samples were tested with the RT-qPCR panel. One or more respiratory pathogens were detected in 132/159 (83%) samples. This was significantly higher than the detection rate of standard methods (94/159, 59%) (P<0.001). This difference was mainly due to improved RT-qPCR detection of rhinoviruses, parainfluenza viruses, bocavirus, and coronaviruses. The panel internal control assay performance remained stable at room temperature storage over a two-month testing period. CONCLUSION The RT-qPCR panel was able to identify pathogens in a high proportion of respiratory samples. The panel detected more positive specimens than the methods in use at our hospital. The pre-made panel format was easy to use and rapid, with results available in approximately 90 minutes. We now plan to determine if use of this panel improves patient care and antibiotic stewardship.
Collapse
|
29
|
|
30
|
Zuwała K, Golda A, Kabala W, Burmistrz M, Zdzalik M, Nowak P, Kedracka-Krok S, Zarebski M, Dobrucki J, Florek D, Zeglen S, Wojarski J, Potempa J, Dubin G, Pyrc K. The nucleocapsid protein of human coronavirus NL63. PLoS One 2015; 10:e0117833. [PMID: 25700263 PMCID: PMC4336326 DOI: 10.1371/journal.pone.0117833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022] Open
Abstract
Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.
Collapse
Affiliation(s)
- Kaja Zuwała
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Anna Golda
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Wojciech Kabala
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Michał Burmistrz
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Michal Zdzalik
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Paulina Nowak
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Mirosław Zarebski
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Dobrucki
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dominik Florek
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Sławomir Zeglen
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41–800, Zabrze, Poland
| | - Jacek Wojarski
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41–800, Zabrze, Poland
| | - Jan Potempa
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
- Oral Health and Systemic Disease Research Group, School of Dentistry, University of Louisville, Louisville, KY, United States of America
| | - Grzegorz Dubin
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
| | - Krzysztof Pyrc
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387, Krakow, Poland
- * E-mail:
| |
Collapse
|
31
|
Actinobacillus pleuropneumoniae possesses an antiviral activity against porcine reproductive and respiratory syndrome virus. PLoS One 2014; 9:e98434. [PMID: 24878741 PMCID: PMC4039538 DOI: 10.1371/journal.pone.0098434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/02/2014] [Indexed: 02/03/2023] Open
Abstract
Pigs are often colonized by more than one bacterial and/or viral species during respiratory tract infections. This phenomenon is known as the porcine respiratory disease complex (PRDC). Actinobacillus pleuropneumoniae (App) and porcine reproductive and respiratory syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main objective of this project was to study the in vitro interactions between these two pathogens and the host cells in the context of mixed infections. To fulfill this objective, PRRSV permissive cell lines such as MARC-145, SJPL, and porcine alveolar macrophages (PAM) were used. A pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results showed that PRRSV pre-infection did not affect bacterial adherence to the cells. PRRSV and App co-infection produced an additive cytotoxicity effect. Interestingly, a pre-infection of SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL and PAM cells with an App cell-free culture supernatant is also sufficient to significantly block PRRSV infection. This antiviral activity is not due to LPS but rather by small molecular weight, heat-resistant App metabolites (<1 kDa). The antiviral activity was also observed in SJPL cells infected with swine influenza virus but to a much lower extent compared to PRRSV. More importantly, the PRRSV antiviral activity of App was also seen with PAM, the cells targeted by the virus in vivo during infection in pigs. The antiviral activity might be due, at least in part, to the production of interferon γ. The use of in vitro experimental models to study viral and bacterial co-infections will lead to a better understanding of the interactions between pathogens and their host cells, and could allow the development of novel prophylactic and therapeutic tools.
Collapse
|
32
|
Ringshausen F, Rohde G. [New and rare pneumotropic viruses]. DER PNEUMOLOGE 2013; 10:326-334. [PMID: 32214958 PMCID: PMC7087668 DOI: 10.1007/s10405-013-0675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While acute viral respiratory tract infections are one of the major reasons for the loss of productivity among the general population in industrialized nations, they are one of the top killers among infants worldwide, in particular in low-income countries. With the advances in molecular diagnostics and the introduction of high-throughput screening techniques a variety of novel, so far unknown viruses have been discovered from respiratory secretions. However, the clinical significance is often difficult to determine. This review article provides an introduction to those novel viruses which have been described since the beginning of the millennium and discusses the clinical relevance in the light of current scientific evidence. The viruses covered by the present review are human metapneumovirus, human bocavirus, human coronaviruses OC43, 229E, NL63, HKU1, SARS and MERS, human polyomaviruses KI, MC and WU and human parechoviruses.
Collapse
Affiliation(s)
- F.C. Ringshausen
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Deutschland
| | - G.G.U. Rohde
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
33
|
Bousbia S, Raoult D, La Scola B. Pneumonia pathogen detection and microbial interactions in polymicrobial episodes. Future Microbiol 2013; 8:633-60. [DOI: 10.2217/fmb.13.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent reports show that microbial communities associated with respiratory infections, such as pneumonia and cystic fibrosis, are more complex than expected. Most of these communities are polymicrobial and might comprise microorganisms originating from several diverse biological and ecological sources. Moreover, unexpected bacteria in the etiology of these respiratory infections have been increasingly identified. These findings were established with the use of efficient microbiological diagnostic tools, particularly molecular tools based on common gene amplification, followed by cloning and sequencing approaches, which facilitated the identification of the polymicrobial flora. Similarly, recent investigations reported that microbial interactions might exist between species in polymicrobial communities, including typical pneumonia pathogens, such as Pseudomonas aeruginosa and Candida albicans. Here, we review recent tools for microbial diagnosis, in particular, of intensive care unit pneumonia and the reported interactions between microbial species that have primarily been identified in the etiology of these infections.
Collapse
Affiliation(s)
- Sabri Bousbia
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France.
| |
Collapse
|
34
|
Abstract
Viral pathogens are commonly isolated from children with community-acquired pneumonia (CAP). Viruses like respiratory syncytial virus, human rhinovirus, human metapneumovirus, parainfluenza viruses, and influenza may act as sole pathogens or may predispose to bacterial pneumonia by a variety of mechanisms. New, emerging, or reemerging viral pathogens occasionally cause outbreaks of severe respiratory tract infection in children. The 2009–2010 H1N1 influenza virus pandemic resulted in increased rates of influenza-related hospitalizations and deaths in children. Rapid viral diagnostic tests based on antigen detection or nucleic acid amplification are increasingly available for clinical use and confirm the importance of viral infection in children hospitalized with CAP. Recently published guidelines for the management of CAP in children note that positive viral test results can modify clinical decision making in children with suspected pneumonia by allowing antibacterial therapy to be withheld in the absence of clinical, laboratory, or radiographic findings that suggest bacterial coinfection.
Collapse
Affiliation(s)
- Charles R Woods
- Pediatric Infectious Diseases, University of Louisville School of Medicine, 571 South Floyd Street, Suite 321, Louisville, KY, 40202, USA,
| | | |
Collapse
|
35
|
Pyrc K, Stożek K, Galan W, Potempa J. HexaPrime: a novel method for detection of coronaviruses. J Virol Methods 2012; 188:29-36. [PMID: 23219933 PMCID: PMC7113646 DOI: 10.1016/j.jviromet.2012.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/12/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022]
Abstract
Despite intense efforts to develop novel and better tools to identify known viruses and to discover new viruses, establishing etiological roles for viruses in human disease is challenging. In large part, this may be attributed to the high variability of viral species and the difficulties in developing broad-spectrum, yet specific, diagnostic assays. To overcome this problem, a novel method for the detection of viruses is described in the current manuscript. The technique relies on the addition of synthetic oligonucleotides to both termini of RNA fragments in a sequence-dependent manner during first- and second-strand DNA synthesis; these oligonucleotides are used subsequently for amplification of the viral nucleic acids of interest. The recognition of the target sequence by the oligonucleotides is mediated by short (6–8 nt) conserved regions, which facilitates development of broad–spectrum assays. The method has been tested for coronaviruses, although it may be also adopted for other RNA viruses.
Collapse
Affiliation(s)
- Krzysztof Pyrc
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | |
Collapse
|
36
|
Abstract
Acute otitis media (AOM) is a polymicrobial disease, which usually occurs as a complication of viral upper respiratory tract infection (URI). While respiratory viruses alone may cause viral AOM, they increase the risk of bacterial middle ear infection and worsen clinical outcomes of bacterial AOM. URI viruses alter Eustachian tube (ET) function via decreased mucociliary action, altered mucus secretion and increased expression of inflammatory mediators among other mechanisms. Transient reduction in protective functions of the ET allows colonizing bacteria of the nasopharynx to ascend into the middle ear and cause AOM. Advances in research help us to better understand the host responses to viral URI, the mechanisms of viral-bacterial interactions in the nasopharynx and the development of AOM. In this review, we present current knowledge regarding viral-bacterial interactions in the pathogenesis and clinical course of AOM. We focus on the common respiratory viruses and their established role in AOM.
Collapse
Affiliation(s)
- Tal Marom
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0371, USA
| | | | | |
Collapse
|
37
|
Milewska A, Ciejka J, Kaminski K, Karewicz A, Bielska D, Zeglen S, Karolak W, Nowakowska M, Potempa J, Bosch BJ, Pyrc K, Szczubialka K. Novel polymeric inhibitors of HCoV-NL63. Antiviral Res 2012. [PMID: 23201315 PMCID: PMC7114096 DOI: 10.1016/j.antiviral.2012.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human coronavirus NL63 is generally classified as a common cold pathogen, though the infection may also result in severe lower respiratory tract diseases, especially in children, patients with underlying disease, and elderly. It has been previously shown that HCoV-NL63 is also one of the most important causes of croup in children. In the current manuscript we developed a set of polymer-based compounds showing prominent anticoronaviral activity. Polymers have been recently considered as promising alternatives to small molecule inhibitors, due to their intrinsic antimicrobial properties and ability to serve as matrices for antimicrobial compounds. Most of the antimicrobial polymers show antibacterial properties, while those with antiviral activity are much less frequent. A cationically modified chitosan derivative, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and hydrophobically-modified HTCC were shown to be potent inhibitors of HCoV-NL63 replication. Furthermore, both compounds showed prominent activity against murine hepatitis virus, suggesting broader anticoronaviral activity.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Khan MN, Pichichero ME. Vaccine candidates PhtD and PhtE of Streptococcus pneumoniae are adhesins that elicit functional antibodies in humans. Vaccine 2012; 30:2900-7. [PMID: 22349524 DOI: 10.1016/j.vaccine.2012.02.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 01/02/2023]
Abstract
We evaluated the role of vaccine candidate surface proteins, PhtD and PhtE as antigens with functional importance for Streptococcus pneumoniae (pneumococci) in adherence to nasopharyngeal (D562) and lung (A549) epithelial cell lines. Comparing TIGR4 to PhtD and PhtE- isogenic mutants, a 40% (p=0.001) and 42% (p=0.002) drop in the number of epithelial cells with adherent pneumococci was observed to both cells lines with the mutants, as quantitated using flow cytometry. We expressed PhtD and PhtE on the surface of Escherichia coli and demonstrated that when PhtD and PhtE were surface expressed on E. coli, adherence increased to D562 and A549 cells, compared with the E. coli parent strain (p=0.005, 0.013 for D562 and p=0.034, p=0.035 for A549). Using flow cytometry and confocal microscopy we found that pneumococci aggregated in the presence of human serum IgG, leading to a non-specific drop in adherence. Therefore IgG Fab fragments were prepared to study the functional role of PhtD and PhtE-specific Fabs in blocking adherence. The addition of 1μg of IgG Fab from adult sera led to a 34% reduction (p=0.002) and from children a 20% (p=0.023) reduction in D562 epithelial cells with adherent pneumococci. In purified IgG from adult sera, the depletion of PhtD and PhtE specific Fab from total IgG Fab resulted in a significant increase in the number of D562 epithelial cells with adherent pneumococci (p=0.005 for PhtD and p=0.024 for PhtE). We conclude that antibody directed to PhtD and PhtE adhesins of pneumococci, if raised by vaccination, may function to prevent pneumococcal adherence to human airway epithelial cells.
Collapse
Affiliation(s)
- M Nadeem Khan
- Center for Infectious Diseases and Vaccine Immunology, Research Institute, Rochester General Hospital, Rochester, NY 14621, United States
| | | |
Collapse
|