1
|
Pan Q, Chen Q, Zhang W, Jiao H, Yu L, Hu H. Structural Insights into the Dynamic Assembly of a YFV sNS1 Tetramer. Viruses 2024; 16:1212. [PMID: 39205186 PMCID: PMC11359903 DOI: 10.3390/v16081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024] Open
Abstract
Yellow fever virus (YFV) infections can cause severe diseases in humans, resulting in mass casualties in Africa and the Americas each year. Secretory NS1 (sNS1) is thought to be used as a diagnostic marker of flavivirus infections, playing an essential role in the flavivirus life cycle, but little is known about the composition and structure of YFV sNS1. Here, we present that the recombinant YFV sNS1 exists in a heterogeneous mixture of oligomerizations, predominantly in the tetrameric form. The cryoEM structures show that the YFV tetramer of sNS1 is stacked by the hydrophobic interaction between β-roll domains and greasy fingers. According to the 3D variability analysis, the tetramer is in a semi-stable state that may contain multiple conformations with dynamic changes. We believe that our study provides critical insights into the oligomerization of NS1 and will aid the development of NS1-based diagnoses and therapies.
Collapse
Affiliation(s)
- Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Qiang Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Wanqin Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Lei Yu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| |
Collapse
|
2
|
Alvin Chew BL, Pan Q, Hu H, Luo D. Structural biology of flavivirus NS1 protein and its antibody complexes. Antiviral Res 2024; 227:105915. [PMID: 38777094 DOI: 10.1016/j.antiviral.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore, 636921; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921.
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore, 636921; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921; National Centre for Infectious Diseases, Singapore, 308442, Singapore.
| |
Collapse
|
3
|
Chew BLA, Ngoh ANQ, Phoo WW, Chan KWK, Ser Z, Tulsian NK, Lim SS, Weng MJG, Watanabe S, Choy MM, Low J, Ooi EE, Ruedl C, Sobota RM, Vasudevan SG, Luo D. Secreted dengue virus NS1 from infection is predominantly dimeric and in complex with high-density lipoprotein. eLife 2024; 12:RP90762. [PMID: 38787378 PMCID: PMC11126310 DOI: 10.7554/elife.90762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - AN Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Singapore Centre for Life Sciences, Department of Biochemistry, National University of SingaporeSingaporeSingapore
| | - Shiao See Lim
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Mei Jie Grace Weng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Jenny Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Infectious Diseases, Singapore General HospitalSingaporeSingapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Microbiology and Immunology, National University of SingaporeSingaporeSingapore
- Institute for Glycomics (G26), Griffith University Gold Coast CampusSouthportAustralia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
4
|
Pan Q, Jiao H, Zhang W, Chen Q, Zhang G, Yu J, Zhao W, Hu H. The step-by-step assembly mechanism of secreted flavivirus NS1 tetramer and hexamer captured at atomic resolution. SCIENCE ADVANCES 2024; 10:eadm8275. [PMID: 38691607 PMCID: PMC11062569 DOI: 10.1126/sciadv.adm8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Flaviviruses encode a conserved, membrane-associated nonstructural protein 1 (NS1) with replication and immune evasion functions. The current knowledge of secreted NS1 (sNS1) oligomers is based on several low-resolution structures, thus hindering the development of drugs and vaccines against flaviviruses. Here, we revealed that recombinant sNS1 from flaviviruses exists in a dynamic equilibrium of dimer-tetramer-hexamer states. Two DENV4 hexameric NS1 structures and several tetrameric NS1 structures from multiple flaviviruses were solved at atomic resolution by cryo-EM. The stacking of the tetrameric NS1 and hexameric NS1 is facilitated by the hydrophobic β-roll and connector domains. Additionally, a triacylglycerol molecule located within the central cavity may play a role in stabilizing the hexamer. Based on differentiated interactions between the dimeric NS1, two distinct hexamer models (head-to-head and side-to-side hexamer) and the step-by-step assembly mechanisms of NS1 dimer into hexamer were proposed. We believe that our study sheds light on the understanding of the NS1 oligomerization and contributes to NS1-based therapies.
Collapse
Affiliation(s)
- Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Wanqin Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Qiang Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Geshu Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| |
Collapse
|
5
|
Perera DR, Ranadeva ND, Sirisena K, Wijesinghe KJ. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect Dis 2024; 10:20-56. [PMID: 38110348 DOI: 10.1021/acsinfecdis.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
6
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
7
|
Denolly S, Guo H, Martens M, Płaszczyca A, Scaturro P, Prasad V, Kongmanas K, Punyadee N, Songjaeng A, Mairiang D, Pichlmair A, Avirutnan P, Bartenschlager R. Dengue virus NS1 secretion is regulated via importin-subunit β1 controlling expression of the chaperone GRp78 and targeted by the clinical drug ivermectin. mBio 2023; 14:e0144123. [PMID: 37702492 PMCID: PMC10653883 DOI: 10.1128/mbio.01441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE Dengue virus (DENV) is a major human pathogen that can cause hemorrhagic fever and shock syndrome. One important factor of DENV pathogenicity is non-structural protein 1 (NS1), a glycoprotein that is secreted from infected cells. Here we study the mode of action of the widely used drug ivermectin, used to treat parasitic infections and recently shown to lower NS1 blood levels in DENV-infected patients. We found that ivermectin blocks the nuclear transport of transcription factors required for the expression of chaperones that support the folding and secretion of glycoproteins, including NS1. Impairing nuclear transport of these transcription factors by ivermectin or depleting them from infected cells dampens NS1 folding and thus its secretion. These results reveal a novel mode of action of ivermectin that might apply to other flaviviruses as well.
Collapse
Affiliation(s)
- Solène Denolly
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Hongbo Guo
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Miriam Martens
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Anna Płaszczyca
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Pietro Scaturro
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dumrong Mairiang
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Alcalá AC, Ludert JE. The dengue virus NS1 protein; new roles in pathogenesis due to similarities with and affinity for the high-density lipoprotein (HDL)? PLoS Pathog 2023; 19:e1011587. [PMID: 37616216 PMCID: PMC10449462 DOI: 10.1371/journal.ppat.1011587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Affiliation(s)
- Ana C. Alcalá
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States of America
- Bond Life Science Center, University of Missouri, Columbia, MO, United States of America
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
9
|
van den Elsen K, Chew BLA, Ho JS, Luo D. Flavivirus nonstructural proteins and replication complexes as antiviral drug targets. Curr Opin Virol 2023; 59:101305. [PMID: 36870091 PMCID: PMC10023477 DOI: 10.1016/j.coviro.2023.101305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
Many flaviviruses are well-known pathogens, such as dengue, Zika, Japanese encephalitis, and yellow fever viruses. Among them, dengue viruses cause global epidemics and threaten billions of people. Effective vaccines and antivirals are in desperate need. In this review, we focus on the recent advances in understanding viral nonstructural (NS) proteins as antiviral drug targets. We briefly summarize the experimental structures and predicted models of flaviviral NS proteins and their functions. We highlight a few well-characterized inhibitors targeting these NS proteins and provide an update about the latest development. NS4B emerges as one of the most promising drug targets as novel inhibitors targeting NS4B and its interaction network are entering clinical studies. Studies aiming to elucidate the architecture and molecular basis of viral replication will offer new opportunities for novel antiviral discovery. Direct-acting agents against dengue and other pathogenic flaviviruses may be available very soon.
Collapse
Affiliation(s)
- Kaïn van den Elsen
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Jun Sheng Ho
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
10
|
Wilken L, Stelz S, Agac A, Sutter G, Prajeeth CK, Rimmelzwaan GF. Recombinant Modified Vaccinia Virus Ankara Expressing a Glycosylation Mutant of Dengue Virus NS1 Induces Specific Antibody and T-Cell Responses in Mice. Vaccines (Basel) 2023; 11:vaccines11040714. [PMID: 37112626 PMCID: PMC10140942 DOI: 10.3390/vaccines11040714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The four serotypes of dengue virus (DENV1-4) continue to pose a major public health threat. The first licenced dengue vaccine, which expresses the surface proteins of DENV1-4, has performed poorly in immunologically naïve individuals, sensitising them to antibody-enhanced dengue disease. DENV non-structural protein 1 (NS1) can directly induce vascular leakage, the hallmark of severe dengue disease, which is blocked by NS1-specific antibodies, making it an attractive target for vaccine development. However, the intrinsic ability of NS1 to trigger vascular leakage is a potential drawback of its use as a vaccine antigen. Here, we modified DENV2 NS1 by mutating an N-linked glycosylation site associated with NS1-induced endothelial hyperpermeability and used modified vaccinia virus Ankara (MVA) as a vector for its delivery. The resulting construct, rMVA-D2-NS1-N207Q, displayed high genetic stability and drove efficient secretion of NS1-N207Q from infected cells. Secreted NS1-N207Q was composed of dimers and lacked N-linked glycosylation at position 207. Prime-boost immunisation of C57BL/6J mice induced high levels of NS1-specific antibodies binding various conformations of NS1 and elicited NS1-specific CD4+ T-cell responses. Our findings support rMVA-D2-NS1-N207Q as a promising and potentially safer alternative to existing NS1-based vaccine candidates, warranting further pre-clinical testing in a relevant mouse model of DENV infection.
Collapse
Affiliation(s)
- Lucas Wilken
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Ayse Agac
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig Maximilian University (LMU), 80539 Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| |
Collapse
|
11
|
Poveda Cuevas SA, Barroso da Silva FL, Etchebest C. NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. J Chem Inf Model 2023; 63:1386-1400. [PMID: 36780300 DOI: 10.1021/acs.jcim.2c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Zika virus (ZIKV) from Uganda (UG) expresses a phenotype related to fetal loss, whereas the variant from Brazil (BR) induces microcephaly in neonates. The differential virulence has a direct relation to biomolecular mechanisms that make one strain more aggressive than the other. The nonstructural protein 1 (NS1) is a key viral toxin to comprehend these viral discrepancies because of its versatility in many processes of the virus life cycle. Here, we aim to examine through coarse-grained models and molecular dynamics simulations the protein-membrane interactions for both NS1ZIKV-UG and NS1ZIKV-BR dimers. A first evaluation allowed us to establish that the NS1 proteins, in the membrane presence, explore new conformational spaces when compared to systems simulated without a lipid bilayer. These events derive from both differential coupling patterns and discrepant binding affinities to the membrane. The N-terminal domain, intertwined loop, and greasy finger proposed previously as binding membrane regions were also computationally confirmed by us. The anchoring sites have aromatic and ionizable residues that manage the assembly of NS1 toward the membrane, especially for the Ugandan variant. Furthermore, in the presence of the membrane, the difference in the dynamic cross-correlation of residues between the two strains is particularly pronounced in the putative epitope regions. This suggests that the protein-membrane interaction induces changes in the distal part related to putative epitopes. Taken together, these results open up new strategies for the treatment of flaviviruses that would specifically target these dynamic differences.
Collapse
Affiliation(s)
- Sergio Alejandro Poveda Cuevas
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, Frankfurt am Main, Hesse DE-60590, Germany.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Fernando L Barroso da Silva
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Catherine Etchebest
- Université Paris Cité and Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, F-75015 Paris, France.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| |
Collapse
|
12
|
Unbiased Identification of Dengue Virus Non-Structural Protein 1 Peptides for Use in Vaccine Design. Vaccines (Basel) 2022; 10:vaccines10122028. [PMID: 36560438 PMCID: PMC9784660 DOI: 10.3390/vaccines10122028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
Dengue virus (DENV) is a global health problem, with over half of the world's population at risk for infection. Despite this, there is only one licensed vaccine available to prevent infection and safety concerns limit immunization to only a subset of individuals. Most dengue virus vaccine efforts attempt to evoke broadly neutralizing antibodies against structural proteins. However, eliciting antibodies to block the activity of viral proteins involved in pathogenesis could be a useful complementary approach. Studies suggest that non-structural protein 1, which participates in disruption of the endothelial barrier and is hypothesized to play a significant role in the progression to severe dengue, could be a promising target for vaccine efforts. Here, we used an unbiased approach to identify peptide epitopes of dengue virus non-structural protein 1 that could evoke antibodies that bind to NS1 from all 4 serotypes and also bind to DENV-infected cells. DENV-2 NS1 peptides were generated such that 35 overlapping 15 amino acid peptides represented the entire NS1 protein. These peptides were each chemically conjugated to bacteriophage virus-like particles (VLP) and used to immunize mice. Sera were then screened for IgG to cognate peptide as well as binding to recombinant hexameric NS1 from all four DENV serotypes as well as binding to DENV-2 infected cells by microscopy. From these data, we identified several peptides that were able to elicit antibodies that could bind to infected cells as well as DENV NS1. These peptides and their homologues in the corresponding NS1 of other DENV serotypes could be used as potential immunogens to elicit binding antibodies to NS1. Future studies will investigate the functional and protective capacities of antibodies elicited by these immunogens against DENV NS1.
Collapse
|
13
|
Shu B, Ooi JSG, Tan AWK, Ng TS, Dejnirattisai W, Mongkolsapaya J, Fibriansah G, Shi J, Kostyuchenko VA, Screaton GR, Lok SM. CryoEM structures of the multimeric secreted NS1, a major factor for dengue hemorrhagic fever. Nat Commun 2022; 13:6756. [PMID: 36347841 PMCID: PMC9643530 DOI: 10.1038/s41467-022-34415-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Dengue virus infection can cause dengue hemorrhagic fever (DHF). Dengue NS1 is multifunctional. The intracellular dimeric NS1 (iNS1) forms part of the viral replication complex. Previous studies suggest the extracellular secreted NS1 (sNS1), which is a major factor contributing to DHF, exists as hexamers. The structure of the iNS1 is well-characterised but not that of sNS1. Here we show by cryoEM that the recombinant sNS1 exists in multiple oligomeric states: the tetrameric (stable and loose conformation) and hexameric structures. Stability of the stable and loose tetramers is determined by the conformation of their N-terminal domain - elongated β-sheet or β-roll. Binding of an anti-NS1 Fab breaks the loose tetrameric and hexameric sNS1 into dimers, whereas the stable tetramer remains largely unbound. Our results show detailed quaternary organization of different oligomeric states of sNS1 and will contribute towards the design of dengue therapeutics.
Collapse
Affiliation(s)
- Bo Shu
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Justin S G Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Aaron W K Tan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Thiam-Seng Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | | | | | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Jian Shi
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Victor A Kostyuchenko
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Gavin R Screaton
- Medical Sciences Division, University of Oxford, Oxford, OX3 9D, UK
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore.
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.
| |
Collapse
|
14
|
Poveda-Cuevas SA, Etchebest C, da Silva FLB. Self-association features of NS1 proteins from different flaviviruses. Virus Res 2022; 318:198838. [PMID: 35662566 DOI: 10.1016/j.virusres.2022.198838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022]
Abstract
Flaviviruses comprise a large group of arboviral species that are distributed in several countries of the tropics, neotropics, and some temperate zones. Since they can produce neurological pathologies or vascular damage, there has been intense research seeking better diagnosis and treatments for their infections in the last decades. The flavivirus NS1 protein is a relevant clinical target because it is involved in viral replication, immune evasion, and virulence. Being a key factor in endothelial and tissue-specific modulation, NS1 has been largely studied to understand the molecular mechanisms exploited by the virus to reprogram host cells. A central part of the viral maturation processes is the NS1 oligomerization because many stages rely on these protein-protein assemblies. In the present study, the self-associations of NS1 proteins from Zika, Dengue, and West Nile viruses are examined through constant-pH coarse-grained biophysical simulations. Free energies of interactions were estimated for different oligomeric states and pH conditions. Our results show that these proteins can form both dimers and tetramers under conditions near physiological pH even without the presence of lipids. Moreover, pH plays an important role mainly controlling the regimes where van der Waals interactions govern their association. Finally, despite the similarity at the sequence level, we found that each flavivirus has a well-characteristic protein-protein interaction profile. These specific features can provide new hints for the development of binders both for better diagnostic tools and the formulation of new therapeutic drugs.
Collapse
Affiliation(s)
- Sergio A Poveda-Cuevas
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil.; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Catherine Etchebest
- Université Paris Cité, Biologie Intégrée du Globule Rouge, Equipe 2, INSERM, F-75015 Paris, France; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil..
| |
Collapse
|
15
|
Elumalai E, Suresh Kumar M. Identification of neo-andrographolide compound targeting NS1 Lys14: an important residue in NS1 activity driving dengue pathogenesis. J Biomol Struct Dyn 2022:1-11. [DOI: 10.1080/07391102.2022.2068073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elakkiya Elumalai
- Center for Bioinformatics, Pondicherry University, Pondicherry, India
| | - M. Suresh Kumar
- Center for Bioinformatics, Pondicherry University, Pondicherry, India
| |
Collapse
|
16
|
Coelho DR, Carneiro PH. Expression and Purification of Dengue NS1 Protein in Sf9-Baculovirus System. Methods Mol Biol 2022; 2409:39-46. [PMID: 34709634 DOI: 10.1007/978-1-0716-1879-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is well known that glycosylations of Dengue NS1 protein are important for its structure, oligomerization, and immunogenicity. One of the major challenges in heterologous NS1 protein expression is the difference in glycosylation patterns amongst different organisms. The two major natural hosts for Dengue virus are humans and mosquitoes, which are capable of producing very complex glycosylation motifs. This chapter presents an optimized protocol for heterologous expression and purification of Dengue NS1 protein in Sf9 cells infected with baculovirus. NS1 protein obtained from this protocol is glycosylated and capable of forming soluble hexamers that can be used for structural and functional assays.
Collapse
Affiliation(s)
- Diego R Coelho
- Department of Medicine, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Pedro Henrique Carneiro
- Laboratory of Structural Biotechnology and Bioengineering, Biophysics Institute Carlos Chagas Filho, Lab C0-36ss, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Production of Properly Folded NS1 Protein in Bacterial Cells. Methods Mol Biol 2021. [PMID: 34709633 DOI: 10.1007/978-1-0716-1879-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Dengue virus (DENV) NS1 protein is a multifunctional protein involved in several pathogenic processes but also has been described as a protective antigen suitable for eliciting humoral response against DENV. NS1 is essential for virus replication and can be found in different cell compartments and at different oligomeric states. It is secreted to the extracellular medium and can also be found circulating in the blood of infected patients, being routinely used as the serum biomarker for early dengue diagnosis. High-yield production of the recombinant NS1 protein in a native-like conformation is essential for studies regarding its function during DENV infection as well as to those interested in the development of new diagnostic approaches based on this protein. In this chapter, we describe an optimized protocol for high-yield expression of native-like NS1 in Escherichia coli bacterial cells.
Collapse
|
18
|
Dechtawewat T, Roytrakul S, Yingchutrakul Y, Charoenlappanit S, Siridechadilok B, Limjindaporn T, Mangkang A, Prommool T, Puttikhunt C, Songprakhon P, Kongmanas K, Kaewjew N, Avirutnan P, Yenchitsomanus PT, Malasit P, Noisakran S. Potential Phosphorylation of Viral Nonstructural Protein 1 in Dengue Virus Infection. Viruses 2021; 13:v13071393. [PMID: 34372598 PMCID: PMC8310366 DOI: 10.3390/v13071393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Yodying Yingchutrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Bunpote Siridechadilok
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Arunothai Mangkang
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuttapong Kaewjew
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: or ; Tel.: +66-2-419-6666
| |
Collapse
|
19
|
Instability of the NS1 Glycoprotein from La Reunion 2018 Dengue 2 Virus (Cosmopolitan-1 Genotype) in Huh7 Cells Is Due to Lysine Residues on Positions 272 and 324. Int J Mol Sci 2021; 22:ijms22041951. [PMID: 33669407 PMCID: PMC7920422 DOI: 10.3390/ijms22041951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
La Reunion island in the South West Indian Ocean is now endemic for dengue following the introduction of dengue virus serotype 2 (DENV-2) cosmopolitan-I genotype in 2017. DENV-2 infection causes a wide spectrum of clinical manifestations ranging from flu-like disease to severe dengue. The nonstructural glycoprotein 1 (NS1) has been identified as playing a key role in dengue disease severity. The intracellular NS1 exists as a homodimer, whereas a fraction is driven towards the plasma membrane or released as a soluble hexameric protein. Here, we characterized the NS1 glycoproteins from clinical isolates DES-14 and RUN-18 that were collected during the DENV-2 epidemics in Tanzania in 2014 and La Reunion island in 2018, respectively. In relation to hepatotropism of the DENV, expression of recombinant DES-14 NS1 and RUN-18 NS1 glycoproteins was compared in human hepatoma Huh7 cells. We observed that RUN-18 NS1 was poorly stable in Huh7 cells compared to DES-14 NS1. The instability of RUN-18 NS1 leading to a low level of NS1 secretion mostly relates to lysine residues on positions 272 and 324. Our data raise the issue of the consequences of a defect in NS1 stability in human hepatocytes in relation to the major role of NS1 in the pathogenesis of the DENV-2 infection.
Collapse
|
20
|
Syzdykova LR, Binke S, Keyer VV, Shevtsov AB, Zaripov MM, Zhylkibayev AA, Ramanculov EM, Shustov AV. Fluorescent tagging the NS1 protein in yellow fever virus: Replication-capable viruses which produce the secretory GFP-NS1 fusion protein. Virus Res 2020; 294:198291. [PMID: 33388393 DOI: 10.1016/j.virusres.2020.198291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 12/25/2020] [Indexed: 12/29/2022]
Abstract
Yellow fever virus, the prototype in the genus Flavivirus, was used to develop viruses in which the nonstructural protein NS1 is genetically fused to GFP in the context of viruses capable of autonomous replication. The GFP-tagging of NS1 at the amino-terminus appeared possible despite the presence of a small and functionally important domain at the NS1's amino-terminus which can be distorted by such fusing. GFP-tagged NS1 viruses were rescued from DNA-launched molecular clones. The initially produced GFP-tagged NS1 virus was capable of only poor replication. Sequential passages of the virus in cell cultures resulted in the appearance of mutations in GFP, NS4A, NS4B and NS5. The mutations which change amino acid sequences of GFP, NS4A and NS5 have the adaptive effect on the replication of GFP-tagged NS1 viruses. The pattern of GFP-fluorescence indicates that the GFP-NS1 fusion protein is produced into the endoplasmic reticulum. The intracellular GFP-NS1 fusion protein colocalizes with dsRNA. The discovered forms of extracellular GFP-NS1 possibly include tetramers and hexamers.
Collapse
Affiliation(s)
- Laura R Syzdykova
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Stephan Binke
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Viktoriya V Keyer
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Alexandr B Shevtsov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Mikhail M Zaripov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russian Federation.
| | | | - Erlan M Ramanculov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Alexandr V Shustov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| |
Collapse
|
21
|
Kuo L, Jaeger AS, Banker EM, Bialosuknia SM, Mathias N, Payne AF, Kramer LD, Aliota MT, Ciota AT. Reversion to ancestral Zika virus NS1 residues increases competence of Aedes albopictus. PLoS Pathog 2020; 16:e1008951. [PMID: 33052957 PMCID: PMC7588074 DOI: 10.1371/journal.ppat.1008951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Both mosquito species-specific differences and virus strain -specific differences impact vector competence. Previous results in our laboratory with individual populations of N. American mosquitoes support studies suggesting Aedes aegypti are more competent than Ae. albopictus for American Zika virus (ZIKV) strains and demonstrate that U.S. Ae. albopictus have higher competence for an ancestral Asian ZIKV strain. A982V, an amino acid substitution in the NS1 gene acquired prior to the American outbreak, has been shown to increase competence in Ae. aegypti. We hypothesized that variability in the NS1 could therefore contribute to species-specific differences and developed a reverse genetics system based on a 2016 ZIKV isolate from Honduras (ZIKV-WTic) to evaluate the phenotypic correlates of individual amino acid substitutions. In addition to A982V, we evaluated G894A, which was acquired during circulation in the Americas. Reversion of 982 and 894 to ancestral residues increased infectivity, transmissibility and viral loads in Ae. albopictus but had no effect on competence or replication in Ae. aegypti. In addition, while host cell-specific differences in NS1 secretion were measured, with significantly higher secretion in mammalian cells relative to mosquito cells, strain-specific differences in secretion were not detected, despite previous reports. These results demonstrate that individual mutations in NS1 can influence competence in a species-specific manner independent of differences in NS1 secretion and further indicate that ancestral NS1 residues confer increased competence in Ae. albopictus. Lastly, experimental infections of Ifnar1-/- mice demonstrated that these NS1 substitutions can influence viral replication in the host and, specifically, that G894A could represent a compensatory change following a fitness loss from A982V with some viral genetic backgrounds. Together these data suggest a possible role for epistatic interactions in ZIKV fitness in invertebrate and vertebrate hosts and demonstrate that strains with increased transmission potential in U.S. Ae. albopictus could emerge.
Collapse
Affiliation(s)
- Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States of America
| | - Elyse M. Banker
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Nicholas Mathias
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Anne F. Payne
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Laura D. Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States of America
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, United States of America
| |
Collapse
|
22
|
Xisto MF, Prates JWO, Dias IM, Dias RS, da Silva CC, de Paula SO. NS1 Recombinant Proteins Are Efficiently Produced in Pichia pastoris and Have Great Potential for Use in Diagnostic Kits for Dengue Virus Infections. Diagnostics (Basel) 2020; 10:E379. [PMID: 32517281 PMCID: PMC7345099 DOI: 10.3390/diagnostics10060379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue is one of the major diseases causing global public health concerns. Despite technological advances in vaccine production against all its serotypes, it is estimated that the dengue virus is responsible for approximately 390 million infections per year. Laboratory diagnosis has been the key point for the correct treatment and prevention of this disease. Currently, the limiting factor in the manufacture of dengue diagnostic kits is the large-scale production of the non-structural 1 (NS1) antigen used in the capture of the antibody present in the infected patients' serum. In this work, we demonstrate the production of the non-structural 1 protein of dengue virus (DENV) serotypes 1-4 (NS1-DENV1, NS1-DENV2, NS1-DENV3, and NS1-DENV4) in the methylotrophic yeast Pichia pastoris KM71H. Secreted recombinant protein was purified by affinity chromatography and characterized by SDS-PAGE and ELISA. The objectives of this study were achieved, and the results showed that P. pastoris is a good heterologous host and worked well in the production of NS1DENV 1-4 recombinant proteins. Easy to grow and quick to obtain, this yeast secreted ready-to-use proteins, with a final yield estimated at 2.8-4.6 milligrams per liter of culture. We reached 85-91% sensitivity and 91-93% specificity using IgM as a target, and for anti-dengue IgG, 83-87% sensitivity and 81-93% specificity were achieved. In this work, we conclude that the NS1 recombinant proteins are efficiently produced in P. pastoris and have great potential for use in diagnostic kits for dengue virus infections. The transformed yeast obtained can be used for production in industrial-scale bioreactors.
Collapse
Affiliation(s)
- Mariana Fonseca Xisto
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - John Willians Oliveira Prates
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.W.O.P.); (C.C.d.S.)
| | - Ingrid Marques Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.W.O.P.); (C.C.d.S.)
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| |
Collapse
|
23
|
Kholodilov IS, Litov AG, Klimentov AS, Belova OA, Polienko AE, Nikitin NA, Shchetinin AM, Ivannikova AY, Bell-Sakyi L, Yakovlev AS, Bugmyrin SV, Bespyatova LA, Gmyl LV, Luchinina SV, Gmyl AP, Gushchin VA, Karganova GG. Isolation and Characterisation of Alongshan Virus in Russia. Viruses 2020; 12:v12040362. [PMID: 32224888 PMCID: PMC7232203 DOI: 10.3390/v12040362] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
In recent decades, many new flavi-like viruses have been discovered predominantly in different invertebrates and, as was recently shown, some of them may cause disease in humans. The Jingmenvirus (JMV) group holds a special place among flaviviruses and flavi-like viruses because they have a segmented ssRNA(+) genome. We detected Alongshan virus (ALSV), which is a representative of the JMV group, in ten pools of adult Ixodes persulcatus ticks collected in two geographically-separated Russian regions. Three of the ten strains were isolated in the tick cell line IRE/CTVM19. One of the strains persisted in the IRE/CTVM19 cells without cytopathic effect for three years. Most ALSV virions purified from tick cells were spherical with a diameter of approximately 40.5 nm. In addition, we found smaller particles of approximately 13.1 nm in diameter. We obtained full genome sequences of all four segments of two of the isolated ALSV strains, and partial sequences of one segment from the third strain. Phylogenetic analysis on genome segment 2 of the JMV group clustered our novel strains with other ALSV strains. We found evidence for the existence of a novel upstream open reading frame in the glycoprotein-coding segment of ALSV and other members of the JMV group.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Alexander S. Klimentov
- Laboratory of Biochemistry, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (A.S.K.); (L.V.G.)
- Laboratory of Biology and Indication of Arboviruses, Department Ivanovsky Institute of Virology, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Nikolai A. Nikitin
- Faculty of Biology, Lomonosov MSU, 119991 Moscow, Russia; (N.A.N.); (V.A.G.)
| | - Alexey M. Shchetinin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia;
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Lesley Bell-Sakyi
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Sergey V. Bugmyrin
- Laboratory for Animal and Plant Parasitology, Institute of Biology of Karelian Research Centre, Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Liubov A. Bespyatova
- Laboratory for Animal and Plant Parasitology, Institute of Biology of Karelian Research Centre, Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Larissa V. Gmyl
- Laboratory of Biochemistry, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (A.S.K.); (L.V.G.)
| | - Svetlana V. Luchinina
- Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 454092 Chelyabinsk, Russia;
| | - Anatoly P. Gmyl
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Vladimir A. Gushchin
- Faculty of Biology, Lomonosov MSU, 119991 Moscow, Russia; (N.A.N.); (V.A.G.)
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia;
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-841-9327
| |
Collapse
|
24
|
Zahid K, Shakoor S, Sajid HA, Afzal S, Ali L, Amin I, Shahid M, Idrees M. Advancements in developing an effective and preventive dengue vaccine. Future Virol 2020. [DOI: 10.2217/fvl-2019-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Every year millions of people in various tropical and subtropical regions encounter infection with dengue virus. Within the last few decades, its prevalence has increased up to 30-fold globally and presently these viruses have been transmitted in more than 100 countries. Scientists contributed to the development of tetravalent dengue vaccine by adopting numerous approaches including live vaccine, recombinant protein vaccine, DNA vaccine and virus-vectored vaccines. A vaccine should be genetically stable, equally effective against all serotypes, must be in-expensive and commercially available. Chimeric yellow fever virus-tetravalent dengue vaccine (CYD-TDV) is the first licensed vaccine developed by Sanofi Pasteur in December 2015, but this vaccine is not fully effective against different dengue virus serotypes (Sanofi Pasteur, Lyon, France). This review explores the advancements and challenges involved in the development of dengue vaccine.
Collapse
Affiliation(s)
- Khadija Zahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sana Shakoor
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Hina Afzal Sajid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Modern Sciences, Rawalpindi, Pakistan
| | - Iram Amin
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
25
|
Furnon W, Fender P, Confort MP, Desloire S, Nangola S, Kitidee K, Leroux C, Ratinier M, Arnaud F, Lecollinet S, Boulanger P, Hong SS. Remodeling of the Actin Network Associated with the Non-Structural Protein 1 (NS1) of West Nile Virus and Formation of NS1-Containing Tunneling Nanotubes. Viruses 2019; 11:v11100901. [PMID: 31569658 PMCID: PMC6832617 DOI: 10.3390/v11100901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells.
Collapse
Affiliation(s)
- Wilhelm Furnon
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Pascal Fender
- Institut de Biologie Structurale, CNRS UMR 5075, 38042 Grenoble, France.
| | - Marie-Pierre Confort
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sophie Desloire
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sawitree Nangola
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Kuntida Kitidee
- Center for Research & Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Caroline Leroux
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Maxime Ratinier
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Frédérick Arnaud
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Sylvie Lecollinet
- UMR-1161 Virology, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES Animal Health Laboratory, EURL on Equine Diseases, 94704 Maisons-Alfort, France.
| | - Pierre Boulanger
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Saw-See Hong
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale, 101, rue de Tolbiac, Cedex 13, 75654 Paris, France.
| |
Collapse
|
26
|
Wang C, Puerta-Guardo H, Biering SB, Glasner DR, Tran EB, Patana M, Gomberg TA, Malvar C, Lo NTN, Espinosa DA, Harris E. Endocytosis of flavivirus NS1 is required for NS1-mediated endothelial hyperpermeability and is abolished by a single N-glycosylation site mutation. PLoS Pathog 2019; 15:e1007938. [PMID: 31356638 PMCID: PMC6687192 DOI: 10.1371/journal.ppat.1007938] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/08/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
Arthropod-borne flaviviruses cause life-threatening diseases associated with endothelial hyperpermeability and vascular leak. We recently found that vascular leak can be triggered by dengue virus (DENV) non-structural protein 1 (NS1) via the disruption of the endothelial glycocalyx-like layer (EGL). However, the molecular determinants of NS1 required to trigger EGL disruption and the cellular pathway(s) involved remain unknown. Here we report that mutation of a single glycosylated residue of NS1 (N207Q) abolishes the ability of NS1 to trigger EGL disruption and induce endothelial hyperpermeability. Intriguingly, while this mutant bound to the surface of endothelial cells comparably to wild-type NS1, it was no longer internalized, suggesting that NS1 binding and internalization are distinct steps. Using endocytic pathway inhibitors and gene-specific siRNAs, we determined that NS1 was endocytosed into endothelial cells in a dynamin- and clathrin-dependent manner, which was required to trigger endothelial dysfunction in vitro and vascular leak in vivo. Finally, we found that the N207 glycosylation site is highly conserved among flaviviruses and is also essential for West Nile and Zika virus NS1 to trigger endothelial hyperpermeability via clathrin-mediated endocytosis. These data provide critical mechanistic insight into flavivirus NS1-induced pathogenesis, presenting novel therapeutic and vaccine targets for flaviviral diseases. Vascular leak is a hallmark of severe dengue disease. Recently, our group revealed a critical role for NS1 in induction of endothelial hyperpermeability and vascular leakage in an endothelial cell-intrinsic manner. However, the upstream pathway triggered by NS1, as well as the molecular determinants of NS1 required for this phenomenon, remain obscure. Gaining insight into this endothelial cell-intrinsic pathway is critical for understanding dengue pathogenesis, developing novel antiviral therapies, and developing NS1-based vaccine approaches that pose a minimal risk of antibody-dependent enhancement. Our current study expands our knowledge of this novel pathway not only by identifying the requirement of internalization of secreted NS1 via clathrin-mediated endocytosis, but also by pinpointing the NS1 molecular determinant (N207) required to trigger vascular leak. Further, our work identifies N207 as a residue conserved among multiple flaviviruses (Zika virus and West Nile virus, in addition to DENV), which is critical for NS1-mediated vascular leak in biologically relevant human endothelial cells modeling interstitial compartments in the lung or the blood-brain barrier. Thus, our study identifies endocytosis and a single amino acid (N207) of the NS1 viral toxin as critical for pan-flavivirus pathogenesis, representing a novel target for anti-flaviviral therapy and vaccine development.
Collapse
Affiliation(s)
- Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Dustin R. Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Edwina B. Tran
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Mark Patana
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Trent A. Gomberg
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Carmel Malvar
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. N. Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Diego A. Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Allonso D, Pereira IB, Alves AM, Kurtenbach E, Mohana-Borges R. Expression of soluble, glycosylated and correctly folded dengue virus NS1 protein in Pichia pastoris. Protein Expr Purif 2019; 162:9-17. [PMID: 31077812 DOI: 10.1016/j.pep.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The dengue virus (DENV) non structural protein 1 (NS1) is a 46-55 kDa protein that exists as homodimer inside cells and as hexamer in the extracellular milieu. Several lines of evidence have demonstrated that the biochemical and structural properties of recombinant NS1 (rNS1) vary depending on the protein expression system used. Aiming to improve current tools for studying NS1 multiple roles, a recombinant tag-free NS1 protein was expressed and purified from P. pastoris yeast cells. The best expression condition was achieved using GS115 strain and induction for 72 h with 0.7% methanol addition every 24 h. Total secreted rNS1 reached 2.18 mg in 1 L culture and the final yield of the purified protein was 1 mg per liter of culture (recovery yield of approximately 45.9%). Size-exclusion chromatography and treatment with EndoH and PNGase indicate that it exists as an N-glycosylated homodimer. Moreover, an ELISA assay with specific DENV anti-NS1 antibody that recognizes conformational epitopes revealed that rNS1 has most of its conformational epitopes preserved. The expression of rNS1 in its native conformation is an important tool for further studies of its role in DENV pathogenesis and replication.
Collapse
Affiliation(s)
- Diego Allonso
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Brazil; Laboratory of Biotechnology and Structural Bioengineering, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Iuri B Pereira
- Laboratory of Biochemistry and Molecular Biology of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Ada Mb Alves
- Laboratory of Biotechnology and Physiology of Virus Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Laboratory of Biochemistry and Molecular Biology of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratory of Biotechnology and Structural Bioengineering, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Tripathi NK, Shrivastava A. Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol 2018; 9:1919. [PMID: 30190720 PMCID: PMC6115509 DOI: 10.3389/fimmu.2018.01919] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Recombinant proteins are gaining enormous importance these days due to their wide application as biopharmaceutical products and proven safety record. Various recombinant proteins of therapeutic and prophylactic importance have been successfully produced in microbial and higher expression host systems. Since there is no specific antiviral therapy available against dengue, the prevention by vaccination is the mainstay in reducing the disease burden. Therefore, efficacious vaccines are needed to control the spread of dengue worldwide. Dengue is an emerging viral disease caused by any of dengue virus 1-4 serotypes that affects the human population around the globe. Dengue virus is a single stranded RNA virus encoding three structural proteins (capsid protein, pre-membrane protein, and envelope protein) and seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). As the only licensed dengue vaccine (Dengvaxia) is unable to confer balanced protection against all the serotypes, therefore various approaches for development of dengue vaccines including tetravalent live attenuated, inactivated, plasmid DNA, virus-vectored, virus-like particles, and recombinant subunit vaccines are being explored. These candidates are at different stages of vaccine development and have their own merits and demerits. The promising subunit vaccines are mainly based on envelope or its domain and non-structural proteins of dengue virus. These proteins have been produced in different hosts and are being investigated for development of a successful dengue vaccine. Novel immunogens have been designed employing various strategies like protein engineering and fusion of antigen with various immunostimulatory motif to work as self-adjuvant. Moreover, recombinant proteins can be formulated with novel adjuvants to enhance the immunogenicity and thus conferring better protection to the vaccinees. With the advent of newer and safer host systems, these recombinant proteins can be produced in a cost effective manner at large scale for vaccine studies. In this review, we summarize recent developments in recombinant protein based dengue vaccines that could lead to a good number of efficacious vaccine candidates for future human use and ultimately alternative dengue vaccine candidates.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
29
|
Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol 2018; 5:227-253. [PMID: 30044715 DOI: 10.1146/annurev-virology-101416-041848] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dengue virus (DENV) is the most prevalent medically important mosquito-borne virus in the world. Upon DENV infection of a host cell, DENV nonstructural protein 1 (NS1) can be found intracellularly as a monomer, associated with the cell surface as a dimer, and secreted as a hexamer into the bloodstream. NS1 plays a variety of roles in the viral life cycle, particularly in RNA replication and immune evasion of the complement pathway. Over the past several years, key roles for NS1 in the pathogenesis of severe dengue disease have emerged, including direct action of the protein on the vascular endothelium and triggering release of vasoactive cytokines from immune cells, both of which result in endothelial hyperpermeability and vascular leak. Importantly, the adaptive immune response generates a robust response against NS1, and its potential contribution to dengue vaccines is also discussed.
Collapse
Affiliation(s)
- Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| |
Collapse
|
30
|
Secretion of Nonstructural Protein 1 of Dengue Virus from Infected Mosquito Cells: Facts and Speculations. J Virol 2018; 92:JVI.00275-18. [PMID: 29720514 DOI: 10.1128/jvi.00275-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dengue virus nonstructural protein 1 (NS1) is a multifunctional glycoprotein. For decades, the notion in the field was that NS1 is secreted exclusively from vertebrate cells and not from mosquito cells. However, recent evidence shows that mosquito cells also secrete NS1 efficiently. In this review, we discuss the evidence for secretion of NS1 of dengue virus, and of other flaviviruses, from mosquito cells, differences between NS1 secreted from mosquito and NS1 secreted from vertebrate cells, and possible roles of soluble NS1 in the insect flavivirus vector.
Collapse
|
31
|
Dwivedi VD, Tripathi IP, Tripathi RC, Bharadwaj S, Mishra SK. Genomics, proteomics and evolution of dengue virus. Brief Funct Genomics 2018; 16:217-227. [PMID: 28073742 DOI: 10.1093/bfgp/elw040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genome of a pathogenic organism possesses a specific order of nucleotides that contains not only information about the synthesis and expression of proteomes, which are required for its growth and survival, but also about its evolution. Inhibition of any particular protein, which is required for the survival of that pathogenic organism, can be used as a potential therapeutic target for the development of effective drugs to treat its infections. In this review, the genomics, proteomics and evolution of dengue virus have been discussed, which will be helpful in better understanding of its origin, growth, survival and evolution, and may contribute toward development of new efficient anti-dengue drugs.
Collapse
|
32
|
Watterson D, Modhiran N, Muller DA, Stacey KJ, Young PR. Plugging the Leak in Dengue Shock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:89-106. [PMID: 29845527 DOI: 10.1007/978-981-10-8727-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent structural and functional advances provide fresh insight into the biology of the dengue virus non-structural protein, NS1 and suggest new avenues of research. The work of our lab and others have shown that the secreted, hexameric form of NS1 has a systemic toxic effect, inducing inflammatory cytokines and acting directly on endothelial cells to produce the hallmark of dengue disease, vascular leak. We also demonstrated that NS1 exerts its toxic activity through recognition by the innate immune receptor TLR4, mimicking the bacterial endotoxin LPS. This monograph covers the background underpinning these new findings and discusses new avenues for antiviral and vaccine intervention.
Collapse
Affiliation(s)
- Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Katryn J Stacey
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
33
|
The Transactions of NS3 and NS5 in Flaviviral RNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:147-163. [PMID: 29845531 DOI: 10.1007/978-981-10-8727-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) replication occurs in virus-induced vesicles that contain the replication complex (RC) where viral RNA, viral proteins and host proteins participate in RNA-RNA, RNA-protein and protein-protein interactions to ensure viral genome synthesis. However, the details of the multitude of interactions involved in the biogenesis of the infectious virion are not fully understood. In this review, we will focus on the interaction between non-structural (NS) proteins NS3 and NS5, as well as their interactions with viral RNA and briefly also the interaction of NS5 with the host nuclear transport receptor protein importin-α. The multifunctional NS3 protease/helicase and NS5 methyltransferase (MTase)/RNA-dependent RNA polymerase (RdRp) contain all the enzymatic activities required to synthesize the viral RNA genome. The success stories of drug discovery and development with Hepatitis C virus (HCV), a member of the Flaviviridae family, has led to the view that DENV NS3 and NS5 may be attractive antiviral drug targets. However, more than 10 years of intensive research effort by Novatis has revealed that they are not "low hanging fruits" and therefore, the search for potent directly acting antivirals (DAAs) remains a pipeline goal for several medium to large drug discovery enterprises. The effort to discover DAAs for DENV has been boosted by the epidemic outbreak of the closely related flavivirus member - Zika virus (ZIKV). Because the viral RNA replication occurs within a molecular machine that is composed several viral and host proteins, much interest has turned to characterising functionally essential protein-protein interactions in order to identify potential allosteric inhibitor binding sites within the RC.
Collapse
|
34
|
Ricciardi-Jorge T, Bordignon J, Koishi A, Zanluca C, Mosimann AL, Duarte Dos Santos CN. Development of a quantitative NS1-capture enzyme-linked immunosorbent assay for early detection of yellow fever virus infection. Sci Rep 2017; 7:16229. [PMID: 29176643 PMCID: PMC5701136 DOI: 10.1038/s41598-017-16231-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022] Open
Abstract
Yellow fever is an arboviral disease that causes thousands of deaths every year in Africa and the Americas. However, few commercial diagnostic kits are available. Non-structural protein 1 (NS1) is an early marker of several flavivirus infections and is widely used to diagnose dengue virus (DENV) infection. Nonetheless, little is known about the dynamics of Yellow fever virus (YFV) NS1 expression and secretion, to encourage its use in diagnosis. To tackle this issue, we developed a quantitative NS1-capture ELISA specific for YFV using a monoclonal antibody and recombinant NS1 protein. This test was used to quantify NS1 in mosquito and human cell line cultures infected with vaccine and wild YFV strains. Our results showed that NS1 was detectable in the culture supernatants of both cell lines; however, a higher concentration was maintained as cell-associated rather than secreted into the extracellular milieu. A panel of 73 human samples was used to demonstrate the suitability of YFV NS1 as a diagnostic tool, resulting in 80% sensitivity, 100% specificity, a 100% positive predictive value and a 95.5% negative predictive value compared with RT-PCR. Overall, the developed NS1-capture ELISA showed potential as a promising assay for the detection of early YF infection.
Collapse
Affiliation(s)
- Taissa Ricciardi-Jorge
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Andrea Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Ana Luiza Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | | |
Collapse
|
35
|
Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Sci Rep 2017; 7:6975. [PMID: 28765561 PMCID: PMC5539099 DOI: 10.1038/s41598-017-07308-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Dengue is the most common mosquito-transmitted viral infection for which an improved vaccine is still needed. Although nonstructural protein-1 (NS1) immunization can protect mice against dengue infection, molecular mimicry between NS1 and host proteins makes NS1-based vaccines challenging to develop. Based on the epitope recognized by the anti-NS1 monoclonal Ab (mAb) 33D2 which recognizes a conserved NS1 wing domain (NS1-WD) region but not host proteins, we synthesized a modified NS1-WD peptide to immunize mice. We found that both mAb 33D2 and modified NS1-WD peptide immune sera could induce complement-dependent lysis of dengue-infected but not un-infected cells in vitro. Furthermore, either active immunization with the modified NS1-WD peptide or passive transfer of mAb 33D2 efficiently protected mice against all serotypes of dengue virus infection. More importantly, dengue patients with more antibodies recognized the modified NS1-WD peptide had less severe disease. Thus, the modified NS1-WD peptide is a promising dengue vaccine candidate.
Collapse
|
36
|
Yap SSL, Nguyen-Khuong T, Rudd PM, Alonso S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol 2017; 8:1415. [PMID: 28791003 PMCID: PMC5524768 DOI: 10.3389/fmicb.2017.01415] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 12/04/2022] Open
Abstract
In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E) and non-structural protein 1 (NS1) are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.
Collapse
Affiliation(s)
- Sally S L Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Pauline M Rudd
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
37
|
Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol Cell Biol 2017; 95:491-495. [DOI: 10.1038/icb.2017.5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
|
38
|
Xu X, Song H, Qi J, Liu Y, Wang H, Su C, Shi Y, Gao GF. Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J 2016; 35:2170-2178. [PMID: 27578809 PMCID: PMC5069551 DOI: 10.15252/embj.201695290] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022] Open
Abstract
The association of Zika virus (ZIKV) infections with microcephaly and neurological diseases has highlighted an emerging public health concern. Here, we report the crystal structure of the full‐length ZIKV nonstructural protein 1 (NS1), a major host‐interaction molecule that functions in flaviviral replication, pathogenesis, and immune evasion. Of note, a long intertwined loop is observed in the wing domain of ZIKV NS1, and forms a hydrophobic “spike”, which can contribute to cellular membrane association. For different flaviviruses, the amino acid sequences of the “spike” are variable but their common characteristic is either hydrophobic or positively charged, which is a beneficial feature for membrane binding. Comparative studies with West Nile and Dengue virus NS1 structures reveal conserved features, but diversified electrostatic characteristics on both inner and outer faces. Our results suggest different mechanisms of flavivirus pathogenesis and should be considered during the development of diagnostic tools.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqian Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Haiyuan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Chao Su
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, China .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
39
|
Jayaraman B, Smith AM, Fernandes JD, Frankel AD. Oligomeric viral proteins: small in size, large in presence. Crit Rev Biochem Mol Biol 2016; 51:379-394. [PMID: 27685368 DOI: 10.1080/10409238.2016.1215406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states.
Collapse
Affiliation(s)
- Bhargavi Jayaraman
- a Department of Biochemistry and Biophysics , University of California , San Francisco , CA , USA
| | - Amber M Smith
- a Department of Biochemistry and Biophysics , University of California , San Francisco , CA , USA
| | - Jason D Fernandes
- b UC Santa Cruz Genomics Institute , Santa Cruz , CA , USA.,c Howard Hughes Medical Institute, University of California , Santa Cruz , CA , USA
| | - Alan D Frankel
- a Department of Biochemistry and Biophysics , University of California , San Francisco , CA , USA
| |
Collapse
|
40
|
Brown WC, Akey DL, Konwerski JR, Tarrasch JT, Skiniotis G, Kuhn RJ, Smith JL. Extended surface for membrane association in Zika virus NS1 structure. Nat Struct Mol Biol 2016; 23:865-7. [PMID: 27455458 DOI: 10.1038/nsmb.3268] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022]
Abstract
The Zika virus, which has been implicated in an increase in neonatal microcephaly and Guillain-Barré syndrome, has spread rapidly through tropical regions of the world. The virulence protein NS1 functions in genome replication and host immune-system modulation. Here, we report the crystal structure of full-length Zika virus NS1, revealing an elongated hydrophobic surface for membrane association and a polar surface that varies substantially among flaviviruses.
Collapse
Affiliation(s)
- W Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey T Tarrasch
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Watterson D, Modhiran N, Young PR. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Res 2016; 130:7-18. [DOI: 10.1016/j.antiviral.2016.02.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
42
|
Alcalá AC, Medina F, González-Robles A, Salazar-Villatoro L, Fragoso-Soriano RJ, Vásquez C, Cervantes-Salazar M, del Angel RM, Ludert JE. The dengue virus non-structural protein 1 (NS1) is secreted efficiently from infected mosquito cells. Virology 2016; 488:278-87. [DOI: 10.1016/j.virol.2015.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
|
43
|
Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity. J Virol 2015; 89:11871-83. [PMID: 26378175 DOI: 10.1128/jvi.01342-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux.
Collapse
|
44
|
Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN. Unstructural biology of the dengue virus proteins. FEBS J 2015; 282:3368-94. [DOI: 10.1111/febs.13349] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/01/2015] [Accepted: 06/15/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering; University of Alberta; Edmonton Alberta Canada
| | - Reaid A. Badierah
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hussein A. Almehdar
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Therapeutic and Protective Proteins Laboratory; Protein Research Department; Genetic Engineering and Biotechnology Research Institute; City for Scientific Research and Technology Applications; New Borg El-Arab Alexandria Egypt
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering; University of Alberta; Edmonton Alberta Canada
| | - Vladimir N. Uversky
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa FL USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St Petersburg Russia
| |
Collapse
|
45
|
Flamand M. The flavivirus NS1 protein's mysteries unveiled? Bioessays 2015; 37:472. [DOI: 10.1002/bies.201500029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
|
46
|
Akey DL, Brown WC, Jose J, Kuhn RJ, Smith JL. Structure-guided insights on the role of NS1 in flavivirus infection. Bioessays 2015; 37:489-94. [PMID: 25761098 DOI: 10.1002/bies.201400182] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
Abstract
We highlight the various domains of the flavivirus virulence factor NS1 and speculate on potential implications of the NS1 3D structure in understanding its role in flavivirus pathogenesis. Flavivirus non-structural protein 1 (NS1) is a virulence factor with dual functions in genome replication and immune evasion. Crystal structures of NS1, combined with reconstructions from electron microscopy (EM), provide insight into the architecture of dimeric NS1 on cell membranes and the assembly of a secreted hexameric NS1-lipid complex found in patient sera. Three structural domains of NS1 likely have distinct roles in membrane association, replication complex assembly, and immune system avoidance. A conserved hydrophobic inner face is sequestered either on the membrane or in the interior of the secreted hexamer and contains regions implicated in viral replication. The exposed variable outer face is presented to cellular and secreted components of the immune system in infected patients and contains candidate regions for immune system modulation. We anticipate that knowledge of the distinct NS1 domains and assembly will lead to advances in elucidating virus-host interactions mediated through NS1 and in dissecting the role of NS1 in viral genome replication.
Collapse
Affiliation(s)
- David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
47
|
Salazar MI, del Angel RM, Lanz-Mendoza H, Ludert JE, Pando-Robles V. The role of cell proteins in dengue virus infection. J Proteomics 2014; 111:6-15. [DOI: 10.1016/j.jprot.2014.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
|
48
|
Campos GS, Pinho ACO, Brandão CJDF, Bandeira AC, Sardi SI. Dengue virus 4 (DENV-4) re-emerges after 30 years in Brazil: cocirculation of DENV-2, DENV-3, and DENV-4 in Bahia. Jpn J Infect Dis 2014; 68:45-9. [PMID: 25420650 DOI: 10.7883/yoken.jjid.2014.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue fever (DF) is a mosquito-borne viral disease of great concern in tropical and subtropical regions of the world. One important cause of the increase in DF is rapid development and urbanization has led to proliferation of the Aedes aegypti mosquito, the vector responsible for transmission of the illness. Surveillance of dengue virus (DENV) infection in Brazil shows the predominance of DENV-1, DENV-2, and DENV-3 until 2010. This study reports the reappearance of DENV-4 in Brazil for the first time in 30 years. Serum samples were collected from individuals (n = 214) exhibiting fever and muscular pain in Bahia, Brazil, during 2011-2012. These samples were subjected to reverse transcription-polymerase chain reaction (RT-PCR)/nested PCR, which revealed that 82% of samples were positive for DENV-4; most were older age groups and exhibited a serological pattern consistent with a primary infection. The cocirculation of multiple DENV serotypes within the same city places the population at risk for a fatal form of the disease. Therefore, with the increasing incidence of severe DF cases, early diagnosis will be a priority for public health efforts in Brazil.
Collapse
Affiliation(s)
- Gubio Soares Campos
- Laboratory of Virology, Department of Biointeraction, Health Science Institute, Federal University of Bahia
| | | | | | | | | |
Collapse
|
49
|
Abstract
The Flavivirus nonstructural protein 1 (NS1) is a conserved, membrane-associated and secreted glycoprotein with replication and immune evasion functions. Secreted NS1 is a hexameric, barrel-shaped lipoprotein that can bind back to the plasma membrane of cells. Antibodies targeting cell surface-associated NS1 can be protective in vivo in a manner dependent on Fc effector functions. We describe here the crystal structure of a C-terminal fragment (residues 172-352) of West Nile (WNV) and Dengue virus NS1 proteins at 1.85 and 2.7 Å resolution, respectively. NS1(172-352) assembles as a unique rod-shaped dimer composed of a 16-stranded β-platform flanked on one face by protruding connecting loops. We also determined the 3.0 Å resolution structure of WNV NS1(172-352) with the protective 22NS1 antibody Fab, which engages the loop-face of the rod. The head-to-head NS1(172-352) dimer we observe in crystal lattices is supported by multiangle light and small-angle X-ray scattering studies. We used the available cryo-electron microscopy reconstruction to develop a pseudoatomic model of the NS1 hexamer. The model was constructed with the NS1(172-352) dimeric rod aligned with the long axis of the barrel, and with the loop-face oriented away from the core. Difference densities suggest that the N-terminal region of NS1 forms globular lobes that mediate lateral contacts between dimers in the hexamer. Our model also suggests that the N-terminal lobe forms the surface of the central cavity where lipid binding may occur.
Collapse
|
50
|
Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, DelProposto J, Ogata CM, Skiniotis G, Kuhn RJ, Smith JL. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 2014; 343:881-5. [PMID: 24505133 PMCID: PMC4263348 DOI: 10.1126/science.1247749] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flaviviruses, the human pathogens responsible for dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever, are endemic in tropical and temperate parts of the world. The flavivirus nonstructural protein 1 (NS1) functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. We report crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses. The NS1 hexamer in crystal structures is similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 binds to lipid bilayers and remodels large liposomes into lipoprotein nanoparticles. The NS1 structures reveal distinct domains for membrane association of the dimer and interactions with the immune system and are a basis for elucidating the molecular mechanism of NS1 function.
Collapse
Affiliation(s)
- David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - W. Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somnath Dutta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joyce Jose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas J. Jurkiw
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James DelProposto
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig M. Ogata
- GM/CA@APS, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|