1
|
Song L, Zhong P, Yu R, Yuan Y, Zhou Y, Qian Y, Yang S, Yi H, Yang Z, Zhao W. Effect of HDAC9-induced deacetylation of glycolysis-related GAPDH lysine 219 on rotavirus replication in rotavirus-infected Caco-2 cells. Virus Genes 2024; 60:621-634. [PMID: 39302542 PMCID: PMC11568057 DOI: 10.1007/s11262-024-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.
Collapse
Affiliation(s)
- Lijun Song
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Peicheng Zhong
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Runyu Yu
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yue Yuan
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yujing Zhou
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yupei Qian
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Siyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haosen Yi
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Zhiyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China.
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
2
|
Soares VC, Dias SSG, Santos JC, Bozza PT. Unlocking secrets: lipid metabolism and lipid droplet crucial roles in SARS-CoV-2 infection and the immune response. J Leukoc Biol 2024; 116:1254-1268. [PMID: 39087951 DOI: 10.1093/jleuko/qiae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024] Open
Abstract
Lipid droplets (LDs) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and nonstructural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. SARS-CoV-2 infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LDs participate in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.
Collapse
Affiliation(s)
- Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Suelen Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Julia Cunha Santos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| |
Collapse
|
3
|
Farías MA, Diethelm-Varela B, Kalergis AM, González PA. Interplay between lipid metabolism, lipid droplets and RNA virus replication. Crit Rev Microbiol 2024; 50:515-539. [PMID: 37348003 DOI: 10.1080/1040841x.2023.2224424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/20/2022] [Accepted: 01/29/2023] [Indexed: 06/24/2023]
Abstract
Lipids play essential roles in the cell as components of cellular membranes, signaling molecules, and energy storage sources. Lipid droplets are cellular organelles composed of neutral lipids, such as triglycerides and cholesterol esters, and are also considered as cellular energy reserves, yet new functions have been recently associated with these structures, such as regulators of oxidative stress and cellular lipotoxicity, as well as modulators of pathogen infection through immune regulation. Lipid metabolism and lipid droplets participate in the infection process of many RNA viruses and control their replication and assembly, among others. Here, we review and discuss the contribution of lipid metabolism and lipid droplets over the replication cycle of RNA viruses, altogether pointing out potentially new pharmacological antiviral targets associated with lipid metabolism.
Collapse
Affiliation(s)
- Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Desselberger U. Significance of Cellular Lipid Metabolism for the Replication of Rotaviruses and Other RNA Viruses. Viruses 2024; 16:908. [PMID: 38932200 PMCID: PMC11209218 DOI: 10.3390/v16060908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The replication of species A rotaviruses (RVAs) involves the recruitment of and interaction with cellular organelles' lipid droplets (LDs), both physically and functionally. The inhibition of enzymes involved in the cellular fatty acid biosynthesis pathway or the inhibition of cellular lipases that degrade LDs was found to reduce the functions of 'viral factories' (viroplasms for rotaviruses or replication compartments of other RNA viruses) and decrease the production of infectious progeny viruses. While many other RNA viruses utilize cellular lipids for their replication, their detailed analysis is far beyond this review; only a few annotations are made relating to hepatitis C virus (HCV), enteroviruses, SARS-CoV-2, and HIV-1.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
5
|
Tao R, Cheng X, Gu L, Zhou J, Zhu X, Zhang X, Guo R, Wang W, Li B. Lipidomics reveals the significance and mechanism of the cellular ceramide metabolism for rotavirus replication. J Virol 2024; 98:e0006424. [PMID: 38488360 PMCID: PMC11019908 DOI: 10.1128/jvi.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
As one of the most important causative agents of severe gastroenteritis in children, piglets, and other young animals, species A rotaviruses have adversely impacted both human health and the global swine industry. Vaccines against rotaviruses (RVs) are insufficiently effective, and no specific treatment is available. To understand the relationships between porcine RV (PoRV) infection and enterocytes in terms of the cellular lipid metabolism, we performed an untargeted liquid chromatography mass spectrometry (LC-MS) lipidomics analysis of PoRV-infected IPEC-J2 cells. Herein, a total of 451 lipids (263 upregulated lipids and 188 downregulated lipids), spanning sphingolipid, glycerolipid, and glycerophospholipids, were significantly altered compared with the mock-infected group. Interestingly, almost all the ceramides among these lipids were upregulated during PoRV infection. LC-MS analysis was used to validated the lipidomics data and demonstrated that PoRV replication increased the levels of long-chain ceramides (C16-ceramide, C18-ceramide, and C24-ceramide) in cells. Furthermore, we found that these long-chain ceramides markedly inhibited PoRV infection and that their antiviral actions were exerted in the replication stage of PoRV infection. Moreover, downregulation of endogenous ceramides with the ceramide metabolic inhibitors enhanced PoRV propagation. Increasing the levels of ceramides by the addition of C6-ceramide strikingly suppressed the replication of diverse RV strains. We further found that the treatment with an apoptotic inhibitor could reverse the antiviral activity of ceramide against PoRV replication, demonstrating that ceramide restricted RV infection by inducing apoptosis. Altogether, this study revealed that ceramides played an antiviral role against RV infection, providing potential approaches for the development of antiviral therapies.IMPORTANCERotaviruses (RVs) are among the most important zoonosis viruses, which mainly infected enterocytes of the intestinal epithelium causing diarrhea in children and the young of many mammalian and avian species. Lipids play an essential role in viral infection. A comprehensive understanding of the interaction between RV and lipid metabolism in the enterocytes will be helpful to control RV infection. Here, we mapped changes in enterocyte lipids following porcine RV (PoRV) infection using an untargeted lipidomics approach. We found that PoRV infection altered the metabolism of various lipid species, especially ceramides (derivatives of the sphingosine). We further demonstrated that PoRV infection increased the accumulation of ceramides and that ceramides exerted antiviral effects on RV replication by inducing apoptosis. Our findings fill a gap in understanding the alterations of lipid metabolism in RV-infected enterocytes and highlight the antiviral effects of ceramides on RV infection, suggesting potential approaches to control RV infection.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Xi Cheng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Laqiang Gu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
6
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
7
|
Liu Z, Smith H, Criglar JM, Valentin AJ, Karandikar U, Zeng XL, Estes MK, Crawford SE. Rotavirus-mediated DGAT1 degradation: A pathophysiological mechanism of viral-induced malabsorptive diarrhea. Proc Natl Acad Sci U S A 2023; 120:e2302161120. [PMID: 38079544 PMCID: PMC10743370 DOI: 10.1073/pnas.2302161120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
- Department of Biosciences, Rice University, Houston, TX77005
| | - Hunter Smith
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Jeanette M. Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Antonio J. Valentin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Umesh Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
8
|
Qu Y, Wang W, Xiao MZX, Zheng Y, Liang Q. The interplay between lipid droplets and virus infection. J Med Virol 2023; 95:e28967. [PMID: 37496184 DOI: 10.1002/jmv.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
As an intracellular parasite, the virus usurps cellular machinery and modulates cellular metabolism pathways to replicate itself in cells. Lipid droplets (LDs) are universally conserved energy storage organelles that not only play vital roles in maintaining lipid homeostasis but are also involved in viral replication. Increasing evidence has demonstrated that viruses take advantage of cellular lipid metabolism by targeting the biogenesis, hydrolysis, and lipophagy of LD during viral infection. In this review, we summarize the current knowledge about the modulation of cellular LD by different viruses, with a special emphasis on the Hepatitis C virus, Dengue virus, and SARS-CoV-2.
Collapse
Affiliation(s)
- Yafei Qu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai University of Traditional Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Medicine, Shanghai, China
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Clark SA, Vazquez A, Furiya K, Splattstoesser MK, Bashmail AK, Schwartz H, Russell M, Bhark SJ, Moreno OK, McGovern M, Owsley ER, Nelson TA, Sanchez EL, Delgado T. Rewiring of the Host Cell Metabolome and Lipidome during Lytic Gammaherpesvirus Infection Is Essential for Infectious-Virus Production. J Virol 2023; 97:e0050623. [PMID: 37191529 PMCID: PMC10308918 DOI: 10.1128/jvi.00506-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Oncogenic virus infections are estimated to cause ~15% of all cancers. Two prevalent human oncogenic viruses are members of the gammaherpesvirus family: Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV). We use murine herpesvirus 68 (MHV-68), which shares significant homology with KSHV and EBV, as a model system to study gammaherpesvirus lytic replication. Viruses implement distinct metabolic programs to support their life cycle, such as increasing the supply of lipids, amino acids, and nucleotide materials necessary to replicate. Our data define the global changes in the host cell metabolome and lipidome during gammaherpesvirus lytic replication. Our metabolomics analysis found that MHV-68 lytic infection induces glycolysis, glutaminolysis, lipid metabolism, and nucleotide metabolism. We additionally observed an increase in glutamine consumption and glutamine dehydrogenase protein expression. While both glucose and glutamine starvation of host cells decreased viral titers, glutamine starvation led to a greater loss in virion production. Our lipidomics analysis revealed a peak in triacylglycerides early during infection and an increase in free fatty acids and diacylglyceride later in the viral life cycle. Furthermore, we observed an increase in the protein expression of multiple lipogenic enzymes during infection. Interestingly, pharmacological inhibitors of glycolysis or lipogenesis resulted in decreased infectious virus production. Taken together, these results illustrate the global alterations in host cell metabolism during lytic gammaherpesvirus infection, establish essential pathways for viral production, and recommend targeted mechanisms to block viral spread and treat viral induced tumors. IMPORTANCE Viruses are intracellular parasites which lack their own metabolism, so they must hijack host cell metabolic machinery in order to increase the production of energy, proteins, fats, and genetic material necessary to replicate. Using murine herpesvirus 68 (MHV-68) as a model system to understand how similar human gammaherpesviruses cause cancer, we profiled the metabolic changes that occur during lytic MHV-68 infection and replication. We found that MHV-68 infection of host cells increases glucose, glutamine, lipid, and nucleotide metabolic pathways. We also showed inhibition or starvation of glucose, glutamine, or lipid metabolic pathways results in an inhibition of virus production. Ultimately, targeting changes in host cell metabolism due to viral infection can be used to treat gammaherpesvirus-induced cancers and infections in humans.
Collapse
Affiliation(s)
- Sarah A. Clark
- Northwest University, Department of Biology, Kirkland, Washington, USA
| | - Angie Vazquez
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Kelsey Furiya
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | | | | | - Haleigh Schwartz
- Northwest University, Department of Biology, Kirkland, Washington, USA
| | - Makaiya Russell
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Shun-Je Bhark
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Osvaldo K. Moreno
- San Francisco State University, Department of Biology, San Francisco, California, USA
| | - Morgan McGovern
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Eric R. Owsley
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Timothy A. Nelson
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Erica L. Sanchez
- San Francisco State University, Department of Biology, San Francisco, California, USA
- University of Texas at Dallas, Department of Biological Sciences, Richardson, Texas, USA
| | - Tracie Delgado
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
- Northwest University, Department of Biology, Kirkland, Washington, USA
| |
Collapse
|
10
|
Jiang L, Tang A, Song L, Tong Y, Fan H. Advances in the development of antivirals for rotavirus infection. Front Immunol 2023; 14:1041149. [PMID: 37006293 PMCID: PMC10063883 DOI: 10.3389/fimmu.2023.1041149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Rotavirus (RV) causes 200,000 deaths per year and imposes a serious burden to public health and livestock farming worldwide. Currently, rehydration (oral and intravenous) remains the main strategy for the treatment of rotavirus gastroenteritis (RVGE), and no specific drugs are available. This review discusses the viral replication cycle in detail and outlines possible therapeutic approaches including immunotherapy, probiotic-assisted therapy, anti-enteric secretory drugs, Chinese medicine, and natural compounds. We present the latest advances in the field of rotavirus antivirals and highlights the potential use of Chinese medicine and natural compounds as therapeutic agents. This review provides an important reference for rotavirus prevention and treatment.
Collapse
Affiliation(s)
| | | | - Lihua Song
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Yigang Tong
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Huahao Fan
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| |
Collapse
|
11
|
Dias SSG, Cunha-Fernandes T, Souza-Moreira L, Soares VC, Lima GB, Azevedo-Quintanilha IG, Santos J, Pereira-Dutra F, Freitas C, Reis PA, Rehen SK, Bozza FA, Souza TML, de Almeida CJG, Bozza PT. Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells. J Neuroinflammation 2023; 20:61. [PMID: 36882750 PMCID: PMC9992922 DOI: 10.1186/s12974-023-02736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Zika virus (ZIKV) infection is a global public health concern linked to adult neurological disorders and congenital diseases in newborns. Host lipid metabolism, including lipid droplet (LD) biogenesis, has been associated with viral replication and pathogenesis of different viruses. However, the mechanisms of LD formation and their roles in ZIKV infection in neural cells are still unclear. Here, we demonstrate that ZIKV regulates the expression of pathways associated with lipid metabolism, including the upregulation and activation of lipogenesis-associated transcription factors and decreased expression of lipolysis-associated proteins, leading to significant LD accumulation in human neuroblastoma SH-SY5Y cells and in neural stem cells (NSCs). Pharmacological inhibition of DGAT-1 decreased LD accumulation and ZIKV replication in vitro in human cells and in an in vivo mouse model of infection. In accordance with the role of LDs in the regulation of inflammation and innate immunity, we show that blocking LD formation has major roles in inflammatory cytokine production in the brain. Moreover, we observed that inhibition of DGAT-1 inhibited the weight loss and mortality induced by ZIKV infection in vivo. Our results reveal that LD biogenesis triggered by ZIKV infection is a crucial step for ZIKV replication and pathogenesis in neural cells. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development.
Collapse
Affiliation(s)
- Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Souza-Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Programa de Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Barbosa Lima
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Julia Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Filipe Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Caroline Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil.,Instituto de Biologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil.,Instituto Nacional de Infectologia Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago M Lopes Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas (INCT/IDPN), Centro de Desenvolvimento Tecnológico em Saúde, (CDTS), FIOCRUZ, Rio de Janeiro, Brazil
| | - Cecilia J G de Almeida
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Baek YB, Kwon HJ, Sharif M, Lim J, Lee IC, Ryu YB, Lee JI, Kim JS, Lee YS, Kim DH, Park SI, Kim DK, Kim JS, Choy HE, Lee S, Choi HS, Osborne TF, Jeon TI, Cho KO. Therapeutic strategy targeting host lipolysis limits infection by SARS-CoV-2 and influenza A virus. Signal Transduct Target Ther 2022; 7:367. [PMID: 36253361 PMCID: PMC9575645 DOI: 10.1038/s41392-022-01223-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022] Open
Abstract
The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.
Collapse
Affiliation(s)
- Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Muhammad Sharif
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongah Lim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jae-In Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Young-Seung Lee
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61486, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Tae-Il Jeon
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
13
|
Chandra P, Banerjee S, Saha P, Chawla-Sarkar M, Patra U. Sneaking into the viral safe-houses: Implications of host components in regulating integrity and dynamics of rotaviral replication factories. Front Cell Infect Microbiol 2022; 12:977799. [PMID: 36189370 PMCID: PMC9515456 DOI: 10.3389/fcimb.2022.977799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The biology of the viral life cycle essentially includes two structural and functional entities—the viral genome and protein machinery constituting the viral arsenal and an array of host cellular components which the virus closely associates with—to ensure successful perpetuation. The obligatory requirements of the virus to selectively evade specific host cellular factors while exploiting certain others have been immensely important to provide the platform for designing host-directed antiviral therapeutics. Although the spectrum of host-virus interaction is multifaceted, host factors that particularly influence viral replication have immense therapeutic importance. During lytic proliferation, viruses usually form replication factories which are specialized subcellular structures made up of viral proteins and replicating nucleic acids. These viral niches remain distinct from the rest of the cellular milieu, but they effectively allow spatial proximity to selective host determinants. Here, we will focus on the interaction between the replication compartments of a double stranded RNA virus rotavirus (RV) and the host cellular determinants of infection. RV, a diarrheagenic virus infecting young animals and children, forms replication bodies termed viroplasms within the host cell cytoplasm. Importantly, viroplasms also serve as the site for transcription and early morphogenesis of RVs and are very dynamic in nature. Despite advances in the understanding of RV components that constitute the viroplasmic architecture, knowledge of the contribution of host determinants to viroplasm dynamicity has remained limited. Emerging evidence suggests that selective host determinants are sequestered inside or translocated adjacent to the RV viroplasms. Functional implications of such host cellular reprogramming are also ramifying—disarming the antiviral host determinants and usurping the pro-viral components to facilitate specific stages of the viral life cycle. Here, we will provide a critical update on the wide variety of host cellular pathways that have been reported to regulate the spatial and temporal dynamicity of RV viroplasms. We will also discuss the methods used so far to study the host-viroplasm interactions and emphasize on the potential host factors which can be targeted for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Pritam Chandra
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shreya Banerjee
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Priyanka Saha
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
- *Correspondence: Mamta Chawla-Sarkar, , ; Upayan Patra,
| | - Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- *Correspondence: Mamta Chawla-Sarkar, , ; Upayan Patra,
| |
Collapse
|
14
|
Transcriptomic Analysis of MDBK Cells Infected with Cytopathic and Non-Cytopathic Strains of Bovine Viral Diarrhea Virus (BVDV). Viruses 2022; 14:v14061276. [PMID: 35746747 PMCID: PMC9228727 DOI: 10.3390/v14061276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the Flaviviridae family and the Pestivirus genus. Infection with BVDV causes a disease with a wide spectrum of clinical symptoms, most often mild, although infections with this virus constitute a serious economic problem all over the world. The virus is characterized by a high genetic variability, while the accumulation of single mutations leads to the formation of its new variants. The aim of this study was to better understand the complicated pathogenesis of this disease at the molecular level via the analysis of the transcriptome of cells infected with this virus. The bovine kidney cell line (MDBK), the cytopathic (cp) reference strain, and two non-cytopathic (ncp) BVD virus field strains were used in transcriptomic studies. The cell transcriptome was tested 24 and 72 h after infection. The results of the microarray analysis revealed changes in the expression levels of numerous genes. Genes with changed expression as a result of infection with the cp strain caused changes in the expression levels of a large number of genes and enriched a number of pathways. Genes with increased expression levels were enriched among other pathways involved in the cell cycle, while genes with reduced expression levels enriched pathways mostly related to metabolism. Genes with increased expression levels as a result of infection with ncp strains enriched a much smaller number of pathways, among them, pathways related to signaling activity 24 h post-infection and serine biosynthetic pathways both 24 and 72 h post-infection. Pathways enriched by genes with reduced expression levels were related to the innate immune response (72 h post-infection) or metabolism (24 and 72 h post-infection). The results of microarray studies can help us to better understand the host’s response to BVDV infection.
Collapse
|
15
|
The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens 2022; 11:pathogens11050538. [PMID: 35631059 PMCID: PMC9147806 DOI: 10.3390/pathogens11050538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Compared to what we knew at the start of the SARS-CoV-2 global pandemic, our understanding of the interplay between the interferon signaling pathway and SARS-CoV-2 infection has dramatically increased. Innate antiviral strategies range from the direct inhibition of viral components to reprograming the host’s own metabolic pathways to block viral infection. SARS-CoV-2 has also evolved to exploit diverse tactics to overcome immune barriers and successfully infect host cells. Herein, we review the current knowledge of the innate immune signaling pathways triggered by SARS-CoV-2 with a focus on the type I interferon response, as well as the mechanisms by which SARS-CoV-2 impairs those defenses.
Collapse
|
16
|
Criglar JM, Estes MK, Crawford SE. Rotavirus-Induced Lipid Droplet Biogenesis Is Critical for Virus Replication. Front Physiol 2022; 13:836870. [PMID: 35492603 PMCID: PMC9040889 DOI: 10.3389/fphys.2022.836870] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
A variety of pathogens, including viruses, bacteria and parasites, target cellular lipid droplets for their replication. Rotaviruses (RVs) infect the villous epithelium of the small intestine and are a major cause of acute gastroenteritis in infants and young children worldwide. RVs induce and require lipid droplets for the formation of viroplasms, sites of virus genome replication, and nascent particle assembly. Here we review the role of lipid droplets in RV replication. Inhibitors of fatty acid synthesis or chemicals that interfere with lipid droplet homeostasis decrease the number and size of viroplasms and the yield of infectious virus. We used a genetically engineered RV, delayed in viroplasm assembly, to show an early interaction of RV nonstructural protein NSP2 and the lipid droplet-associated protein phospho-PLIN1. The interaction between NSP2 and phospho-PLIN1 suggests that we have identified part of the mechanism of RV-induced lipid droplet formation. These studies demonstrate that RV is an excellent model to dissect the cellular process of lipid droplet formation and to determine how RV induces and usurps lipid droplet biogenesis to form viroplasm/lipid droplets for virus replication.
Collapse
Affiliation(s)
- Jeanette M Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Aliyari SR, Ghaffari AA, Pernet O, Parvatiyar K, Wang Y, Gerami H, Tong AJ, Vergnes L, Takallou A, Zhang A, Wei X, Chilin LD, Wu Y, Semenkovich CF, Reue K, Smale ST, Lee B, Cheng G. Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2. Acta Pharm Sin B 2022; 12:1624-1635. [PMID: 35251918 PMCID: PMC8883762 DOI: 10.1016/j.apsb.2022.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Saba R. Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Amir Ali Ghaffari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Olivier Pernet
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- EnViro International Laboratories, Los Angeles, CA 90077, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yao Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Hoda Gerami
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ann-Jay Tong
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Armin Takallou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Adel Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Linda D. Chilin
- Center for Infectious Disease Research, School of Systems Biology, George Mason University Manassas, VA 20110, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, School of Systems Biology, George Mason University Manassas, VA 20110, USA
| | - Clay F. Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Diabetic Cardiovascular Disease Center, Washington, University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stephen T. Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Corresponding author. Tel.:+1 310 825 8896; fax: +1 310 206 5553.
| |
Collapse
|
18
|
Bhuinya A, Dass D, Banerjee A, Mukherjee A. A Tale of Antiviral Counterattacks in Rotavirus Infection. Microbiol Res 2022; 260:127046. [DOI: 10.1016/j.micres.2022.127046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
|
19
|
Liou JW, Mani H, Yen JH. Viral Hepatitis, Cholesterol Metabolism, and Cholesterol-Lowering Natural Compounds. Int J Mol Sci 2022; 23:ijms23073897. [PMID: 35409259 PMCID: PMC8999150 DOI: 10.3390/ijms23073897] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis is defined as inflammation of the liver; it can be acute or chronic. In chronic cases, the prolonged inflammation gradually damages the liver, resulting in liver fibrosis, cirrhosis, and sometimes liver failure or cancer. Hepatitis is often caused by viral infections. The most common causes of viral hepatitis are the five hepatitis viruses—hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). While HAV and HEV rarely (or do not) cause chronic hepatitis, a considerable proportion of acute hepatitis cases caused by HBV (sometimes co-infected with HDV) and HCV infections become chronic. Thus, many medical researchers have focused on the treatment of HBV and HCV. It has been documented that host lipid metabolism, particularly cholesterol metabolism, is required for the hepatitis viral infection and life cycle. Thus, manipulating host cholesterol metabolism-related genes and proteins is a strategy used in fighting the viral infections. Efforts have been made to evaluate the efficacy of cholesterol-lowering drugs, particularly 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in the treatment of hepatitis viral infections; promising results have been obtained. This review provides information on the relationships between hepatitis viruses and host cholesterol metabolism/homeostasis, as well as the discovery/development of cholesterol-lowering natural phytochemicals that could potentially be applied in the treatment of viral hepatitis.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hemalatha Mani
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: or ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
20
|
Lipid metabolism is involved in the association of rotavirus viroplasms with endoplasmic reticulum membranes. Virology 2022; 569:29-36. [DOI: 10.1016/j.virol.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022]
|
21
|
Sander WJ, Kemp G, Hugo A, Pohl CH, O’Neill HG. Rotavirus-Mediated Prostaglandin E2 Production in MA104 Cells Promotes Virus Attachment and Internalisation, Resulting in an Increased Viral Load. Front Physiol 2022; 13:805565. [PMID: 35153833 PMCID: PMC8831913 DOI: 10.3389/fphys.2022.805565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Rotaviruses are one of the leading causes of severe dehydrating diarrhoea in infants and children under the age of five. Despite the introduction of vaccines, disease burden remains high in sub-Saharan Africa, with no known anti-viral treatments available. During early infection rotavirus attaches to several cellular receptors and enters the cells by either clathrin-dependent or -independent endocytosis. Prostaglandin E2, an abundant eicosanoid, is produced from arachidonic acid during rotavirus infection and inhibition of prostaglandin E2 formation have a deleterious effect on rotavirus infection. In this study, MA104 cells were supplemented with γ-linolenic acid (GLA), a precursor of arachidonic acid. Infection of supplemented cells with rotavirus SA11 led to a depletion in the relative percentages of GLA and arachidonic acid which coincided with an increased production of prostaglandin E2 as monitored by ELISA. Confocal microscopy demonstrated that prostaglandin E2 co-localises with the viroplasm-forming proteins, NSP5 and NSP2. Due to the known association of viroplasms with lipid droplets and the fact that lipid droplets are sites for prostaglandin E2 production, our results indicate a possible role for viroplasms in the production of rotavirus-induced prostaglandin E2. Replication kinetics showed that inhibitors, targeting the biosynthesis of prostaglandin E2, had negative effects on rotavirus yield, especially during the early stages of infection. Using flow cytometry and prostaglandin E2 addback experiments, we show that prostaglandin E2 enhances the attachment and internalisation of rotavirus in MA104 cells indicating a possible role for prostaglandin E2 during clathrin-mediated rotavirus entry. The production of prostaglandin E2 during rotavirus infection could serve as a possible target for anti-viral treatment.
Collapse
Affiliation(s)
- Willem J. Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Gabré Kemp
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Arnold Hugo
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- *Correspondence: Hester G. O’Neill,
| |
Collapse
|
22
|
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022; 21:283-305. [PMID: 35031766 PMCID: PMC8758994 DOI: 10.1038/s41573-021-00367-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Fatty acids are essential for survival, acting as bioenergetic substrates, structural components and signalling molecules. Given their vital role, cells have evolved mechanisms to generate fatty acids from alternative carbon sources, through a process known as de novo lipogenesis (DNL). Despite the importance of DNL, aberrant upregulation is associated with a wide variety of pathologies. Inhibiting core enzymes of DNL, including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), represents an attractive therapeutic strategy. Despite challenges related to efficacy, selectivity and safety, several new classes of synthetic DNL inhibitors have entered clinical-stage development and may become the foundation for a new class of therapeutics. De novo lipogenesis (DNL) is vital for the maintenance of whole-body and cellular homeostasis, but aberrant upregulation of the pathway is associated with a broad range of conditions, including cardiovascular disease, metabolic disorders and cancers. Here, Steinberg and colleagues provide an overview of the physiological and pathological roles of the core DNL enzymes and assess strategies and agents currently in development to therapeutically target them.
Collapse
Affiliation(s)
- Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
23
|
PPAR Ligands Induce Antiviral Effects Targeting Perturbed Lipid Metabolism during SARS-CoV-2, HCV, and HCMV Infection. BIOLOGY 2022; 11:biology11010114. [PMID: 35053112 PMCID: PMC8772958 DOI: 10.3390/biology11010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The current coronavirus disease 2019 pandemic turned the attention of researchers to developing novel strategies to counteract virus infections. Despite several antiviral drugs being commercially available, there is an urgent need to identify novel molecules efficacious against viral infections that act through different mechanisms of action. In this context, our attention is focused on novel compounds acting on nuclear receptors, whose activity could be beneficial in viral infections, including coronavirus, hepatitis C virus, and cytomegalovirus. Abstract The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.
Collapse
|
24
|
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021; 12:1022-1062. [PMID: 33818275 PMCID: PMC8023246 DOI: 10.1080/21505594.2021.1903198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.
Collapse
Affiliation(s)
- Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
25
|
Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int J Biol Sci 2021; 17:4223-4237. [PMID: 34803494 PMCID: PMC8579454 DOI: 10.7150/ijbs.64046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid metabolites are emerging as pivotal regulators of protein function and cell signaling. The availability of intracellular fatty acid is tightly regulated by glycolipid metabolism and may affect human body through many biological mechanisms. Recent studies have demonstrated palmitate, either from exogenous fatty acid uptake or de novo fatty acid synthesis, may serve as the substrate for protein palmitoylation and regulate protein function via palmitoylation. Palmitoylation, the most-studied protein lipidation, encompasses the reversible covalent attachment of palmitate moieties to protein cysteine residues. It controls various cellular physiological processes and alters protein stability, conformation, localization, membrane association and interaction with other effectors. Dysregulation of palmitoylation has been implicated in a plethora of diseases, such as metabolic syndrome, cancers, neurological disorders and infections. Accordingly, it could be one of the molecular mechanisms underlying the impact of palmitate metabolite on cellular homeostasis and human diseases. Herein, we explore the relationship between lipid metabolites and the regulation of protein function through palmitoylation. We review the current progress made on the putative role of palmitate in altering the palmitoylation of key proteins and thus contributing to the pathogenesis of various diseases, among which we focus on metabolic disorders, cancers, inflammation and infections, neurodegenerative diseases. We also highlight the opportunities and new therapeutics to target palmitoylation in disease development.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- National Clinical Research Center for Infectious Disease; Department of liver Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
26
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
27
|
Williams CG, Jureka AS, Silvas JA, Nicolini AM, Chvatal SA, Carlson-Stevermer J, Oki J, Holden K, Basler CF. Inhibitors of VPS34 and fatty-acid metabolism suppress SARS-CoV-2 replication. Cell Rep 2021; 36:109479. [PMID: 34320401 PMCID: PMC8289695 DOI: 10.1016/j.celrep.2021.109479] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/19/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses rely on host membranes for entry, establishment of replication centers, and egress. Compounds targeting cellular membrane biology and lipid biosynthetic pathways have previously shown promise as antivirals and are actively being pursued as treatments for other conditions. Here, we test small molecule inhibitors that target the PI3 kinase VPS34 or fatty acid metabolism for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity. Our studies determine that compounds targeting VPS34 are potent SARS-CoV-2 inhibitors. Mechanistic studies with compounds targeting multiple steps up- and downstream of fatty acid synthase (FASN) identify the importance of triacylglycerol production and protein palmitoylation as requirements for efficient viral RNA synthesis and infectious virus production. Further, FASN knockout results in significantly impaired SARS-CoV-2 replication that can be rescued with fatty acid supplementation. Together, these studies clarify roles for VPS34 and fatty acid metabolism in SARS-CoV-2 replication and identify promising avenues for the development of countermeasures against SARS-CoV-2.
Collapse
Affiliation(s)
- Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander S Jureka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jesus A Silvas
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
28
|
Papa G, Borodavka A, Desselberger U. Viroplasms: Assembly and Functions of Rotavirus Replication Factories. Viruses 2021; 13:1349. [PMID: 34372555 PMCID: PMC8310052 DOI: 10.3390/v13071349] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Viroplasms are cytoplasmic, membraneless structures assembled in rotavirus (RV)-infected cells, which are intricately involved in viral replication. Two virus-encoded, non-structural proteins, NSP2 and NSP5, are the main drivers of viroplasm formation. The structures (as far as is known) and functions of these proteins are described. Recent studies using plasmid-only-based reverse genetics have significantly contributed to elucidation of the crucial roles of these proteins in RV replication. Thus, it has been recognized that viroplasms resemble liquid-like protein-RNA condensates that may be formed via liquid-liquid phase separation (LLPS) of NSP2 and NSP5 at the early stages of infection. Interactions between the RNA chaperone NSP2 and the multivalent, intrinsically disordered protein NSP5 result in their condensation (protein droplet formation), which plays a central role in viroplasm assembly. These droplets may provide a unique molecular environment for the establishment of inter-molecular contacts between the RV (+)ssRNA transcripts, followed by their assortment and equimolar packaging. Future efforts to improve our understanding of RV replication and genome assortment in viroplasms should focus on their complex molecular composition, which changes dynamically throughout the RV replication cycle, to support distinct stages of virion assembly.
Collapse
Affiliation(s)
- Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | | | - Ulrich Desselberger
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
29
|
Abstract
Group A rotaviruses (RVAs) are the major cause of severe acute gastroenteritis (AGE) in children under 5 years of age, annually resulting in nearly 130,000 deaths worldwide. Social conditions in developing countries that contribute to decreased oral rehydration and vaccine efficacy and the lack of approved antiviral drugs position RVA as a global health concern. In this minireview, we present an update in the field of antiviral compounds, mainly in relation to the latest findings in RVA virion structure and the viral replication cycle. In turn, we attempt to provide a perspective on the possible treatments for RVA-associated AGE, with special focus on novel approaches, such as those representing broad-spectrum therapeutic options. In this context, the modulation of host factors, lipid droplets, and the viral polymerase, which is highly conserved among AGE-causing viruses, are analyzed as possible drug targets.
Collapse
|
30
|
Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, Teixeira L, Nunes da Silva MA, Barreto E, Mattos M, de Freitas CS, Azevedo-Quintanilha IG, Manso PPA, Miranda MD, Siqueira MM, Hottz ED, Pão CRR, Bou-Habib DC, Barreto-Vieira DF, Bozza FA, Souza TML, Bozza PT. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog 2020; 16:e1009127. [PMID: 33326472 PMCID: PMC7773323 DOI: 10.1371/journal.ppat.1009127] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/30/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19. In spite of the enormous scientific efforts to understand mechanisms of SARS-CoV2-induced disease and to develop strategies to control COVID-19 pandemic, many aspects of SARS-CoV2 biology and pathogenesis remain elusive. Several RNA viruses are able to modulate the host lipid metabolism and to recruit LDs to enhance their replication/particle assembling capacity through mechanisms that vary according to the virus and the host cell infected. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are still largely unknown. Here we demonstrated that lipid droplets (LDs) participate in SARS-CoV2 infection favoring virus replication and heightening inflammatory mediator production. SARS-CoV2 infection increased the expression of key proteins in the regulation of lipid metabolism and the amounts of LDs per cell. In addition, we have found SARS-CoV2 and/or its components associated with LDs in infected cells, suggestive that LDs are recruited as part of replication compartment. Moreover, pharmacological inhibition of DGAT-1, a key enzyme for LD formation, reduces SARS-CoV2 replication, inflammatory mediator production and cell death. Our findings contribute to unveil the complex mechanism by which SARS-CoV-2 make use of cellular metabolism and organelles to coordinate different steps of the viral replication cycle and host immunity, opening new perspectives for SARS-CoV2 antiviral development.
Collapse
Affiliation(s)
- Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brasil
- Universidade Iguaçu, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brasil
| | - Natalia Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brasil
| | - Jairo R. Temerozo
- Laboratório de Pesquisas sobre o Timo and Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Teixeira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Alexandre Nunes da Silva
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ester Barreto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mayara Mattos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brasil
| | - Caroline S. de Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brasil
| | - Isaclaudia G. Azevedo-Quintanilha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Paulo A. Manso
- Laboratorio de Patologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milene D. Miranda
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Imunotrombose, Departamento de Bioquímica, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Camila R. R. Pão
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dumith C. Bou-Habib
- Laboratório de Pesquisas sobre o Timo and Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora F. Barreto-Vieira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- Instituto Nacional de Infectologia Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
| | - Thiago M. L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brasil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: ,
| |
Collapse
|
31
|
Andresen AMS, Boudinot P, Gjøen T. Kinetics of transcriptional response against poly (I:C) and infectious salmon anemia virus (ISAV) in Atlantic salmon kidney (ASK) cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103716. [PMID: 32360383 DOI: 10.1016/j.dci.2020.103716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 05/03/2023]
Abstract
Vaccine adjuvants induce host innate immune responses improving long-lasting adaptive immunity against vaccine antigens. In vitro models can be used to compare these responses between adjuvants and the infection targeted by the vaccine. We utilized transcriptomic profiling of an Atlantic salmon cell line to compare innate immune responses against ISAV and an experimental viral vaccine adjuvant: poly (I:C). Induction of interferon and interferon induced genes were observed after both treatments, but often with different amplitude and kinetics. Using KEGG ortholog database and available software from Bioconductor we could specify a complete bioinformatic pipeline for analysis of transcriptomic data from Atlantic salmon, a feature not previously available. We have identified important differences in the transcriptional profile of Atlantic salmon cells exposed to viral infection and a viral vaccine adjuvant candidate, poly (I:C). This report increases our knowledge of viral host-pathogen interaction in salmon and to which extent these can be mimicked by adjuvant compounds.
Collapse
Affiliation(s)
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
32
|
Abstract
Lipid droplets (LDs) are now recognized as omnipresent and dynamic subcellular organelles of amazing morphological and functional diversity. Beyond the obvious benefit of having molecules full of chemical energy stored in a dedicated structural entity, LDs may also be viewed as a safe harbor for potentially damaging metabolites. This protective function might in many cases even supersede the relevance of lipid storage for eventual energy gain and membrane biogenesis. Furthermore, the LD surface constitutes a unique membrane environment, creating a platform for hosting specific proteins and thus enabling their interactions. These metabolic hotspots would contribute decisively to compartmentalized metabolism in the cytosol. LDs are also communicating extensively with other subcellular organelles in directing and regulating lipid metabolism. Deciphering the relevance of LD storage and regulation at the organismic level will be essential for the understanding of widespread and serious metabolic complications in humans. Increasing attention is also devoted to pathogens appropriating LDs for their own benefit. LD biology is still considered an emerging research area in rapid and vibrant development, attracting scientists from all disciplines of the life sciences and beyond, which is mirrored by the accompanying review collection. Here, we present our personal views on areas we believe are especially exciting and hold great potential for future developments. Particularly, we address issues relating to LD biogenesis and heterogeneity, required technological advances, and the complexity of human physiology.
Collapse
|
33
|
Ma S, Mao Q, Chen W, Zhao M, Wu K, Song D, Li X, Zhu E, Fan S, Yi L, Ding H, Zhao M, Chen J. Serum Lipidomics Analysis of Classical Swine Fever Virus Infection in Piglets and Emerging Role of Free Fatty Acids in Virus Replication in vitro. Front Cell Infect Microbiol 2019; 9:410. [PMID: 31850242 PMCID: PMC6901794 DOI: 10.3389/fcimb.2019.00410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Lipids metabolism plays a significant role in cellular responses to virus pathogens. However, the impact of lipids metabolism in CSFV infection is not yet confirmed. In the present study, for the fist time, we performed serum lipidomics analysis of piglets infected with CSFV based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), and identified 167 differentially expressed lipid metabolites. Interestingly, free fatty acids (FFAs) accumulated significantly in these metabolites, accompanied by an increase in sphingolipids and a decrease in glycerolipids and glycerophospholipids, suggesting that CSFV infection markedly changed the serum lipid metabolism of piglets. FFAs are the principal constituents of many complex lipids and are essential substrates for energy metabolism. Based on this, we focused on whether FFAs play a prominent role in CSFV infection. We found that CSFV infection induced FFAs accumulation in vivo and in vitro, which is due to increased fatty acid biosynthesis. Meanwhile, we discovered that alteration of cellular FFAs accumulation by a mixture of FFAs or inhibitors of fatty acid biosynthesis affects progeny virus production in vitro. Furthermore, in the absence of glucose or glutamine, CSFV still has replication capacity, which is significantly reduced with the addition of fatty acid beta oxidation inhibitors, suggesting that the process of FFAs enter the mitochondria for beta oxidation to produce ATP is necessary for virus replication. Finally, we demonstrated CSFV induced FFAs accumulation results in impaired type I IFN signaling-mediated antiviral responses by down-regulating RIG-I-like receptors (RLRs) signaling molecules, which may represent a mechanism of CSFV replication. Taken together, these findings provide the first data on lipid metabolites during CSFV infection and reveal a new view that CSFV infection requires FFAs to enhance viral replication.
Collapse
Affiliation(s)
- Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol 2019; 9:42. [PMID: 30886834 PMCID: PMC6409310 DOI: 10.3389/fcimb.2019.00042] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
35
|
Fatty Acid Synthase Promotes the Palmitoylation of Chikungunya Virus nsP1. J Virol 2019; 93:JVI.01747-18. [PMID: 30404808 DOI: 10.1128/jvi.01747-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to people by mosquitoes, and CHIKV infection causes fever and joint pain. Fatty acid synthase (FASN) has been identified as a proviral factor for CHIKV. How FASN participates in CHIKV replication remains to be elucidated. In this study, we demonstrated that palmitic acid (PA) can restore the suppression of CHIKV replication by FASN inhibitors. The palmitoylation and plasma membrane localization of CHIKV nsP1 were reduced by FASN inhibitors. Triple mutation of Cys417, Cys418, and Cys419 in nsP1 blocked its palmitoylation and severely disrupted CHIKV replication. Furthermore, two zinc finger DHHC domain-containing palmitoyltransferases (ZDHHCs), ZDHHC2 and ZDHHC19, promoted nsP1 palmitoylation and CHIKV replication. Our results not only identified the key enzymes for the palmitoylation of nsP1 but also provided mechanistic insights into the roles of FASN in CHIKV replication.IMPORTANCE S-palmitoylation is an important form of lipid posttranslational modification, which affects the function of proteins by regulating their transport, stability, and localization. Previous studies have shown that FASN is critical for CHIKV replication; however, the mechanism for this function of FASN remains unknown. The key zinc finger DHHC domain-containing palmitoyltransferases involved in the palmitoylation of nsP1 are not clear. We demonstrated that FASN promoted CHIKV replication through nsP1 palmitoylation. ZDHHC2 and ZDHHC19 were identified as the major enzymes for nsP1 palmitoylation. Since nsP1 proteins are conserved in alphaviruses, our results highlight the mechanisms by which alphavirus nsP1 is palmitoylated.
Collapse
|
36
|
Harbeson D, Francis F, Bao W, Amenyogbe NA, Kollmann TR. Energy Demands of Early Life Drive a Disease Tolerant Phenotype and Dictate Outcome in Neonatal Bacterial Sepsis. Front Immunol 2018; 9:1918. [PMID: 30190719 PMCID: PMC6115499 DOI: 10.3389/fimmu.2018.01918] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial sepsis is one of the leading causes of death in newborns. In the face of growing antibiotic resistance, it is crucial to understand the pathology behind the disease in order to develop effective interventions. Neonatal susceptibility to sepsis can no longer be attributed to simple immune immaturity in the face of mounting evidence that the neonatal immune system is tightly regulated and well controlled. The neonatal immune response is consistent with a "disease tolerance" defense strategy (minimizing harm from immunopathology) whereas adults tend toward a "disease resistance" strategy (minimizing harm from pathogens). One major advantage of disease tolerance is that is less energetically demanding than disease resistance, consistent with the energetic limitations of early life. Immune effector cells enacting disease resistance responses switch to aerobic glycolysis upon TLR stimulation and require steady glycolytic flux to maintain the inflammatory phenotype. Rapid and intense upregulation of glucose uptake by immune cells necessitates an increased reliance on fatty acid metabolism to (a) fuel vital tissue function and (b) produce immunoregulatory intermediates which help control the magnitude of inflammation. Increasing disease resistance requires more energy: while adults have fat and protein stores to catabolize, neonates must reallocate resources away from critical growth and development. This understanding of sepsis pathology helps to explain many of the differences between neonatal and adult immune responses. Taking into account the central role of metabolism in the host response to infection and the severe metabolic demands of early life, it emerges that the striking clinical susceptibility to bacterial infection of the newborn is at its core a problem of metabolism. The evidence supporting this novel hypothesis, which has profound implications for interventions, is presented in this review.
Collapse
Affiliation(s)
- Danny Harbeson
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Winnie Bao
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nelly A. Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias R. Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Li J, Sun Y, Li Y, Liu X, Yue Q, Li Z. Inhibition of cellular fatty acid synthase impairs replication of budded virions of Autographa californica multiple nucleopolyhedrovirus in Spodoptera frugiperda cells. Virus Res 2018; 252:41-47. [PMID: 29746884 DOI: 10.1016/j.virusres.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 10/17/2022]
Abstract
Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells.
Collapse
Affiliation(s)
- Jingfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ximeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Qi Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
38
|
Ding S, Diep J, Feng N, Ren L, Li B, Ooi YS, Wang X, Brulois KF, Yasukawa LL, Li X, Kuo CJ, Solomon DA, Carette JE, Greenberg HB. STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nat Commun 2018; 9:1485. [PMID: 29662124 PMCID: PMC5902600 DOI: 10.1038/s41467-018-03782-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022] Open
Abstract
Cohesin is a multi-subunit nuclear protein complex that coordinates sister chromatid separation during cell division. Highly frequent somatic mutations in genes encoding core cohesin subunits have been reported in multiple cancer types. Here, using a genome-wide CRISPR-Cas9 screening approach to identify host dependency factors and novel innate immune regulators of rotavirus (RV) infection, we demonstrate that the loss of STAG2, an important component of the cohesin complex, confers resistance to RV replication in cell culture and human intestinal enteroids. Mechanistically, STAG2 deficiency results in spontaneous genomic DNA damage and robust interferon (IFN) expression via the cGAS-STING cytosolic DNA-sensing pathway. The resultant activation of JAK-STAT signaling and IFN-stimulated gene (ISG) expression broadly protects against virus infections, including RVs. Our work highlights a previously undocumented role of the cohesin complex in regulating IFN homeostasis and identifies new therapeutic avenues for manipulating the innate immunity.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Jonathan Diep
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Ningguo Feng
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lili Ren
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- School of Pharmaceutical Sciences, Nanjing Tech University, 211816, Nanjing, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Xin Wang
- Department of Immunology, Cleveland Clinic, Cleveland, OH, 44195, USA
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 266071, Qingdao, China
| | - Kevin F Brulois
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Linda L Yasukawa
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Xingnan Li
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, 94305, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Harry B Greenberg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA.
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
39
|
Megger DA, Philipp J, Le-Trilling VTK, Sitek B, Trilling M. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression. Front Immunol 2017; 8:1139. [PMID: 28959263 PMCID: PMC5603615 DOI: 10.3389/fimmu.2017.01139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 01/05/2023] Open
Abstract
Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.
Collapse
Affiliation(s)
- Dominik A Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany.,Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jos Philipp
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
The Myxobacterial Metabolite Soraphen A Inhibits HIV-1 by Reducing Virus Production and Altering Virion Composition. Antimicrob Agents Chemother 2017; 61:AAC.00739-17. [PMID: 28533249 DOI: 10.1128/aac.00739-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
Soraphen A is a myxobacterial metabolite that blocks the acetyl-coenzyme A carboxylase of the host and was previously identified as a novel HIV inhibitor. Here, we report that soraphen A acts by reducing virus production and altering the gp120 virion content, impacting entry capacity and infectivity. These effects are partially reversed by addition of palmitic acid, suggesting that inhibition of HIV envelope palmitoylation is one of the mechanisms of antiviral action.
Collapse
|
41
|
Fritsch SD, Weichhart T. Effects of Interferons and Viruses on Metabolism. Front Immunol 2016; 7:630. [PMID: 28066439 PMCID: PMC5174094 DOI: 10.3389/fimmu.2016.00630] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are potent pleiotropic cytokines that broadly alter cellular functions in response to viral and other infections. These alterations include changes in protein synthesis, proliferation, membrane composition, and the nutritional microenvironment. Recent evidence suggests that antiviral responses are supported by an IFN-induced rewiring of the cellular metabolism. In this review, we discuss the roles of type I and type II IFNs in regulating the cellular metabolism and biosynthetic reactions. Furthermore, we give an overview of how viruses themselves affect these metabolic activities to promote their replication. In addition, we focus on the lipid as well as amino acid metabolisms, through which IFNs exert potent antiviral and immunomodulatory activities. Conversely, the expression of IFNs is controlled by the nutrient sensor mammalian target of rapamycin or by direct reprograming of lipid metabolic pathways. These findings establish a mutual relationship between IFN production and metabolic core processes.
Collapse
Affiliation(s)
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
42
|
Roingeard P, Melo RCN. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 2016; 19. [PMID: 27794207 DOI: 10.1111/cmi.12688] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Lipid droplets were long considered to be simple storage structures, but they have recently been shown to be dynamic organelles involved in diverse biological processes, including emerging roles in innate immunity. Various intracellular pathogens, including viruses, bacteria, and parasites, specifically target host lipid droplets during their life cycle. Viruses such as hepatitis C, dengue, and rotaviruses use lipid droplets as platforms for assembly. Bacteria, such as mycobacteria and Chlamydia, and parasites, such as trypanosomes, use host lipid droplets for nutritional purposes. The possible use of lipid droplets by intracellular pathogens, as part of an anti-immunity strategy, is an intriguing question meriting further investigation in the near future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U966 and IBiSA Electron Microscopy Facility, François Rabelais University and CHRU de Tours, Tours, France
| | - Rossana C N Melo
- Laboratory of Cell Biology, Institute of Biological Sciences, Federal University of Juiz de Fora-UFJF, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
43
|
Carinhas N, Koshkin A, Pais DAM, Alves PM, Teixeira AP. 13 C-metabolic flux analysis of human adenovirus infection: Implications for viral vector production. Biotechnol Bioeng 2016; 114:195-207. [PMID: 27477740 DOI: 10.1002/bit.26063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
Abstract
Adenoviruses are human pathogens increasingly used as gene therapy and vaccination vectors. However, their impact on cell metabolism is poorly characterized. We performed carbon labeling experiments with [1,2-13 C]glucose or [U-13 C]glutamine to evaluate metabolic alterations in the amniocyte-derived, E1-transformed 1G3 cell line during production of a human adenovirus type 5 vector (AdV5). Nonstationary 13 C-metabolic flux analysis revealed increased fluxes of glycolysis (17%) and markedly PPP (over fourfold) and cytosolic AcCoA formation (nearly twofold) following infection of growing cells. Interestingly, infection of growth-arrested cells increased overall carbon flow even more, including glutamine anaplerosis and TCA cycle activity (both over 1.5-fold), but was unable to stimulate the PPP and was associated with a steep drop in AdV5 replication (almost 80%). Our results underscore the importance of nucleic and fatty acid biosynthesis for adenovirus replication. Overall, we portray a metabolic blueprint of human adenovirus infection, highlighting similarities with other viruses and cancer, and suggest strategies to improve AdV5 production. Biotechnol. Bioeng. 2017;114: 195-207. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nuno Carinhas
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Alexey Koshkin
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Daniel A M Pais
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| | - Ana P Teixeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Oeiras, 2781-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
44
|
Crawford SE, Desselberger U. Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Curr Opin Virol 2016; 19:11-5. [PMID: 27341619 DOI: 10.1016/j.coviro.2016.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 10/25/2022]
Abstract
Recent evidence has demonstrated that a variety of pathogens target cellular lipid metabolism for their replication. Lipid droplets are a major contributor to lipid homeostasis and contain neutral fats but are also recognized as dynamic organelles involved in signal transduction, membrane trafficking and modulation of immune and inflammatory responses. Rotaviruses co-opt lipid droplets for their replication. Rotavirus viroplasms, sites of viral RNA replication and immature particle assembly, form complexes with cellular lipid droplets early in infection. Chemical compounds blocking fatty acid synthesis or interfering with lipid droplet homeostasis decrease viroplasm formation and the yield of infectious viral progeny. Lipid droplets are vital for the replication of rotaviruses as well as various members of the Flaviviridae family and several intracellular bacteria. Chemical compounds decreasing intracellular triglyceride content reduced rotavirus replication in an animal model and should be considered as potential therapeutic agents against disease caused by rotaviruses, flaviviruses and intracellular bacteria.
Collapse
Affiliation(s)
- Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
45
|
Rotavirus replication and the role of cellular lipid droplets: New therapeutic targets? J Formos Med Assoc 2016; 115:389-94. [PMID: 27017233 DOI: 10.1016/j.jfma.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 01/13/2016] [Accepted: 02/17/2016] [Indexed: 11/22/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute gastroenteritis in infants and young children worldwide. These viruses infect the villous epithelium of the small intestine. Part of their replication occurs in cytoplasmic inclusion bodies termed viroplasms. Viroplasms and the lipid droplets (LDs) of cellular organelles are known to interact both physically and functionally. Compounds interfering with the homoeostasis of LDs significantly decrease the production of infectious RV progeny. There is considerable scope for more detailed exploration of such compounds as potential antiviral agents for a disease for which at present no specific therapy exists.
Collapse
|
46
|
Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production. Sci Rep 2016; 6:23529. [PMID: 27004747 PMCID: PMC4804208 DOI: 10.1038/srep23529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022] Open
Abstract
Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.
Collapse
|
47
|
Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication. Antimicrob Agents Chemother 2015; 60:307-15. [PMID: 26503654 DOI: 10.1128/aac.01578-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/19/2015] [Indexed: 01/26/2023] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bite of mosquitoes that causes meningitis and encephalitis in humans, horses, and birds. Several studies have highlighted that flavivirus infection is highly dependent on cellular lipids for virus replication and infectious particle biogenesis. The first steps of lipid synthesis involve the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA that is catalyzed by the acetyl-CoA carboxylase (ACC). This makes ACC a key enzyme of lipid synthesis that is currently being evaluated as a therapeutic target for different disorders, including cancers, obesity, diabetes, and viral infections. We have analyzed the effect of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) on infection by WNV. Lipidomic analysis of TOFA-treated cells confirmed that this drug reduced the cellular content of multiple lipids, including those directly implicated in the flavivirus life cycle (glycerophospholipids, sphingolipids, and cholesterol). Treatment with TOFA significantly inhibited the multiplication of WNV in a dose-dependent manner. Further analysis of the antiviral effect of this drug showed that the inhibitory effect was related to a reduction of viral replication. Furthermore, treatment with another ACC inhibitor, 3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16), also inhibited WNV infection. Interestingly, TOFA and MEDICA 16 also reduced the multiplication of Usutu virus (USUV), a WNV-related flavivirus. These results point to the ACC as a druggable cellular target suitable for antiviral development against WNV and other flaviviruses.
Collapse
|
48
|
Beilstein F, Carrière V, Leturque A, Demignot S. Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp Cell Res 2015; 340:172-9. [PMID: 26431584 DOI: 10.1016/j.yexcr.2015.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/26/2015] [Indexed: 01/23/2023]
Abstract
Cytosolic lipid droplets (LDs) are observed in enterocytes of jejunum during lipid absorption. One important function of the intestine is to secrete chylomicrons, which provide dietary lipids throughout the body, from digested lipids in meals. The current hypothesis is that cytosolic LDs in enterocytes constitute a transient pool of stored lipids that provides lipids during interprandial period while lowering chylomicron production during the post-prandial phase. This smoothens the magnitude of peaks of hypertriglyceridemia. Here, we review the composition and functions of lipids and associated proteins of enterocyte LDs, the known physiological functions of LDs as well as the role of LDs in pathological processes in the context of the intestine.
Collapse
Affiliation(s)
- Frauke Beilstein
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France; EPHE, Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75014 Paris, France
| | - Véronique Carrière
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France
| | - Armelle Leturque
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France
| | - Sylvie Demignot
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France; EPHE, Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75014 Paris, France.
| |
Collapse
|
49
|
Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis. Adv Virol 2015; 2015:293524. [PMID: 26379708 PMCID: PMC4563088 DOI: 10.1155/2015/293524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/20/2022] Open
Abstract
Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.
Collapse
|
50
|
Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells. J Virol 2015; 89:10359-70. [PMID: 26246569 DOI: 10.1128/jvi.01225-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients. More recently, they have been associated with neurological diseases in mammals, including humans, and are also responsible for different pathologies in birds. In this work, we provide evidence that astrovirus RNA replication and virus assembly occur in contact with cell membranes potentially derived from multiple cell organelles and show that membrane-associated cellular proteins involved in lipid metabolism are required for efficient viral replication. Our findings provide information to enhance our knowledge of astrovirus biology and provide information that might be useful for the development of therapeutic interventions to prevent virus replication.
Collapse
|