1
|
Yang J, Xiao S, Lu L, Wang H, Jiang Y. Genomic and molecular characterization of a cyprinid herpesvirus 2 YC-01 strain isolated from gibel carp. Heliyon 2024; 10:e32811. [PMID: 39035518 PMCID: PMC11259805 DOI: 10.1016/j.heliyon.2024.e32811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the pathogen of herpesviral hematopoietic necrosis (HVHN), causing the severe economic losses in farmed gibel carp (Carassius gibelio). Further exploration of the genome structure and potential molecular pathogenesis of CyHV-2 through complete genome sequencing, comparative genomics, and molecular characterization is required. Herein, the genome of a CyHV-2 YC-01 strain isolated from diseased gibel carp collected in Yancheng, Jiangsu Province, China was sequenced, then we analyzed the genomic structure, genetic properties, and molecular characterization. First, the complete YC-01 genome comprises 275,367 bp without terminal repeat (TR) regions, with 151 potential open reading frames (ORFs). Second, compared with other representative published strains of the genus Cyvirus, several evident variations are found in YC-01, particularly the orientation and position of ORF25 and ORF25B. ORF107 and ORF156 are considered as potential molecular genetic markers for YC-01. ORF55 (encoding thymidine kinase) might be used to distinguish YC-01 and ST-J1 from other CyHV-2 isolates. Third, phylogenetically, YC-01 clusters with the members of the genus Cyvirus (together with the other six CyHV-2 isolates). Fourth, 43 putative proteins are predicted to be functional and are mainly divided into five categories. Several conserved motifs are found in nucleotide, amino acid, and promoter sequences including cis-acting elements identification of YC-01. Finally, the potential virulence factors and linear B cell epitopes of CyHV-2 are predicted to supply possibilities for designing novel vaccines rationally. Our results provide insights for further understanding genomic structure, genetic evolution, and potential molecular mechanisms of CyHV-2.
Collapse
Affiliation(s)
- Jia Yang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
2
|
Kim GH, Jeong YJ, Jeon YG, Yang YJ, Min JG, Kim DH, Il Kim K. Diagnostic performance of cross-priming amplification-based lateral flow assay (CPA-LFA) and real-time PCR for koi herpesvirus (KHV) detection. J Virol Methods 2024; 325:114890. [PMID: 38309371 DOI: 10.1016/j.jviromet.2024.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Epizootics of Koi herpesvirus (KHV) cause mass mortality in koi carp (Cyprinus rubrofuscus) and common carp (Cyprinus carpio) worldwide. Rapid and accurate virus detection technology is crucial for preventing pathogen spread and minimizing damage. Although several diagnostic assays have been developed for KHV, the analytical and diagnostic performance of the detection methods has not been evaluated. In this study, we developed and validated the diagnostic performance of two molecular diagnostic assays, cross-priming amplification-based lateral flow assay (CPA-LFA) and TaqMan probe-based real-time polymerase chain reaction (PCR). To detect KHV, primers and probe were designed based on the thymidine kinase (TK) genes. The detection limits of developed CPA-LFA and real-time PCR assays were determined to be 675.69 copies/μL and 8.384 copies/μL, respectively. The diagnostic sensitivity and specificity of the developed assay were determined using fish samples (n = 179). CPA-LFA was found to be 93.67% and 100%, respectively, and real-time PCR was found to be 100% and 100%, respectively. Therefore, the newly developed CPA-LFA and real-time PCR assays accurately and rapidly detect KHV. CPA-LFA is particularly suitable for point-of-care diagnosis because of its simple diagnostic process, and real-time PCR analysis is most suitable for precise diagnosis because it can detect low viral loads.
Collapse
Affiliation(s)
- Guk Hyun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ye Jin Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Yu Gyeong Jeon
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Yun Jung Yang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Joon Gyu Min
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Kwang Il Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
3
|
Bergmann SM, Wang Y, Li Y, Wang Q, Klafack S, Jin Y, Hofmann AC, Kielpinska J, Becker AM, Zeng W. Occurrence of herpesvirus in fish. J Vet Res 2024; 68:73-78. [PMID: 38525225 PMCID: PMC10960257 DOI: 10.2478/jvetres-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Herpesviruses are common agents in animals of the aquatic environment. They infect many species of fish but only lead to disease in one or two species. Nevertheless, infected fish without clinical symptoms can actively transfer infectious agents to disease-susceptible species. The aim of the study was to identify and prove the natural presence of different herpesviruses. Material and Methods Koi, Nile tilapia, grass carp, goldfish and crucian carp were infected with a herpesvirus isolate 99% identical to goldfish herpesvirus (GHV) or cyprinid herpesvirus 2 (CyHV-2) obtained from crucian carp. Before and after infection, samples were collected non-lethally at different time points from all five fish species to identify and evaluate the replication of viruses naturally infecting the fish as well as the CyHV-2 experimentally infecting them. Gill swabs and separated leukocytes were subjected to PCR and the results compared. Results These samples yielded DNA of koi herpesvirus (KHV, also referred to as CyHV-3), GHV and a new herpesvirus. While Asian-lineage CyHV-3 DNA was detected in samples from crucian carp and goldfish, CyHV-2 DNA was found in samples from koi and tilapia. A new, hitherto unknown herpesvirus was identified in samples from grass carp, and was confirmed by nested PCR and sequence analysis. The survival rates were 5% for grass carp, 30% for tilapia, 55% for crucian carp, 70% for koi and 100% for goldfish at 20 days post infection. Evolutionary analyses were conducted and five clusters were visible: CyHV-1 (carp pox virus), CyHV-2 with sequences from koi and tilapia, CyHV-3 with sequences from crucian carp and goldfish, probable CyHV-4 from sichel and a newly discovered herpesvirus - CyHV-5 - from grass carp. Conclusion The results obtained with the molecular tools as well as from the animal experiment demonstrated the pluripotency of aquatic herpesviruses to infect different fish species with and without visible clinical signs or mortality.
Collapse
Affiliation(s)
- Sven Michael Bergmann
- Friedrich-Loeffler-Institut, Greifswald, Germany
- OIE Reference Laboratory for KHVD, Federal Research Institute for Animal Health, Institute of Infectology, 17493Riems, Germany
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380Guangzhou, China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380Guangzhou, China
| | | | - Yeonhwa Jin
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Jolanta Kielpinska
- Division of Fisheries Management and Water Protection, West Pomeranian University of Technology in Szczecin, 71-550Szczecin, Poland
| | - Anna Maria Becker
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Faculty of Engineering, Friedrich-Alexander-Universität, 91052Erlangen, Germany
| | - Weiwei Zeng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528231Foshan, China
| |
Collapse
|
4
|
Cano I, Blaker E, Hartnell D, Farbos A, Moore KA, Cobb A, Santos EM, van Aerle R. Transcriptomic Responses to Koi Herpesvirus in Isolated Blood Leukocytes from Infected Common Carp. Viruses 2024; 16:380. [PMID: 38543746 PMCID: PMC10974277 DOI: 10.3390/v16030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
Koi herpesvirus (KHV, CyHV-3) causes severe economic losses in carp farms. Its eradication is challenging due to the establishment of latency in blood leukocytes and other tissues. To understand the molecular mechanisms leading to KHV infection in leukocytes, common carp were bath-exposed to KHV at 17 °C. After confirming the presence of viral transcripts in blood leukocytes at ten days post infection, RNA-Seq was performed on peripheral blood leukocytes on the Illumina NovaSeq. KHV infection triggered a robust immune response mediated by pattern recognition receptors, mainly toll-like receptors (tlr2, tlr5, tlr7, and tlr13), urokinase plasminogen activator surface receptor-like, galectin proteins, and lipid mediators such as leukotriene B4 receptor 1. Enriched pathways showed increased mitochondria oxidative phosphorylation and the activation of signalling pathways such as mitogen-activated protein kinases (MAPKs) and vascular endothelial growth factor (VEGF). KHV-infected leukocytes showed low production of reactive oxygen species (ROS) and glutathione metabolism, high iron export and phagocytosis activity, and low autophagy. Macrophage polarization was deduced from the up-regulation of genes such as arginase non-hepatic 1-like, macrophage mannose receptor-1, crem, il-10, and il-13 receptors, while markers for cytotoxic T cells were observed to be down-regulated. Further work is required to characterise these leukocyte subsets and the molecular events leading to KHV latency in blood leukocytes.
Collapse
Affiliation(s)
- Irene Cano
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| | - Ellen Blaker
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - David Hartnell
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Audrey Farbos
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Karen A. Moore
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Adele Cobb
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Eduarda M. Santos
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| |
Collapse
|
5
|
Sun Y, Xu C, Wang H, Qiao G, Wang Z, Li Z, Li Q, Wei C. An attenuated strain of cyprinid herpesvirus 2 as a vaccine candidate against herpesviral hematopoietic necrosis disease in gibel carp, Carassius auratus gibelio. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108826. [PMID: 37201732 DOI: 10.1016/j.fsi.2023.108826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Herpesviral hematopoietic necrosis disease causes by cyprinid herpesvirus 2 (CyHV-2) infection is a high mortality disease that leads to great economic damage to gibel carp, Carassius auratus gibelio aquaculture. In this study, an attenuated strain of CyHV-2 G-RP7 was achieved by subculture on RyuF-2 cells derived from the fin of Ryukin-variety goldfish and GiCF cells derived from fin of gibel carp. As the attenuated vaccine candidate, there are no clinical symptoms of gibel carp that immersion or intraperitoneal injection with G-RP7 strain. The protection rates of G-PR7 to gibel carp by immersion and intraperitoneal injection were 92% and 100%, respectively. In the test for virulence reversion, the candidate was propagated through gibel carp six times by intraperitoneal injection with kidney and spleen homogenate of the inoculated fish. During in vivo passages in gibel carp, no abnormality and mortality of the inoculated fish were observed, and the virus DNA copies maintain a low level from the first passage to the sixth passage. The dynamic of virus DNA in each tissue of G-RP7 vaccination fish increased within 1, 3, and 5 days post-immunization, and subsequently decreased and stabilized within 7 and 14 days. In addition, the increase of anti-virus antibody titer was detected both immersion and injection immunization fish 21 days after vaccination by ELISA. These results demonstrated that G-RP7 can be a promising live attenuated vaccine candidate against the disease.
Collapse
Affiliation(s)
- Yuyu Sun
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Chaonan Xu
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Applied Biology and Aquaculture of Fish in Northern China of Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Guo Qiao
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhenhui Wang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zheng Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Chang Wei
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
6
|
Matsuoka S, Petri G, Larson K, Behnke A, Wang X, Peng M, Spagnoli S, Lohr C, Milston-Clements R, Divilov K, Jin L. Evaluation of Histone Demethylase Inhibitor ML324 and Acyclovir against Cyprinid herpesvirus 3 Infection. Viruses 2023; 15:163. [PMID: 36680202 PMCID: PMC9863241 DOI: 10.3390/v15010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) can cause severe disease in koi and common carp (Cyprinus carpio). Currently, no effective treatment is available against CyHV-3 infection in koi. Both LSD1 and JMJD2 are histone demethylases (HD) and are critical for immediate-early (IE) gene activation essential for lytic herpesvirus replication. OG-L002 and ML324 are newly discovered specific inhibitors of LSD1 and JMJD2, respectively. Here, HD inhibitors were compared with acyclovir (ACV) against CyHV-3 infection in vitro and in vivo. ML324, at 20-50 µM, can completely block ~1 × 103 PFU CyHV-3 replication in vitro, while OG-L002 at 20 µM and 50 µM can produce 96% and 98% inhibition, respectively. Only about 94% inhibition of ~1 × 103 PFU CyHV-3 replication was observed in cells treated with ACV at 50 µM. As expected, CyHV-3 IE gene transcription of ORF139 and ORF155 was blocked within 72 h post-infection (hpi) in the presence of 20 µM ML324. No detectable cytotoxicity was observed in KF-1 or CCB cells treated for 24 h with 1 to 50 µM ML324. A significant reduction of CyHV-3 replication was observed in ~6-month-old infected koi treated with 20 µM ML324 in an immersion bath for 3-4 h at 1-, 3-, and 5-days post-infection compared to the control and ACV treatments. Under heat stress, 50-70% of 3-4-month-old koi survived CyHV-3 infection when they were treated daily with 20 µM ML324 in an immersion bath for 3-4 h within the first 5 d post-infection (dpi), compared to 11-19% and 22-27% of koi in the control and ACV treatments, respectively. Our study demonstrates that ML324 has the potential to be used against CyHV-3 infection in koi.
Collapse
Affiliation(s)
- Shelby Matsuoka
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Gloria Petri
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kristen Larson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Alexandra Behnke
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Xisheng Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Muhui Peng
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane Lohr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Ruth Milston-Clements
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Konstantin Divilov
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Complete Genome and Molecular Characterization of a New Cyprinid Herpesvirus 2 (CyHV-2) SH-01 Strain Isolated from Cultured Crucian Carp. Viruses 2022; 14:v14092068. [PMID: 36146873 PMCID: PMC9503944 DOI: 10.3390/v14092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a causative factor of herpesviral hematopoietic necrosis (HVHN) in farmed crucian carp (Carassius carassius) and goldfish (Carassius auratus). In this study, we analyzed the genomic characteristics of a new strain, CyHV-2 SH-01, isolated during outbreaks in crucian carp at a local fish farm near Shanghai, China. CyHV-2 SH-01 exhibited a high sensitivity to goldfish and crucian carp in our previous research. The complete genome of SH-01 is 290,428 bp with 154 potential open reading frames (ORFs) and terminal repeat (TR) regions at both ends. Compared to the sequenced genomes of other CyHVs, Carassius auratus herpesvirus (CaHV) and Anguillid herpesvirus 1 (AngHV-1), several variations were found in SH-01, including nucleotide mutations, deletions, and insertions, as well as gene duplications, rearrangements, and horizontal transfers. Overall, the genome of SH-01 shares 99.60% of its identity with that of ST-J1. Genomic collinearity analysis showed that SH-01 has a high degree of collinearity with another three CyHV-2 isolates, and it is generally closely related to CaHV, CyHV-1, and CyHV-3, although it contains many differences in locally collinear blocks (LCBs). The lowest degree of collinearity was found with AngHV-1, despite some homologous LCBs, indicating that they are evolutionarily the most distantly related. The results provide new clues to better understand the CyHV-2 genome through sequencing and sequence mining.
Collapse
|
8
|
Development of an attenuated vaccine against Koi Herpesvirus Disease (KHVD) suitable for oral administration and immersion. NPJ Vaccines 2022; 7:106. [PMID: 36068296 PMCID: PMC9448810 DOI: 10.1038/s41541-022-00525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Since the end of the1990ies, Cyprinid herpesvirus 3 (also known as koi herpesvirus, KHV) has caused mass mortality events of koi and common carp all over the globe. This induced a high economic impact, since the KHV disease cannot be cured up to now, but only prevented by vaccination. Unfortunately, there is only one commercial vaccine available which is not approved in most countries. Therefore, there is an urgent need for new, safe and available vaccines. In this study, a live attenuated vaccine virus was generated by cell culture passages of virulent KHV, and shown to protect carp or koi after immersion or oral application against wild type challenge. An advantage of boost immunization was demonstrated, especially after oral application. Vaccination induced no or mild clinical signs and protecting antibodies have been measured. Additionally, the vaccine virus allowed differentiation of infected from vaccinated animals (DIVA) by PCR. The attenuation of the newly generated vaccine was tracked down to a partial deletion of open reading frame 150. This was confirmed by the generation of engineered ORF150 deletion mutants of wild-type KHV which exhibited a similar attenuation in vivo.
Collapse
|
9
|
Li Y, Wang Q, Hu F, Wang Y, Bergmann SM, Zeng W, Yin J, Shi C. Development of a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for the detection of KHV. JOURNAL OF FISH DISEASES 2021; 44:913-921. [PMID: 33634875 DOI: 10.1111/jfd.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Koi herpesvirus disease (KHVD) caused by the koi herpesvirus (KHV) is difficult to diagnose in live fish, presenting a challenge to the koi industry. The enzyme-linked immunosorbent assay (ELISA) method cannot be widely used to detect KHV because few commercial anti-KHV antibody exists. Here, we developed an anti-ORF132 polyclonal antibody and confirmed its reactivity via indirect immunofluorescence assay and Western blotting. A double-antibody sandwich ELISA (DAS-ELISA) was established to detect KHV, monoclonal antibody 1B71B4 against ORF92 was used as the capture antibody, and the detection antibody was the polyclonal antibody against the truncated ORF132. The lowest limit was 1.56 ng/ml KHV. Furthermore, the DAS-ELISA reacted with KHV isolates, while no cross-reactions occurred with carp oedema virus, spring viraemia of carp virus, frog virus 3 and grass carp reovirus. Two hundred koi serum samples from Guangdong, China, were used in the DAS-ELISA test, and the positive rate of the koi sera was 13%. The clinical sensitivity and specificity of the DAS-ELISA relative to the traditional PCR method were 66.7% and 97.6%, respectively. Our findings may be useful for diagnosing and preventing KHVD in koi and common carp.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Feng Hu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Sven M Bergmann
- German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
10
|
Seroconversion and Skin Mucosal Parameters during Koi Herpesvirus Shedding in Common Carp, Cyprinus carpio. Int J Mol Sci 2020; 21:ijms21228482. [PMID: 33187217 PMCID: PMC7696817 DOI: 10.3390/ijms21228482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Seroconversion and the mucosal lysozyme G (lysG), complement 3 (c3), and immunoglobulins M (IgMsec) and Z2 (IgZ2) were measured for up to 900 degree days (DD) in skin swabs from common carp exposed to koi herpesvirus (KHV or CyHV-3) at either a non-permissive temperature (12 °C) or permissive temperatures (17 and 22 °C), and in survivors subjected to temperature increase to 22 °C 500 DD after the initial exposure. The survival rate at 22 °C varied from 100% in fish initially exposed at 12 °C, to 20% at 17 °C and 0% at 22 °C. Viral shedding episodes lasted for up to 29 days (493 DD) for fish clinically infected at 17 °C, and up to 57 days (684 DD) for asymptomatic fish held at 12 °C. Up-regulation of lysG transcripts was measured at 17 and 22 °C. Down-regulation of c3 and IgMsec transcripts was measured independent of the water temperature, followed by up-regulation after the temperature increase coinciding with seroconversion and clearance of KHV from the skin mucus. IgZ2 mRNA showed a negative correlation with IgM transcripts. KHV subversion of the complement system at the mucosal site coupled with poor immunoglobulin secretion during the viral replication might contribute to the long window of viral shedding, thus facilitating viral transmission.
Collapse
|
11
|
Diagnostic validation of a rapid and field-applicable PCR-lateral flow test system for point-of-care detection of cyprinid herpesvirus 3 (CyHV-3). PLoS One 2020; 15:e0241420. [PMID: 33125418 PMCID: PMC7598509 DOI: 10.1371/journal.pone.0241420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Koi herpesvirus disease (KHVD) is a highly infectious disease leading to outbreaks and mass mortality in captive and free-ranging common carp and koi carp. Outbreaks may result in high morbidity and mortality which can have a severe economic impact along the supply chain. Currently, control and prevention of KHVD relies on avoiding exposure to the virus based on efficient hygiene and biosecurity measures. An early diagnosis of the disease is crucial to prevent its spread and to minimize economic losses. Therefore, an easy-to-handle, sensitive, specific and reliable test prototype for a point-of-care detection of KHV was developed and evaluated in this study. We used a multiplex-endpoint-PCR followed by a specific probe hybridization step. PCR-products/hybridization-products were visualized with a simple and universal lateral flow immunoassay (PCR-LFA). Fifty-four gill tissue samples (KHV-positive n = 33, KHV-negative n = 21) and 46 kidney samples (KHV-positive n = 24, KHV-negative n = 22) were used to determine diagnostic sensitivity and specificity of the PCR-LFA. In addition, the usability of PCR-LFA to detect CyHV-3-DNA in gill swabs taken from 20 perished common carp during a KHVD-outbreak in a commercial carp stock was examined. This assay gave test results within approximately 60 min. It revealed a detection limit of 9 KHV gene copies/μl (95% probability), a diagnostic specificity of 100%, and diagnostic sensitivity of 94.81% if samples were tested in a single test run only. PCR inhibition was noticed when examining gill swab samples without preceding extraction of DNA or sample dilution. Test sensitivity coud be enhanced by examining samples in five replicates. Overall, our PCR-LFA proved to be a specific, easy-to-use and time-saving point-of-care-compatible test for the detection of KHV-DNA. Regarding gill swab samples, further test series using a higher number of clinical samples should be analyzed to confirm the number of replicates and the sample processing necessary to reveal a 100% diagnostic sensitivity.
Collapse
|
12
|
McDermott C, Palmeiro B. Updates on Selected Emerging Infectious Diseases of Ornamental Fish. Vet Clin North Am Exot Anim Pract 2020; 23:413-428. [PMID: 32327045 DOI: 10.1016/j.cvex.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Emerging infectious diseases of ornamental fish are discussed with special focus on clinical relevance, detection, and treatment, where applicable. Important emerging infectious diseases of fish include goldfish herpesvirus, koi herpesvirus, carp edema virus, Erysipelothrix, Edwardsiella ictaluri, Edwardseilla piscicida, and Francisella. Some diseases are more species or genus specific, but many emerging diseases do not seem to have a species preference and affect a variety of species worldwide. Proper husbandry and biosecurity with a disease detection plan for ornamental fish is essential to monitor and prevent future outbreaks.
Collapse
Affiliation(s)
- Colin McDermott
- Zodiac Pet and Exotic Hospital, Victoria Centre, Shop 101A, 1/F, 15 Watson Road, Fortress Hill, Hong Kong.
| | - Brian Palmeiro
- Lehigh Valley Veterinary Dermatology & Fish Hospital, Pet Fish Doctor, 4580 Crackersport Road, Allentown, PA 18104, USA
| |
Collapse
|
13
|
Wei C, Kakazu T, Chuah QY, Tanaka M, Kato G, Sano M. Reactivation of cyprinid herpesvirus 2 (CyHV-2) in asymptomatic surviving goldfish Carassius auratus (L.) under immunosuppression. FISH & SHELLFISH IMMUNOLOGY 2020; 103:302-309. [PMID: 32439507 DOI: 10.1016/j.fsi.2020.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a highly contagious pathogen of goldfish (Carassius auratus) and Prussian carp (Carassius auratus gibelio) causing herpesviral hematopoietic necrosis. Our previous study revealed that CyHV-2 can persistently infect the kidney and spleen of goldfish that recovered from a primary infection. In this study, we tried to identify the cells persistently infected with the virus in surviving fish and investigated virus reactivation in the survivors injected with immunosuppressants, namely dexamethasone (Dex) and cyclosporine A (CsA). Virus DNA was detected from the monocytes that were isolated from the trunk kidney of the asymptomatic survivors, suggesting that monocytes/macrophages are major cells that may be persistently infected with CyHV-2. A significant increase of virus DNA levels was detected in the group injected with Dex at 10 and 21 days post-injection (dpi). In the fish group injected with CsA, the virus DNA level was the same as that in the control group at 10 dpi but increased in some organs at 21 dpi. Compared with Dex-injected fish at 10 dpi, the group injected with both Dex and CsA showed a greater increase in virus DNA levels. The gene expression of phagocytosis-associated genes, major histocompatibility complex (MHC) class II and p47phox, and anti-virus antibody levels increased in the CsA group due to virus reactivation in the infected cells but not in the Dex and Dex & CsA groups, indicating that Dex effectively suppressed monocyte/macrophage function and antibody production. In addition, recombinant interferon γ (IFNγ) supplementation in the kidney leukocyte culture that was isolated from survivors showed a reduction of virus DNA. CsA may inhibit T-helper 1 (Th1) cells and consequently IFNγ production, causing a synergetic effect with Dex on virus reactivation. The results suggest that the activity of monocytes/macrophages stimulated by IFNγ can relate to virus latency and reactivation in asymptomatic virus carriers.
Collapse
Affiliation(s)
- Chang Wei
- Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Taichi Kakazu
- Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Qiu Yuan Chuah
- Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Mikio Tanaka
- Saitama Fisheries Research Institute, Saitama, 347-0011, Japan
| | - Goshi Kato
- Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Motohiko Sano
- Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan.
| |
Collapse
|
14
|
Dharmaratnam A, Kumar R, Valaparambil BS, Sood N, Pradhan PK, Das S, Swaminathan TR. Establishment and characterization of fantail goldfish fin (FtGF) cell line from goldfish, Carassius auratus for in vitro propagation of Cyprinid herpes virus-2 (CyHV-2). PeerJ 2020; 8:e9373. [PMID: 33005480 PMCID: PMC7512137 DOI: 10.7717/peerj.9373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background Herpesviral hematopoietic necrosis disease, caused by cyprinid herpesvirus-2 (CyHV-2), is responsible for massive mortalities in the aquaculture of goldfish, Carassius auratus. Permissive cell lines for the isolation and propagation of CyHV-2 have been established from various goldfish tissues by sacrificing the fish. Here, we report the development of a cell line, FtGF (Fantail Goldfish Fin), from caudal fin of goldfish using non-lethal sampling. We also describe a simple protocol for successful establishment and characterization of a permissive cell line through explant method and continuous propagation of CyHV-2 with high viral titer using this cell line. Methods Caudal fin tissue samples were collected from goldfish without killing the fish. Cell culture of goldfish caudal fin cells was carried out using Leibovitz’s L-15 (L-15) medium containing 20% FBS and 1X concentration of antibiotic antimycotic solution, incubated at 28 °C. Cells were characterized and origin of the cells was confirmed by sequencing fragments of the 16S rRNA and COI genes. CyHV-2 was grown in the FtGF cells and passaged continuously 20 times. The infectivity of the CyHV-2 isolated using FtGF cells was confirmed by experimental infection of naïve goldfish. Results The cell line has been passaged up to 56 times in L-15 with 10% FBS. Karyotyping of FtGF cells at 30th, 40th and 56th passage indicated that modal chromosome number was 2n = 104. Species authentication of FtGF was performed by sequencing of the 16S rRNA and COI genes. The cell line was used for continuous propagation of CyHV-2 over 20 passages with high viral titer of 107.8±0.26 TCID50/mL. Following inoculation of CyHV-2 positive tissue homogenate, FtGF cells showed cytopathic effect by 2nd day post-inoculation (dpi) and complete destruction of cells was observed by the 10th dpi. An experimental infection of naïve goldfish using supernatant from infected FtGF cells caused 100% mortality and CyHV-2 infection in the challenged fish was confirmed by the amplification of DNA polymerase gene, histopathology and transmission electron microscopy. These findings provide confirmation that the FtGF cell line is highly permissive to the propagation of CyHV-2.
Collapse
Affiliation(s)
- Arathi Dharmaratnam
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - Raj Kumar
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | | | - Neeraj Sood
- ICAR National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | | | - Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - T Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| |
Collapse
|
15
|
Zrnčić S, Oraić D, Zupičić IG, Pavlinec Ž, Brnić D, Rogić ŽA, Sučec I, Steinhagen D, Adamek M. Koi herpesvirus and carp edema virus threaten common carp aquaculture in Croatia. JOURNAL OF FISH DISEASES 2020; 43:673-685. [PMID: 32315089 DOI: 10.1111/jfd.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
Common carp (Cyprinus carpio) is a very important fish species for warm-water aquaculture in Croatia. All Croatian carp farms are subjected to a surveillance programme for the presence of koi herpesvirus (KHV), causing a deadly disease called koi herpesvirus disease (KHVD). However, there is no surveillance for other viral pathogens of importance like carp edema virus (CEV), a causative agent of koi sleepy disease (KSD). During regular testing within the KHVD surveillance programme, we tested samples for CEV simultaneously. The screening indicated possible outbreaks of KHVD and KSD. During 2016, KHVD broke out in an isolated area and soon thereafter a KHV eradication programme was successfully performed. However, during 2018 and 2019, two additional mortality events occurred in lakes in the southern part of Croatia during the spring. Samples from both events tested positive for CEV. An epidemiological investigation confirmed the introduction of infected carps from an infected farm to one of the lakes. To prevent the spreading of CEV into open waters, it is of utmost importance to introduce CEV testing before fish movement or to perform regular testing of all carp farms in the country to determine CEV prevalence for the purpose of implementation of control measures.
Collapse
Affiliation(s)
- Snježana Zrnčić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Dražen Oraić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Ivana Giovanna Zupičić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Željko Pavlinec
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Dragan Brnić
- Virology Department Zagreb, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | | | - Ivica Sučec
- Ministry of Agriculture, Fisheries Directorate, Zagreb, Croatia
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
16
|
Tuxbury KA, Innis CJ, Thaiwong T, Wise AG, Maes R, Garner MM, Kiupel M. Herpesvirus Encephalitis in a Little Blue Penguin ( Eudyptula minor). Vet Pathol 2020; 57:582-585. [PMID: 32436778 DOI: 10.1177/0300985820926678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An 11-day-old little blue penguin (Eudyptula minor) died unexpectedly. Prior to hatching, the egg experienced trauma and resultant defects were repaired. The chick hatched without complication and was clinically normal prior to death. Necropsy revealed congested lungs. Histologic examination showed moderate nonsuppurative encephalitis with focally extensive neuronal necrosis and intranuclear inclusions in neurons within necrotic foci. Herpesvirus DNA was detected in brain tissue with a generic herpesvirus polymerase chain reaction. Sanger sequencing demonstrated 100% and 98% sequence homology to sphenicid alphaherpesvirus 1 and penguin herpesvirus 2, respectively. In situ hybridization demonstrated large amounts of herpesvirus nucleic acid in intranuclear inclusions and neuronal nuclei. Combined histology, polymerase chain reaction, Sanger sequencing, and in situ hybridization results were most consistent with herpesviral encephalitis, most likely caused by sphenicid alphaherpesvirus 1. To our knowledge, this is the first report of a herpesvirus infection causing encephalitis in a penguin and the first report of herpesvirus in this species.
Collapse
Affiliation(s)
| | - Charles J Innis
- New England Aquarium, Animal Health Department, Boston, MA, USA
| | - Tuddow Thaiwong
- Michigan State University, College of Veterinary Medicine, Veterinary Diagnostic Laboratory, East Lansing, MI, USA
| | - Annabel G Wise
- Michigan State University, College of Veterinary Medicine, Veterinary Diagnostic Laboratory, East Lansing, MI, USA
| | - Roger Maes
- Michigan State University, College of Veterinary Medicine, Veterinary Diagnostic Laboratory, East Lansing, MI, USA
| | | | - Matti Kiupel
- Michigan State University, College of Veterinary Medicine, Veterinary Diagnostic Laboratory, East Lansing, MI, USA
| |
Collapse
|
17
|
Soto E, Tamez-Trevino E, Yazdi Z, Stevens BN, Yun S, Martínez-López B, Burges J. Non-lethal diagnostic methods for koi herpesvirus in koi Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2020; 138:195-205. [PMID: 32213667 DOI: 10.3354/dao03456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyprinid herpesvirus 3, also known as koi herpesvirus (KHV), is a viral pathogen responsible for mass mortalities of carp worldwide. In this study, we compared the sensitivity and specificity of ELISA and quantitative PCR (qPCR) methods for the diagnosis of KHV in experimentally infected koi Cyprinus carpio over an 11 mo period. Koi were exposed to KHV at 18 ± 1°C (permissive temperatures for KHV disease) in laboratory-controlled conditions. At 21 d post challenge, the temperature in the system was decreased to <15°C (non-permissive temperature for KHV disease), and fish were monitored for the following 11 mo. At different time points throughout the study, samples of blood and gills were collected from exposed and control koi and subjected to qPCR and ELISA. Survival proportions of 53.3 and 98.8% in exposed and control treatments, respectively, were recorded at the end of the challenge. Traditional receiver-operating characteristic analysis was used to compare the sensitivity of the ELISA and blood and gill qPCR during permissive and non-permissive temperatures. ELISA was superior to qPCR of gills and whole-blood samples in detecting previous exposure to KHV. Similar results were obtained in a second experiment exposing koi to KHV and inducing persistent infection at >30°C (non-permissive temperature for KHV disease). Finally, KHV ELISA specificity was confirmed using cyprinid herpesvirus 1-exposed koi through a period of 3 mo. This study demonstrates that the combination of ELISA and gill qPCR should be recommended in the diagnosis of KHV exposure of suspected carrier-state fish.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Bergmann SM, Jin Y, Franzke K, Grunow B, Wang Q, Klafack S. Koi herpesvirus (KHV) and KHV disease (KHVD) - a recently updated overview. J Appl Microbiol 2020; 129:98-103. [PMID: 32077213 DOI: 10.1111/jam.14616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Over the last years, there has been an enormous increase in the knowledge on koi herpesvirus (KHV), koi herpesvirus disease (KHVD), pathogenesis and virus variants. Different KHV lineages have clearly been identified, possible genomic changes during replication in different cell cultures at different temperatures but also in several hosts have been identified, a persistent stage of infection has been specified and it has been shown that infection with KHV is not host specific at all, but KHVD is. Additionally, it has been shown that it is possible to combat KHVD by immunization with inactivated and attenuated live vaccines using different delivery systems but also to benefit from alternative treatments with e.g. exopolysaccharids obtained from Arthrospira platensis.
Collapse
Affiliation(s)
- S M Bergmann
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - Y Jin
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - K Franzke
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - B Grunow
- Institute of Muscle Biology & Growth, Junior Research Group Fish Growth Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Q Wang
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - S Klafack
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany.,Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Zhang M, Li Y, Jing H, Wang N, Wu S, Wang Q, Lin X. Development of polyclonal-antibody-coated immunomagnetic beads for separation and detection of koi herpesvirus in large-volume samples. Arch Virol 2020; 165:973-976. [PMID: 32060793 DOI: 10.1007/s00705-020-04557-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
To separate and concentrate koi herpesvirus (KHV) from large-volume samples, a separation method based on immunomagnetic beads (IMBs) coated with polyclonal antibody directed against KHV was developed. After treatment with IMBs, viral DNA was extracted from samples and used as a template for quantitative PCR (qPCR). The results showed that the concentration of the template DNA extracted from the virus that had been separated using IMBs was 9.65-fold higher than that from virus not treated with IMBs. The detection limit of the IMBs/qPCR method was found to be at least 10 times lower than that of qPCR alone.
Collapse
Affiliation(s)
- Min Zhang
- The Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, No. 11 Building, Ronghua South Road, Daxing District, Beijing, 100176, China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
| | - Hongli Jing
- The Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, No. 11 Building, Ronghua South Road, Daxing District, Beijing, 100176, China
| | - Na Wang
- The Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, No. 11 Building, Ronghua South Road, Daxing District, Beijing, 100176, China
| | - Shaoqiang Wu
- The Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, No. 11 Building, Ronghua South Road, Daxing District, Beijing, 100176, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China.
| | - Xiangmei Lin
- The Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, No. 11 Building, Ronghua South Road, Daxing District, Beijing, 100176, China.
| |
Collapse
|
20
|
Kim HJ, Kwon SR, Yuasa K. Establishing the optimal fetal bovine serum concentration to support replication of cyprinid herpesvirus 3 in CCB and KF-1 cell lines. J Virol Methods 2019; 276:113733. [PMID: 31563585 DOI: 10.1016/j.jviromet.2019.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 08/14/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
Koi herpesvirus (KHV) disease is a serious disease in cultured carp (Cyprinus carpio). CCB and KF-1 cell lines are commonly used for virus isolation and observation of cytopathic effects (CPE) in carp and koi samples. The purpose of this study was to determine the optimal concentration of fetal bovine-serum (FBS) to use for supporting the replication of cyprinid herpesvirus 3 CyHV-3 in CCB and KF-1 cell lines. The following concentrations were tested: 0%, 2%, 5%, and 10% FBS. At 7 days post-viral inoculation (dpi), CPE with clear vacuolation was observed in both cell lines when supplemented with 0 and 2% FBS, but not in those supplemented with 5% or 10% FBS. At 14 dpi, CPE was observed in both cell lines supplemented with FBS at any of the tested concentrations when a high virus titer was inoculated. However, CPE was indistinguishable between cell lines supplemented with 10% FBS when a low virus titer was inoculated. Results of qPCR indicated that the number copies of the viral genome tended to be larger in both cell lines supplemented with 10% FBS than the corresponding number in cell lines supplemented with 0%, 2%, or 5% FBS, at 7 dpi. In conclusion, we recommend using 2% FBS as supplement for isolation and diagnosis of CyHV-3 viral infection in carp samples.
Collapse
Affiliation(s)
- Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Fishery Products Quality Management Services, Busan 49111, Republic of Korea
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan-si, Chungnam 31460, Republic of Korea
| | - Kei Yuasa
- OIE Reference Laboratory for KHVD, National Research Institute of Aquaculture, Fisheries Research Agency, Mie, Japan.
| |
Collapse
|
21
|
Detection of koi herpesvirus in healthy common carps, Cyprinus carpio L. Virusdisease 2018; 29:445-452. [PMID: 30539046 DOI: 10.1007/s13337-018-0488-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/14/2018] [Indexed: 01/12/2023] Open
Abstract
Koi herpesvirus (KHV), a member of Hervesviridae, has been frequently reported to cause mass mortality (80-100%) in common carps (Cyprinus carpio L.). A unique feature of Herverviridae members is latent infection, maintaining their genetic information for an extended period in the absence of productive infection, and reactivate when environmental conditions are favorable for their growth. To prevent this occurs, a monitoring program should be done for early detection. This study aimed at detecting the presence of KHV in healthy common carps reared in West-Nusa Tenggara Province, Indonesia. A total of 80 healthy fish was collected randomly from eight fish farms (Lingsar, Batu Kumbung, Narmada, Tanjung, Lenek, Aik Mel, Brang Rea and Rhee) across West-Nusa Tenggara Province, Indonesia. The presence of KHV genome was detected using a PCR with a commercial kit, IQ 2000TM. The result showed that common carps collected from four farms (Aik Mel, Lenek, Rhee and Brang Rea) were positive KHV. The size of an amplified gene was ~ 550 bp which was the same as positive KHV control. The obtained result suggests that KHV as other member of Hervesviridae shows a latent infection in common carps, and should be anticipated for their reactivation. Based on this result it is highly recommended that common carps cultured in this region should be vaccinated. In addition, transporting common carp out from Lombok and Sumbawa Islands should be carefully regulated to prevent the spread of the disease to other areas.
Collapse
|
22
|
Gotesman M, Menanteau-Ledouble S, Saleh M, Bergmann SM, El-Matbouli M. A new age in AquaMedicine: unconventional approach in studying aquatic diseases. BMC Vet Res 2018; 14:178. [PMID: 29879957 PMCID: PMC5992843 DOI: 10.1186/s12917-018-1501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, New York City College of Technology of the City University of New York, Brooklyn, New York, USA
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
23
|
Soliman H, El-Matbouli M. Rapid detection and differentiation of carp oedema virus and cyprinid herpes virus-3 in koi and common carp. JOURNAL OF FISH DISEASES 2018; 41:761-772. [PMID: 29315637 DOI: 10.1111/jfd.12774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/23/2023]
Abstract
Carp oedema virus (CEV) and koi herpes virus (KHV) are of major concern to common carp breeders and koi enthusiasts worldwide. The viruses cause diseases that exhibit similar external signs; thus, it is difficult to distinguish between them clinically. In this study, we developed and optimized rapid and accurate single- and multiplex isothermal diagnostic tools, based on recombinase polymerase amplification (RPA), for detection and differentiation of CEV and KHV. The assays were combined with a lateral flow dipstick to enable visual detection of amplification products and simplify post-amplification analysis. Both CEV- and KHV-RPA assays were specific for their target virus. The lower detection limits of the assays were similar to those of established diagnostic PCR tests for the viruses. A sample preparation method was optimized to eliminate the need for total DNA extraction from fish tissues. The estimated time to perform these RPA assays, from receiving the sample to having a result, is 50 min, compared to 10 and 7 hr for CEV- and KHV-PCR tests, respectively. The assays can be performed in field situations to improve screening of fish and reduce spread of these viruses and thereby enhance the common carp and koi industries.
Collapse
Affiliation(s)
- H Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - M El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
24
|
Xia S, Wang H, Hong X, Lu J, Xu D, Jiang Y, Lu L. Identification and characterization of a type I interferon induced by cyprinid herpesvirus 2 infection in crucian carp Carassius auratus gibelio. FISH & SHELLFISH IMMUNOLOGY 2018; 76:35-40. [PMID: 29486350 DOI: 10.1016/j.fsi.2018.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Crucian carp (Carassius auratus gibelio) is a popular food fish in Asia, and cyprinid herpesvirus 2 (CyHV-2) is the only known viral pathogen for crucian carp. Type I interferon genes are induced up on host cell recognition of viral nucleic acids and well recognized for their crucial roles in providing local or systemic protection against the viruses in various organisms. In a transcriptome analysis to uncover differentially expressed genes in crucian carp in response to CyHV-2 challenge, a partial interferon transcript was identified to be significantly up-regulated in the kidney of infected fish, which was named as crucian carp IFNc (ccIFNc). The complete ORF of ccIFNc was further determined by RACE technique, which spanned over 546 bp and encoded a polypeptide containing 182 amino acids. Phylogenetic analysis revealed that ccIFNc clustered with known type I IFN genes from other aquatic organisms. Quantitative RT-PCR analysis demonstrated that ccIFNc was constitutively expressed in all investigated tissues with a comparably higher expression level in spleen, gill, kidney, and muscle. Following challenge with CyHV-2, the transcriptional levels of ccIFNc were dramatically up-regulated in all of the tested tissues, especially in the spleen and gill with increased folds of 436 and 158, respectively. The intramuscular (i.m.) injection of a eukaryotic expression plasmid encoding ccIFNc (pEGFP-cIFNc) resulted in increased ccIFNc expression and reduced the mortality after the CyHV-2 challenge significantly. In summary, our data suggested that the ccIFNc belongs to the type I interferon family with a potential role in countering CyHV-2 infection in crucian carp.
Collapse
Affiliation(s)
- Siyao Xia
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Xupeng Hong
- College of Medicine, Pennsylvania State University, PA, USA
| | - Jianfei Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
25
|
Adamek M, Hellmann J, Jung-Schroers V, Teitge F, Steinhagen D. CyHV-2 transmission in traded goldfish stocks in Germany-A case study. JOURNAL OF FISH DISEASES 2018; 41:401-404. [PMID: 29068063 DOI: 10.1111/jfd.12734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Affiliation(s)
- M Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - J Hellmann
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - V Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - F Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - D Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
26
|
Sudhagar A, Kumar G, El-Matbouli M. Transcriptome Analysis Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and the Immune System of Fish: A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19010245. [PMID: 29342931 PMCID: PMC5796193 DOI: 10.3390/ijms19010245] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, with the advent of next-generation sequencing along with the development of various bioinformatics tools, RNA sequencing (RNA-Seq)-based transcriptome analysis has become much more affordable in the field of biological research. This technique has even opened up avenues to explore the transcriptome of non-model organisms for which a reference genome is not available. This has made fish health researchers march towards this technology to understand pathogenic processes and immune reactions in fish during the event of infection. Recent studies using this technology have altered and updated the previous understanding of many diseases in fish. RNA-Seq has been employed in the understanding of fish pathogens like bacteria, virus, parasites, and oomycetes. Also, it has been helpful in unraveling the immune mechanisms in fish. Additionally, RNA-Seq technology has made its way for future works, such as genetic linkage mapping, quantitative trait analysis, disease-resistant strain or broodstock selection, and the development of effective vaccines and therapies. Until now, there are no reviews that comprehensively summarize the studies which made use of RNA-Seq to explore the mechanisms of infection of pathogens and the defense strategies of fish hosts. This review aims to summarize the contemporary understanding and findings with regard to infectious pathogens and the immune system of fish that have been achieved through RNA-Seq technology.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| |
Collapse
|
27
|
Kong SY, Jiang YS, Wang Q, Lu JF, Xu D, Lu LQ. Detection methods of Cyprinid herpesvirus 2 infection in silver crucian carp (Carassius auratus gibelio) via a pORF72 monoclonal antibody. JOURNAL OF FISH DISEASES 2017; 40:1791-1798. [PMID: 28548685 DOI: 10.1111/jfd.12648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the main pathogen responsible for causing haematopoietic necrosis disease in Carassius auratus gibelio. Although many nucleic acid-based diagnostic methods have been applied, no stable and sensitive immunological diagnostic approaches have been reported. In this study, to detect CyHV-2 in clinical samples using immunological methods, recombinant ORF72 protein (pORF72), encoded by the CyHV-2 ORF72 gene, was used as a capture antigen to identify blood and tissues infected with CyHV-2. First, ORF72 gene was amplified from the CyHV-2 genome and cloned into a PGEX-4t-3 expression vector to produce pORF72 in Escherichia coli. The purified pORF72 was used as an immunogen to prepare monoclonal antibodies. The Western blotting assays revealed that the monoclonal antibody could specifically identify the pORF72. Furthermore, an immunohistochemical protocol and a blood smear method were established to detect CyHV-2 in carps. The results indicate that the monoclonal antibody against pORF72 could be utilized as an effective detection tool for haematopoietic necrosis disease in Carassius auratus gibelio.
Collapse
Affiliation(s)
- S Y Kong
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Y S Jiang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Q Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - J F Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - D Xu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - L Q Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Bergmann SM, Wang Q, Zeng W, Li Y, Wang Y, Matras M, Reichert M, Fichtner D, Lenk M, Morin T, Olesen NJ, Skall HF, Lee PY, Zheng S, Monaghan S, Reiche S, Fuchs W, Kotler M, Way K, Bräuer G, Böttcher K, Kappe A, Kielpinska J. Validation of a KHV antibody enzyme-linked immunosorbent assay (ELISA). JOURNAL OF FISH DISEASES 2017; 40:1511-1527. [PMID: 28470973 DOI: 10.1111/jfd.12621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 06/07/2023]
Abstract
Koi herpesvirus (KHV) causes KHV disease (KHVD). The virus is highly contagious in carp or koi and can induce a high mortality. Latency and, in some cases, a lack of signs presents a challenge for virus detection. Appropriate immunological detection methods for anti-KHV antibodies have not yet been fully validated for KHV. Therefore, it was developed and validated an enzyme-linked immunosorbent assay (ELISA) to detect KHV antibodies. The assay was optimized with respect to plates, buffers, antigens and assay conditions. It demonstrated high diagnostic and analytical sensitivity and specificity and was particularly useful at the pond or farm levels. Considering the scale of the carp and koi industry worldwide, this assay represents an important practical tool for the indirect detection of KHV, also in the absence of clinical signs.
Collapse
Affiliation(s)
- S M Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Q Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - W Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - Y Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - Y Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - M Matras
- Department of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - M Reichert
- Department of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - D Fichtner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - M Lenk
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - T Morin
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Ploufragan, Ploufragan, France
| | - N J Olesen
- Section for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - H F Skall
- Section for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - P-Y Lee
- Department of Research and Development, GeneReach Biotechnology Corporation, Taichung, Taiwan, China
| | - S Zheng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - S Monaghan
- Aquatic Vaccine Unit, School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK
| | - S Reiche
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - W Fuchs
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - M Kotler
- Department of Pathology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - K Way
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - G Bräuer
- Fish Health Service Saxony, Dresden, Germany
| | - K Böttcher
- Fish Health Service Saxony, Dresden, Germany
| | - A Kappe
- Fish Health Service Thuringia, Bad Langensalza, Germany
| | - J Kielpinska
- Department of Faculty of Aquaculture, Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
29
|
Vancsok C, Peñaranda MMD, Raj VS, Leroy B, Jazowiecka-Rakus J, Boutier M, Gao Y, Wilkie GS, Suárez NM, Wattiez R, Gillet L, Davison AJ, Vanderplasschen AFC. Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3. J Virol 2017; 91:e01209-17. [PMID: 28794046 PMCID: PMC5640863 DOI: 10.1128/jvi.01209-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023] Open
Abstract
Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs.IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the nonessential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins.
Collapse
Affiliation(s)
- Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - M Michelle D Peñaranda
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - V Stalin Raj
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, India
| | - Baptiste Leroy
- Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ruddy Wattiez
- Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain F C Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Lin L, Chen S, Russell DS, Löhr CV, Milston-Clements R, Song T, Miller-Morgan T, Jin L. Analysis of stress factors associated with KHV reactivation and pathological effects from KHV reactivation. Virus Res 2017; 240:200-206. [PMID: 28860099 DOI: 10.1016/j.virusres.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
Koi herpesvirus (KHV) is a highly pathogenic virus of common carp and koi. KHV becomes latent in recovered koi or exposed koi without symptoms, and the latent infection can reactivate under stress conditions. KHV reactivation from latency often occurs when water temperature rapidly rises above 17°C. Dissolved O2 is lower at ≥17°C than at non-stress temperatures ≤15°C. To determine whether reduced dissolved O2 level has a role in KHV reactivation during temperature stress, KHV reactivation was investigated in KHV latently infected koi (KHV+ koi) under stress temperatures by maintaining dissolved O2 consistent with the O2 level at 15°C. There was no significant difference in the amount of reactivated virus between KHV+ koi maintained with and without O2 supplementation during temperature stress. Both handling and sampling were found to be stressful to koi and can contribute to KHV reactivation from latency. There was an increase in KHV genome within white blood cells (WBC) during KHV reactivation, which is about 3-4 fold higher than the amount of KHV genome detectable in WBC during the latency stage. At day 15 post-temperature stress (PTS), inflammation and necrosis were observed in multiple tissues, especially in the gills, eye, intestine, skin and kidney. KHV DNA was also detectable in multiple tissues on days 6, 9 and 15 PTS. Following day 3 PTS, the plasma cortisol levels were higher than that observed in koi before temperature stress, suggesting that KHV reactivation is associated with physiological stress in KHV+ koi.
Collapse
Affiliation(s)
- Lisa Lin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Sammi Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Duncan S Russell
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Christiane V Löhr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Ruth Milston-Clements
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, United States
| | - Tiffany Song
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Tim Miller-Morgan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States; Aquatic Animal Health Program, Oregon Sea Grant, Hatfield Marine Science Center, Oregon State University, Newport, OR, 97365, United States
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
31
|
Sirri R, Ciulli S, Barbé T, Volpe E, Lazzari M, Franceschini V, Errani F, Sarli G, Mandrioli L. Detection of Cyprinid Herpesvirus 1 DNA in cutaneous squamous cell carcinoma of koi carp (Cyprinus carpio). Vet Dermatol 2017; 29:60-e24. [DOI: 10.1111/vde.12482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Rubina Sirri
- Department of Veterinary Medical Sciences; University of Bologna; Via Tolara di Sopra 50 40064 Bologna Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences; University of Bologna; Via Tolara di Sopra 50 40064 Bologna Italy
| | - Tim Barbé
- DAP Tim Barbé; Frans Van der Steenstraat 45 Lennik (Vlaams-Brabant) 1750 Belgium
| | - Enrico Volpe
- Department of Veterinary Medical Sciences; University of Bologna; Via Tolara di Sopra 50 40064 Bologna Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences; University of Bologna; Via Selmi 3 40136 Bologna Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences; University of Bologna; Via Selmi 3 40136 Bologna Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences; University of Bologna; Via Tolara di Sopra 50 40064 Bologna Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences; University of Bologna; Via Tolara di Sopra 50 40064 Bologna Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences; University of Bologna; Via Tolara di Sopra 50 40064 Bologna Italy
| |
Collapse
|
32
|
Monaghan SJ, Bergmann SM, Thompson KD, Brown L, Herath T, Del-Pozo J, Adams A. Ultrastructural analysis of sequential cyprinid herpesvirus 3 morphogenesis in vitro. JOURNAL OF FISH DISEASES 2017; 40:1041-1054. [PMID: 28025825 DOI: 10.1111/jfd.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is an alloherpesvirus, and it is the aetiological agent of koi herpesvirus disease. Although the complex morphogenic stages of the replication cycle of CyHV-3 were shown to resemble that of other members of the Herpesvirales, detailed analysis of the sequence and timing of these events was not definitively determined. This study describes these features through a time course using cyprinid cell cultures (KF-1 and CCB) infected with CyHV-3 (KHV isolate, H361) and analysed by transmission electron microscopy. Rapid viral entry was noted, with high levels of intracellular virus within 1-4 h post-infection (hpi). Intranuclear capsid assembly, paracrystalline array formation and primary envelopment of capsids occurred within 4 hpi. Between 1 and 3 days post-infection (dpi), intracytoplasmic secondary envelopment occurred, as well as budding of infectious virions at the plasma membrane. At 5-7 dpi, the cytoplasm contained cytopathic vacuoles, enveloped virions within vesicles, and abundant non-enveloped capsids; also there was frequent nuclear deformation. Several morphological features are suggestive of inefficient viral assembly, with production of non-infectious particles, particularly in KF-1 cells. The timing of this alloherpesvirus morphogenesis is similar to other members of the Herpesvirales, but there may be possible implications of using different cell lines for CyHV-3 propagation.
Collapse
Affiliation(s)
- S J Monaghan
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - S M Bergmann
- Friedrich-Loeffler-Institut, Greifswald, Insel-Riems, Germany
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - L Brown
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - T Herath
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - J Del-Pozo
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - A Adams
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
33
|
Klafack S, Wang Q, Zeng W, Wang Y, Li Y, Zheng S, Kempter J, Lee PY, Matras M, Bergmann SM. Genetic Variability of Koi Herpesvirus In vitro-A Natural Event? Front Microbiol 2017. [PMID: 28642739 PMCID: PMC5462989 DOI: 10.3389/fmicb.2017.00982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Worldwide koi herpesvirus (KHV) causes high mortalities in Cyprinus carpio L. aquaculture. So far, it is unknown how the different variants of KHV have developed and how they spread in the fish, but also in the environmental water bodies. Therefore, a phylogenetic method based on variable number of tandem repeats (VNTR) was improved to gain deeper insights into the phylogeny of KHV and its possible worldwide distribution. Moreover, a VNTR-3 qPCR was designed which allows fast virus typing. This study presents a useful method for molecular tracing of diverse KHV types, variants, and lineages.
Collapse
Affiliation(s)
- Sandro Klafack
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| | - Qing Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Weiwei Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Yingying Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Yingying Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Shucheng Zheng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Jolanta Kempter
- Department of Aquaculture, West Pomeranian University of TechnologySzczecin, Poland
| | - Pei-Yu Lee
- Department of Research and Development, GeneReach Biotechnology CorporationTaichung, China
| | - Marek Matras
- National Veterinary Research InstitutePulawy, Poland
| | - Sven M Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| |
Collapse
|
34
|
Cabon J, Louboutin L, Castric J, Bergmann S, Bovo G, Matras M, Haenen O, Olesen NJ, Morin T. Validation of a serum neutralization test for detection of antibodies specific to cyprinid herpesvirus 3 in infected common and koi carp (Cyprinus carpio). JOURNAL OF FISH DISEASES 2017; 40:687-701. [PMID: 27716953 DOI: 10.1111/jfd.12550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/18/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious infective, notifiable disease affecting common carp and varieties. In survivors, infection is generally characterized by a subclinical latency phase with restricted viral replication. The CyHV-3 genome is difficult to detect in such carrier fish that represent a potential source of dissemination if viral reactivation occurs. In this study, the analytical and diagnostic performance of an alternative serum neutralization (SN) method based on the detection of CyHV-3-specific antibodies was assessed using 151 serum or plasma samples from healthy and naturally or experimentally CyHV-3-infected carp. French CyHV-3 isolate 07/108b was neutralized efficiently by sera from carp infected with European, American and Taiwanese CyHV-3 isolates, but no neutralization was observed using sera specific to other aquatic herpesviruses. Diagnostic sensitivity, diagnostic specificity and repeatability of 95.9%, 99.0% and 99.3%, respectively, were obtained, as well as a compliance rate of 89.9% in reproducibility testing. Neutralizing antibodies were steadily detected in infected carp subjected to restrictive or permissive temperature variations over more than 25 months post-infection. The results suggest that this non-lethal diagnostic test could be used in the future to improve the epidemiological surveillance and control of CyHV-3 disease.
Collapse
Affiliation(s)
- J Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - L Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - J Castric
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - S Bergmann
- Friedrich Loeffler Institut (FLI), Insel Riems, Institute of Infectiology, Greifswald, Germany
| | - G Bovo
- Fish Virology Department, Istituto Zooprofilattico Sperimentale delle Venezie (IZS-Ve), Legnaro, Padova, Italy
| | - M Matras
- Department of Fish Diseases, National Veterinary Research Institute (NVRI) in Pulawy, Pulawy, Poland
| | - O Haenen
- Central Veterinary Institute (CVI) of WUR, NRL for Fish, Shellfish and Crustacean Diseases, Lelystad, The Netherlands
| | - N J Olesen
- Technical University of Denmark (DTU), National Veterinary Institute, Frederiksberg C, Denmark
| | - T Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| |
Collapse
|
35
|
You Y, Cheng AC, Wang MS, Jia RY, Sun KF, Yang Q, Wu Y, Zhu D, Chen S, Liu MF, Zhao XX, Chen XY. The suppression of apoptosis by α-herpesvirus. Cell Death Dis 2017; 8:e2749. [PMID: 28406478 PMCID: PMC5477576 DOI: 10.1038/cddis.2017.139] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically.
Collapse
Affiliation(s)
- Yu You
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - An-Chun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ming-Shu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ren-Yong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Kun-Feng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ma-Feng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xiao-Yue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| |
Collapse
|
36
|
Clouthier SC, McClure C, Schroeder T, Desai M, Hawley L, Khatkar S, Lindsay M, Lowe G, Richard J, Anderson ED. Diagnostic validation of three test methods for detection of cyprinid herpesvirus 3 (CyHV-3). DISEASES OF AQUATIC ORGANISMS 2017; 123:101-122. [PMID: 28262633 DOI: 10.3354/dao03093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of koi herpesvirus disease in koi and common carp. The disease is notifiable to the World Organisation for Animal Health. Three tests-quantitative polymerase chain reaction (qPCR), conventional PCR (cPCR) and virus isolation by cell culture (VI)-were validated to assess their fitness as diagnostic tools for detection of CyHV-3. Test performance metrics of diagnostic accuracy were sensitivity (DSe) and specificity (DSp). Repeatability and reproducibility were measured to assess diagnostic precision. Estimates of test accuracy, in the absence of a gold standard reference test, were generated using latent class models. Test samples originated from wild common carp naturally exposed to CyHV-3 or domesticated koi either virus free or experimentally infected with the virus. Three laboratories in Canada participated in the precision study. Moderate to high repeatability (81 to 99%) and reproducibility (72 to 97%) were observed for the qPCR and cPCR tests. The lack of agreement observed between some of the PCR test pair results was attributed to cross-contamination of samples with CyHV-3 nucleic acid. Accuracy estimates for the PCR tests were 99% for DSe and 93% for DSp. Poor precision was observed for the VI test (4 to 95%). Accuracy estimates for VI/qPCR were 90% for DSe and 88% for DSp. Collectively, the results show that the CyHV-3 qPCR test is a suitable tool for surveillance, presumptive diagnosis and certification of individuals or populations as CyHV-3 free.
Collapse
Affiliation(s)
- Sharon C Clouthier
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Viadanna PHO, Miller-Morgan T, Peterson T, Way K, Stone DM, Marty GD, Pilarski F, Hedrick RP, Waltzek TB. Development of a PCR assay to detect cyprinid herpesvirus 1 in koi and common carp. DISEASES OF AQUATIC ORGANISMS 2017; 123:19-27. [PMID: 28177290 DOI: 10.3354/dao03066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 1 (CyHV1) infects all scaled and color varieties of common carp Cyprinus carpio, including koi. While it is most often associated with unsightly growths known as 'carp pox,' the underlying lesion (epidermal hyperplasia) can arise from a variety of disease processes. CyHV1-induced epidermal hyperplasia may occur transiently in response to water temperature, and thus histopathology cannot be used in isolation to assess CyHV1 infection status. To address this problem, here we describe a PCR assay targeted to the putative thymidine kinase gene of CyHV1. The PCR assay generates a 141 bp amplicon and reliably detects down to 10 copies of control plasmid DNA sequence (analytic sensitivity). The PCR does not cross-detect genomic DNA from cyprinid herpesvirus 2 and 3 (analytic specificity). The CyHV1 PCR effectively detected viral DNA in koi and common carp sampled from various locations in the UK, USA, Brazil, and Japan. Viral DNA was detected in both normal appearing and grossly affected epidermal tissues from koi experiencing natural epizootics. The new CyHV1 PCR provides an additional approach to histopathology for the rapid detection of CyHV1. Analysis of the thymidine kinase gene sequences determined for 7 PCR-positive carp originating from disparate geographical regions identified 3 sequence types, with 1 type occurring in both koi and common carp.
Collapse
Affiliation(s)
- Pedro H O Viadanna
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hammoumi S, Vallaeys T, Santika A, Leleux P, Borzym E, Klopp C, Avarre JC. Targeted genomic enrichment and sequencing of CyHV-3 from carp tissues confirms low nucleotide diversity and mixed genotype infections. PeerJ 2016; 4:e2516. [PMID: 27703859 PMCID: PMC5045873 DOI: 10.7717/peerj.2516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Koi herpesvirus disease (KHVD) is an emerging disease that causes mass mortality in koi and common carp, Cyprinus carpio L. Its causative agent is Cyprinid herpesvirus 3 (CyHV-3), also known as koi herpesvirus (KHV). Although data on the pathogenesis of this deadly virus is relatively abundant in the literature, still little is known about its genomic diversity and about the molecular mechanisms that lead to such a high virulence. In this context, we developed a new strategy for sequencing full-length CyHV-3 genomes directly from infected fish tissues. Total genomic DNA extracted from carp gill tissue was specifically enriched with CyHV-3 sequences through hybridization to a set of nearly 2 million overlapping probes designed to cover the entire genome length, using KHV-J sequence (GenBank accession number AP008984) as reference. Applied to 7 CyHV-3 specimens from Poland and Indonesia, this targeted genomic enrichment enabled recovery of the full genomes with >99.9% reference coverage. The enrichment rate was directly correlated to the estimated number of viral copies contained in the DNA extracts used for library preparation, which varied between ∼5000 and ∼2×107. The average sequencing depth was >200 for all samples, thus allowing the search for variants with high confidence. Sequence analyses highlighted a significant proportion of intra-specimen sequence heterogeneity, suggesting the presence of mixed infections in all investigated fish. They also showed that inter-specimen genetic diversity at the genome scale was very low (>99.95% of sequence identity). By enabling full genome comparisons directly from infected fish tissues, this new method will be valuable to trace outbreaks rapidly and at a reasonable cost, and in turn to understand the transmission routes of CyHV-3.
Collapse
Affiliation(s)
- Saliha Hammoumi
- Institut des Sciences de l'Evolution de Montpellier, UMR226 IRD-CNRS-UM-EPHE , Montpellier , France
| | | | - Ayi Santika
- Main Center for Freshwater Aquaculture Development , Sukabumi , Indonesia
| | - Philippe Leleux
- Plate-forme Genotoul Bioinfo, UR875 Biométrie et Intelligence Artificielle, Institut National de la Recherche Agronomique , Castanet-Tolosan , France
| | - Ewa Borzym
- Department of Fish Diseases, National Veterinary Research Institute , Pulawy , Poland
| | - Christophe Klopp
- Plate-forme Genotoul Bioinfo, UR875 Biométrie et Intelligence Artificielle, Institut National de la Recherche Agronomique , Castanet-Tolosan , France
| | - Jean-Christophe Avarre
- Institut des Sciences de l'Evolution de Montpellier, UMR226 IRD-CNRS-UM-EPHE , Montpellier , France
| |
Collapse
|
39
|
Sahoo P, Swaminathan TR, Abraham TJ, Kumar R, Pattanayak S, Mohapatra A, Rath S, Patra A, Adikesavalu H, Sood N, Pradhan P, Das B, Jayasankar P, Jena J. Detection of goldfish haematopoietic necrosis herpes virus (Cyprinid herpesvirus-2) with multi-drug resistant Aeromonas hydrophila infection in goldfish: First evidence of any viral disease outbreak in ornamental freshwater aquaculture farms in India. Acta Trop 2016; 161:8-17. [PMID: 27172876 DOI: 10.1016/j.actatropica.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/04/2023]
Abstract
This outbreak report details of a mortality event where Cyprinid herpes virus-2 (CyHV-2) was detected in association with multidrug-resistant Aeromonas hydrophila infection in goldfish, Carassius auratus, from commercial farms. The goldfish exhibited large scale haemorrhages on the body, fins and gills, lepidorthosis, necrosed gills, protruded anus and shrunken eyes. White nodular necrotic foci in spleen and kidneys were noticed, along with necrosis and fusion of gill lamellae. Transmission electron microscopy of affected tissues revealed the presence of mature virus particles. Involvement of CyHV-2 was confirmed by PCR, sequencing and observed cytopathic effect in koi carp fin cell line along with experimental infection study. A bacterium isolated from the internal organs of affected fish was found to be pathogenic Aeromonas hydrophila having resistance to more than 10 classes of antibiotics. We postulate that CyHV-2 was the primary etiological agent responsible for this outbreak with secondary infection by A. hydrophila. The experimental infection trials in Labeo rohita and koi carp by intraperitoneal challenge with CyHV-2 tissue homogenates failed to reproduce the disease in those co-cultured fish species. This is the first report of a viral disease outbreak in organised earthen ornamental fish farms in India and bears further investigation.
Collapse
|
40
|
Schmid T, Gaede L, Böttcher K, Bräuer G, Fichtner D, Beckmann R, Speck S, Becker F, Truyen U. Efficacy assessment of three inactivated koi herpes virus antigen preparations against experimental challenge virus infection in common carp. JOURNAL OF FISH DISEASES 2016; 39:1007-1013. [PMID: 26765154 DOI: 10.1111/jfd.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Affiliation(s)
- T Schmid
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - L Gaede
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - K Böttcher
- Animal diseases fund of Saxony, Fish Health Service, Königswartha, Germany
| | - G Bräuer
- Animal diseases fund of Saxony, Fish Health Service, Königswartha, Germany
| | - D Fichtner
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - R Beckmann
- Division Veterinary Medicine, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Viral Vaccines II, Langen, Germany
| | - S Speck
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - F Becker
- Saxon State Ministry of Social Affairs and Consumer Protection, Dresden, Germany
| | - U Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Wang H, Xu L, Lu L. Detection of cyprinid herpesvirus 2 in peripheral blood cells of silver crucian carp, Carassius auratus gibelio (Bloch), suggests its potential in viral diagnosis. JOURNAL OF FISH DISEASES 2016; 39:155-162. [PMID: 25630360 DOI: 10.1111/jfd.12340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection.
Collapse
Affiliation(s)
- H Wang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lj Xu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lq Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
42
|
Zhang L, Ma J, Fan Y, Zhou Y, Xu J, Liu W, Gu Z, Zeng L. Immune response and protection in gibel carp, Carassius gibelio, after vaccination with β-propiolactone inactivated cyprinid herpesvirus 2. FISH & SHELLFISH IMMUNOLOGY 2016; 49:344-350. [PMID: 26772479 DOI: 10.1016/j.fsi.2016.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Herpesviral haematopoietic necrosis (HVHN) of gibel carp (Carassius gibelio) is a newly emerged infectious disease caused by cyprinid herpesvirus 2 (CyHV-2) and has caused huge economic losses in aquaculture operations. Currently, no effective methods are available for the control of the disease. In this study, β-propiolactone inactivated cyprinid herpesvirus 2 (CyHV-2) vaccine was prepared, and the immune response and protection in cultured gibel carp after vaccination was thoroughly investigated. This included blood cell counting and classification, phagocytic activity, lysozyme and superoxide dismutase activity, neutralizing antibody titration, immune gene expression analysis, and determination of the relative percent survival in vaccinated gibel carp. The results of blood cell counts indicated that the numbers of the red and white blood cells in the peripheral blood of immunized gibel carp increased significantly at day 4 and day 7 after vaccination (p < 0.01). The differential leukocyte count of neutrophils and monocytes were significantly different compared to the control group at day 4 and 7 and the percentage of lymphocytes reached a peak at day 21. The phagocytic percentage and phagocytic index peaked at day 4 post-vaccination. The lysozyme activity and superoxide dismutase activity were significantly increased compared to the control group (p < 0.01). The serum neutralizing antibody titer peaked (203.03 ± 13.44) at day 21. The qPCR analysis revealed that the expression of the immune genes interlukin 11 and complement component C3 were significantly up-regulated in the immunized group. The challenge test demonstrated that the immunized group had a relative survival rate of 71.4%. These results indicate that the inactivated CyHV-2 vaccine induced both non-specific and specific anti-viral immune responses that resulted in significant protection against HVHN disease and mortality in gibel carp.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jie Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jin Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
43
|
Lee X, Yi Y, Weng S, Zeng J, Zhang H, He J, Dong C. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. FISH & SHELLFISH IMMUNOLOGY 2016; 49:213-24. [PMID: 26690666 DOI: 10.1016/j.fsi.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Cyprinid Herpesvirus 3 (CyHV-3) can infect and specifically cause a huge economic loss in both common carp (Cyprinus carpio) and its ornamental koi variety. The molecular mechanisms underlying CyHV-3 infection are not well understood. In this study, koi spleen tissues of both mock and CyHV-3 infection groups were collected, and high-throughput sequencing technology was used to analyze the differentially expressed genes (DEGs) at the transcriptome level. A total of 105,356,188 clean reads from two libraries were obtained. After the de novo assembly of the transcripts, 129,314 unigenes were generated. Of these unigenes, 70,655 unigenes were matched to the known proteins in the database, while 2190 unigenes were predicted by ESTScan software. Comparing the infection group to the mock group, a total of 23,029 significantly differentially expressed unigenes were identified, including 10,493 up-regulated DEGs and 12,536 down-regulated DEGs. GO (Gene Ontology) annotation and functional enrichment analysis indicated that all of the DEGs were annotated into GO terms in three main GO categories: biological process, cellular component and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the DEGs showed that a total of 12,002 DEG unigenes were annotated into 256 pathways classified into 6 main categories. Additionally, 20 differentially expressed genes were validated by quantitative real-time PCR. As the first report of a transcriptome analysis of koi carp with CyHV-3 infection, the data presented here provide knowledge of the innate immune response against CyHV-3 in koi carp and useful data for further research of the molecular mechanism of CyHV-3 infection.
Collapse
Affiliation(s)
- Xuezhu Lee
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yang Yi
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoping Weng
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie Zeng
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hetong Zhang
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Chuanfu Dong
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
44
|
Monaghan SJ, Thompson KD, Bron JE, Bergmann SM, Jung TS, Aoki T, Muir KF, Dauber M, Reiche S, Chee D, Chong SM, Chen J, Adams A. Expression of immunogenic structural proteins of cyprinid herpesvirus 3 in vitro assessed using immunofluorescence. Vet Res 2016; 47:8. [PMID: 26742989 PMCID: PMC4705813 DOI: 10.1186/s13567-015-0297-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/10/2015] [Indexed: 12/21/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3), also called koi herpesvirus (KHV), is the aetiological agent of a fatal disease in carp and koi (Cyprinus carpio L.), referred to as koi herpesvirus disease. The virus contains at least 40 structural proteins, of which few have been characterised with respect to their immunogenicity. Indirect immunofluorescence assays (IFAs) using two epitope-specific monoclonal antibodies (MAbs) were used to examine the expression kinetics of two potentially immunogenic and diagnostically relevant viral antigens, an envelope glycoprotein and a capsid-associated protein. The rate of expression of these antigens was determined following a time-course of infection in two CyHV-3 susceptible cell lines. The results were quantified using an IFA, performed in microtitre plates, and image analysis was used to analyse confocal micrographs, enabling measurement of differential virus-associated fluorescence and nucleus-associated fluorescence from stacks of captured scans. An 8-tenfold increase in capsid-associated protein expression was observed during the first 5 days post-infection compared to a ≤ 2-fold increase in glycoprotein expression. A dominant protein of ~100 kDa reacted with the capsid-associated MAb (20F10) in western blot analysis. This band was also recognised by sera obtained from carp infected with CyHV-3, indicating that this capsid-associated protein is produced in abundance during infection in vitro and is immunogenic to carp. Mass spectrometry carried out on this protein identified it as a previously uncharacterised product of open reading frame 84. This abundantly expressed and immunogenic capsid-associated antigen may be a useful candidate for KHV serological diagnostics.
Collapse
Affiliation(s)
- Sean J Monaghan
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Kim D Thompson
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK. .,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK.
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Sven M Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Insel-Riems, Germany.
| | - Tae S Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea.
| | - Takashi Aoki
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - K Fiona Muir
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Malte Dauber
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Insel-Riems, Germany.
| | - Sven Reiche
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Insel-Riems, Germany.
| | - Diana Chee
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK. .,Aquatic Animal Health Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore, Singapore.
| | - Shin M Chong
- Aquatic Animal Health Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore, Singapore.
| | - Jing Chen
- Virology Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore, Singapore.
| | - Alexandra Adams
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
45
|
Chen J, Chee D, Wang Y, Lim GY, Chong SM, Lin YN, Huangfu T. Identification of a novel cyprinid herpesvirus 3 genotype detected in koi from the East Asian and South-East Asian Regions. JOURNAL OF FISH DISEASES 2015; 38:915-923. [PMID: 25297376 DOI: 10.1111/jfd.12305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is a highly contagious virus that causes significant morbidity and mortality in common carp Cyprinus carpio L. and considered to be one of the most important pathogens of koi and common carp worldwide. Cyprinid herpesvirus 3 infected consignments imported from East Asian and South-East Asian regions were identified during quarantine period in Singapore, and virus from a 2005 consignment was successfully isolated in koi fin cells. A combination of sequence analyses and duplex PCR were used to characterize 15 CyHV-3 isolates detected in koi consignments between 2005 and 2011. Sequence analyses of the enlarged 9/5, SphI-5 and TK gene regions identified both the Asian 1 (n = 11) and European 4 (n = 4) genotypes. Duplex PCR analysis of two variable marker regions between ORF29 and ORF30 (marker I) as well as ORF133 and its upstream region (marker II) revealed viruses of genotypes J (I++ II+ ), U/I (I-- II- ), an intermediate genotype (I++ II- ) and a novel genotype, I++ II+Δ , which was identified in viruses from seven different consignments. This novel genotype has a 13-bp deletion in marker II, while maintaining the I++ allele of marker I. The I++ II+Δ genotype may have emerged from East Asian and South-East Asian regions in recent years.
Collapse
Affiliation(s)
- J Chen
- Virology Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore
| | - D Chee
- Aquatic Animal Health Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore
| | - Y Wang
- Virology Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore
| | - G Y Lim
- Virology Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore
| | - S M Chong
- Aquatic Animal Health Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore
| | - Y N Lin
- Virology Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore
| | - T Huangfu
- Virology Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore
| |
Collapse
|
46
|
Histopathology and ultrastructural pathology of cyprinid herpesvirus II (CyHV-2) infection in gibel carp, Carassius auratus gibelio. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11859-015-1114-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Reed AN, Putman T, Sullivan C, Jin L. Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells. Virus Res 2015; 208:129-35. [PMID: 26087404 DOI: 10.1016/j.virusres.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022]
Abstract
One of the unique features of herpesvirus infection is latent infection following an initial exposure, which is characterized by viral genome persistence in a small fraction of cells within the latently infected tissue. Investigation of the mechanisms of herpesvirus latency has been very challenging in tissues with only a small fraction of cells that are latently infected. Cyprinid herpesvirus 3, also known as koi herpesvirus (KHV), is an important and deadly pathogen of koi and common carp, Cyprinus carpio. Acute infection can cause up to 100% mortality in exposed fish, and fish that survive the infection become latently infected. KHV becomes latent in a small percentage of B lymphocytes and can reactivate under stressful conditions. During latency, KHV ORF6 transcript is expressed in the latently infected B lymphocytes. In order to study KHV latent infection in cells that are only latently infected, a nanoflare probe specific to ORF6 RNA was used to separate KHV latently infected cells from total peripheral white blood cells (WBC). Using the ORF6 nanoflare probe, less than 1% of peripheral WBC was isolated from KHV latently infected koi. When this enriched population of WBC was examined by real-time PCR specific for KHV, it was estimated that about 1-2 copies of viral genome persists in the sorted cells. In addition, KHV ORF6 transcript was shown to be the major transcript expressed during latency by RNA-seq analysis. This study demonstrated that an RNA nanoflare probe could be used to enrich latently infected cells, which can subsequently be used to investigate the molecular mechanisms of KHV latency.
Collapse
Affiliation(s)
- Aimee N Reed
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, United States
| | - Timothy Putman
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, United States
| | - Christopher Sullivan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
48
|
Ma J, Jiang N, LaPatra SE, Jin L, Xu J, Fan Y, Zhou Y, Zeng L. Establishment of a novel and highly permissive cell line for the efficient replication of cyprinid herpesvirus 2 (CyHV-2). Vet Microbiol 2015; 177:315-25. [DOI: 10.1016/j.vetmic.2015.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022]
|
49
|
Monaghan SJ, Thompson KD, Adams A, Kempter J, Bergmann SM. Examination of the early infection stages of koi herpesvirus (KHV) in experimentally infected carp, Cyprinus carpio L. using in situ hybridization. JOURNAL OF FISH DISEASES 2015; 38:477-489. [PMID: 24925228 DOI: 10.1111/jfd.12260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Koi herpesvirus (KHV) causes a highly infectious disease afflicting common carp and koi, Cyprinus carpio L. Various molecular and antibody-based detection methods have been used to elucidate the rapid attachment and dissemination of the virus throughout carp tissues, facilitating ongoing development of effective diagnostic approaches. In situ hybridization (ISH) was used here to determine the target tissues of KHV during very early infection, after infecting carp with a highly virulent KHV isolate. Analysis of paraffin-embedded tissues (i.e. gills, skin, spleen, kidney, gut, liver and brain) during the first 8 h and following 10 days post-infection (hpi; dpi) revealed positive signals in skin mucus, gills and gut sections after only 1 hpi. Respiratory epithelial cells were positive as early as 2 hpi. Viral DNA was also detected within blood vessels of various tissues early in the infection. Notable increases in signal abundance were observed in the gills and kidney between 5 and 10 dpi, and viral DNA was detected in all tissues except brain. This study suggests that the gills and gut play an important role in the early pathogenesis of this Alloherpesvirus, in addition to skin, and demonstrates ISH as a useful diagnostic tool for confirmation of acutely infected carp.
Collapse
Affiliation(s)
- S J Monaghan
- Aquatic Vaccine Unit, School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland
| | | | | | | | | |
Collapse
|
50
|
Donohoe OH, Henshilwood K, Way K, Hakimjavadi R, Stone DM, Walls D. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS One 2015; 10:e0125434. [PMID: 25928140 PMCID: PMC4416013 DOI: 10.1371/journal.pone.0125434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.
Collapse
Affiliation(s)
- Owen H. Donohoe
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | | | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - David M. Stone
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|