1
|
Prajapati M, Malik P, Sinha A, Yadav H, Jaiwal YK, Ahlawat YK, Chaudhary D, Jaiwal R, Sharma N, Jaiwal PK, Chattu VK. Biotechnological Interventions for the Production of Subunit Vaccines Against Group A Rotavirus. Cell Biochem Funct 2024; 42:e70031. [PMID: 39707603 DOI: 10.1002/cbf.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Group A rotavirus (RVA) is a major cause of severe gastroenteritis in infants and young children globally, despite the availability of live-attenuated vaccines. Challenges such as limited efficacy in low-income regions, safety concerns for immunocompromised individuals, and cold-chain dependency necessitate alternative vaccine strategies. Subunit vaccines, which use specific viral proteins to elicit immunity, provide a safer and more adaptable approach. This review highlights biotechnological advancements in producing subunit vaccines, focusing on recombinant expression systems like bacterial, yeast, insect, mammalian, and plant-based platforms for scalable and cost-effective production of viral proteins. Key innovations include molecular engineering, adjuvant development, and delivery system improvements to enhance vaccine immunogenicity and efficacy. Subunit vaccines and virus-like particles expressed in various systems have demonstrated promising preclinical and clinical results, with some candidates nearing commercial readiness. Reverse vaccinology, combined with Artificial Intelligence and Machine Learning, is driving the development of innovative multiepitope vaccines and antivirals. Strategies such as passive immunization, single-chain antibodies, immunobiotics, and novel antivirals are also explored as alternative management options. The review also underscores advanced genome editing and reverse genetics approaches to improve vaccine design and antiviral therapies. These biotechnological interventions offer hope for equitable and effective control of rotavirus diarrhea, particularly in resource-limited settings, and represent significant progress toward addressing current vaccine limitations.
Collapse
Affiliation(s)
- Mukta Prajapati
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Astha Sinha
- Department of Paediatrics, Civil Hospital, Rohtak, India
| | - Honey Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Yachna K Jaiwal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Yogesh K Ahlawat
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Nisha Sharma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vijay K Chattu
- Department of OS & OT, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
3
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
4
|
Suminda GGD, Bhandari S, Won Y, Goutam U, Kanth Pulicherla K, Son YO, Ghosh M. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput Struct Biotechnol J 2022; 20:5378-5392. [PMID: 36212529 PMCID: PMC9526013 DOI: 10.1016/j.csbj.2022.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Increasing globalization, agricultural intensification, urbanization, and climatic changes have resulted in a significant recent increase in emerging infectious zoonotic diseases. Zoonotic diseases are becoming more common, so innovative, effective, and integrative research is required to better understand their transmission, ecological implications, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies have enormous potential for unraveling these contingencies and improving our understanding, but they are only now beginning to be realized in livestock research. This study investigates the current state of use of sequencing technologies in the detection of livestock pathogens such as bovine, dogs (Canis lupus familiaris), sheep (Ovis aries), pigs (Sus scrofa), horses (Equus caballus), chicken (Gallus gallus domesticus), and ducks (Anatidae) as well as how it can improve the monitoring and detection of zoonotic infections. We also described several high-throughput sequencing approaches for improved detection of known, unknown, and emerging infectious agents, resulting in better infectious disease diagnosis, as well as surveillance of zoonotic infectious diseases. In the coming years, the continued advancement of sequencing technologies will improve livestock research and hasten the development of various new genomic and technological studies on farm animals.
Collapse
|
5
|
Monreal-Escalante E, Sández-Robledo C, León-Gallo A, Roupie V, Huygen K, Hori-Oshima S, Arce-Montoya M, Rosales-Mendoza S, Angulo C. Alfalfa Plants (Medicago sativa L.) Expressing the 85B (MAP1609c) Antigen of Mycobacterium avium subsp. paratuberculosis Elicit Long-Lasting Immunity in Mice. Mol Biotechnol 2021; 63:424-436. [PMID: 33649932 PMCID: PMC7920848 DOI: 10.1007/s12033-021-00307-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Paratuberculosis, a contagious, untreatable, and chronic granulomatous enteritis that results in diarrhea, emaciation, and death in farmed ruminants (i.e., cattle, sheep, and goats). In this study, the Ag85B antigen from MAP was expressed in transgenic alfalfa as an attractive vaccine candidate. Agrobacterium-mediated transformation allowed the rescue of 56 putative transformed plants and transgenesis was confirmed in 19 lines by detection of the Ag85B gene (MAP1609c) by PCR. Line number 20 showed the highest Ag85B expression [840 ng Ag85B per gram of dry weight leaf tissue, 0.062% Total Soluble Protein (TSP)]. Antigenicity of the plant-made Ag85B was evidenced by its reactivity with a panel of sera from naturally MAP-infected animals, whereas immunogenicity was assessed in mice immunized by either oral or subcutaneous routes. The plant-made Ag85B antigen elicited humoral responses by the oral route when co-administered with cholera toxin as adjuvant; significant levels of anti-85B antibodies were induced in serum (IgG) and feces (IgA). Long-lasting immunity was evidenced at day 180 days post-first oral immunization. The obtained alfalfa lines expressing Ag85B constitute the first model of a plant-based vaccine targeting MAP. The initial immunogenicity assessment conducted in this study opens the path for a detailed characterization of the properties of this vaccine candidate.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
- CONACYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava Num. 6, Zona Universitaria., San Luis Potosí, San Luis Potosi, 78210, Mexico
| | - Cristhian Sández-Robledo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
| | - Amalia León-Gallo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava Num. 6, Zona Universitaria., San Luis Potosí, San Luis Potosi, 78210, Mexico
| | - Virginie Roupie
- Veterinary and Agrochemical Research Institute, VAR-CODA-CERVA, 1180, Brussels, Belgium
| | - Kris Huygen
- Scientific Service Immunology, Scientific Institute of Public Health WIV-ISP (Site Ukkel), 642 Engelandstraat, 1180, Brussels, Belgium
| | - Sawako Hori-Oshima
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California, 21387, Mexico
| | - Mario Arce-Montoya
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava Num. 6, Zona Universitaria., San Luis Potosí, San Luis Potosi, 78210, Mexico.
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico.
| |
Collapse
|
6
|
Sahoo A, Mandal AK, Dwivedi K, Kumar V. A cross talk between the immunization and edible vaccine: Current challenges and future prospects. Life Sci 2020; 261:118343. [PMID: 32858038 PMCID: PMC7449231 DOI: 10.1016/j.lfs.2020.118343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 01/25/2023]
Abstract
INTRODUCTION It is well known that immune system is highly specific to protect the body against various environmental pathogens. The concept of conventional vaccination has overcome the pandemic situation of several infectious diseases outbreak. AREA COVERED The recent idea of immunization through oral route (edible vaccine) is vital alternatives over conventional vaccines. Edible vaccines are composed of antigenic protein introduced into the plant cells which induce these altered plants to produce the encoded protein. Edible vaccine has no way of forming infection and safety is assured as it only composed of antigenic protein and is devoid of pathogenic genes. Edible vaccines have significant role in stimulating mucosal immunity as they come in contact with digestive tract lining. They are safe, cost-effective, easy-to-administer and have reduced manufacturing cost hence have a dramatic impact on health care in developing countries. EXPERT OPINION The edible vaccine might be the solution for the potential hazard associated with the parenteral vaccines. In this review we discuss the detailed study of pros, cons, mechanism of immune stimulation, various outbreaks that might be controlled by edible vaccines with the possible future research and applied application of edible vaccine.
Collapse
Affiliation(s)
- Ankit Sahoo
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higgbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Ashok Kumar Mandal
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higgbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy Jhalwa, Prayagraj, Uttar Pradesh 211015, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higgbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India.
| |
Collapse
|
7
|
Chepngeno J, Diaz A, Paim FC, Saif LJ, Vlasova AN. Rotavirus C: prevalence in suckling piglets and development of virus-like particles to assess the influence of maternal immunity on the disease development. Vet Res 2019; 50:84. [PMID: 31640807 PMCID: PMC6805359 DOI: 10.1186/s13567-019-0705-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
Rotavirus C (RVC) has been detected increasingly in humans and swine in different countries, including the US. It is associated with significant economic losses due to diarrheal disease in nursing piglets. In this study we aimed: (1) to determine the prevalence of RVC in healthy and diarrheic suckling piglets on US farms; and (2) to evaluate if maternal antibody (Ab) levels were associated with protection of newborn suckling piglets against RVC. There was a significantly higher prevalence (p = 0.0002) of litters with diarrhea born to gilts compared with those born to multiparous sows. Of 113 nursing piglet fecal samples tested, 76.1% were RVC RNA positive. Fecal RVC RNA was detected in significantly (p = 0.0419) higher quantities and more frequently in piglets with diarrhea compared with healthy ones (82.5 vs. 69.9%). With the exception of the historic strain Cowden (G1 genotype), field RVC strains do not replicate in cell culture, which is a major impediment for studying RVC pathogenesis and immunity. To circumvent this, we generated RVC virus-like particles (VLPs) for Cowden (G1), RV0104 (G3) and RV0143 (G6) and used them as antigens in ELISA to detect swine RVC Abs in serum and milk from the sows. Using RVC-VLP Ab ELISA we demonstrated that sows with diarrheic litters had significantly lower RVC IgA and IgG Ab titers in milk compared to those with healthy litters. Thus, our data suggest that insufficient lactogenic protection provided by gilts plays a key role in the development of and the increased prevalence of clinical RVC disease.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| | - Annika Diaz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
- Present Address: College of Food, Agricultural and Environmental Sciences, The Ohio State University, Agricultural Administration Building, Columbus, OH 43210 USA
| | - Francine C. Paim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| | - Linda J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| |
Collapse
|
8
|
Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1587. [DOI: 10.1002/wnan.1587] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology University of Cape Town Cape Town South Africa
| |
Collapse
|
9
|
MacDonald J. History and Promise of Plant-Made Vaccines for Animals. PROSPECTS OF PLANT-BASED VACCINES IN VETERINARY MEDICINE 2018. [PMCID: PMC7122757 DOI: 10.1007/978-3-319-90137-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines? Vaccines (Basel) 2017; 5:vaccines5020014. [PMID: 28556800 PMCID: PMC5492011 DOI: 10.3390/vaccines5020014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
The lethality of infectious diseases has decreased due to the implementation of crucial sanitary procedures such as vaccination. However, the resurgence of pathogenic diseases in different parts of the world has revealed the importance of identifying novel, rapid, and concrete solutions for control and prevention. Edible vaccines pose an interesting alternative that could overcome some of the constraints of traditional vaccines. The term “edible vaccine” refers to the use of edible parts of a plant that has been genetically modified to produce specific components of a particular pathogen to generate protection against a disease. The aim of this review is to present and critically examine “edible vaccines” as an option for global immunization against pathogenic diseases and their outbreaks and to discuss the necessary steps for their production and control and the list of plants that may already be used as edible vaccines. Additionally, this review discusses the required standards and ethical regulations as well as the advantages and disadvantages associated with this powerful biotechnology tool.
Collapse
|
11
|
Aryamvally A, Gunasekaran V, Narenthiran KR, Pasupathi R. New Strategies Toward Edible Vaccines: An Overview. J Diet Suppl 2016; 14:101-116. [PMID: 27065206 DOI: 10.3109/19390211.2016.1168904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With the ever growing population, advancements in edible vaccines and related technologies have seen a rise in popularity. Antigenic peptides incorporated into an edible part of a plant can be administered raw as a vaccine. While conventional vaccines have improved the quality of life by drastically reducing the onset of diseases, edible vaccines are able to perform the same with greater accessibility and at an affordable price. Low cost of production, ease of storage, transportation and administration are some of the many reasons behind the push for the development of edible vaccines. This article aims at giving an overview of the different plant systems used to produce vaccines in various experiments, as well as the merits and demerits of using that particular expression system. Further, the article elaborates on the problems faced in the production of edible vaccines and the measures adopted to surpass them. The major obstacle in the process is attaining a sufficiently large concentration of foreign antigen in the plant system. The article discusses various plant expression systems like banana, rice, alfalfa, mushroom, potato, tomato, pea, tobacco, and maize. When these were reviewed, it was found that the inability to produce the desired antigen concentration was one of the primary reasons why edible vaccines sometimes fail to generate the desired level of immune response in the recipient. We conclude with a promising solution to the problem by incorporating nano-technological advancements to the already existing protocols for edible vaccine development.
Collapse
Affiliation(s)
- Anjali Aryamvally
- a Department of Genetic Engineering , SRM University , Kattankulathur , Tamil Nadu , India
| | - Vignesh Gunasekaran
- a Department of Genetic Engineering , SRM University , Kattankulathur , Tamil Nadu , India
| | | | | |
Collapse
|
12
|
Saeed A, Kanwal S, Arshad M, Ali M, Shaikh RS, Abubakar M. Foot-and-mouth disease: overview of motives of disease spread and efficacy of available vaccines. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:10. [PMID: 26290730 PMCID: PMC4540294 DOI: 10.1186/s40781-015-0042-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
Abstract
Control and prevention of foot and mouth disease (FMD) by vaccination remains unsatisfactory in endemic countries. Indeed, consistent and new FMD epidemics in previously disease-free countries have precipitated the need for a worldwide control strategy. Outbreaks in vaccinated animals require that a new and safe vaccine be developed against foot and mouth virus (FMDV). FMDV can be eradicated worldwide based on previous scientific information about its spread using existing and modern control strategies.
Collapse
Affiliation(s)
- Ali Saeed
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | - Sehrish Kanwal
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | - Memoona Arshad
- National Institute for Biotechnology and Genetic Engineering, (NIBGE), Faisalabad, Pakistan
| | - Muhammad Ali
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | - Rehan Sadiq Shaikh
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | | |
Collapse
|
13
|
Permyakova NV, Uvarova EA, Deineko EV. State of research in the field of the creation of plant vaccines for veterinary use. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY: A COMPREHENSIVE RUSSIAN JOURNAL ON MODERN PHYTOPHYSIOLOGY 2015; 62:23-38. [PMID: 32214753 PMCID: PMC7089518 DOI: 10.1134/s1021443715010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Indexed: 06/08/2023]
Abstract
Transgenic plants as an alternative of costly systems of recombinant immunogenic protein expression are the source for the production of cheap and highly efficient biotherapeuticals of new generation, including plant vaccines. In the present review, possibilities of plant system application for the production of recombinant proteins for veterinary use are considered, the history of the "edible vaccine" concept is briefly summarized, advantages and disadvantages of various plant systems for the expression of recombinant immunogenic proteins are discussed. The list of recombinant plant vaccines for veterinary use, which are at different stages of clinical trials, is presented.
Collapse
Affiliation(s)
- N. V. Permyakova
- Institute of Cytology and Genetics, Rusian Academy of Sciences, Siberian Branch, pr. Lavrent’eva 10, Novosibirsk, 630090 Russia
| | - E. A. Uvarova
- Institute of Cytology and Genetics, Rusian Academy of Sciences, Siberian Branch, pr. Lavrent’eva 10, Novosibirsk, 630090 Russia
| | - E. V. Deineko
- Institute of Cytology and Genetics, Rusian Academy of Sciences, Siberian Branch, pr. Lavrent’eva 10, Novosibirsk, 630090 Russia
| |
Collapse
|
14
|
Mucosal Vaccines from Plant Biotechnology. Mucosal Immunol 2015. [PMCID: PMC7158328 DOI: 10.1016/b978-0-12-415847-4.00065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of plants for production of recombinant proteins has evolved over the past 25 years. The first plant-based vaccines were expressed in stably transgenic plants, with the idea to conveniently deliver “edible vaccines” by ingestion of the antigen-containing plant material. These systems provided a proof of concept that oral delivery of vaccines in crude plant material could stimulate antigen-specific serum and mucosal antibodies. Transgenic grains like rice in particular provide a stable and robust vehicle for antigen delivery. However, some issues exist with stably transgenic plants, including relatively low expression levels and regulatory issues. Thus, many recent studies use transient expression with plant viral vectors to achieve rapid high expression in Nicotiana benthamiana, followed by purification of antigen and intranasal delivery for effective stimulation of mucosal immune responses.
Collapse
|
15
|
Girard A, Roques E, Massie B, Archambault D. Flagellin in fusion with human rotavirus structural proteins exerts an adjuvant effect when delivered with replicating but non-disseminating adenovectors through the intrarectal route. Mol Biotechnol 2014; 56:394-407. [PMID: 24271565 DOI: 10.1007/s12033-013-9723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human rotavirus (HRV) is the worldwide leading cause of gastroenteritis in young children. Two live attenuated HRV vaccines have been approved since 2006. However, these live vaccines still have potential risks including reversion of virulence. Adenoviruses are suitable vectors for mucosal administration of subunit vaccines. In addition to the adjuvant effect of certain adenovirus components, the use of an adjuvant like flagellin is also another means to increase the immune response to the immunogen. The aim of this study was to determine whether flagellin in fusion with HRV structural proteins stimulates the innate immune response and enhances the HRV-specific immune response when delivered through the intrarectal route with replicating but non-disseminating adenovector (R-AdV). Salmonella typhimurium flagellin B (FljB) in fusion with HRV VP4Δ::VP7 protein induced IL-1β production in J774A.1 macrophages exposed to the R-AdV. Intrarectal administration of R-AdVs expressing either VP4Δ::VP7 or VP4Δ::VP7::FljB in BALB/c mice resulted in HRV-specific mixed Th1/Th2 immune responses. The HRV-specific antibody response elicited with the use of R-AdV expressing VP4Δ::VP7::FljB was higher than that with R-AdV expressing VP4Δ::VP7. The results also show that the replication capability of R-AdVs contributed to enhance the HRV-specific immune response as compared with that obtained with non-replicative AdVs. This work lays the foundation for using the R-AdV system and FljB-adjuvanted formulation to elicit a mucosal immune response specific to HRV.
Collapse
Affiliation(s)
- Aurélie Girard
- Department of Biological Sciences, University of Québec at Montréal, P.O. Box 8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | | | | | | |
Collapse
|
16
|
Girard A, Roques E, St-Louis MC, Massie B, Archambault D. Expression of human rotavirus chimeric fusion proteins from replicating but non disseminating adenovectors and elicitation of rotavirus-specific immune responses in mice. Mol Biotechnol 2013; 54:1010-20. [PMID: 23430460 DOI: 10.1007/s12033-013-9653-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the usefulness of replicating but non disseminating adenovirus vectors (AdVs) as vaccine vector using human rotavirus (HRV) as a model pathogen. HRV VP7, VP4, or VP4Δ (N-terminal 336 amino acids of VP4) structural proteins as well as the VP4Δ::VP7 chimeric fusion protein were expressed in mammalian cells when delivered with the AdVs. A preliminary experiment demonstrated that VP4Δ was able to induce a HRV-specific IgG response in BALB/c mice inoculated intramuscularly with AdVs expressing the rotaviral protein. Moreover, an AdV-prime/plasmid DNA-boost regimen of vectors resulted in VP4Δ-specific antibody (Ab) titers ~4 times higher than those obtained from mice immunized with AdVs alone. Subsequently, the various HRV protein-encoding AdVs were compared using the AdV-prime/plasmid DNA-boost regimen. Higher IgG and IgA responses to HRV were obtained when VP4Δ::VP7 fusion protein was used as an immunogen as compared to VP7 or VP4 alone or to a mix of both proteins delivered independently by AdVs. A synergetic effect in terms of Ab was obtained with VP4Δ::VP7. In conclusion, this study demonstrated for the first time the suitability of using replicating but non disseminating AdVs as vaccine vector and the VP4Δ::VP7 fusion protein as an immunogen for vaccination against HRV.
Collapse
Affiliation(s)
- Aurélie Girard
- Department of Biological Sciences, University of Quebec at Montreal, P.O. Box 8888, Succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
17
|
Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 2011; 157:1-12. [PMID: 21316403 DOI: 10.1016/j.virusres.2011.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/24/2022]
Abstract
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Plant-derived biologicals for use in animal health are becoming an increasingly important target for research into alternative, improved methods for disease control. Although there are no commercial products on the market yet, the development and testing of oral, plant-based vaccines is now beyond the proof-of-principle stage. Vaccines, such as those developed for porcine transmissible gastroenteritis virus, have the potential to stimulate both mucosal and systemic, as well as, lactogenic immunity as has already been seen in target animal trials. Plants are a promising production system, but they must compete with existing vaccines and protein production platforms. In addition, regulatory hurdles will need to be overcome, and industry and public acceptance of the technology are important in establishing successful products.
Collapse
Affiliation(s)
- R W Hammond
- USDA-ARS, BARC-West, Rm.252, Bldg. 011, Beltsville, MD 20705, USA.
| | | |
Collapse
|
19
|
Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 2009; 27:449-67. [PMID: 19356740 PMCID: PMC7126855 DOI: 10.1016/j.biotechadv.2009.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/12/2022]
Abstract
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Rakesh Tuli
- Corresponding author. National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001 (U.P.) India. Tel.: +91 522 2205848; fax: +91 522 2205839.
| |
Collapse
|
20
|
Dhama K, Chauhan RS, Mahendran M, Malik SVS. Rotavirus diarrhea in bovines and other domestic animals. Vet Res Commun 2009; 33:1-23. [PMID: 18622713 PMCID: PMC7088678 DOI: 10.1007/s11259-008-9070-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2008] [Indexed: 01/29/2023]
Abstract
Rotavirus diarrhea is the major cause of death of millions of children in developing countries besides causing economically significant malady in neonates of many domestic animals. In neonates, the infection is non-viremic, have very short incubation period, and manifests profuse diarrhea and severe dehydration. Concurrent infection with secondary pathogens may augment the disease severity. Diarrhea occurs due to virus-mediated destruction of absorption efficient enterocytes, activation of enteric nervous system, or due to a rotavirus enterotoxin. Diagnosis of the infection relies on conventional techniques like isolation in MA 104 cell lines, electron microscopy, electro-pherotyping, and various serological tests. Presently, diagnosis and molecular typing is performed using serotype specific RT-PCR, sequencing or genomic hybridization techniques. As the rotaviruses are known to exhibit extreme genetic diversity and outplay disinfection procedures, eradication of the pathogen is often difficult. Hence, for prevention, good management practices coupled with vaccination of dam for protecting young ones, has to be practiced. Recently, new generation prophylactic strategies including DNA vaccines, subunit vaccines, virus-like particles (VLPs) and edible vaccines have been found to induce sufficient levels of passive immunity. Aside to the infection in animals, zoonotic significance of the animal rotaviruses has to be further unearthed. In this review, efforts have been made to highlight the importance and prevalence of the disease in bovines, its pathogenesis along with preventive measures, salient features of rotaviruses and their inter-species transmission abilities, zoonotic implications, and a concise account of the infection in various domestic animals and poultry.
Collapse
Affiliation(s)
- K Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| | | | | | | |
Collapse
|
21
|
Joensuu JJ, Niklander-Teeri V, Brandle JE. Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2008; 7:553-577. [PMID: 32214922 PMCID: PMC7089046 DOI: 10.1007/s11101-008-9088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/05/2008] [Indexed: 05/19/2023]
Abstract
A variety of plant species have been genetically modified to accumulate vaccine antigens for human and animal health and the first vaccine candidates are approaching the market. The regulatory burden for animal vaccines is less than that for human use and this has attracted the attention of researchers and companies, and investment in plant-made vaccines for animal infectious disease control is increasing. The dosage cost of vaccines for animal infectious diseases must be kept to a minimum, especially for non-lethal diseases that diminish animal welfare and growth, so efficient and economic production, storage and delivery are critical for commercialization. It has become clear that transgenic plants are an economic and efficient alternative to fermentation for large-scale production of vaccine antigens. The oral delivery of plant-made vaccines is particularly attractive since the expensive purification step can be avoided further reducing the cost per dose. This review covers the current status of plant-produced vaccines for the prevention of disease in animals and focuses on barriers to the development of such products and methods to overcome them.
Collapse
Affiliation(s)
- J. J. Joensuu
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| | - V. Niklander-Teeri
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| | - J. E. Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| |
Collapse
|
22
|
Abstract
This review examines the challenges of segregating biopharmed crops expressing pharmaceutical or veterinary agents from mainstream crops, particularly those destined for food or feed use. The strategy of using major food crops as production vehicles for the expression of pharmaceutical or veterinary agents is critically analysed in the light of several recent episodes of contamination of the human food chain by non-approved crop varieties. Commercially viable strategies to limit or avoid biopharming intrusion into the human food chain require the more rigorous segregation of food and non-food varieties of the same crop species via a range of either physical or biological methods. Even more secure segregation is possible by the use of non-food crops, non-crop plants or in vitro plant cultures as production platforms for biopharming. Such platforms already under development range from outdoor-grown Nicotiana spp. to glasshouse-grown Arabidopsis, lotus and moss. Amongst the more effective methods for biocontainment are the plastid expression of transgenes, inducible and transient expression systems, and physical containment of plants or cell cultures. In the current atmosphere of heightened concerns over food safety and biosecurity, the future of biopharming may be largely determined by the extent to which the sector is able to maintain public confidence via a more considered approach to containment and security of its plant production systems.
Collapse
Affiliation(s)
- Denis J Murphy
- Biotechnology Unit, Division of Biological Sciences, University of Glamorgan, Treforest, CF37 1DL, UK.
| |
Collapse
|
23
|
Abstract
Vaccination is an important tool for handling healthcare programs both in developed and developing countries. The current global scenario calls for a more-efficacious, acceptable, cost-effective and reliable method of immunization for many fatal diseases. It is hoped that the adoption of oral vaccines will help to provide an effective vaccination strategy, especially in developing countries. Mucosal immunity generated by oral vaccines can serve as a strong first line of defense against most of the pathogens infecting through the mucosal lining. Advances in elucidating the mechanism of action of oral vaccines will facilitate the design of more effective, new generation vaccines. There are promising developments in the use of different agents to effectively deliver the vaccine candidate. It is hoped that ongoing research may be able to set another cardinal point, after polio vaccine, in eradicating infectious diseases.
Collapse
Affiliation(s)
- Mohd Azhar Aziz
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
24
|
Soler E, Parez N, Passet B, Dubuquoy C, Riffault S, Pillot M, Houdebine LM, Schwartz-Cornil I. Recombinant rotavirus inner core proteins produced in the milk of transgenic rabbits confer a high level of protection after intrarectal delivery. Vaccine 2007; 25:6373-80. [PMID: 17629366 DOI: 10.1016/j.vaccine.2007.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/18/2007] [Accepted: 06/06/2007] [Indexed: 11/20/2022]
Abstract
Development of a safe, cheap and efficient vaccine against rotavirus is important to reduce the morbidity and mortality associated with gastroenteritis in infants worldwide. High quantities of two inner core rotavirus-derived proteins (VP2 and a nonglycosylated mutant VP6 (VP6(NG)) from the RF81 bovine strain) were produced in the milk of transgenic rabbits. We show here that rectal administration of partially purified milk-derived VP2 and VP6(NG) proteins with the detoxified LT(R192G) adjuvant almost completely prevented fecal shedding induced by a highly infectious challenge in mice with the murine ECw strain. The vaccine generated rotavirus-specific fecal secretory IgA, systemic IgG and IgA and a rotavirus-specific Th1 response. We thus demonstrate in clinically feasible settings that mass production of viral protein in transgenic milk is a promising way to generate subunit vaccine against rotavirus.
Collapse
Affiliation(s)
- Eric Soler
- Biologie du Développement et de la Reproduction, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Floss DM, Falkenburg D, Conrad U. Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res 2007; 16:315-32. [PMID: 17436059 PMCID: PMC7089296 DOI: 10.1007/s11248-007-9095-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 03/19/2007] [Indexed: 11/29/2022]
Abstract
During the past two decades, antibodies, antibody derivatives and vaccines have been developed for therapeutic and diagnostic applications in human and veterinary medicine. Numerous species of dicot and monocot plants have been genetically modified to produce antibodies or vaccines, and a number of diverse transformation methods and strategies to enhance the accumulation of the pharmaceutical proteins are now available. Veterinary applications are the specific focus of this article, in particular for pathogenic viruses, bacteria and eukaryotic parasites. We focus on the advantages and remaining challenges of plant-based therapeutic proteins for veterinary applications with emphasis on expression platforms, technologies and economic considerations.
Collapse
Affiliation(s)
- Doreen Manuela Floss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466 Germany
| | | | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466 Germany
| |
Collapse
|
26
|
Rice J, Ainley WM, Shewen P. Plant-made vaccines: biotechnology and immunology in animal health. Anim Health Res Rev 2007; 6:199-209. [PMID: 16583782 DOI: 10.1079/ahr2005110] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractThe use of plants as production systems for vaccine antigens has been actively investigated over the last 15 years. The original research focused on the value of this expression system for oral delivery based on the hypothesis that plant-expressed antigens would be more stable within the digestive tract and would allow for the use of the oral route of administration to stimulate a mucosal immune response. However, while first conceived for utility via the oral route, plant-made antigens have also been studied as classical immunogens delivered via a needle to model animal systems. Antigens have been expressed in a number of whole plant and cell culture systems. Several alternative expression platforms have been developed to increase expression of antigens or to elicit preferred immunological responses. The biotechnological advances in plant expression and the immunological testing of these antigens will be reviewed in this paper focusing primarily on diseases of livestock and companion animals.
Collapse
Affiliation(s)
- J Rice
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | | | | |
Collapse
|
27
|
Liénard D, Sourrouille C, Gomord V, Faye L. Pharming and transgenic plants. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:115-47. [PMID: 17875476 DOI: 10.1016/s1387-2656(07)13006-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.
Collapse
Affiliation(s)
- David Liénard
- Université de Rouen, CNRS UMR 6037, IFRMP 23, GDR 2590, Faculté des Sciences, Bât. Ext. Biologie, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | |
Collapse
|
28
|
Companjen AR, Florack DEA, Slootweg T, Borst JW, Rombout JHWM. Improved uptake of plant-derived LTB-linked proteins in carp gut and induction of specific humoral immune responses upon infeed delivery. FISH & SHELLFISH IMMUNOLOGY 2006; 21:251-60. [PMID: 16464614 DOI: 10.1016/j.fsi.2005.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/10/2005] [Accepted: 12/08/2005] [Indexed: 05/06/2023]
Abstract
Oral vaccination of fish is an effortless and stress free immunisation method which can be used for almost any age. However, vaccination via the mucosal route does have disadvantages. For example, the vaccine may induce tolerance and has to be protected to escape digestion. Also the vaccine should be efficiently delivered to immune-competent cells in the gut or other lymphoid organs. In addition, it should be cost effective. Here we present a novel fish vaccination model using potato tubers as vaccine production and delivery system. The model vaccines discussed here include fusion proteins consisting of a gut adhesion molecule (LTB) and a viral peptide or green fluorescent protein (GFP) expressed in potato tubers. The adhesion molecule mediates binding to and uptake from the gut, whereas the viral peptide or GFP functions as model vaccine antigen provoking the induction of an immune response. We demonstrate that fusion to LTB facilitates an elevated uptake of the model vaccines in carp gut mucosa. The plant-derived fusion proteins also elicit a specific systemic humoral immune response upon oral application of crude tuber material incorporated into a standard dietary feed pellet. The data presented here show the promising potentials of the plant as a production system for oral vaccines in aquaculture and feed mediated immunisation of fish.
Collapse
Affiliation(s)
- A R Companjen
- Cell Biology and Immunology Group, Department of Animal Sciences, PO Box 338, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 2006; 10:185-218. [PMID: 15757412 DOI: 10.1517/14728214.10.1.185] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many of our 'small-molecule-drugs' are natural products from plants, or are synthetic compounds based on molecules found naturally in plants. However, the vast majority of the protein therapeutics (or biopharmaceuticals) we use are from animal or human sources, and are produced commercially in microbial or mammalian bioreactor systems. Over the last few years, it has become clear that plants have great potential for the production of human proteins and other protein-based therapeutic entities. Plants offer the prospect of inexpensive biopharmaceutical production without sacrificing product quality or safety, and following the success of several plant-derived technical proteins, the first therapeutic products are now approaching the market. In this review, the different plant-based production systems are discussed and the merits of transgenic plants are evaluated compared with other platforms. A detailed discussion is provided of the development issues that remain to be addressed before plants become an acceptable mainstream production technology. The many different proteins that have already been produced using plants are described, and a sketch of the current market and the activities of the key players is provided. Despite the currently unclear regulatory framework and general industry inertia, the benefits of plant-derived pharmaceuticals are now bringing the prospect of inexpensive veterinary and human medicines closer than ever before.
Collapse
Affiliation(s)
- Richard M Twyman
- University of York, Department of Biology, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
30
|
Huang LK, Liao SC, Chang CC, Liu HJ. Expression of avian reovirus sigmaC protein in transgenic plants. J Virol Methods 2006; 134:217-22. [PMID: 16488486 DOI: 10.1016/j.jviromet.2006.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 11/30/2022]
Abstract
Avian reovirus (ARV) structural protein, sigmaC encoded by S1 genome segment, is the prime candidate to become a vaccine against ARV infection. Two plant nuclear expression vectors with expression of sigmaC-encoding gene driven by CaMV 35S promoter and rice actin promoter were constructed, respectively. Agrobacterium containing the S1 expression constructs were used to transform alfalfa, and transformants were selected using hygromysin. The integration of S1 transgene in alfalfa chromosome was confirmed by PCR and histochemical GUS staining. Western blot analysis using antiserum against sigmaC was carried out to determine the expression of sigmaC protein in transgenic alfalfa cells. The highest expression levels of sigmaC protein in the cellular extracts of selected p35S-S1 and pAct1-S1 transgenic alfalfa lines were 0.008% and 0.007% of the total soluble protein, respectively. The transgenic alfalfa cells with expression of sigmaC protein pave the way for the development of edible vaccine.
Collapse
Affiliation(s)
- Liang-Kai Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
31
|
Soler E, Le Saux A, Guinut F, Passet B, Cohen R, Merle C, Charpilienne A, Fourgeux C, Sorel V, Piriou A, Schwartz-Cornil I, Cohen J, Houdebine LM. Production of Two Vaccinating Recombinant Rotavirus Proteins in the Milk of Transgenic Rabbits. Transgenic Res 2005; 14:833-44. [PMID: 16315090 DOI: 10.1007/s11248-005-1771-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/05/2005] [Indexed: 10/25/2022]
Abstract
Rotaviruses are the main cause of infantile viral gastroenteritis worldwide leading to approximately 500,000 deaths each year mostly in the developing world. For unknown reasons, live attenuated viruses used in classical vaccine strategies were shown to be responsible for intussusception (a bowel obstruction). New strategies allowing production of safe recombinant non-replicating rotavirus candidate vaccine are thus clearly needed. In this study we utilized transgenic rabbit milk as a source of rotavirus antigens. Individual transgenic rabbit lines were able to produce several hundreds of micrograms per ml of secreted recombinant VP2 and VP6 proteins in their milk. Viral proteins expressed in our model were immunogenic and were shown to induce a significant reduction in viral antigen shedding after challenge with virulent rotavirus in the adult mouse model. To our knowledge, this is the first report of transgenic mammal bioreactors allowing the rapid co-production of two recombinant viral proteins in milk to be used as a vaccine.
Collapse
Affiliation(s)
- Eric Soler
- Biologie du Développement et de la Reproduction, INRA, bât.440, Jouy-en-Josas, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The expression of antigens in transgenic plants has been increasingly used in the development of experimental vaccines, particularly oriented to the development of edible vaccines. Hence, this technology becomes highly suitable to express immunogenic proteins from pathogens. Foot and mouth disease virus, bovine rotavirus and bovine viral diarrhoea virus are considered to be the most important causative agents of economic loss of cattle production in Argentina, and they are thus optimal candidates for alternative means of immunization. Here, we present a review of our results corresponding to the expression of immunogenic proteins from these three viruses in alfalfa transgenic plants, and we discuss the possibility of using them for the development of plant-based vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cattle
- Cattle Diseases/immunology
- Cattle Diseases/prevention & control
- Cattle Diseases/virology
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/immunology
- Medicago sativa/genetics
- Medicago sativa/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Rotavirus/genetics
- Rotavirus/immunology
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/biosynthesis
- Vaccines, Edible/genetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Veterinary Medicine/methods
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
Collapse
|
33
|
Ball JM, Mitchell DM, Gibbons TF, Parr RD. Rotavirus NSP4: a multifunctional viral enterotoxin. Viral Immunol 2005; 18:27-40. [PMID: 15802952 DOI: 10.1089/vim.2005.18.27] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Judith M Ball
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
34
|
Piller KJ, Clemente TE, Jun SM, Petty CC, Sato S, Pascual DW, Bost KL. Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean. PLANTA 2005; 222:6-18. [PMID: 15609046 DOI: 10.1007/s00425-004-1445-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 10/30/2004] [Indexed: 05/15/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause acute diarrhea in humans and farm animals, and can be fatal if the host is left untreated. As a potential alternative to traditional needle vaccination of cattle, we investigated the feasibility of expressing the major K99 fimbrial subunit, FanC, in soybean (Glycine max) for use as an edible subunit vaccine. As a first step in this developmental process, a synthetic version of fanC was optimized for expression in the cytosol and transferred to soybean via Agrobacterium-mediated transformation. Western analysis of T(0) events revealed the presence of a peptide with the expected mobility for FanC in transgenic protein extracts, and immunofluorescense confirmed localization to the cytosol. Two T(0) lines, which accumulated FanC to levels near 0.5% of total soluble protein, were chosen for further molecular characterization in the T(1) and T(2) generations. Mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing synthetic FanC developed significant antibody titers against bacterially derived FanC and produced antigen-specific CD4(+) T lymphocytes, demonstrating the ability of transgenic FanC to function as an immunogen. These experiments are the first to demonstrate the expression and immunogenicity of a model subunit antigen in the soybean system, and mark the first steps toward the development of a K99 edible vaccine to protect against ETEC.
Collapse
Affiliation(s)
- Kenneth J Piller
- Department of Biology, University of North Carolina-Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Dong JL, Liang BG, Jin YS, Zhang WJ, Wang T. Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology 2005; 339:153-63. [PMID: 15992851 DOI: 10.1016/j.virol.2005.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/11/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
A critical factor in edible plant-derived vaccine development is adequate expression of the exogenous antigens in transgenic plants. We synthesized a codon-optimized gene (sVP6) encoding the VP6 protein of human group A rotavirus and inserted it into the alfalfa genome using agrobacterium-mediated transformation. As much as 0.28% of the total soluble protein of the pBsVP6-transgenic alfalfa was sVP6. Female BALB/c mice were gavaged weekly with 10 mg of transgenic alfalfa extract containing 24 microg of sVP6 protein and 10 microg of CpG-rich oligodeoxynucleotides as mucosal adjuvant. Immunized mice developed high titers of anti-VP6 serum IgG and mucosal IgA. Offspring of immunized dams developed less severe diarrhea after challenge with simian rotavirus SA-11, indicating that antibodies generated in the dams provided passive heterotypic protection to the pups. These results suggest that oral immunization with pBsVP6-transgenic alfalfa provides a potential means of protecting children and young animals from severe acute rotavirus-induced diarrhea.
Collapse
Affiliation(s)
- Jiang-Li Dong
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100094, China.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Many protein subunit vaccine candidates have been expressed in transgenic plants, and in a few cases the recombinant material has entered early phase clinical or target animal trials. The expressed protein can be purified prior to formulation for any preferred delivery approach. However, there are major cost advantages associated with avoiding protein purification and pursuing the oral delivery of a processed plant product containing the recombinant protein. Grains and dry products that are processed from fresh plant tissues can stably store expressed proteins for extended periods of time at room temperature, making refridgeration unnecessary during storage and distribution. Encapsulation of recombinant proteins in plant tissues guards against their rapid degradation in the gut, therefore facilitating the uptake and induction of appropriate immune responses. Early trial data with plant-based vaccine candidates has shown promising safety and efficacy.
Collapse
|