1
|
Schwedler JL, Stefan MA, Thatcher CE, McIlroy PR, Sinha A, Phillips AM, Sumner CA, Courtney CM, Kim CY, Weilhammer DR, Harmon B. Therapeutic efficacy of a potent anti-Venezuelan equine encephalitis virus antibody is contingent on Fc effector function. MAbs 2024; 16:2297451. [PMID: 38170638 PMCID: PMC10766394 DOI: 10.1080/19420862.2023.2297451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
The development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential in vitro kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The in vivo efficacy of hF5-LALA was comparable to hF5-WT at -24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region.
Collapse
Affiliation(s)
- Jennifer L. Schwedler
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Maxwell A. Stefan
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Christine E. Thatcher
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Peter R. McIlroy
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Anupama Sinha
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Ashlee M. Phillips
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Christopher A. Sumner
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Colleen M. Courtney
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Christina Y. Kim
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Brooke Harmon
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| |
Collapse
|
2
|
Phelps AL, Salguero FJ, Hunter L, Stoll AL, Jenner DC, O’Brien LM, Williamson ED, Lever MS, Laws TR. Tumour Necrosis Factor-α, Chemokines, and Leukocyte Infiltrate Are Biomarkers for Pathology in the Brains of Venezuelan Equine Encephalitis (VEEV)-Infected Mice. Viruses 2023; 15:1307. [PMID: 37376607 PMCID: PMC10302690 DOI: 10.3390/v15061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.
Collapse
Affiliation(s)
- Amanda L. Phelps
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - Laura Hunter
- UK Health Security Agency, Salisbury SP4 0JG, UK
| | | | | | - Lyn M. O’Brien
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - M. Stephen Lever
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| |
Collapse
|
3
|
Kafai NM, Williamson LE, Binshtein E, Sukupolvi-Petty S, Gardner CL, Liu J, Mackin S, Kim AS, Kose N, Carnahan RH, Jung A, Droit L, Reed DS, Handley SA, Klimstra WB, Crowe JE, Diamond MS. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J Exp Med 2022; 219:e20212532. [PMID: 35297953 PMCID: PMC9195047 DOI: 10.1084/jem.20212532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) remains a risk for epidemic emergence or use as an aerosolized bioweapon. To develop possible countermeasures, we isolated VEEV-specific neutralizing monoclonal antibodies (mAbs) from mice and a human immunized with attenuated VEEV strains. Functional assays and epitope mapping established that potently inhibitory anti-VEEV mAbs bind distinct antigenic sites in the A or B domains of the E2 glycoprotein and block multiple steps in the viral replication cycle including attachment, fusion, and egress. A 3.2-Å cryo-electron microscopy reconstruction of VEEV virus-like particles bound by a human Fab suggests that antibody engagement of the B domain may result in cross-linking of neighboring spikes to prevent conformational requirements for viral fusion. Prophylaxis or postexposure therapy with these mAbs protected mice against lethal aerosol challenge with VEEV. Our study defines functional and structural mechanisms of mAb protection and suggests that multiple antigenic determinants on VEEV can be targeted for vaccine or antibody-based therapeutic development.
Collapse
Affiliation(s)
- Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | | | - Christina L. Gardner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- United States Army Research Institute for Infectious Diseases, Fort Detrick, MD
| | - Jaclyn Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Samantha Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
5
|
Calvert AE, Bennett SL, Hunt AR, Fong RH, Doranz BJ, Roehrig JT, Blair CD. Exposing cryptic epitopes on the Venezuelan equine encephalitis virus E1 glycoprotein prior to treatment with alphavirus cross-reactive monoclonal antibody allows blockage of replication early in infection. Virology 2021; 565:13-21. [PMID: 34626907 PMCID: PMC8765347 DOI: 10.1016/j.virol.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
Eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) can cause fatal encephalitis in humans and equids. Some MAbs to the E1 glycoprotein are known to be cross-reactive, weakly neutralizing in vitro but can protect from disease in animal models. We investigated the mechanism of neutralization of VEEV infection by the broadly cross-reactive E1-specific MAb 1A4B-6. 1A4B-6 protected 3-week-old Swiss Webster mice prophylactically from lethal VEEV challenge. Likewise, 1A4B-6 inhibited virus growth in vitro at a pre-attachment step after virions were incubated at 37 °C and inhibited virus-mediated cell fusion. Amino acid residue N100 in the fusion loop of E1 protein was identified as critical for binding. The potential to elicit broadly cross-reactive MAbs with limited virus neutralizing activity in vitro but that can inhibit virus entry and protect animals from infection merits further exploration for vaccine and therapeutic developmental research.
Collapse
Affiliation(s)
- Amanda E Calvert
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Susan L Bennett
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ann R Hunt
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - John T Roehrig
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carol D Blair
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Kim AS, Kafai NM, Winkler ES, Gilliland TC, Cottle EL, Earnest JT, Jethva PN, Kaplonek P, Shah AP, Fong RH, Davidson E, Malonis RJ, Quiroz JA, Williamson LE, Vang L, Mack M, Crowe JE, Doranz BJ, Lai JR, Alter G, Gross ML, Klimstra WB, Fremont DH, Diamond MS. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 2021; 184:4414-4429.e19. [PMID: 34416146 PMCID: PMC8382027 DOI: 10.1016/j.cell.2021.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Theron C Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily L Cottle
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Prashant N Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aadit P Shah
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel H Fong
- Integral Molecular, Inc., Philadelphia, PA 19104, USA
| | | | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose A Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - James E Crowe
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - William B Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
7
|
Williamson LE, Gilliland T, Yadav PK, Binshtein E, Bombardi R, Kose N, Nargi RS, Sutton RE, Durie CL, Armstrong E, Carnahan RH, Walker LM, Kim AS, Fox JM, Diamond MS, Ohi MD, Klimstra WB, Crowe JE. Human Antibodies Protect against Aerosolized Eastern Equine Encephalitis Virus Infection. Cell 2020; 183:1884-1900.e23. [PMID: 33301709 DOI: 10.1016/j.cell.2020.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.
Collapse
Affiliation(s)
- Lauren E Williamson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Theron Gilliland
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - Pramod K Yadav
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel S Nargi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clarissa L Durie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren M Walker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Arthur S Kim
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Julie M Fox
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William B Klimstra
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Kim AS, Zimmerman O, Fox JM, Nelson CA, Basore K, Zhang R, Durnell L, Desai C, Bullock C, Deem SL, Oppenheimer J, Shapiro B, Wang T, Cherry S, Coyne CB, Handley SA, Landis MJ, Fremont DH, Diamond MS. An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. Cell Host Microbe 2020; 27:428-440.e9. [PMID: 32075743 DOI: 10.1016/j.chom.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023]
Abstract
Alphaviruses are emerging, mosquito-transmitted RNA viruses with poorly understood cellular tropism and species selectivity. Mxra8 is a receptor for multiple alphaviruses including chikungunya virus (CHIKV). We discovered that while expression of mouse, rat, chimpanzee, dog, horse, goat, sheep, and human Mxra8 enables alphavirus infection in cell culture, cattle Mxra8 does not. Cattle Mxra8 encodes a 15-amino acid insertion in its ectodomain that prevents Mxra8 binding to CHIKV. Identical insertions are present in zebu, yak, and the extinct auroch. As other Bovinae lineages contain related Mxra8 sequences, this insertion likely occurred at least 5 million years ago. Removing the Mxra8 insertion in Bovinae enhances alphavirus binding and infection, while introducing the insertion into mouse Mxra8 blocks CHIKV binding, prevents infection by multiple alphaviruses in cells, and mitigates CHIKV-induced pathogenesis in mice. Our studies on how this insertion provides resistance to CHIKV infection could facilitate countermeasures that disrupt Mxra8 interactions with alphaviruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ofer Zimmerman
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rong Zhang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lorellin Durnell
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher Bullock
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sharon L Deem
- Saint Louis Zoo Institute for Conservation Medicine, Saint Louis, MO 63110, USA
| | - Jonas Oppenheimer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael J Landis
- Department of Biology, Washington University, Saint Louis, MO 63110, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
9
|
Burke CW, Froude JW, Rossi F, White CE, Moyer CL, Ennis J, Pitt ML, Streatfield S, Jones RM, Musiychuk K, Kervinen J, Zeitlin L, Yusibov V, Glass PJ. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog 2019; 15:e1008157. [PMID: 31790515 PMCID: PMC6907853 DOI: 10.1371/journal.ppat.1008157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
There are no FDA licensed vaccines or therapeutics for Venezuelan equine encephalitis virus (VEEV) which causes a debilitating acute febrile illness in humans that can progress to encephalitis. Previous studies demonstrated that murine and macaque monoclonal antibodies (mAbs) provide prophylactic and therapeutic efficacy against VEEV peripheral and aerosol challenge in mice. Additionally, humanized versions of two neutralizing mAbs specific for the E2 glycoprotein, 1A3B-7 and 1A4A-1, administered singly protected mice against aerosolized VEEV. However, no studies have demonstrated protection in nonhuman primate (NHP) models of VEEV infection. Here, we evaluated a chimeric antibody 1A3B-7 (c1A3B-7) containing mouse variable regions on a human IgG framework and a humanized antibody 1A4A-1 containing a serum half-life extension modification (Hu-1A4A-1-YTE) for their post-exposure efficacy in NHPs exposed to aerosolized VEEV. Approximately 24 hours after exposure, NHPs were administered a single bolus intravenous mAb. Control NHPs had typical biomarkers of VEEV infection including measurable viremia, fever, and lymphopenia. In contrast, c1A3B-7 treated NHPs had significant reductions in viremia and lymphopenia and on average approximately 50% reduction in fever. Although not statistically significant, Hu-1A4A-1-YTE administration did result in reductions in viremia and fever duration. Delay of treatment with c1A3B-7 to 48 hours post-exposure still provided NHPs protection from severe VEE disease through reductions in viremia and fever. These results demonstrate that post-exposure administration of c1A3B-7 protected macaques from development of severe VEE disease even when administered 48 hours following aerosol exposure and describe the first evaluations of VEEV-specific mAbs for post-exposure prophylactic use in NHPs. Viral mutations were identified in one NHP after c1A3B-7 treatment administered 24 hrs after virus exposure. This suggests that a cocktail-based therapy, or an alternative mAb against an epitope that cannot mutate without resulting in loss of viral fitness may be necessary for a highly effective therapeutic.
Collapse
Affiliation(s)
- Crystal W. Burke
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Jeffery W. Froude
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Franco Rossi
- Center of Aerobiological Sciences, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Charles E. White
- Biostatisics Branch, US Army Medical Research Institute of Infectious Disease, Fort Detrick Maryland, United States of America
| | - Crystal L. Moyer
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Jane Ennis
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - M. Louise Pitt
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Stephen Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jukka Kervinen
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Pamela J. Glass
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| |
Collapse
|
10
|
Rusnak JM, Glass PJ, Weaver SC, Sabourin CL, Glenn AM, Klimstra W, Badorrek CS, Nasar F, Ward LA. Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule. Viruses 2019; 11:v11090807. [PMID: 31480472 PMCID: PMC6784384 DOI: 10.3390/v11090807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Licensure of a vaccine to protect against aerosolized Venezuelan equine encephalitis virus (VEEV) requires use of the U.S. Food and Drug Administration (FDA) Animal Rule to assess vaccine efficacy as human studies are not feasible or ethical. An approach to selecting VEEV challenge strains for use under the Animal Rule was developed, taking into account Department of Defense (DOD) vaccine requirements, FDA Animal Rule guidelines, strain availability, and lessons learned from the generation of filovirus challenge agents within the Filovirus Animal Nonclinical Group (FANG). Initial down-selection to VEEV IAB and IC epizootic varieties was based on the DOD objective for vaccine protection in a bioterrorism event. The subsequent down-selection of VEEV IAB and IC isolates was based on isolate availability, origin, virulence, culture and animal passage history, known disease progression in animal models, relevancy to human disease, and ability to generate sufficient challenge material. Methods for the propagation of viral stocks (use of uncloned (wild-type), plaque-cloned, versus cDNA-cloned virus) to minimize variability in the potency of the resulting challenge materials were also reviewed. The presented processes for VEEV strain selection and the propagation of viral stocks may serve as a template for animal model development product testing under the Animal Rule to other viral vaccine programs. This manuscript is based on the culmination of work presented at the “Alphavirus Workshop” organized and hosted by the Joint Vaccine Acquisition Program (JVAP) on 15 December 2014 at Fort Detrick, Maryland, USA.
Collapse
Affiliation(s)
- Janice M Rusnak
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA.
| | - Pamela J Glass
- Department of Virology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Carol L Sabourin
- Battelle Biomedical Research Center, 1425 Plain City-Georgesville Road, West Jefferson, OH 43162, USA
| | - Andrew M Glenn
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| | - William Klimstra
- Center for Vaccine Research, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Christopher S Badorrek
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| | - Farooq Nasar
- Department of Virology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Lucy A Ward
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| |
Collapse
|
11
|
Sharma A, Knollmann-Ritschel B. Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses 2019; 11:v11020164. [PMID: 30781656 PMCID: PMC6410161 DOI: 10.3390/v11020164] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Dedication This review is dedicated in the memory of Dr Radha K. Maheshwari, a great mentor and colleague, whose passion for research and student training has left a lasting effect on this manuscript and many other works. Abstract Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
12
|
Self-Amplifying RNA Vaccines for Venezuelan Equine Encephalitis Virus Induce Robust Protective Immunogenicity in Mice. Mol Ther 2019; 27:850-865. [PMID: 30770173 DOI: 10.1016/j.ymthe.2018.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a known biological defense threat. A live-attenuated investigational vaccine, TC-83, is available, but it has a high non-response rate and can also cause severe reactogenicity. We generated two novel VEE vaccine candidates using self-amplifying mRNA (SAM). LAV-CNE is a live-attenuated VEE SAM vaccine formulated with synthetic cationic nanoemulsion (CNE) and carrying the RNA genome of TC-83. IAV-CNE is an irreversibly-attenuated VEE SAM vaccine formulated with CNE, delivering a TC-83 genome lacking the capsid gene. LAV-CNE launches a TC-83 infection cycle in vaccinated subjects but eliminates the need for live-attenuated vaccine production and potentially reduces manufacturing time and complexity. IAV-CNE produces a single cycle of RNA amplification and antigen expression without generating infectious viruses in subjects, thereby creating a potentially safer alternative to live-attenuated vaccine. Here, we demonstrated that mice vaccinated with LAV-CNE elicited immune responses similar to those of TC-83, providing 100% protection against aerosol VEEV challenge. IAV-CNE was also immunogenic, resulting in significant protection against VEEV challenge. These studies demonstrate the proof of concept for using the SAM platform to streamline the development of effective attenuated vaccines against VEEV and closely related alphavirus pathogens such as western and eastern equine encephalitis and Chikungunya viruses.
Collapse
|
13
|
Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nat Microbiol 2018; 4:187-197. [PMID: 30455470 PMCID: PMC6294662 DOI: 10.1038/s41564-018-0286-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
Eastern equine encephalitis virus (EEEV) is a mosquito-transmitted alphavirus with a high case mortality rate in humans. EEEV is a biodefense concern because of its potential for aerosol spread and the lack of existing countermeasures. In this study, we identified a panel of 18 neutralizing murine monoclonal antibodies (mAbs) against the EEEV E2 protein, several of which had “elite” activity with 50% and 99% inhibitory concentrations (EC50 and EC99) of less than 10 and 100 ng/ml, respectively. Alanine-scanning mutagenesis and neutralization escape mapping analysis revealed epitopes for these mAbs in domains A or B of the E2 glycoprotein. A majority of the neutralizing mAbs blocked at a post-attachment stage, with several inhibiting viral membrane fusion. Administration of one dose of anti-EEEV mAbs protected mice from lethal subcutaneous or aerosol challenge. These experiments define the mechanistic basis for neutralization by protective anti-EEEV mAbs and suggest a path forward for treatment and vaccine design.
Collapse
|
14
|
A Multiagent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits Robust and Durable Virus-Specific Immune Responses in Mice and Rabbits and Completely Protects Mice against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenges. J Immunol Res 2018; 2018:8521060. [PMID: 29967804 PMCID: PMC6008678 DOI: 10.1155/2018/8521060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
There remains a need for vaccines that can safely and effectively protect against the biological threat agents Venezuelan (VEEV), western (WEEV), and eastern (EEEV) equine encephalitis virus. Previously, we demonstrated that a VEEV DNA vaccine that was optimized for increased antigen expression and delivered by intramuscular (IM) electroporation (EP) elicited robust and durable virus-specific antibody responses in multiple animal species and provided complete protection against VEEV aerosol challenge in mice and nonhuman primates. Here, we performed a comparative evaluation of the immunogenicity and protective efficacy of individual optimized VEEV, WEEV, and EEEV DNA vaccines with that of a 1 : 1 : 1 mixture of these vaccines, which we have termed the 3-EEV DNA vaccine, when delivered by IM EP. The individual DNA vaccines and the 3-EEV DNA vaccine elicited robust and durable virus-specific antibody responses in mice and rabbits and completely protected mice from homologous VEEV, WEEV, and EEEV aerosol challenges. Taken together, the results from these studies demonstrate that the individual VEEV, WEEV, and EEEV DNA vaccines and the 3-EEV DNA vaccine delivered by IM EP provide an effective means of eliciting protection against lethal encephalitic alphavirus infections in a murine model and represent viable next-generation vaccine candidates that warrant further development.
Collapse
|
15
|
|
16
|
Hartmann CA, Vikram HR, Seville MT, Orenstein R, Kusne S, Blair JE, Grys TE, Patron RL. Neuroinvasive St. Louis Encephalitis Virus Infection in Solid Organ Transplant Recipients. Am J Transplant 2017; 17:2200-2206. [PMID: 28452107 DOI: 10.1111/ajt.14336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023]
Abstract
In summer 2015, three unrelated solid organ transplant recipients in Phoenix, Arizona, had meningoencephalitis suggestive of West Nile virus (WNV) infection. Testing was inconclusive but was later confirmed as St. Louis encephalitis (SLE). We retrospectively reviewed clinical manifestations, treatment, and outcomes of these transplant recipients. Common symptoms were fever, rigors, diarrhea, headache, and confusion. One patient died 3 days after hospitalization. Therapy for the other two patients was initiated with interferon α-2b (IFN) and intravenous IgG (IVIG; IFN plus IVIG in combination). Both patients tested positive for WNV by serologic assay, but SLE virus (SLEV) infection was later confirmed by plaque reduction neutralization test at a reference laboratory. Clinical improvement was observed within 72 h after initiation of IFN plus IVIG. SLEV has been an uncommon cause of neuroinvasive disease in the United States. Accurate, timely diagnosis is hindered because of clinical presentation similar to neuroinvasive WNV and SLE, serologic cross-reactivity, and lack of a commercially available serologic assay for SLEV. There is currently no approved therapy for flaviviral neuroinvasive disease. Anecdotal reports indicate varying success with IFN, IVIG, or IFN plus IVIG in WNV neuroinvasive disease. The same regimen might be of value for immunocompromised persons with neuroinvasive SLEV infection.
Collapse
Affiliation(s)
- C A Hartmann
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| | - H R Vikram
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| | - M T Seville
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| | - R Orenstein
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| | - S Kusne
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| | - J E Blair
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| | - T E Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic Hospital, Phoenix, AZ
| | - R L Patron
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| |
Collapse
|
17
|
Structural Studies of Chikungunya Virus-Like Particles Complexed with Human Antibodies: Neutralization and Cell-to-Cell Transmission. J Virol 2015; 90:1169-77. [PMID: 26537684 DOI: 10.1128/jvi.02364-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Chikungunya virus is a positive-stranded RNA alphavirus. Structures of chikungunya virus-like particles in complex with strongly neutralizing antibody Fab fragments (8B10 and 5F10) were determined using cryo-electron microscopy and X-ray crystallography. By fitting the crystallographically determined structures of these Fab fragments into the cryo-electron density maps, we show that Fab fragments of antibody 8B10 extend radially from the viral surface and block receptor binding on the E2 glycoprotein. In contrast, Fab fragments of antibody 5F10 bind the tip of the E2 B domain and lie tangentially on the viral surface. Fab 5F10 fixes the B domain rigidly to the surface of the virus, blocking exposure of the fusion loop on glycoprotein E1 and therefore preventing the virus from becoming fusogenic. Although Fab 5F10 can neutralize the wild-type virus, it can also bind to a mutant virus without inhibiting fusion or attachment. Although the mutant virus is no longer able to propagate by extracellular budding, it can, however, enter the next cell by traveling through junctional complexes without being intercepted by a neutralizing antibody to the wild-type virus, thus clarifying how cell-to-cell transmission can occur. IMPORTANCE Alphaviral infections are transmitted mainly by mosquitoes. Chikungunya virus (CHIKV), which belongs to the Alphavirus genus, has a wide distribution in the Old World that has expanded in recent years into the Americas. There are currently no vaccines or drugs against alphaviral infections. Therefore, a better understanding of CHIKV and its associated neutralizing antibodies will aid in the development of effective treatments.
Collapse
|
18
|
Abstract
Mosquito-borne diseases affect horses worldwide. Mosquito-borne diseases generally cause encephalomyelitis in the horse and can be difficult to diagnose antemortem. In addition to general disease, and diagnostic and treatment aspects, this review article summarizes the latest information on these diseases, covering approximately the past 5 years, with a focus on new equine disease encroachments, diagnostic and vaccination aspects, and possible therapeutics on the horizon.
Collapse
|
19
|
Rift valley Fever virus encephalitis is associated with an ineffective systemic immune response and activated T cell infiltration into the CNS in an immunocompetent mouse model. PLoS Negl Trop Dis 2014; 8:e2874. [PMID: 24922480 PMCID: PMC4055548 DOI: 10.1371/journal.pntd.0002874] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/04/2014] [Indexed: 01/01/2023] Open
Abstract
Background Rift Valley fever virus (RVFV) causes outbreaks of severe disease in livestock and humans throughout Africa and the Arabian Peninsula. In people, RVFV generally causes a self-limiting febrile illness but in a subset of individuals, it progresses to more serious disease. One manifestation is a delayed-onset encephalitis that can be fatal or leave the afflicted with long-term neurologic sequelae. In order to design targeted interventions, the basic pathogenesis of RVFV encephalitis must be better understood. Methodology/Principal Findings To characterize the host immune responses and viral kinetics associated with fatal and nonfatal infections, mice were infected with an attenuated RVFV lacking NSs (ΔNSs) that causes lethal disease only when administered intranasally (IN). Following IN infection, C57BL/6 mice developed severe neurologic disease and succumbed 7–9 days post-infection. In contrast, inoculation of ΔNSs virus subcutaneously in the footpad (FP) resulted in a subclinical infection characterized by a robust immune response with rapid antibody production and strong T cell responses. IN-inoculated mice had delayed antibody responses and failed to clear virus from the periphery. Severe neurological signs and obtundation characterized end stage-disease in IN-inoculated mice, and within the CNS, the development of peak virus RNA loads coincided with strong proinflammatory responses and infiltration of activated T cells. Interestingly, depletion of T cells did not significantly alter survival, suggesting that neurologic disease is not a by-product of an aberrant immune response. Conclusions/Significance Comparison of fatal (IN-inoculated) and nonfatal (FP-inoculated) ΔNSs RVFV infections in the mouse model highlighted the role of the host immune response in controlling viral replication and therefore determining clinical outcome. There was no evidence to suggest that neurologic disease is immune-mediated in RVFV infection. These results provide important insights for the future design of vaccines and therapeutic options. Rift Valley fever virus (RVFV) is a mosquito-borne virus that causes severe disease in people and livestock throughout Africa and the Arabian Peninsula. Human disease is usually self-limiting, but a small proportion of individuals develop fatal encephalitis. The role of the host immune response in determining disease outcome is largely unknown. In order to compare the quality and character of immune responses in nonfatal and fatal cases, we used an attenuated RVFV to inoculate mice by two routes. Subcutaneous inoculation resulted in a subclinical systemic infection that was rapidly cleared due to a robust adaptive response. In contrast, intranasal inoculation stimulated weaker immune responses that failed to control virus replication and culminated in uniformly fatal encephalitis. With many encephalitic viruses, the onset of disease is mediated by changes in blood brain barrier permeability and often, subsequent injury to the CNS by an uncontrolled immune response. However, our results suggest that development of RVFV disease does not depend on either mechanism, but rather results from direct virus-mediated damage in the CNS. Future therapeutic drug design should take into account all possible routes of virus exposure as well as the role of therapies that boost the adaptive response to better combat disease.
Collapse
|
20
|
Locking and blocking the viral landscape of an alphavirus with neutralizing antibodies. J Virol 2014; 88:9616-23. [PMID: 24920796 DOI: 10.1128/jvi.01286-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Alphaviruses are serious, sometimes lethal human pathogens that belong to the family Togaviridae. The structures of human Venezuelan equine encephalitis virus (VEEV), an alphavirus, in complex with two strongly neutralizing antibody Fab fragments (F5 and 3B4C-4) have been determined using a combination of cryo-electron microscopy and homology modeling. We characterize these monoclonal antibody Fab fragments, which are known to abrogate VEEV infectivity by binding to the E2 (envelope) surface glycoprotein. Both of these antibody Fab fragments cross-link the surface E2 glycoproteins and therefore probably inhibit infectivity by blocking the conformational changes that are required for making the virus fusogenic. The F5 Fab fragment cross-links E2 proteins within one trimeric spike, whereas the 3B4C-4 Fab fragment cross-links E2 proteins from neighboring spikes. Furthermore, F5 probably blocks the receptor-binding site, whereas 3B4C-4 sterically hinders the exposure of the fusion loop at the end of the E2 B-domain. IMPORTANCE Alphaviral infections are transmitted mainly by mosquitoes. Venezuelan equine encephalitis virus (VEEV) is an alphavirus with a wide distribution across the globe. No effective vaccines exist for alphaviral infections. Therefore, a better understanding of VEEV and its associated neutralizing antibodies will help with the development of effective drugs and vaccines.
Collapse
|
21
|
Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J Virol 2014; 88:8213-26. [PMID: 24829346 DOI: 10.1128/jvi.01032-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging mosquito-transmitted alphavirus that causes epidemics of debilitating polyarthritis in humans. A prior study identified two anti-CHIKV monoclonal antibodies ([MAbs] CHK-152 and CHK-166) against the E2 and E1 structural proteins, which had therapeutic efficacy in immunocompetent and immunocompromised mice. Combination MAb therapy was required as administration of a single MAb resulted in the rapid selection of neutralization escape variants and treatment failure in mice. Here, we initially evaluated the efficacy of combination MAb therapy in a nonhuman primate model of CHIKV infection. Treatment of rhesus macaques with CHK-152 and CHK-166 reduced viral spread and infection in distant tissue sites and also neutralized reservoirs of infectious virus. Escape viruses were not detected in the residual viral RNA present in tissues and organs of rhesus macaques. To evaluate the possible significance of MAb resistance, we engineered neutralization escape variant viruses (E1-K61T, E2-D59N, and the double mutant E1-K61T E2-D59N) that conferred resistance to CHK-152 and CHK-166 and tested them for fitness in mosquito cells, mammalian cells, mice, and Aedes albopictus mosquitoes. In both cell culture and mosquitoes, the mutant viruses grew equivalently and did not revert to wild-type (WT) sequence. All escape variants showed evidence of mild clinical attenuation, with decreased musculoskeletal disease at early times after infection in WT mice and a prolonged survival time in immunocompromised Ifnar1(-/-) mice. Unexpectedly, this was not associated with decreased infectivity, and consensus sequencing from tissues revealed no evidence of reversion or compensatory mutations. Competition studies with CHIKV WT also revealed no fitness compromise of the double mutant (E1-K61T E2-D59N) neutralization escape variant in WT mice. Collectively, our study suggests that neutralization escape viruses selected during combination MAb therapy with CHK-152 plus CHK-166 retain fitness, cause less severe clinical disease, and likely would not be purified during the enzootic cycle. IMPORTANCE Chikungunya virus (CHIKV) causes explosive epidemics of acute and chronic arthritis in humans in Africa, the Indian subcontinent, and Southeast Asia and recently has spread to the New World. As there are no approved vaccines or therapies for human use, the possibility of CHIKV-induced debilitating disease is high in many parts of the world. To this end, our laboratory recently generated a combination monoclonal antibody therapy that aborted lethal and arthritogenic disease in wild-type and immunocompromised mice when administered as a single dose several days after infection. In this study, we show the efficacy of the antibody combination in nonhuman primates and also evaluate the significance of possible neutralization escape mutations in mosquito and mammalian cells, mice, and Aedes albopictus vector mosquitoes. Our experiments show that escape viruses from combination antibody therapy cause less severe CHIKV clinical disease, retain fitness, and likely would not be purified by mosquito vectors.
Collapse
|
22
|
Hülseweh B, Rülker T, Pelat T, Langermann C, Frenzel A, Schirrmann T, Dübel S, Thullier P, Hust M. Human-like antibodies neutralizing Western equine encephalitis virus. MAbs 2014; 6:718-27. [PMID: 24518197 PMCID: PMC4011916 DOI: 10.4161/mabs.28170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.
Collapse
Affiliation(s)
- Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS); ABC-Schutz; Munster, Germany
| | - Torsten Rülker
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; La Tronche, France
| | - Claudia Langermann
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS); ABC-Schutz; Munster, Germany
| | - Andrè Frenzel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; La Tronche, France
| | - Michael Hust
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| |
Collapse
|
23
|
Nath A, Tyler KL. Novel approaches and challenges to treatment of central nervous system viral infections. Ann Neurol 2013; 74:412-22. [PMID: 23913580 PMCID: PMC4052367 DOI: 10.1002/ana.23988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Existing and emerging viral central nervous system (CNS) infections are major sources of human morbidity and mortality. Treatments of proven efficacy are currently limited predominantly to herpesviruses and human immunodeficiency virus (HIV). Development of new therapies has been hampered by the lack of appropriate animal model systems for some important viruses and by the difficulty in conducting human clinical trials for diseases that may be rare, or in the case of arboviral infections, often have variable seasonal and geographic incidence. Nonetheless, many novel approaches to antiviral therapy are available, including candidate thiazolide and pyrazinecarboxamide derivatives with potential broad‐spectrum antiviral efficacy. New herpesvirus drugs include viral helicase‐primase and terminase inhibitors. The use of antisense oligonucleotides and other strategies to interfere with viral RNA translation has shown efficacy in experimental models of CNS viral disease. Identifying specific molecular targets within viral replication cycles has led to many existing antiviral agents and will undoubtedly continue to be the basis of future drug design. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses. Toll‐like receptor agonists and drugs that inhibit specific cytokines as well as interferon preparations have all shown potential therapeutic efficacy. Passive transfer of virus‐specific cytotoxic T lymphocytes has been used in humans and may provide an effective therapy for some herpesvirus infections and potentially for progressive multifocal leukoencephalopathy. Humanized monoclonal antibodies directed against specific viral proteins have been developed and in several cases evaluated in humans in settings including West Nile virus and HIV infection and in pre‐exposure prophylaxis for rabies. Ann Neurol 2013;74:412–422
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous Systems, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
24
|
Possible future monoclonal antibody (mAb)-based therapy against arbovirus infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:838491. [PMID: 24058915 PMCID: PMC3766601 DOI: 10.1155/2013/838491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminary in vitro and in vivo models of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.
Collapse
|
25
|
Chang HW, Lin YW, Ho HM, Lin MH, Liu CC, Shao HY, Chong P, Sia C, Chow YH. Protective efficacy of VP1-specific neutralizing antibody associated with a reduction of viral load and pro-inflammatory cytokines in human SCARB2-transgenic mice. PLoS One 2013; 8:e69858. [PMID: 23936115 PMCID: PMC3728341 DOI: 10.1371/journal.pone.0069858] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/12/2013] [Indexed: 12/03/2022] Open
Abstract
Hand-foot-mouth diseases (HFMD) caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16) in children have now become a severe public health issue in the Asian-Pacific region. Recently we have successfully developed transgenic mice expressing human scavenger receptor class B member 2 (hSCARB2, a receptor of EV71 and CVA16) as an animal model for evaluating the pathogenesis of enterovirus infections. In this study, hSCARB2-transgenic mice were used to investigate the efficacy conferred by a previously described EV71 neutralizing antibody, N3. A single injection of N3 effectively inhibited the HFMD-like skin scurfs in mice pre-infected with clinical isolate of EV71 E59 (B4 genotype) or prevented severe limb paralysis and death in mice pre-inoculated with 5746 (C2 genotype). This protection was correlated with remarkable reduction of viral loads in the brain, spinal cord and limb muscles. Accumulated viral loads and the associated pro-inflammatory cytokines were all reduced. The protective efficacy of N3 was not observed in animals challenged with CVA16. This could be due to dissimilarity sequences of the neutralizing epitope found in CVA16. These results indicate N3 could be useful in treating severe EV71 infections and the hSCARB2-transgenic mouse could be used to evaluate the protective efficacy of potential anti-enterovirus agent candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibody Specificity/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/prevention & control
- Coxsackievirus Infections/virology
- Cross Reactions/immunology
- Cytokines/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Gene Expression
- Genotype
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/mortality
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Humans
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Lysosomal Membrane Proteins/genetics
- Mice
- Mice, Transgenic
- Receptors, Scavenger/genetics
- Viral Load
Collapse
Affiliation(s)
- Hsuen-Wen Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
| | - Yi-Wen Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
| | - Min-Han Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
| | - Hsiao-Yun Shao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Charles Sia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan town, Miaoli County, Taiwan
| |
Collapse
|
26
|
Nagata LP, Wong JP, Hu WG, Wu JQ. Vaccines and therapeutics for the encephalitic alphaviruses. Future Virol 2013. [DOI: 10.2217/fvl.13.42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article is a review of vaccines and therapeutics in development for the encephalitic alphaviruses, which includes eastern equine encephalitis virus, western equine encephalitis virus and Venezuelan equine encephalitis virus. The encephalitic alphaviruses are endemic within regions in North and South America. Hosts are normally exposed after being bitten by infectious mosquitoes, and infection can develop into encephalitis in equines and humans with severe rates of morbidity and mortality. These viruses are also potential biological threat agents, being highly infectious via an aerosol route of exposure. In humans, equine encephalitis virus and western equine encephalitis virus are neurotropic viruses targeting the CNS and causing encephalitis. Mortality rates are 50 and 10%, respectively, for these viruses. On the other hand, Venezuelan equine encephalitis virus produces a systemic influenza-like illness with pathogenesis in the lungs and lymphoid tissue in adults and older children. The incidence of encephalitis is less than 5% in younger children with a case–mortality rate of 1%. The host response to virus infectivity is briefly discussed, along with a number of promising therapeutic and prophylactic approaches. These approaches can be broadly classified as: virus-specific, including vaccines, antibody therapy and gene-silencing oligonucleotides; or broad-spectrum, including interferon and activation of the host‘s innate immunity.
Collapse
Affiliation(s)
- Les P Nagata
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| | - Jonathan P Wong
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| | - Wei-gang Hu
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| | - Josh Q Wu
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| |
Collapse
|
27
|
EnCheng S, Jing Z, Tao Y, QingYuan X, Yongli Q, WenShi W, Peng W, Liang S, Jing S, DongLai W. Analysis of murine B-cell epitopes on Eastern equine encephalitis virus glycoprotein E2. Appl Microbiol Biotechnol 2013; 97:6359-72. [PMID: 23512478 DOI: 10.1007/s00253-013-4819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
The Eastern equine encephalitis virus (EEEV) E2 protein is one of the main targets of the protective immune response against EEEV. Although some efforts have done to elaborate the structure and immune molecular basis of Alphaviruses E2 protein, the published data of EEEV E2 are limited. Preparation of EEEV E2 protein-specific antibodies and define MAbs-binding epitopes on E2 protein will be conductive to the antibody-based prophylactic and therapeutic and to the study on structure and function of EEEV E2 protein. In this study, 51 EEEV E2 protein-reactive monoclonal antibodies (MAbs) and antisera (polyclonal antibodies, PAbs) were prepared and characterized. By pepscan with MAbs and PAbs using enzyme-linked immunosorbent assay, we defined 18 murine linear B-cell epitopes. Seven peptide epitopes were recognized by both MAbs and PAbs, nine epitopes were only recognized by PAbs, and two epitopes were only recognized by MAbs. Among the epitopes recognized by MAbs, seven epitopes were found only in EEEV and two epitopes were found both in EEEV and Venezuelan equine encephalitis virus (VEEV). Four of the EEEV antigenic complex-specific epitopes were commonly held by EEEV subtypes I/II/III/IV (1-16aa, 248-259aa, 271-286aa, 321-336aa probably located in E2 domain A, domain B, domain C, domain C, respectively). The remaining three epitopes were EEEV type-specific epitopes: a subtype I-specific epitope at amino acids 108-119 (domain A), a subtype I/IV-specific epitope at amino acids 211-226 (domain B) and a subtype I/II/III-specific epitope at amino acids 231-246 (domain B). The two common epitopes of EEEV and VEEV were located at amino acids 131-146 and 241-256 (domain B). The generation of EEEV E2-specific MAbs with defined specificities and binding epitopes will inform the development of differential diagnostic approaches and structure study for EEEV and associated alphaviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Encephalitis Virus, Eastern Equine/chemistry
- Encephalitis Virus, Eastern Equine/classification
- Encephalitis Virus, Eastern Equine/genetics
- Encephalitis Virus, Eastern Equine/immunology
- Encephalitis Virus, Venezuelan Equine/chemistry
- Encephalitis Virus, Venezuelan Equine/classification
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Equine/immunology
- Encephalomyelitis, Equine/virology
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Humans
- Mice
- Species Specificity
- Spodoptera
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Sun EnCheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rülker T, Voß L, Thullier P, O' Brien LM, Pelat T, Perkins SD, Langermann C, Schirrmann T, Dübel S, Marschall HJ, Hust M, Hülseweh B. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One 2012; 7:e37242. [PMID: 22666347 PMCID: PMC3364240 DOI: 10.1371/journal.pone.0037242] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Cloning, Molecular
- Encephalitis Virus, Venezuelan Equine/immunology
- Gene Library
- Genetic Vectors/genetics
- Humans
- Immunization, Passive
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Sequence Analysis
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/isolation & purification
Collapse
Affiliation(s)
- Torsten Rülker
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Luzie Voß
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Philippe Thullier
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Lyn M. O' Brien
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Thibaut Pelat
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Stuart D. Perkins
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Claudia Langermann
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Hans-Jürgen Marschall
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| |
Collapse
|
29
|
Thibodeaux BA, Garbino NC, Liss NM, Piper J, Schlesinger JJ, Blair CD, Roehrig JT. A humanized IgG but not IgM antibody is effective in prophylaxis and therapy of yellow fever infection in an AG129/17D-204 peripheral challenge mouse model. Antiviral Res 2012; 94:1-8. [PMID: 22366350 DOI: 10.1016/j.antiviral.2012.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 11/27/2022]
Abstract
Yellow fever virus (YFV), a member of the genus Flavivirus, is a mosquito-borne virus found in tropical regions of Africa and South America that causes severe hepatic disease and death in humans. Despite the availability of effective vaccines, YFV is responsible for an estimated 200,000 cases and 30,000 deaths annually. There are currently no prophylactic or therapeutic strategies approved for use in human YFV infections. Furthermore, implementation of YFV 17D-204 vaccination campaigns has become problematic due to an increase in reported post-vaccinal adverse events. We have created human/murine chimeric MAbs of a YFV-reactive murine monoclonal antibody (mMAb), 2C9, that was previously shown to protect mice from lethal YFV infection and to have therapeutic activity. The new chimeric (cMAbs) were constructed by fusion of the m2C9 IgG gene variable regions with the constant regions of human IgG and IgM and expressed in Sp2 murine myelomas. The 2C9 cMAbs (2C9-cIgG and 2C9-cIgM) reacted with 17D-204 vaccine strain in an enzyme-linked immunosorbent assay and neutralized virus in vitro similarly to the parent m2C9. Both m2C9 and 2C9-cIgG when administered prophylactically 24h prior to infection protected AG129 mice from peripheral 17D-204 challenge at antibody concentrations ≥1.27 μg/mouse; however, the 2C9-cIgM did not protect even at a dose of 127 μg/mouse. The 17D-204 infection of AG129 mice is otherwise uniformly lethal. While the m2C9 was shown previously to be therapeutically effective in YFV-infected BALB/c mice at day 4 post-infection, the m2C9 and 2C9-cIgG demonstrated therapeutic activity only when administered 1 day post-infection in 17D-204-infected AG129 mice.
Collapse
Affiliation(s)
- Brett A Thibodeaux
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, 80523, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
O'Brien LM, Goodchild SA, Phillpotts RJ, Perkins SD. A humanised murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge. Virology 2012; 426:100-5. [PMID: 22341308 DOI: 10.1016/j.virol.2012.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/03/2012] [Accepted: 01/30/2012] [Indexed: 11/18/2022]
Abstract
Currently there are no licensed antiviral treatments for the Alphaviruses Venezuelan equine encephalitis virus (VEEV), Everglades virus and Mucambo virus. We previously developed a humanised version of the mouse monoclonal antibody 1A3B-7 (Hu1A3B-7) which exhibited a wide range of reactivity in vitro and was able to protect mice from infection with VEEV. Continued work with the humanised antibody has now demonstrated that it has the potential to be a new human therapeutic. Hu1A3B-7 successfully protected mice from infection with multiple Alphaviruses. The effectiveness of the humanisation process was determined by assessing proliferation responses in human T-cells to peptides derived from the murine and humanised versions of the V(H) and V(L) domains. This analysis showed that the number of human T-cell epitopes within the humanised antibody had been substantially reduced, indicating that Hu1A3B-7 may have reduced immunogenicity in vivo.
Collapse
Affiliation(s)
- Lyn M O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | | | | | |
Collapse
|
31
|
Chahboun S, Hust M, Liu Y, Pelat T, Miethe S, Helmsing S, Jones RG, Sesardic D, Thullier P. Isolation of a nanomolar scFv inhibiting the endopeptidase activity of botulinum toxin A, by single-round panning of an immune phage-displayed library of macaque origin. BMC Biotechnol 2011; 11:113. [PMID: 22111995 PMCID: PMC3252318 DOI: 10.1186/1472-6750-11-113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/23/2011] [Indexed: 01/06/2023] Open
Abstract
Background Botulinum neurotoxin A (BoNT/A), mainly represented by subtype A1, is the most toxic substance known. It causes naturally-occurring food poisoning, and is among the biological agents at the highest risk of being weaponized. Several antibodies neutralizing BoNT/A by targeting its heavy chain (BoNT/A-H) have been isolated in the past. For the first time however, an IgG (4LCA) recently isolated by hybridoma technology and targeting the BoNT/A light chain (BoNT/A-L), was shown to inhibit BoNT/A endopeptidase activity and protect in vivo against BoNT/A. In the present study, a phage-displayed library was constructed from a macaque (Macaca fascicularis) hyper-immunized with BoNTA/L in order to isolate scFvs inhibiting BoNT/A endopeptidase activity for clinical use. Results Diversity of the scFvs constituting the library was limited due to the frequent presence, within the genes intended to be part of the library, of restriction sites utilized for its construction. After screening with several rounds of increasing stringency, as is usual with phage technology, the library got overwhelmed by phagemids encoding incomplete scFvs. The screening was successfully re-performed with a single round of high stringency. In particular, one of the isolated scFvs, 2H8, bound BoNT/A1 with a 3.3 nM affinity and effectively inhibited BoNT/A1 endopeptidase activity. The sequence encoding 2H8 was 88% identical to human germline genes and its average G-score was -0.72, quantifying the high human-like quality of 2H8. Conclusions The presence of restrictions sites within many of the sequences that were to be part of the library did not prevent the isolation of an scFv, 2H8, by an adapted panning strategy. ScFv 2H8 inhibited toxin endopeptidase activity in vitro and possessed human-like quality required for clinical development. More generally, the construction and screening of phage-displayed libraries built from hyper-immunized non-human primates is an efficient solution to isolate antibody fragments with therapeutic potential.
Collapse
Affiliation(s)
- Siham Chahboun
- Unité de Biotechnologie des Anticorps, et des Toxines, Département de Microbiologie, Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), 24 Avenue des Maquis du Grésivaudan, BP 87, 38702 La Tronche Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Froude JW, Stiles B, Pelat T, Thullier P. Antibodies for biodefense. MAbs 2011; 3:517-27. [PMID: 22123065 PMCID: PMC3242838 DOI: 10.4161/mabs.3.6.17621] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/03/2011] [Indexed: 12/11/2022] Open
Abstract
Potential bioweapons are biological agents (bacteria, viruses, and toxins) at risk of intentional dissemination. Biodefense, defined as development of therapeutics and vaccines against these agents, has seen an increase, particularly in the US following the 2001 anthrax attack. This review focuses on recombinant antibodies and polyclonal antibodies for biodefense that have been accepted for clinical use. These antibodies aim to protect against primary potential bioweapons, or category A agents as defined by the Centers for Disease Control and Prevention (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox virus, and certain others causing viral hemorrhagic fevers) and certain category B agents. Potential for prophylactic use is presented, as well as frequent use of oligoclonal antibodies or synergistic effect with other molecules. Capacities and limitations of antibodies for use in biodefense are discussed, and are generally applicable to the field of infectious diseases.
Collapse
Affiliation(s)
- Jeffrey W Froude
- US Army Medical Research and Material Command; Fort Detrick, MD USA
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| | - Bradley Stiles
- US Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | - Thibaut Pelat
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| | - Philippe Thullier
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| |
Collapse
|
33
|
Hunt AR, Bowen RA, Frederickson S, Maruyama T, Roehrig JT, Blair CD. Treatment of mice with human monoclonal antibody 24h after lethal aerosol challenge with virulent Venezuelan equine encephalitis virus prevents disease but not infection. Virology 2011; 414:146-52. [PMID: 21489591 DOI: 10.1016/j.virol.2011.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/23/2011] [Accepted: 03/18/2011] [Indexed: 02/05/2023]
Abstract
We recently described a Venezuelan equine encephalitis virus (VEEV)-specific human monoclonal antibody (MAb), F5 nIgG, that recognizes a new neutralization epitope on the VEEV E2 envelope glycoprotein. In this study, we investigated the ability of F5 nIgG given prophylactically or therapeutically to protect mice from subcutaneous or aerosolized VEEV infection. F5 nIgG had potent ability to protect mice from infection by either route when administered 24h before exposure; however, mice treated 24h after aerosol exposure developed central nervous system infections but exhibited no clinical signs of disease. Infectious virus, viral antigen and RNA were detected in brains of both treated and untreated mice 2-6 days after aerosol exposure but were cleared from the brains of treated animals by 14-28 days after infection. This fully human MAb could be useful for prophylaxis or immediate therapy for individuals exposed to VEEV accidentally in the laboratory or during a deliberate release.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Cell Line
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalitis Virus, Venezuelan Equine/physiology
- Encephalomyelitis, Venezuelan Equine/drug therapy
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Female
- Humans
- Male
- Mice
- Mice, Inbred ICR
- Neutralization Tests
- Post-Exposure Prophylaxis
- Viral Envelope Proteins/immunology
- Virulence
Collapse
Affiliation(s)
- Ann R Hunt
- Department of Microbiology, Immunology & Pathology 1692, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Goodchild SA, O'Brien LM, Steven J, Muller MR, Lanning OJ, Logue CH, D'Elia RV, Phillpotts RJ, Perkins SD. A humanised murine monoclonal antibody with broad serogroup specificity protects mice from challenge with Venezuelan equine encephalitis virus. Antiviral Res 2011; 90:1-8. [PMID: 21310183 DOI: 10.1016/j.antiviral.2011.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/21/2022]
Abstract
In murine models of Venezuelan equine encephalitis virus (VEEV) infection, the neutralising monoclonal antibody 1A3B-7 has been shown to be effective in passive protection from challenge by the aerosol route with serogroups I, II and Mucambo virus (formally VEE complex subtype IIIA). This antibody is able to bind to all serogroups of the VEEV complex when used in ELISA and therefore is an excellent candidate for protein engineering in order to derive a humanised molecule suitable for therapeutic use in humans. A Complementarity Determining Region (CDR) grafting approach using human germline IgG frameworks was used to produce a panel of humanised variants of 1A3B-7, from which a single candidate molecule with retained binding specificity was identified. Evaluation of humanised 1A3B-7 (Hu1A3B-7) in in vitro studies indicated that Hu1A3B-7 retained both broad specificity and neutralising activity. Furthermore, in vivo experiments showed that Hu1A3B-7 successfully protected mice against lethal subcutaneous and aerosol challenges with VEEV strain TrD (serogroup I). Hu1A3B-7 is therefore a promising candidate for the future development of a broad-spectrum antiviral therapy to treat VEEV disease in humans.
Collapse
Affiliation(s)
- Sarah A Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Calvert AE, Kalantarov GF, Chang GJJ, Trakht I, Blair CD, Roehrig JT. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein. Virology 2010; 410:30-7. [PMID: 21084104 DOI: 10.1016/j.virol.2010.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/23/2010] [Accepted: 10/21/2010] [Indexed: 01/14/2023]
Abstract
Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.
Collapse
Affiliation(s)
- Amanda E Calvert
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, 3150 Rampart Rd., Fort Collins, CO 80521, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Among the microorganisms that cause diseases of medical or veterinary importance, the only group that is entirely dependent on the host, and hence not easily amenable to therapy via pharmaceuticals, is the viruses. Since viruses are obligate intracellular pathogens, and therefore depend a great deal on cellular processes, direct therapy of viral infections is difficult. Thus, modifying or targeting nonspecific or specific immune responses is an important aspect of intervention of ongoing viral infections. However, as a result of the unavailability of effective vaccines and the extended duration of manifestation, chronic viral infections are the most suitable for immunotherapies. We present an overview of various immunological strategies that have been applied for treating viral infections after exposure to the infectious agent.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Bharat Biotech Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, India.
| | | | | | | |
Collapse
|
37
|
The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. PLoS Negl Trop Dis 2010; 4:e739. [PMID: 20644615 PMCID: PMC2903468 DOI: 10.1371/journal.pntd.0000739] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/25/2010] [Indexed: 01/02/2023] Open
Abstract
Background Venezuelan equine encephalitis virus (VEEV) is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion) and E2 (binds receptor and elicits virus neutralizing antibodies). Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs). Six E2 epitopes (E2c,d,e,f,g,h) bound VEEV-neutralizing antibody and mapped to amino acids (aa) 182–207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs) with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE. Methods We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants. Findings Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115–119. Using a 9 Å resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope. Conclusions The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration of a cocktail of F5n and Hy4 IgGs, which bind to different E2 epitopes, could provide enhanced prophylaxis or immunotherapy for VEEV, while reducing the possibility of generating possibly harmful virus neutralization-escape variants in vivo. Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119.
Collapse
|
38
|
A recombinant humanized monoclonal antibody completely protects mice against lethal challenge with Venezuelan equine encephalitis virus. Vaccine 2010; 28:5558-64. [PMID: 20600509 DOI: 10.1016/j.vaccine.2010.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/20/2010] [Accepted: 06/10/2010] [Indexed: 11/22/2022]
Abstract
A recombinant humanized antibody to Venezuelan equine encephalitis virus (VEEV) was constructed in a monocistronic adenoviral expression vector with a foot-and-mouth-disease virus-derived 2A self-cleavage oligopeptide inserted between the antibody heavy and light chains. After expression in mammalian cells, the heavy and light chains of the humanized antibody (hu1A4A1IgG1-2A) were completely cleaved and properly dimerized. The purified hu1A4A1IgG1-2A retained VEEV binding affinity and neutralizing activity similar to its parental murine antibody. The half-life of hu1A4A1IgG1-2A in mice was approximately 2 days. Passive immunization of hu1A4A1IgG1-2A in mice (50 microg/mouse) 24 h before or after virulent VEEV challenge provided complete protection, indicating that hu1A4A1IgG1-2A has potent prophylactic and therapeutic effects against VEEV infection.
Collapse
|
39
|
O'Brien LM, Underwood-Fowler CD, Goodchild SA, Phelps AL, Phillpotts RJ. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains. Virol J 2009; 6:206. [PMID: 19925641 PMCID: PMC2783036 DOI: 10.1186/1743-422x-6-206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 11/19/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. RESULTS In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv) isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. CONCLUSION A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans.
Collapse
Affiliation(s)
- Lyn M O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | | | | | | | |
Collapse
|
40
|
O'Brien L, Perkins S, Williams A, Eastaugh L, Phelps A, Wu J, Phillpotts R. Alpha interferon as an adenovirus-vectored vaccine adjuvant and antiviral in Venezuelan equine encephalitis virus infection. J Gen Virol 2009; 90:874-882. [PMID: 19264673 DOI: 10.1099/vir.0.006833-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are no widely available vaccines or antiviral drugs capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), although an adenovirus vector expressing VEEV structural proteins protects mice from challenge with VEEV and is potentially a vaccine suitable for human use. This work examines whether alpha interferon (IFN-α) could act as an adjuvant for the adenovirus-based vaccine. IFN-α was either expressed by a plasmid linked to the adenovirus vaccine or encoded by a separate adenovirus vector administered as a mixture with the vaccine. In contrast to previous reports with other vaccines, the presence of IFN-α reduced the antibody response to VEEV. When IFN-α was encoded by adenovirus, the lack of a VEEV-specific response was accompanied by an increase in the immune response to the adenovirus vector. IFN-α also plays a direct role in defence against virus infection, inducing the expression of a large number of antiviral proteins. Adenovirus-delivered IFN-α protected mice from VEEV disease when administered 24 h prior to challenge, but not when administered 6 h post-challenge, suggesting that up to 24 h is required for the development of the IFN-mediated antiviral response.
Collapse
Affiliation(s)
- Lyn O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Stuart Perkins
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Amanda Williams
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Lin Eastaugh
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Amanda Phelps
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Josh Wu
- Biotechnology Section, Defence Research and Development Canada – Suffield, Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada
| | - Robert Phillpotts
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
41
|
Kirsch MI, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall HJ, Hust M, Dübel S. Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 2008; 8:66. [PMID: 18764933 PMCID: PMC2543005 DOI: 10.1186/1472-6750-8-66] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 09/02/2008] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus group. Several species of this family are also pathogenic to humans and are recognized as potential agents of biological warfare and terrorism. The objective of this work was the generation of recombinant antibodies for the detection of VEEV after a potential bioterrorism assault or an natural outbreak of VEEV. RESULTS In this work, human anti-VEEV single chain Fragments variable (scFv) were isolated for the first time from a human naïve antibody gene library using optimized selection processes. In total eleven different scFvs were identified and their immunological specificity was assessed. The specific detection of the VEEV strains TC83, H12/93 and 230 by the selected antibody fragments was proved. Active as well as formalin inactivated virus particles were recognized by the selected antibody fragments which could be also used for Western blot analysis of VEEV proteins and immunohistochemistry of VEEV infected cells. The anti-VEEV scFv phage clones did not show any cross-reactivity with Alphavirus species of the Western equine encephalitis virus (WEEV) and Eastern equine encephalitis virus (EEEV) antigenic complex, nor did they react with Chikungunya virus (CHIKV), if they were used as detection reagent. CONCLUSION For the first time, this study describes the selection of antibodies against a human pathogenic virus from a human naïve scFv antibody gene library using complete, active virus particles as antigen. The broad and sensitive applicability of scFv-presenting phage for the immunological detection and diagnosis of Alphavirus species was demonstrated. The selected antibody fragments will improve the fast identification of VEEV in case of a biological warfare or terroristic attack or a natural outbreak.
Collapse
Affiliation(s)
- Martina Inga Kirsch
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Birgit Hülseweh
- Armed Forces Scientific Institute for Protection Technologies – NBC Protection (WIS), Humboldtstraße 1, 29633, Munster, Germany
| | - Christoph Nacke
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Torsten Rülker
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Hans-Jürgen Marschall
- Armed Forces Scientific Institute for Protection Technologies – NBC Protection (WIS), Humboldtstraße 1, 29633, Munster, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Stefan Dübel
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| |
Collapse
|
42
|
Wu JQH, Barabé ND, Huang YM, Rayner GA, Christopher ME, Schmaltz FL. Pre- and post-exposure protection against Western equine encephalitis virus after single inoculation with adenovirus vector expressing interferon alpha. Virology 2007; 369:206-13. [PMID: 17761207 DOI: 10.1016/j.virol.2007.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 07/10/2007] [Accepted: 07/18/2007] [Indexed: 11/16/2022]
Abstract
Western equine encephalitis virus (WEEV) is a positive-sense, single-stranded RNA virus which is transmitted to equines and humans through mosquito bites. WEEV infects the central nervous system with severe complications and even death. There are no human vaccine and antiviral drugs. We investigated whether adenovirus-mediated expression of interferon alpha could be used for pre- and post-exposure protection against a lethal WEEV challenge in mice. A human adenoviral vector (Ad5-mIFNalpha) expressing mouse interferon alpha was constructed. We found that Ad5-mIFNalpha provided 100% protection against various WEEV strains in mice after a single intramuscular inoculation at 24 h, 48 h or 1 week before the challenge. When given as a single inoculation at 6 h after the challenge, Ad5-mIFNalpha delayed the progress of WEEV infection and provided about 60% protection. Our findings suggest that adenovirus-mediated expression of interferon alpha can be an alternative approach for the prevention and treatment of WEEV infection.
Collapse
Affiliation(s)
- Josh Q H Wu
- Chemical and Biological Defence Section, Defence Research and Development Canada - Suffield, Box 4000, Station Main, Medicine Hat, Alberta, Canada T1A 8K6.
| | | | | | | | | | | |
Collapse
|
43
|
Foo DGW, Alonso S, Chow VTK, Poh CL. Passive protection against lethal enterovirus 71 infection in newborn mice by neutralizing antibodies elicited by a synthetic peptide. Microbes Infect 2007; 9:1299-306. [PMID: 17890123 DOI: 10.1016/j.micinf.2007.06.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/28/2007] [Accepted: 06/05/2007] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) infections could lead to high mortalities and neither vaccine nor therapeutic treatment is available. We investigated vaccination with a synthetic peptide SP70 representing a neutralizing linear VP1 epitope of EV71 strain 41 (subgenogroup B4) and passive transfer of anti-SP70 antibodies to protect suckling Balb/c mice against EV71 infectivity. When the mouse anti-SP70 antisera with a neutralizing antibody titer of 1:32 were passively administered to one-day-old suckling mice which had been challenged with a lethal dose of 1000 TCID(50) per mouse, the neutralizing anti-SP70 antibodies were able to confer 80% in vivo protection. In contrast, suckling mice which did not receive any anti-SP70 antisera did not survive the viral challenge at day 21 postinfection. Histological examination and real-time RT-PCR assays revealed viral infiltration in small intestines of EV71-infected mice. Interestingly, anti-SP70 antibodies play a major role in the inhibition of EV71 replication in vivo and significantly reduced the viral titer. In conclusion, EV71-neutralizing antibodies elicited by the synthetic peptide SP70 were able to confer good in vivo passive protection against homologous and heterologous EV71 strains in suckling Balb/c mice.
Collapse
Affiliation(s)
- Damian Guang Wei Foo
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, MD4A, 5 Science Drive 2, Singapore 117597, Singapore
| | | | | | | |
Collapse
|