1
|
Hui J, Wang J, Wan Z, Cao Q, Dai B, Lou H, Zhu B. Anti-N-methyl-D-aspartate Receptor Encephalitis in People Living with HIV: Case Report and Literature Review. Neurol Ther 2024; 13:907-916. [PMID: 38530605 PMCID: PMC11136928 DOI: 10.1007/s40120-024-00594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
With the increase in the number of cases of autoimmune encephalitis (AE), the cerebrospinal fluid (CSF) of people living with HIV (PLWH) showing abnormal behavior, cognitive impairment or abnormal movements should be actively screened for the antibody panel of AE. Early recognition and treatment can prevent severe seizures or coma and markedly improve the prognosis of patients. The first-line immunotherapy for AE includes intravenous methylprednisolone and immunoglobulin. However, whether long-time immunosuppressive maintenance therapy is needed is debated. For PLWH, immunosuppressive therapy and even steroids could be more challenging. Here, we review and summarize the clinical characteristics often reported cases and report one case from our center to improve the diagnosis and treatment of anti-N-methyl-D-aspartate receptor encephalitis in PLWH.
Collapse
Affiliation(s)
- Jiangjin Hui
- Department of Neurology, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, 315826, China
| | - Jinhua Wang
- Department of Neurology, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, 315826, China
| | - Zhikai Wan
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Cao
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bohao Dai
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haiyan Lou
- Radiology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Biao Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
3
|
Balaji S, Chakraborty R, Aggarwal S. Neurological Complications Caused by Human Immunodeficiency Virus (HIV) and Associated Opportunistic Co-infections: A Review on their Diagnosis and Therapeutic Insights. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:284-305. [PMID: 37005520 DOI: 10.2174/1871527322666230330083708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 04/04/2023]
Abstract
Neurocognitive disorders associated with human immunodeficiency virus (HIV) infected individuals increase the risk of mortality and morbidity that remain a prevalent clinical complication even in the antiretroviral therapy era. It is estimated that a considerable number of people in the HIV community are developing neurological complications at their early stages of infection. The daily lives of people with chronic HIV infections are greatly affected by cognitive declines such as loss of attention, learning, and executive functions, and other adverse conditions like neuronal injury and dementia. It has been found that the entry of HIV into the brain and subsequently crossing the blood-brain barrier (BBB) causes brain cell damage, which is the prerequisite for the development of neurocognitive disorders. Besides the HIV replication in the central nervous system and the adverse effects of antiretroviral therapy on the BBB, a range of opportunistic infections, including viral, bacterial, and parasitic agents, augment the neurological complications in people living with HIV (PLHIV). Given the immuno-compromised state of PLHIV, these co-infections can present a wide range of clinical syndromes with atypical manifestations that pose challenges in diagnosis and clinical management, representing a substantial burden for the public health system. Therefore, the present review narrates the neurological complications triggered by HIV and their diagnosis and treatment options. Moreover, coinfections that are known to cause neurological disorders in HIV infected individuals are highlighted.
Collapse
Affiliation(s)
- Sivaraman Balaji
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| | - Rohan Chakraborty
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Aggarwal
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
4
|
Huang C, Hoque T, Bendayan R. Antiretroviral drugs efavirenz, dolutegravir and bictegravir dysregulate blood-brain barrier integrity and function. Front Pharmacol 2023; 14:1118580. [PMID: 36969875 PMCID: PMC10030948 DOI: 10.3389/fphar.2023.1118580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The implementation of combined antiretroviral therapy (cART) significantly reduces the mortality associated with human immunodeficiency virus (HIV) infection. However, complications such as HIV-associated neurocognitive disorders (HAND) remain a major health concern. We hypothesized that the toxicity of antiretroviral drugs (ARVs) may contribute to the pathogenesis of HAND in addition to cerebral viral infection. To address this question, we evaluated the impact of HIV integrase strand transfer inhibitors (dolutegravir and bictegravir), and a non-nucleoside reverse transcriptase inhibitor (efavirenz) on the integrity and permeability of various human and mouse blood-brain barrier (BBB) models, in vitro, ex vivo and in vivo. We observed a significant downregulation of tight junction proteins (TJP1/Tjp1, OCLN/Ocln and CLDN5/Cldn5), upregulation of proinflammatory cytokines (IL6/Il6, IL8/Il8, IL1β/Il1β) and NOS2/Nos2, and alteration of membrane-associated transporters (ABCB1/Abcb1a, ABCG2/Abcg2 and SLC2A1/Slc2a1) mRNA expression, in vitro, in human (hCMEC/D3) and primary cultures of mouse microvascular endothelial cells, and ex vivo in isolated mouse brain capillaries treated with efavirenz, dolutegravir, and/or bictegravir. We also observed a significant increase in BBB permeability in vivo following treatment with the selected ARVs in mice applying NaF permeability assay. Taken together, these results suggest that clinically recommended integrase strand transfer inhibitors such as dolutegravir may exacerbate HIV-associated cerebrovascular pathology, which may contribute to the associated short-term neuropsychiatric side effects and the high incidence of mild forms of HAND reported in the clinical setting.
Collapse
|
5
|
Mutengo KH, Masenga SK, Mwesigwa N, Patel KP, Kirabo A. Hypertension and human immunodeficiency virus: A paradigm for epithelial sodium channels? Front Cardiovasc Med 2022; 9:968184. [PMID: 36093171 PMCID: PMC9452753 DOI: 10.3389/fcvm.2022.968184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a risk factor for end organ damage and death and is more common in persons with HIV compared to the general population. Several mechanisms have been studied in the pathogenesis of hypertension. Current evidence suggests that the epithelial sodium channel (ENaC) plays a key role in regulating blood pressure through the transport of sodium and water across membranes in the kidney tubules, resulting in retention of sodium and water and an altered fluid balance. However, there is scarcity of information that elucidates the role of ENaC in HIV as it relates to increasing the risk for development or pathogenesis of hypertension. This review summarized the evidence to date implicating a potential role for altered ENaC activity in contributing to hypertension in patients with HIV.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Naome Mwesigwa
- Department of Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo,
| |
Collapse
|
6
|
de Almeida SM, Kulik A, Malaquias MAS, Nagashima S, de Paula CBV, Muro MD, de Noronha L. The Impact of Paracoccidioides spp Infection on Central Nervous System Cell Junctional Complexes. Mycopathologia 2022; 187:567-577. [PMID: 35922705 DOI: 10.1007/s11046-022-00653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Paracoccidioidomycosis (PCM), a systemic mycosis caused by the fungus Paracoccidioides spp. is the most prevalent fungal infection among immunocompetent patients in Latin America. The estimated frequency of central nervous system (CNS) involvement among the human immunodeficiency virus (HIV)/PCM-positive population is 2.5%. We aimed to address the impact of neuroparacoccidioidomycosis (NPCM) and HIV/NPCM co-infection on the tight junctions (TJ) and adherens junction (AJ) proteins of the CNS. Four CNS formalin-fixed paraffin-embedded (FFPE) tissue specimens were studied: NPCM, NPCM/HIV co-infection, HIV-positive without opportunistic CNS infection, and normal brain autopsy (negative control). Immunohistochemistry was used to analyze the endothelial cells and astrocytes expressions of TJ markers: claudins (CLDN)-1, -3, -5 and occludin; AJ markers: β-catenin and E-cadherin; and pericyte marker: alpha-smooth muscle actin. FFPE CNS tissue specimens were analyzed using the immunoperoxidase assay. CLDN-5 expression in the capillaries of the HIV/NPCM coinfected tissues (mixed clinical form of PCM) was lower than that in the capillaries of the HIV or NPCM monoinfected (chronic clinical form of PCM) tissues. A marked decrease in CLDN-5 expression and a compensatory increase in CLDN-1 expression in the NPCM/HIV co-infection tissue samples was observed. The authors suggest that Paracoccidioides spp. crosses the blood-brain barrier through paracellular pathway, owing to the alteration in the CLDN expression, or inside the macrophages (Trojan horse).
Collapse
Affiliation(s)
- Sérgio Monteiro de Almeida
- Medical Pathology Department, School of Medicine, Universidade Federal do Paraná, Curitiba, Paraná, Brazil. .,Neuroinfection Outclinic, Hospital de Clinicas, Universidade Federal do Paraná, Rua Padre Camargo 280, Curitiba, Paraná, 80060-240, Brazil.
| | - Amanda Kulik
- Medical Pathology Department, School of Medicine, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Seigo Nagashima
- Laboratório de Patologia Experimental, Escola de Medicina- Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Caroline Busatta Vaz de Paula
- Laboratório de Patologia Experimental, Escola de Medicina- Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Marisol Dominguez Muro
- Micology Laboratory, Hospital de Clinicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lucia de Noronha
- Medical Pathology Department, School of Medicine, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Laboratório de Patologia Experimental, Escola de Medicina- Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Sharma AL, Wang H, Zhang Z, Millien G, Tyagi M, Hongpaisan J. HIV Promotes Neurocognitive Impairment by Damaging the Hippocampal Microvessels. Mol Neurobiol 2022; 59:4966-4986. [PMID: 35665894 PMCID: PMC10071835 DOI: 10.1007/s12035-022-02890-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Current evidence suggests that mild cerebrovascular changes could induce neurodegeneration and contribute to HIV-associated neurocognitive disease (HAND) in HIV patients. We investigated both the quantitative and qualitative impact of HIV infection on brain microvessels, especially on hippocampal microvessels, which are crucial for optimal O2 supply, and thus for maintaining memory and cognitive abilities. The results obtained using cultured human brain microvascular endothelial cells (HBMEC) were reproduced using a suitable mouse model and autopsied human HIV hippocampus. In HBMEC, we found significantly higher oxidative stress-dependent apoptotic cell loss following 5 h of treatment of GST-Tat (1 µg/ml) compared to GST (1 µg/ml) control. We noticed complete recovery of HBMEC cells after 24 h of GST-Tat treatment, due to temporal degradation or inactivation of GST-Tat. Interestingly, we found a sustained increase in mitochondrial oxidative DNA damage marker 8-OHdG, as well as an increase in hypoxia-inducible factor hypoxia-inducible factor-1α (HIF-1α). In our mouse studies, upon short-term injection of GST-Tat, we found the loss of small microvessels (mostly capillaries) and vascular endothelial growth factor (VEGF), but not large microvessels (arterioles and venules) in the hippocampus. In addition to capillary loss, in the post-mortem HIV-infected human hippocampus, we observed large microvessels with increased wall cells and perivascular tissue degeneration. Together, our data show a crucial role of Tat in inducing HIF-1α-dependent inhibition of mitochondrial transcriptional factor A (TFAM) and dilated perivascular space. Thus, our results further define the underlying molecular mechanism promoting mild cerebrovascular disease, neuropathy, and HAND pathogenesis in HIV patients.
Collapse
Affiliation(s)
- Adhikarimayum Lakhikumar Sharma
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Guetchyn Millien
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| |
Collapse
|
8
|
Kelentse N, Moyo S, Molebatsi K, Morerinyane O, Bitsang S, Bareng OT, Lechiile K, Leeme TB, Lawrence DS, Kasvosve I, Musonda R, Mosepele M, Harrison TS, Jarvis JN, Gaseitsiwe S. Reversal of CSF HIV-1 Escape during Treatment of HIV-Associated Cryptococcal Meningitis in Botswana. Biomedicines 2022; 10:1399. [PMID: 35740421 PMCID: PMC9219642 DOI: 10.3390/biomedicines10061399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebrospinal fluid (CSF) viral escape has been poorly described among people with HIV-associated cryptococcal meningitis. We determined the prevalence of CSF viral escape and HIV-1 viral load (VL) trajectories in individuals treated for HIV-associated cryptococcal meningitis. A retrospective longitudinal study was performed using paired CSF and plasma collected prior to and during the antifungal treatment of 83 participants recruited at the Botswana site of the phase-3 AMBITION-cm trial (2018−2021). HIV-1 RNA levels were quantified then CSF viral escape (CSF HIV-1 RNA ≥ 0.5 log10 higher than plasma) and HIV-1 VL trajectories were assessed. CSF viral escape occurred in 20/62 (32.3%; 95% confidence interval [CI]: 21.9−44.6%), 13/52 (25.0%; 95% CI: 15.2−38.2%) and 1/33 (3.0%; 95% CI: 0.16−15.3%) participants at days 1, 7 and 14 respectively. CSF viral escape was significantly lower on day 14 compared to days 1 and 7, p = 0.003 and p = 0.02, respectively. HIV-1 VL decreased significantly from day 1 to day 14 post antifungal therapy in the CSF but not in the plasma (β = −0.47; 95% CI: −0.69 to −0.25; p < 0.001). CSF viral escape is high among individuals presenting with HIV-associated cryptococcal meningitis; however, antifungal therapy may reverse this, highlighting the importance of rapid initiation of antifungal therapy in these patients.
Collapse
Affiliation(s)
- Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kesaobaka Molebatsi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Statistics, Faculty of Social Sciences, University of Botswana, Gaborone, Botswana
| | - Olorato Morerinyane
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
| | - Shatho Bitsang
- Botswana-University of Maryland School of Medicine Health Initiative, Gaborone, Botswana;
| | - Ontlametse T. Bareng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Kwana Lechiile
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
| | - Tshepo B. Leeme
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
| | - David S. Lawrence
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mosepele Mosepele
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Thomas S. Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Joseph N. Jarvis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
9
|
Schreiner TG, Romanescu C, Popescu BO. The Blood-Brain Barrier-A Key Player in Multiple Sclerosis Disease Mechanisms. Biomolecules 2022; 12:538. [PMID: 35454127 PMCID: PMC9025898 DOI: 10.3390/biom12040538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, multiple sclerosis (MS), a chronic neuroinflammatory disease with severe personal and social consequences, has undergone a steady increase in incidence and prevalence rates worldwide. Despite ongoing research and the development of several novel therapies, MS pathology remains incompletely understood, and the prospect for a curative treatment continues to be unpromising in the near future. A sustained research effort, however, should contribute to a deeper understanding of underlying disease mechanisms, which will undoubtedly yield improved results in drug development. In recent years, the blood-brain barrier (BBB) has increasingly become the focus of many studies as it appears to be involved in both MS disease onset and progression. More specifically, neurovascular unit damage is believed to be involved in the critical process of CNS immune cell penetration, which subsequently favors the development of a CNS-specific immune response, leading to the classical pathological and clinical hallmarks of MS. The aim of the current narrative review is to merge the relevant evidence on the role of the BBB in MS pathology in a comprehensive and succinct manner. Firstly, the physiological structure and functions of the BBB as a component of the more complex neurovascular unit are presented. Subsequently, the authors review the specific alteration of the BBB encountered in different stages of MS, focusing on both the modifications of BBB cells in neuroinflammation and the CNS penetration of immune cells. Finally, the currently accepted theories on neurodegeneration in MS are summarized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Constantin Romanescu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
10
|
Targeting tight junctions to fight against viral neuroinvasion. Trends Mol Med 2021; 28:12-24. [PMID: 34810086 DOI: 10.1016/j.molmed.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
The clinical impact of viral neuroinvasion on the central nervous system (CNS) ranges from barely detectable to deadly, including acute and chronic outcomes. Developing innovative therapeutic strategies is important to mitigate virus-induced neurological and psychiatric disorders. A key gatekeeper to the CNS is the neurovascular unit (NVU), a major obstacle to viral neuroinvasion and antiviral therapies. The NVU isolates the brain from the blood through firm sealing operated by the tight junctions (TJs) of endothelial cells. Here, we make the thought-provoking assumption that TJs can be targets to prevent or treat viral neuroinvasion and resulting disorders. This review aims at defining the conceptual diverse mode of actions of such approaches, evaluates their feasibility, and discusses future challenges in the field.
Collapse
|
11
|
Rivera-Ortiz J, Pla-Tenorio J, Cruz ML, Colon K, Perez-Morales J, Rodriguez JA, Martinez-Sicari J, Noel RJ. Blockade of beta adrenergic receptors protects the blood brain barrier and reduces systemic pathology caused by HIV-1 Nef protein. PLoS One 2021; 16:e0259446. [PMID: 34784367 PMCID: PMC8594844 DOI: 10.1371/journal.pone.0259446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Combination antiretroviral therapy (cART) targets viral replication, but early viral protein production by astrocytes may still occur and contribute to the progression of HIV-1 associated neurocognitive disorders and secondary complications seen in patients receiving cART. In prior work with our model, astrocytic HIV-1 Nef expression exhibits neurotoxic effects leading to neurological damage, learning impairment, and immune upregulation that induces inflammation in the lungs and small intestine (SI). In this follow-up study, we focus on the sympathetic nervous system (SNS) as the important branch for peripheral inflammation resulting from astrocytic Nef expression. Male and female Sprague Dawley rats were infused with transfected astrocytes to produce Nef. The rats were divided in four groups: Nef, Nef + propranolol, propranolol and naïve. The beta-adrenergic blocker, propranolol, was administered for 3 consecutive days, starting one day prior to surgery. Two days after the surgery, the rats were sacrificed, and then blood, brain, small intestine (SI), and lung tissues were collected. Levels of IL-1β were higher in both male and female rats, and treatment with propranolol restored IL-1β to basal levels. We observed that Nef expression decreased staining of the tight junction protein claudin-5 in brain tissue while animals co-treated with propranolol restored claudin-5 expression. Lungs and SI of rats in the Nef group showed histological signs of damage including larger Peyer's Patches, increased tissue thickness, and infiltration of immune cells; these findings were abrogated by propranolol co-treatment. Results suggest that interruption of the beta adrenergic signaling reduces the peripheral organ inflammation caused after Nef expression in astrocytes of the brain.
Collapse
Affiliation(s)
- Jocelyn Rivera-Ortiz
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Jessalyn Pla-Tenorio
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Krystal Colon
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Jaileene Perez-Morales
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Julio A. Rodriguez
- Cooper University Hospital Department of Orthopaedic Surgery, Camden, NJ, United States of America
| | - Jorge Martinez-Sicari
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
12
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
13
|
Synergistic Impairment of the Neurovascular Unit by HIV-1 Infection and Methamphetamine Use: Implications for HIV-1-Associated Neurocognitive Disorders. Viruses 2021; 13:v13091883. [PMID: 34578464 PMCID: PMC8473422 DOI: 10.3390/v13091883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The neurovascular units (NVU) are the minimal functional units of the blood-brain barrier (BBB), composed of endothelial cells, pericytes, astrocytes, microglia, neurons, and the basement membrane. The BBB serves as an important interface for immune communication between the brain and peripheral circulation. Disruption of the NVU by the human immunodeficiency virus-1 (HIV-1) induces dysfunction of the BBB and triggers inflammatory responses, which can lead to the development of neurocognitive impairments collectively known as HIV-1-associated neurocognitive disorders (HAND). Methamphetamine (METH) use disorder is a frequent comorbidity among individuals infected with HIV-1. METH use may be associated not only with rapid HIV-1 disease progression but also with accelerated onset and increased severity of HAND. However, the molecular mechanisms of METH-induced neuronal injury and cognitive impairment in the context of HIV-1 infection are poorly understood. In this review, we summarize recent progress in the signaling pathways mediating synergistic impairment of the BBB and neuronal injury induced by METH and HIV-1, potentially accelerating the onset or severity of HAND in HIV-1-positive METH abusers. We also discuss potential therapies to limit neuroinflammation and NVU damage in HIV-1-infected METH abusers.
Collapse
|
14
|
Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17:69. [PMID: 33208141 PMCID: PMC7672931 DOI: 10.1186/s12987-020-00230-3] [Citation(s) in RCA: 683] [Impact Index Per Article: 170.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier is playing a critical role in controlling the influx and efflux of biological substances essential for the brain’s metabolic activity as well as neuronal function. Thus, the functional and structural integrity of the BBB is pivotal to maintain the homeostasis of the brain microenvironment. The different cells and structures contributing to developing this barrier are summarized along with the different functions that BBB plays at the brain–blood interface. We also explained the role of shear stress in maintaining BBB integrity. Furthermore, we elaborated on the clinical aspects that correlate between BBB disruption and different neurological and pathological conditions. Finally, we discussed several biomarkers that can help to assess the BBB permeability and integrity in-vitro or in-vivo and briefly explain their advantages and disadvantages.
Collapse
Affiliation(s)
- Hossam Kadry
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Dept. of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Office 415, Rochester, MI, 48309, USA.
| |
Collapse
|
15
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
16
|
Nitrosative Stress Is Associated with Dopaminergic Dysfunction in the HIV-1 Transgenic Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:1375-1385. [PMID: 31230667 DOI: 10.1016/j.ajpath.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Advances in antiretroviral therapy have resulted in significantly decreased HIV-related mortality. HIV-associated neurocognitive disorders, however, continue to be a major problem in infected patients. The neuropathology underlying HIV-associated neurocognitive disorders has not been well characterized, and evidence suggests different contributing mechanisms. One potential mechanism is the induction of oxidative stress. Using the HIV-1 transgenic (Tg) rat model of HIV, we found increased striatal NADPH oxidase-4 and neuronal nitric oxide synthase expression in the adult (7- to 9-month-old) Tg rat compared with control rats but not in the young (1-month-old) Tg rats. This was accompanied by increased 3-nitrotyrosine (3-NT) immunostaining in the adult Tg rats, which worsened significantly in the old Tg rats (18 to 20 months old). There was, however, no concurrent induction of the antioxidant systems because there was no change in the expression of the nuclear factor-erythroid 2-related factor 2 and its downstream targets (thioredoxin and glutathione antioxidant systems). Colocalization of 3-NT staining with neurofilament proteins and evidence of decreased tyrosine hydroxylase and dopamine transporter expression in the old rats support dopaminergic involvement. We conclude that the HIV-1 Tg rat brain shows evidence of nitrosative stress without appropriate oxidation-reduction adaptation, whereas 3-NT modification of striatal neurofilament proteins likely points to the ensuing dopaminergic neuronal loss and dysfunction in the aging HIV-1 Tg rat.
Collapse
|
17
|
Qian Y, Che X, Jiang J, Wang Z. Mechanisms of Blood-Retinal Barrier Disruption by HIV-1. Curr HIV Res 2020; 17:26-32. [PMID: 30873925 DOI: 10.2174/1570162x17666190315163514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
It has been found that human immunodeficiency virus (HIV)-1 RNA or antigens can be detected in the intraocular tissues of HIV-1 patients even under effective highly active anti-retroviral therapy (HAART). In vivo, blood-retinal barrier (BRB) establishes a critical, physiological guardian against microbial invasion of the eye, but may be compromised in the presence of HIV-1. The envelope glycoprotein gp120 is exposed on the surface of the HIV envelope, essential for virus entry into cells by the attachment to specific cell surface receptors. The BRB disruption by glycoprotein gp120 has been widely recognized, which is toxic to human retinal epithelial cells (RPE) and umbilical vein endothelial cells (HUVEC). The present review elaborates on various mechanisms of BRB disruption induced by HIV gp120, which may represent potential targets for the prevention of ocular HIV complications in the future.
Collapse
Affiliation(s)
- Yiwen Qian
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Xin Che
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jing Jiang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Zhiliang Wang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Brain microstructural changes support cognitive deficits in HIV uninfected children born to HIV infected mothers. Brain Behav Immun Health 2020; 2:100039. [PMID: 34589830 PMCID: PMC8474176 DOI: 10.1016/j.bbih.2020.100039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Antiretroviral therapy (ART) is considered the most effective way to prevent perinatal transmission of human immunodeficiency virus (HIV). However, there is little knowledge about the effect of ART on the brain of HIV uninfected children born to HIV infected mothers (HUC). The current study evaluated the brain's microstructural integrity, and cognitive function in HUC compared to healthy children born to normal mothers (CHNM) and HIV infected children born to HIV infected mothers (HIC) to investigate the effect of in-utero exposure of ART on cerebral gray and white matter. Materials and methods Forty nine HIC, 12 HUC and 18 CHNM underwent neuropsychological (NP) assessment and a brain MRI. Diffusion tensor imaging (DTI) data was used to generate fractional anisotropy (FA) and mean diffusivity (MD) maps. Voxel wise comparison for FA and MD was performed between three groups using an analysis of covariance (ANCOVA) including age and sex as covariates, and correction for multiple comparisons (false discovery rate (FDR), p < 0.05 with minimum extended cluster size, 150 voxels). NP test scores were also compared between three groups using ANOVA with Post Hoc Bonferroni multiple comparison corrections (p < 0.05). Significantly changed FA and MD values in different brain regions in HIC and HUC compared to CHNM were used for correlation analysis with NP test scores using Pearson's correlation. Results HIC and HUC groups showed significantly decreased NP test scores in various domain compared to CHNM. Significantly lower NP test scores was observed in HIC than those of HUC. HIC showed decreased FA and increased MD in multiple brain sites as compared to both CHNM and HUC. Decreased FA along with both increased and decreased MD in different brain regions was present in HUC compared to CHNM. Both positive and negative correlation of altered FA and MD values from different brain regions in HIC and HUC with NP test scores was observed. Conclusion The presence of brain tissue changes and neurocognitive function deficit in absence of HIV infection in HUC indicates that ART may have a detrimental impact on the developing brain. The findings of the current study underscore the need for screening of ART exposed children for neurodevelopment and cognitive abnormalities at an early stage and call for access to early interventions, and nutritional and care programs.
Collapse
|
19
|
Leibrand CR, Paris JJ, Jones AM, Masuda QN, Halquist MS, Kim WK, Knapp PE, Kashuba ADM, Hauser KF, McRae M. HIV-1 Tat and opioids act independently to limit antiretroviral brain concentrations and reduce blood-brain barrier integrity. J Neurovirol 2019; 25:560-577. [PMID: 31102185 PMCID: PMC6750988 DOI: 10.1007/s13365-019-00757-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Poor antiretroviral penetration may contribute to human immunodeficiency virus (HIV) persistence within the brain and to neurocognitive deficits in opiate abusers. To investigate this problem, HIV-1 Tat protein and morphine effects on blood-brain barrier (BBB) permeability and drug brain penetration were explored using a conditional HIV-1 Tat transgenic mouse model. Tat and morphine effects on the leakage of fluorescently labeled dextrans (10-, 40-, and 70-kDa) into the brain were assessed. To evaluate effects on antiretroviral brain penetration, Tat+ and Tat- mice received three antiretroviral drugs (dolutegravir, abacavir, and lamivudine) with or without concurrent morphine exposure. Antiretroviral and morphine brain and plasma concentrations were determined by LC-MS/MS. Morphine exposure, and, to a lesser extent, Tat, significantly increased tracer leakage from the vasculature into the brain. Despite enhanced BBB breakdown evidenced by increased tracer leakiness, morphine exposure led to significantly lower abacavir concentrations within the striatum and significantly less dolutegravir within the hippocampus and striatum (normalized to plasma). P-glycoprotein, an efflux transporter for which these drugs are substrates, expression and function were significantly increased in the brains of morphine-exposed mice compared to mice not exposed to morphine. These findings were consistent with lower antiretroviral concentrations in brain tissues examined. Lamivudine concentrations were unaffected by Tat or morphine exposure. Collectively, our investigations indicate that Tat and morphine differentially alter BBB integrity. Morphine decreased brain concentrations of specific antiretroviral drugs, perhaps via increased expression of the drug efflux transporter, P-glycoprotein.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Quamrun N Masuda
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7569, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
20
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
21
|
Wang F, Cui Y, Shen X, Wang S, Yang GB. IL-17A and IL-17F repair HIV-1 gp140 damaged Caco-2 cell barriers by upregulating tight junction genes. Microbes Infect 2019; 21:393-400. [PMID: 30951887 DOI: 10.1016/j.micinf.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/04/2023]
Abstract
It is widely accepted that impairment of the intestinal epithelial barrier from HIV/AIDS contributes significantly to microbial translocation and systemic immune activation. Such factors present potential targets for novel treatments aimed toward a functional cure. However, the extracellular mechanisms of intestinal barrier repair are poorly understood. In the current study, we investigated the abilities of IL-17A and IL-17F to repair the damaged barrier caused by HIV-1 gp140 using Caco-2 monolayers. It was found that HIV-1 gp140 downregulated the expression of tight junction-associated genes and disrupted the barrier integrity of Caco-2 monolayers. However, IL-17A and IL-17F treatment reversed the HIV-1 gp140-induced barrier dysfunction by upregulating the expression of tight junction-associated genes, the combination of which resulted in a stronger induction of barrier repair. Furthermore, the effects of IL-17A and IL-17F were reduced by downregulation of Act1 with siRNA and inhibition of NF-κB and MAPK pathways with BAY11-7082 and U0126, respectively. These data indicated that the NF-κB and MAPK pathways are involved in the repair of barrier integrity mediated by IL-17A and IL-17F, and IL-17 pathways are potential targets for gut barrier restoration therapies during HIV/AIDS.
Collapse
Affiliation(s)
- Fengjie Wang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, PR China
| | - Yanfang Cui
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, PR China
| | - Xiuli Shen
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, PR China
| | - Shuhui Wang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, PR China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, PR China.
| |
Collapse
|
22
|
Infections: Viruses. IMAGING BRAIN DISEASES 2019. [PMCID: PMC7120597 DOI: 10.1007/978-3-7091-1544-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Xing Y, Shepherd N, Lan J, Li W, Rane S, Gupta SK, Zhang S, Dong J, Yu Q. MMPs/TIMPs imbalances in the peripheral blood and cerebrospinal fluid are associated with the pathogenesis of HIV-1-associated neurocognitive disorders. Brain Behav Immun 2017; 65:161-172. [PMID: 28487203 PMCID: PMC5793222 DOI: 10.1016/j.bbi.2017.04.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022] Open
Abstract
HIV-1-associated neurocognitive disorders (HAND) continue to be a major concern in the infected population, despite the widespread use of combined antiretroviral therapy (cART). Growing evidence suggests that an imbalance between matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs) contributes to the pathogenesis of HAND. In our present study, we examined protein levels and enzymatic activities of MMPs and TIMPs in both plasma and cerebrospinal fluid (CSF) samples from HIV-1 patients with or without HAND and HIV-1-negative controls. Imbalances between MMPs and TIMPs with distinct patterns were revealed in both the peripheral blood and CSF of HIV-1 patients, especially those with HAND. In the peripheral blood, the protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, and the enzymatic activities of MMP-2 and MMP-9 were increased in HIV-1 patients with or without HAND when compared with HIV-1-negative controls. The enzymatic activity of MMP-2, but not MMP-9, was further increased in plasma samples of HAND patients than that of HIV-1 patients without HAND. Notably, the ratio of MMP-2/TIMP-2 in plasma was significantly increased in HAND patients, not in patients without HAND. In the CSF, MMP-2 activity was increased, but the ratio of MMP-2/TIMP-2 was not altered. De novo induction and activation of MMP-9 in the CSF of HAND patients was particularly prominent. The imbalances between MMPs and TIMPs in the blood and CSF were related to the altered profiles of inflammatory cytokines/chemokines and monocyte activation in these individuals. In addition, plasma from HIV-1 patients directly induced integrity disruption of an in vitro blood-brain barrier (BBB) model, leading to increased BBB permeability and robust transmigration of monocytes/macrophages. These results indicate that imbalances between MMPs and TIMPs are involved in BBB disruption and are implicated in the pathogenesis of neurological disorders such as HAND in HIV-1 patients.
Collapse
Affiliation(s)
- Yanyan Xing
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, China; Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Nicole Shepherd
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jie Lan
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Wei Li
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sushmita Rane
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Samir K Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shanxiang Zhang
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Qigui Yu
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
24
|
4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) suppresses HIV1-gp120 mediated production of IL6 and IL8 but not CCL5. Sci Rep 2017; 7:8129. [PMID: 28811543 PMCID: PMC5557832 DOI: 10.1038/s41598-017-08332-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus (HIV) has been associated with inflammatory effects that may potentially result in neurodegenerative changes and a number of newer chemotherapeutic agents are being tested to ameliorate these effects. In this study, we investigated the anti-neuroinflammatory activity of a novel resveratrol analog 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) against HIV1-gp120 induced neuroinflammation in SVG astrocytes. SVG astrocytic cells were pretreated with TIMBD or resveratrol (RES) and then transfected with a plasmid encoding HIV1-gp120. The mRNA and protein expression levels of proinflammatory cytokines IL6, IL8 and CCL5 were determined. Protein expression levels of NF-κB, AP1, p-STAT3, p-AKT, p-IKKs and p-p38 MAPK were also determined. TIMBD inhibited gp120-induced RNA and protein expression levels of IL6 and IL8, but not that of CCL5 in SVG astrocytes. Moreover, TIMBD attenuated gp120-induced phosphorylation of cJUN, cFOS, STAT3, p38-MAPK, AKT and IKKs, and the nuclear translocation of NF-κB p-65 subunit whereas RES mostly affected NF-κB protein expression levels. Our results suggest that TIMBD exerts anti-inflammatory effects better than that of RES in SVG astrocytes in vitro. These effects seem to be regulated by AP1, STAT-3 and NF-κB signaling pathways. TIMBD may thus have a potential of being a novel agent for treating HIV1-gp120-mediated neuroinflammatory diseases.
Collapse
|
25
|
Sagar V, Pilakka-Kanthikeel S, Martinez PC, Atluri VSR, Nair M. Common gene-network signature of different neurological disorders and their potential implications to neuroAIDS. PLoS One 2017; 12:e0181642. [PMID: 28792504 PMCID: PMC5549695 DOI: 10.1371/journal.pone.0181642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
The neurological complications of AIDS (neuroAIDS) during the infection of human immunodeficiency virus (HIV) are symptomized by non-specific, multifaceted neurological conditions and therefore, defining a specific diagnosis/treatment mechanism(s) for this neuro-complexity at the molecular level remains elusive. Using an in silico based integrated gene network analysis we discovered that HIV infection shares convergent gene networks with each of twelve neurological disorders selected in this study. Importantly, a common gene network was identified among HIV infection, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and age macular degeneration. An mRNA microarray analysis in HIV-infected monocytes showed significant changes in the expression of several genes of this in silico derived common pathway which suggests the possible physiological relevance of this gene-circuit in driving neuroAIDS condition. Further, this unique gene network was compared with another in silico derived novel, convergent gene network which is shared by seven major neurological disorders (Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Age Macular Degeneration, Amyotrophic Lateral Sclerosis, Vascular Dementia, and Restless Leg Syndrome). These networks differed in their gene circuits; however, in large, they involved innate immunity signaling pathways, which suggests commonalities in the immunological basis of different neuropathogenesis. The common gene circuits reported here can provide a prospective platform to understand how gene-circuits belonging to other neuro-disorders may be convoluted during real-time neuroAIDS condition and it may elucidate the underlying-and so far unknown-genetic overlap between HIV infection and neuroAIDS risk. Also, it may lead to a new paradigm in understanding disease progression, identifying biomarkers, and developing therapies.
Collapse
Affiliation(s)
- Vidya Sagar
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - S. Pilakka-Kanthikeel
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Paola C. Martinez
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - V. S. R. Atluri
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - M. Nair
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
26
|
Maubert ME, Wigdahl B, Nonnemacher MR. Opinion: Inhibition of Blood-Brain Barrier Repair as a Mechanism in HIV-1 Disease. Front Neurosci 2017; 11:228. [PMID: 28491017 PMCID: PMC5405129 DOI: 10.3389/fnins.2017.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
27
|
Gene expression patterns associated with neurological disease in human HIV infection. PLoS One 2017; 12:e0175316. [PMID: 28445538 PMCID: PMC5405951 DOI: 10.1371/journal.pone.0175316] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 12/01/2022] Open
Abstract
The pathogenesis and nosology of HIV-associated neurological disease (HAND) remain incompletely understood. Here, to provide new insight into the molecular events leading to neurocognitive impairments (NCI) in HIV infection, we analyzed pathway dysregulations in gene expression profiles of HIV-infected patients with or without NCI and HIV encephalitis (HIVE) and control subjects. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analyses in conjunction with the Molecular Signatures Database collection of canonical pathways (MSigDb). We analyzed pathway dysregulations in gene expression profiles of patients from the National NeuroAIDS Tissue Consortium (NNTC), which consists of samples from 3 different brain regions, including white matter, basal ganglia and frontal cortex of HIV-infected and control patients. While HIVE is characterized by widespread, uncontrolled inflammation and tissue damage, substantial gene expression evidence of induction of interferon (IFN), cytokines and tissue injury is apparent in all brain regions studied, even in the absence of NCI. Various degrees of white matter changes were present in all HIV-infected subjects and were the primary manifestation in patients with NCI in the absence of HIVE. In particular, NCI in patients without HIVE in the NNTC sample is associated with white matter expression of chemokines, cytokines and β-defensins, without significant activation of IFN. Altogether, the results identified distinct pathways differentially regulated over the course of neurological disease in HIV infection and provide a new perspective on the dynamics of pathogenic processes in the course of HIV neurological disease in humans. These results also demonstrate the power of the systems biology analyses and indicate that the establishment of larger human gene expression profile datasets will have the potential to provide novel mechanistic insight into the pathogenesis of neurological disease in HIV infection and identify better therapeutic targets for NCI.
Collapse
|
28
|
Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:141-153. [PMID: 28450047 DOI: 10.1016/j.bbamem.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Elizabeth I Tang
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ying Gao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Tito T Jesus
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Darren S Chu
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
29
|
Liu Z, Qiao L, Zhang Y, Zang Y, Shi Y, Liu K, Zhang X, Lu X, Yuan L, Su B, Zhang T, Wu H, Chen D. ASPP2 Plays a Dual Role in gp120-Induced Autophagy and Apoptosis of Neuroblastoma Cells. Front Neurosci 2017; 11:150. [PMID: 28392757 PMCID: PMC5364170 DOI: 10.3389/fnins.2017.00150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/09/2017] [Indexed: 02/02/2023] Open
Abstract
HIV invasion of the central nervous system (CNS) in the majority of patients infected with HIV-1, leads to dysfunction and injury within the CNS, showing a variety of neurological symptoms which was broadly termed HIV-associated neurocognitive disorder (HAND). But the molecular mechanisms are not completely understood. It has been suggested that apoptosis and autophagic dysfunction in neurons may play an important role in the development of HAND. Previous studies have indicated that p53 may be involved in the onset of neurological disorder in AIDS. Apoptosis-stimulating protein of p53-2 (ASPP2), a p53-binding protein with specific function of inducing p53, has been reported to modulate autophagy. In the present study, we observed that gp120 induces autophagy and apoptosis in SH-SY5Y neuroblastoma cells. Adenovirus-mediated overexpression of ASPP2 significantly inhibited autophagy and apoptosis induced by low dose of gp120 protein (50 ng/mL), but induced autophagy and apoptosis when treated by high dose of gp120 protein (200 ng/mL). Further, ASPP2 knockdown attenuated autophagy and apoptosis induced by gp120. Conclusion: ASPP2 had different effects on the autophagy and apoptosis of neurons induced by different concentration of gp120 protein. It may be a potential therapeutic agent for HAND through modulating autophagy and apoptosis in CNS.
Collapse
Affiliation(s)
- Zhiying Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical UniversityBeijing, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Luxin Qiao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Yulin Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Yunjing Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University Qingdao, China
| | - Ying Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Kai Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Xin Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Xiaofan Lu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Lin Yuan
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China; Organ Transplantation Center, The Affiliated Hospital of Qingdao UniversityQingdao, China
| |
Collapse
|
30
|
Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A. An Overview of Human Immunodeficiency Virus Type 1-Associated Common Neurological Complications: Does Aging Pose a Challenge? J Alzheimers Dis 2017; 60:S169-S193. [PMID: 28800335 PMCID: PMC6152920 DOI: 10.3233/jad-170473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With increasing survival of patients infected with human immunodeficiency virus type 1 (HIV-1), the manifestation of heterogeneous neurological complications is also increasing alarmingly in these patients. Currently, more than 30% of about 40 million HIV-1 infected people worldwide develop central nervous system (CNS)-associated dysfunction, including dementia, sensory, and motor neuropathy. Furthermore, the highly effective antiretroviral therapy has been shown to increase the prevalence of mild cognitive functions while reducing other HIV-1-associated neurological complications. On the contrary, the presence of neurological disorder frequently affects the outcome of conventional HIV-1 therapy. Although, both the children and adults suffer from the post-HIV treatment-associated cognitive impairment, adults, especially depending on the age of disease onset, are more prone to CNS dysfunction. Thus, addressing neurological complications in an HIV-1-infected patient is a delicate balance of several factors and requires characterization of the molecular signature of associated CNS disorders involving intricate cross-talk with HIV-1-derived neurotoxins and other cellular factors. In this review, we summarize some of the current data supporting both the direct and indirect mechanisms, including neuro-inflammation and genome instability in association with aging, leading to CNS dysfunction after HIV-1 infection, and discuss the potential strategies addressing the treatment or prevention of HIV-1-mediated neurotoxicity.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College of Cornell University, NY, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
31
|
Cunill V, Arboleya S, Jiménez MDLR, Campins A, Herbera P, Mestre LL, Clemente A, Barceló MI, Leyes M, Canellas F, Julià MR. Neuronal surface antibodies in HIV-infected patients with isolated psychosis. J Neuroimmunol 2016; 301:49-52. [PMID: 27836183 DOI: 10.1016/j.jneuroim.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Neuronal surface antibodies (NSA) involved in autoimmune encephalitis (AE) have been related to relapses in HVS encephalitis. Their role in non-encephalitic psychosis is controversial. We previously reported an HIV-infected patient, NSA-positive, only presenting psychosis. Therefore, we determined the NSA prevalence in a prospective cohort of 22 HIV-positive patients with psychosis and we analyzed the frequency of HIV infection among NSA tested patients due to AE suspicion. We found no NSA in the prospective cohort. In the retrospective analysis, 22% of NSA-positive versus 4.6% of negative patients were HIV-positive. Wider studies are required to clarify the relationship between NSA and HIV infection.
Collapse
Affiliation(s)
- Vanessa Cunill
- Department of Immunology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain
| | - Susana Arboleya
- Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain; Faculty of Medicine, Universitat de Barcelona, Carrer de Casanova 143, 08036 Barcelona, Spain
| | - Maria de Los Reyes Jiménez
- Department of Immunology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain.
| | - Antoni Campins
- Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain; Department of Internal Medicine, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain
| | - Patricia Herbera
- Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain; Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain
| | - LLuïsa Mestre
- Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain; Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain
| | - Antonio Clemente
- Department of Immunology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain
| | - Maria Inés Barceló
- Department of Neurology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain
| | - Maria Leyes
- Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain; Department of Internal Medicine, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain
| | - Francesca Canellas
- Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain; Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain
| | - Maria Rosa Julià
- Department of Immunology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120, Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain
| |
Collapse
|
32
|
Qian YW, Li C, Jiang AP, Ge S, Gu P, Fan X, Li TS, Jin X, Wang JH, Wang ZL. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability. J Biol Chem 2016; 291:22977-22987. [PMID: 27605665 DOI: 10.1074/jbc.m116.744615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 11/06/2022] Open
Abstract
Approximately 70% of HIV-1 infected patients acquire ocular opportunistic infections and manifest eye disorders during the course of their illness. The mechanisms by which pathogens invade the ocular site, however, are unclear. Under normal circumstances, vascular endothelium and retinal pigment epithelium (RPE), which possess a well developed tight junction complex, form the blood-retinal barrier (BRB) to prevent pathogen invasion. We hypothesize that disruption of the BRB allows pathogen entry into ocular sites. The hypothesis was tested using in vitro models. We discovered that human RPE cells could bind to either HIV-1 gp120 glycoproteins or HIV-1 viral particles. Furthermore, the binding was mediated by dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) expressed on RPE cells. Upon gp120 binding to DC-SIGN, cellular NF-κB signaling was triggered, leading to the induction of matrix metalloproteinases, which subsequently degraded tight junction proteins and disrupted the BRB integrity. DC-SIGN knockdown or prior blocking with a specific antibody abolished gp120-induced matrix metalloproteinase expression and reduced the degradation of tight junction proteins. This study elucidates a novel mechanism by which HIV, type 1 invades ocular tissues and provides additional insights into the translocation or invasion process of ocular complication-associated pathogens.
Collapse
Affiliation(s)
- Yi-Wen Qian
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chuan Li
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ai-Ping Jiang
- the Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology and
| | - Shengfang Ge
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ping Gu
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xianqun Fan
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Tai-Sheng Li
- the Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xia Jin
- the Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology and.,Viral Disease and Vaccine Translational Research Unit and Vaccine Center, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jian-Hua Wang
- the Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology and
| | - Zhi-Liang Wang
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China,
| |
Collapse
|
33
|
Arboleya S, Clemente A, Deng S, Bedmar M, Salvador I, Herbera P, Cunill V, Vives-Bauza C, Haro JM, Canellas F, Julià MR. Anti-NMDAR antibodies in new-onset psychosis. Positive results in an HIV-infected patient. Brain Behav Immun 2016; 56:56-60. [PMID: 26996305 DOI: 10.1016/j.bbi.2016.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 01/10/2023] Open
Abstract
The role of neuronal surface autoantibodies (NSAs) in non-encephalitic psychosis is of recent and controversial interest. Most of the studies relating NSAs with psychosis are retrospective and only focused on the N-methyl-d-aspartate glutamate receptor (NMDAR). Our goal was to evaluate the prevalence of IgG antibodies against the NMDAR NR1 subunit (NMDAR-Abs) along with five additional NSAs in 61 first psychotic episode patients and 47 matched controls. We found two patients positive for NMDAR-Abs (3.3%). One of them was eventually considered to have been misdiagnosed and reclassified as encephalitis. The other met the criteria for bipolar I disorder, presented no neurological symptoms and had a comorbid HIV infection of vertical transmission. This is the first reported case of an HIV-infected patient with psychosis associated with NSAs. This study shows that patients presenting with clinically incomplete forms of anti-NMDAR encephalitis, with predominant or isolated psychiatric symptoms, can remain undetected if no ancillary tests are performed. To improve patient diagnosis and treatment of individuals with a first psychotic episode, more detailed neurological examinations might be needed. Further studies are required to better clarify the role of NSAs in the neuropsychiatric effects of HIV infection.
Collapse
Affiliation(s)
- Susana Arboleya
- Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain; Faculty of Medicine, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain.
| | - Antonio Clemente
- Department of Immunology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain
| | - Savannah Deng
- Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain
| | - Marta Bedmar
- Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain
| | - Isabel Salvador
- Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain
| | - Patricia Herbera
- Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain
| | - Vanessa Cunill
- Department of Immunology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain
| | - Cristòfol Vives-Bauza
- Research Unit, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain
| | - Josep Maria Haro
- Parc Sanitari Sant Joan de Déu (PSSJD), CIBERSAM, C/Antoni Pujadas 42, 08830 Sant Boi de Llobregat, Barcelona, Spain; Faculty of Medicine, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Francesca Canellas
- Department of Psychiatry, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain
| | - Maria Rosa Julià
- Department of Immunology, Hospital Universitari Son Espases, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain; Institut d'Investigacio Sanitaria de Palma (IdISPa), Spain
| |
Collapse
|
34
|
Liu H, Xu E, Liu J, Xiong H. Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders. Brain Sci 2016; 6:brainsci6030023. [PMID: 27455335 PMCID: PMC5039452 DOI: 10.3390/brainsci6030023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1)-associated neurocognitive disorders (HAND). Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum), which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis.
Collapse
Affiliation(s)
- Han Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Enquan Xu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Jianuo Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
35
|
McRae M. HIV and viral protein effects on the blood brain barrier. Tissue Barriers 2016; 4:e1143543. [PMID: 27141423 PMCID: PMC4836474 DOI: 10.1080/21688370.2016.1143543] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022] Open
Abstract
The blood brain barrier (BBB) plays a critical role in the normal physiology of the central nervous system (CNS) by regulating what crosses from the periphery into the brain. Damage to the BBB or alterations in transport systems may mediate the pathogenesis of many CNS diseases, including HIV-associated CNS dysfunction. HIV-1 infection can result in neuropathologic changes in about one half of infected individuals and also can result in damage to the BBB. HIV-1 and the HIV-1 viral proteins, Tat and gp120, cause alterations in the integrity and function of the BBB through both paracellular and transcellular mechanisms. The current review discusses HIV and viral protein-mediated injury to the BBB with a focus on the effects on tight junction proteins, barrier permeability, and drug efflux proteins.
Collapse
Affiliation(s)
- MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Sciences; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
36
|
Bertrand L, Nair M, Toborek M. Solving the Blood-Brain Barrier Challenge for the Effective Treatment of HIV Replication in the Central Nervous System. Curr Pharm Des 2016; 22:5477-5486. [PMID: 27464720 PMCID: PMC7219022 DOI: 10.2174/1381612822666160726113001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Recent decades mark a great progress in the treatment of HIV infection. What was once a deadly disease is now a chronic infection. However, HIV-infected patients are prone to develop comorbidities, which severely affect their daily functions. For example, a large population of patients develop a variety of neurological and cognitive complications, called HIV associated neurological disorders (HAND). Despite efficient repression of viral replication in the periphery, evidence shows that the virus can remain active in the central nervous system (CNS). This low level of replication is believed to result in a progression of neurocognitive dysfunction in infected individuals. Insufficient viral inhibition in the brain results from the inability of several treatment drugs in crossing the blood-brain barrier (BBB) and reaching therapeutic concentrations in the CNS. The current manuscript discusses several strategies that are being developed to enable therapeutics to cross the BBB, including bypassing BBB, inhibition of efflux transporters, the use of active transporters present at the BBB, and nanotechnology. The increased concentration of therapeutics in the CNS is desirable to prevent viral replication; however, potential side effects of anti-retroviral drugs need also to be taken into consideration.
Collapse
Affiliation(s)
| | | | - Michal Toborek
- University of Miami. Miller School of Medicine, Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
37
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
38
|
Pandhare J, Dash S, Jones B, Villalta F, Dash C. A Novel Role of Proline Oxidase in HIV-1 Envelope Glycoprotein-induced Neuronal Autophagy. J Biol Chem 2015; 290:25439-51. [PMID: 26330555 DOI: 10.1074/jbc.m115.652776] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/17/2022] Open
Abstract
Proline oxidase (POX) catalytically converts proline to pyrroline-5-carboxylate. This catabolic conversion generates reactive oxygen species (ROS) that triggers cellular signaling cascades including autophagy and apoptosis. This study for the first time demonstrates a role of POX in HIV-1 envelope glycoprotein (gp120)-induced neuronal autophagy. HIV-1 gp120 is a neurotoxic factor and is involved in HIV-1-associated neurological disorders. However, the mechanism of gp120-mediated neurotoxicity remains unclear. Using SH-SY5Y neuroblastoma cells as a model, this study demonstrates that gp120 treatment induced POX expression and catalytic activity. Concurrently, gp120 also increased intracellular ROS levels. However, increased ROS had a minimal effect on neuronal apoptosis. Further investigation indicated that the immediate cellular response to increased ROS paralleled with induction of autophagy markers, beclin-1 and LC3-II. These data lead to the hypothesis that neuronal autophagy is activated as a cellular protective response to the toxic effects of gp120. A direct and functional role of POX in gp120-mediated neuronal autophagy was examined by inhibition and overexpression studies. Inhibition of POX activity by a competitive inhibitor "dehydroproline" decreased ROS levels concomitant with reduced neuronal autophagy. Conversely, overexpression of POX in neuronal cells increased ROS levels and activated ROS-dependent autophagy. Mechanistic studies suggest that gp120 induces POX by targeting p53. Luciferase reporter assays confirm that p53 drives POX transcription. Furthermore, data demonstrate that gp120 induces p53 via binding to the CXCR4 co-receptor. Collectively, these results demonstrate a novel role of POX as a stress response metabolic regulator in HIV-1 gp120-associated neuronal autophagy.
Collapse
Affiliation(s)
- Jui Pandhare
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Sabyasachi Dash
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research
| | - Bobby Jones
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Fernando Villalta
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Chandravanu Dash
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
39
|
Atluri VSR, Hidalgo M, Samikkannu T, Kurapati KRV, Jayant RD, Sagar V, Nair MPN. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update. Front Cell Neurosci 2015; 9:212. [PMID: 26113810 PMCID: PMC4461820 DOI: 10.3389/fncel.2015.00212] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/17/2015] [Indexed: 02/02/2023] Open
Abstract
The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV) infection in the Central Nervous System (CNS) is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART), resulting in neurological complications in many of the infected patients. Macrophages, microglia and astrocytes (in low levels) are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders.
Collapse
Affiliation(s)
- Venkata Subba Rao Atluri
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Melissa Hidalgo
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Kesava Rao Venkata Kurapati
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Rahul Dev Jayant
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Vidya Sagar
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Madhavan P N Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| |
Collapse
|
40
|
Ross CT, Roodgar M, Smith DG. Evolutionary distance of amino acid sequence orthologs across macaque subspecies: identifying candidate genes for SIV resistance in Chinese rhesus macaques. PLoS One 2015; 10:e0123624. [PMID: 25884674 PMCID: PMC4401517 DOI: 10.1371/journal.pone.0123624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/20/2015] [Indexed: 11/18/2022] Open
Abstract
We use the Reciprocal Smallest Distance (RSD) algorithm to identify amino acid sequence orthologs in the Chinese and Indian rhesus macaque draft sequences and estimate the evolutionary distance between such orthologs. We then use GOanna to map gene function annotations and human gene identifiers to the rhesus macaque amino acid sequences. We conclude methodologically by cross-tabulating a list of amino acid orthologs with large divergence scores with a list of genes known to be involved in SIV or HIV pathogenesis. We find that many of the amino acid sequences with large evolutionary divergence scores, as calculated by the RSD algorithm, have been shown to be related to HIV pathogenesis in previous laboratory studies. Four of the strongest candidate genes for SIVmac resistance in Chinese rhesus macaques identified in this study are CDK9, CXCL12, TRIM21, and TRIM32. Additionally, ANKRD30A, CTSZ, GORASP2, GTF2H1, IL13RA1, MUC16, NMDAR1, Notch1, NT5M, PDCD5, RAD50, and TM9SF2 were identified as possible candidates, among others. We failed to find many laboratory experiments contrasting the effects of Indian and Chinese orthologs at these sites on SIVmac pathogenesis, but future comparative studies might hold fertile ground for research into the biological mechanisms underlying innate resistance to SIVmac in Chinese rhesus macaques.
Collapse
Affiliation(s)
- Cody T. Ross
- Department of Anthropology, University of California, Davis. Davis, United States of America
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
| | - Morteza Roodgar
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
- California National Primate Research Center, University of California, Davis. Davis, United States of America
- Graduate Group of Comparative Pathology, University of California, Davis. Davis, United States of America
| | - David Glenn Smith
- Department of Anthropology, University of California, Davis. Davis, United States of America
- Molecular Anthropology Laboratory, University of California, Davis. Davis, United States of America
- California National Primate Research Center, University of California, Davis. Davis, United States of America
| |
Collapse
|
41
|
Kim SH, Smith AJ, Tan J, Shytle RD, Giunta B. MSM ameliorates HIV-1 Tat induced neuronal oxidative stress via rebalance of the glutathione cycle. Am J Transl Res 2015; 7:328-338. [PMID: 25893035 PMCID: PMC4399096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
HIV-1 Tat protein is a key neuropathological element in HIV associated neurogcognitive disorders (HAND); a type of cognitive syndrome thought to be at least partially mediated by increased levels of brain reactive oxygen species (ROS) and nitric oxide (NO). Methylsulfonylmethane (MSM) is a sulfur-containing compound known to reduce oxidative stress. This study was conducted to determine whether administration of MSM attenuates HIV-1 Tat induced oxidative stress in mouse neuronal cells. MSM treatment significantly decreased neuronal cell NO and ROS secretion. Further, MSM significantly reversed HIV-1 Tat mediated reductions in reduced glutathione (GSH) as well as HIV-1 Tat mediated increases in oxidized glutathione (GSSG). In addition, Tat reduced nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a key nuclear promoter of antioxidant activity, while MSM increased its translocation to the nucleus in the presence of Tat. These results suggest that HIV-1 Tat reduces the resiliency of neuron cells to oxidative stress which can be reversed by MSM. Given the clinical safety of MSM, future preclinical in vivo studies will be required to further confirm these results in effort to validate MSM as a neuroprotectant in patients at risk of, or who are already diagnosed with, HAND.
Collapse
Affiliation(s)
- Seol-hee Kim
- Department of Psychiatry, Neuroimmunology Laboratory, University of South Florida, Morsani College of MedicineTampa, FL, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - Adam J Smith
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - Jun Tan
- Department of Psychiatry, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - R Douglas Shytle
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - Brian Giunta
- Department of Psychiatry, Neuroimmunology Laboratory, University of South Florida, Morsani College of MedicineTampa, FL, USA
| |
Collapse
|
42
|
Avraham HK, Jiang S, Fu Y, Rockenstein E, Makriyannis A, Zvonok A, Masliah E, Avraham S. The cannabinoid CB₂ receptor agonist AM1241 enhances neurogenesis in GFAP/Gp120 transgenic mice displaying deficits in neurogenesis. Br J Pharmacol 2014; 171:468-79. [PMID: 24148086 DOI: 10.1111/bph.12478] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/12/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE HIV-1 glycoprotein Gp120 induces apoptosis in rodent and human neurons in vitro and in vivo. HIV-1/Gp120 is involved in the pathogenesis of HIV-associated dementia (HAD) and inhibits proliferation of adult neural progenitor cells (NPCs) in glial fibrillary acidic protein (GFAP)/Gp120 transgenic (Tg) mice. As cannabinoids exert neuroprotective effects in several model systems, we examined the protective effects of the CB₂ receptor agonist AM1241 on Gp120-mediated insults on neurogenesis. EXPERIMENTAL APPROACH We assessed the effects of AM1241 on survival and apoptosis in cultures of human and murine NPCs with immunohistochemical and TUNEL techniques. Neurogenesis in the hippocampus of GFAP/Gp120 transgenic mice in vivo was also assessed by immunohistochemistry. KEY RESULTS AM1241 inhibited in vitro Gp120-mediated neurotoxicity and apoptosis of primary human and murine NPCs and increased their survival. AM1241 also promoted differentiation of NPCs to neuronal cells. While GFAP/Gp120 Tg mice exhibited impaired neurogenesis, as indicated by reduction in BrdU⁺ cells and doublecortin⁺ (DCX⁺) cells, and a decrease in cells with proliferating cell nuclear antigen (PCNA), administration of AM1241 to GFAP/Gp120 Tg mice resulted in enhanced in vivo neurogenesis in the hippocampus as indicated by increase in neuroblasts, neuronal cells, BrdU⁺ cells and PCNA⁺ cells. Astrogliosis and gliogenesis were decreased in GFAP/Gp120 Tg mice treated with AM1241, compared with those treated with vehicle. CONCLUSIONS AND IMPLICATIONS The CB₂ receptor agonist rescued impaired neurogenesis caused by HIV-1/Gp120 insult. Thus, CB₂ receptor agonists may act as neuroprotective agents, restoring impaired neurogenesis in patients with HAD.
Collapse
Affiliation(s)
- Hava Karsenty Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
HIV-1 impairs human retinal pigment epithelial barrier function: possible association with the pathogenesis of HIV-associated retinopathy. J Transl Med 2014; 94:777-87. [PMID: 24840331 DOI: 10.1038/labinvest.2014.72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 01/28/2023] Open
Abstract
The breakdown of human retinal pigment epithelial (HRPE) barrier is considered as the etiology of retinopathy, which affects the quality of life of HIV/AIDS patients. Here we demonstrate that HIV-1 could directly impair HRPE barrier function, which leads to the translocation of HIV-1 and bacteria. HRPE cells (D407) were grown to form polarized, confluent monolayers and treated with different HIV-1 infectious clones. A significant increase of monolayer permeability, as measured by trans-epithelial electrical resistance (TEER) and apical-basolateral movements of sodium fluorescein, was observed. Disrupted tightness of HRPE barrier was associated with the downregulation of several tight junction proteins in D407 cells, including ZO-1, Occludin, Claudin-1, Claudin-2, Claudin-3, Claudin-4, and Claudin-5, after exposure to HIV-1, without affecting the viability of cells. HIV-1 gp120 was shown to participate in the alteration of barrier properties, as evidenced by decreased TEER and weakened expression of tight junction proteins in D407 monolayers after exposure to pseudotyped HIV-1, UV-inactivated HIV-1, and free gp120, but not to an envelope (Env)-defective mutant of HIV. Furthermore, exposure to HIV-1 particles could induce the release of pro-inflammatory cytokines in D407, including IL-6 and MCP-1, both of which downregulated the expression of ZO-1 in the HRPE barrier. Disrupted HRPE monolayer allowed translocation of HIV-1 and bacteria across the epithelium. Overall, these findings suggest that HIV-1 may exploit its Env glycoprotein to induce an inflammatory state in HRPE cells, which could result in impairment of HRPE monolayer integrity, allowing virus and bacteria existing in ocular fluids to cross the epithelium and penetrate the HRPE barrier. Our study highlights the role of HIV-1 in the pathogenesis of HIV/AIDS-related retinopathy and suggests potential therapeutic targets for this ocular complication.
Collapse
|
44
|
Reshi ML, Su YC, Hong JR. RNA Viruses: ROS-Mediated Cell Death. Int J Cell Biol 2014; 2014:467452. [PMID: 24899897 PMCID: PMC4034720 DOI: 10.1155/2014/467452] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for being both beneficial and deleterious. The main thrust of this review is to investigate the role of ROS in ribonucleic acid (RNA) virus pathogenesis. Much evidences has accumulated over the past decade, suggesting that patients infected with RNA viruses are under chronic oxidative stress. Changes to the body's antioxidant defense system, in relation to SOD, ascorbic acid, selenium, carotenoids, and glutathione, have been reported in various tissues of RNA-virus infected patients. This review focuses on RNA viruses and retroviruses, giving particular attention to the human influenza virus, Hepatitis c virus (HCV), human immunodeficiency virus (HIV), and the aquatic Betanodavirus. Oxidative stress via RNA virus infections can contribute to several aspects of viral disease pathogenesis including apoptosis, loss of immune function, viral replication, inflammatory response, and loss of body weight. We focus on how ROS production is correlated with host cell death. Moreover, ROS may play an important role as a signal molecule in the regulation of viral replication and organelle function, potentially providing new insights in the prevention and treatment of RNA viruses and retrovirus infections.
Collapse
Affiliation(s)
- Mohammad Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Che Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
45
|
Fritz-French C, Shawahna R, Ward JE, Maroun LE, Tyor WR. The recombinant vaccinia virus gene product, B18R, neutralizes interferon alpha and alleviates histopathological complications in an HIV encephalitis mouse model. J Interferon Cytokine Res 2014; 34:510-7. [PMID: 24564363 DOI: 10.1089/jir.2013.0072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferon-alpha (IFN-α) has been identified as a neurotoxin that plays a prominent role in human immunodeficiency virus (HIV)-associated neurocognitive disorders and HIV encephalitis (HIVE) pathology. IFN-α is associated with cognitive dysfunction in other inflammatory diseases where IFN-α is upregulated. Trials of monoclonal anti-IFN-α antibodies have been generally disappointing possibly due to high specificity to limited IFN-α subtypes and low affinity. We investigated a novel IFN-α inhibitor, B18R, in an HIVE/severe combined immunodeficiency (SCID) mouse model. Immunostaining for B18R in systemically treated HIVE/SCID mice suggested the ability of B18R to cross the blood-brain barrier (BBB). Real-time PCR indicated that B18R treatment resulted in a decrease in gene expression associated with IFN-α signaling in the brain. Mice treated with B18R were found to have decreased mouse mononuclear phagocytes and significant retention of neuronal arborization compared to untreated HIVE/SCID mice. Increased mononuclear phagocytes and decreased neuronal arborization are key features of HIVE. These results suggest that B18R crosses the BBB, blocks IFN-α signaling, and it prevents key features of HIVE pathology. These data suggest that the high affinity and broad IFN-α subtype specificity of B18R make it a viable alternative to monoclonal antibodies for the inhibition of IFN-α in the immune-suppressed environment.
Collapse
Affiliation(s)
- Cari Fritz-French
- 1 Department of Neurology, Emory University School of Medicine , Atlanta, Georgia
| | | | | | | | | |
Collapse
|
46
|
Che X, Fan XQ, Wang ZL. Mechanism of blood-retinal barrier breakdown induced by HIV-1 (Review). Exp Ther Med 2014; 7:768-772. [PMID: 24660027 PMCID: PMC3961112 DOI: 10.3892/etm.2014.1521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/28/2014] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 has been detected in ocular tissues; however, the mechanism of entry has not been established. It has been hypothesized that the blood-retinal barrier (BRB), a critical guardian against microbial invasion of the eye, may be compromised in the presence of HIV-1 in the eye. In vivo and in vitro model systems have shown that the breach of tight junctions induced by HIV-1-associated factors contributes to the breakdown of the BRB. The present study reviews the mechanism of tight junction disruption, focusing on signaling pathways, the expression of enzymes, including metalloproteinases, and cytokines that affect inflammation. The studied pathways may be potential targets for the prevention of ocular HIV complications.
Collapse
Affiliation(s)
- Xin Che
- Department of Ophthalmology, Ninth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200011, P.R. China ; Key Laboratory of Ophthamology, Ninth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Xian-Qun Fan
- Department of Ophthalmology, Ninth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Zhi-Liang Wang
- Department of Ophthalmology, Ninth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200011, P.R. China
| |
Collapse
|
47
|
Hussmann KL, Fredericksen BL. Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes. J Gen Virol 2014; 95:862-867. [PMID: 24413421 PMCID: PMC3973477 DOI: 10.1099/vir.0.060558-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neuroinflammatory response to West Nile virus (WNV) infection can be either protective or pathological depending on the context. Although several studies have examined chemokine profiles within brains of WNV-infected mice, little is known about how various cell types within the central nervous system (CNS) contribute to chemokine expression. Here, we assessed chemokine expression in brain microvascular endothelial cells and astrocytes, which comprise the major components of the blood-brain barrier (BBB), in response to a non-pathogenic (WNV-MAD78) and a highly pathogenic (WNV-NY) strain of WNV. Higher levels of the chemokine CCL5 were detected in WNV-MAD78-infected brain endothelial monolayers compared with WNV-NY-infected cells. However, the opposite profile was observed in WNV-infected astrocytes, indicating that pathogenic and non-pathogenic strains of WNV provoke different CCL5 profiles at the BBB. Thus, cells comprising the BBB may contribute to a dynamic pro-inflammatory response within the CNS that evolves as WNV infection progresses.
Collapse
Affiliation(s)
- Katherine L. Hussmann
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brenda L. Fredericksen
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
48
|
Dalvi P, Wang K, Mermis J, Zeng R, Sanderson M, Johnson S, Dai Y, Sharma G, Ladner AO, Dhillon NK. HIV-1/cocaine induced oxidative stress disrupts tight junction protein-1 in human pulmonary microvascular endothelial cells: role of Ras/ERK1/2 pathway. PLoS One 2014; 9:e85246. [PMID: 24409324 PMCID: PMC3883699 DOI: 10.1371/journal.pone.0085246] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/25/2013] [Indexed: 01/08/2023] Open
Abstract
Intravenous drug use (IVDU) is the major risk factor in the development of HIV-related pulmonary arterial hypertension (HRPAH); however, the pathogenesis of HRPAH in association with IVDU has yet to be characterized. Endothelial injury is considered to be an initiating factor for pulmonary vascular remodeling in animal models of PAH. Our previous study shows that simultaneous exposure to HIV-Trans-activator of transcription (Tat) and cocaine exacerbates both disruption of tight junction proteins and permeability of human pulmonary artery endothelial cells compared with either treatment alone. We here now demonstrate that this HIV-Tat and cocaine mediated endothelial dysfunction accompanies with increase in hydrogen peroxide and superoxide radicals generation and involves redox sensitive signaling pathway. Pretreatment with antioxidant cocktail attenuated the cocaine and Tat mediated disassembly of Zonula Occludens (ZO)-1 and enhancement of endothelial monolayer permeability. Furthermore, inhibition of NADPH oxidase by apocynin or siRNA-mediated knockdown of gp-91(phox) abolished the Tat/cocaine-induced reactive oxygen species (ROS) production, suggesting the NADPH oxidase mediated generation of oxidative radicals. In addition, ROS dependent activation of Ras and ERK1/2 Kinase was observed to be mediating the TJP-1 disassembly, and endothelial dysfunction in response to cocaine and Tat exposure. In conclusion, our findings demonstrate that Tat/cocaine -mediated production of ROS activate Ras/Raf/ERK1/2 pathway that contributes to disruption of tight junction protein leading to pulmonary endothelial dysfunction associated with pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kun Wang
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Joel Mermis
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ruoxi Zeng
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Miles Sanderson
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sara Johnson
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yuqiao Dai
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Garima Sharma
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Amy O’Brien Ladner
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Shah A, Kumar S, Simon SD, Singh DP, Kumar A. HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis 2013; 4:e850. [PMID: 24113184 PMCID: PMC3824683 DOI: 10.1038/cddis.2013.374] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/05/2013] [Accepted: 08/20/2013] [Indexed: 11/09/2022]
Abstract
HIV-1 glycoprotein 120 (gp120) is known to cause neurotoxicity via several mechanisms including production of proinflammatory cytokines/chemokines and oxidative stress. Likewise, drug abuse is thought to have a direct impact on the pathology of HIV-associated neuroinflammation through the induction of proinflammatory cytokines/chemokines and oxidative stress. In the present study, we demonstrate that gp120 and methamphetamine (MA) causes apoptotic cell death by inducing oxidative stress through the cytochrome P450 (CYP) and NADPH oxidase (NOX) pathways. The results showed that both MA and gp120 induced reactive oxygen species (ROS) production in concentration- and time-dependent manners. The combination of gp120 and MA also induced CYP2E1 expression at both mRNA (1.7±0.2- and 2.8±0.3-fold in SVGA and primary astrocytes, respectively) and protein (1.3±0.1-fold in SVGA and 1.4±0.03-fold in primary astrocytes) levels, suggesting the involvement of CYP2E1 in ROS production. This was further confirmed by using a selective inhibitor of CYP2E1, diallylsulfide (DAS), and CYP2E1 knockdown using siRNA, which significantly reduced ROS production (30–60%). As the CYP pathway is known to be coupled with the NOX pathway, including Fenton–Weiss–Haber (FWH) reaction, we examined whether the NOX pathway is also involved in ROS production induced by either gp120 or MA. Our results showed that selective inhibitors of NOX, diphenyleneiodonium (DPI), and FWH reaction, deferoxamine (DFO), also significantly reduced ROS production. These findings were further confirmed using specific siRNAs against NOX2 and NOX4 (NADPH oxidase family). We then showed that gp120 and MA both induced apoptosis (caspase-3 activity and DNA lesion using TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling) assay) and cell death. Furthermore, we showed that DAS, DPI, and DFO completely abolished apoptosis and cell death, suggesting the involvement of CYP and NOX pathways in ROS-mediated apoptotic cell death. In conclusion, this is the first report on the involvement of CYP and NOX pathways in gp120/MA-induced oxidative stress and apoptotic cell death in astrocytes, which has clinical implications in neurodegenerative diseases, including neuroAIDS.
Collapse
Affiliation(s)
- A Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | | | | |
Collapse
|
50
|
Li S, Wu Y, Keating SM, Du H, Sammet CL, Zadikoff C, Mahadevia R, Epstein LG, Ragin AB. Matrix metalloproteinase levels in early HIV infection and relation to in vivo brain status. J Neurovirol 2013; 19:452-60. [PMID: 23979706 DOI: 10.1007/s13365-013-0197-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 12/13/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in human immunodeficiency virus (HIV)-associated neurological injury; however, this relationship has not been studied early in infection. Plasma levels of MMP-1, MMP-2, MMP-7, MMP-9, and MMP-10 measured using Luminex technology (Austin, TX, USA) were compared in 52 HIV and 21 seronegative participants of the Chicago Early HIV Infection study. MMP levels were also examined in HIV subgroups defined by antibody reactivity, viremia, and antiretroviral status, as well as in available cerebrospinal fluid (CSF) samples (n = 9). MMPs were evaluated for patterns of relationship to cognitive function and to quantitative magnetic resonance measurements of the brain derived in vivo. Plasma MMP-2 levels were significantly reduced in early HIV infection and correlated with altered white matter integrity and atrophic brain changes. MMP-9 levels were higher in the treated subgroup than in the naïve HIV subgroup. Only MMP-2 and MMP-9 were detected in the CSF; CSF MMP-2 correlated with white matter integrity and with volumetric changes in basal ganglia. Relationships with cognitive function were also identified. MMP-2 levels in plasma and in CSF correspond to early changes in brain structure and function. These findings establish a link between MMPs and neurological status previously unidentified in early HIV infection.
Collapse
Affiliation(s)
- Suyang Li
- Department of Radiology, Northwestern University, 737 North Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|