1
|
Ota A, Shiozaki A, Shimizu H, Kosuga T, Kudou M, Nishibeppu K, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Morinaga Y, Konishi E, Otsuji E. Functions and clinical significance of KCNB1 in esophageal squamous cell carcinoma. J Gastroenterol 2025:10.1007/s00535-025-02219-x. [PMID: 39893596 DOI: 10.1007/s00535-025-02219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Voltage-gated potassium channel subfamily B member 1 (KCNB1) encodes the α-subunit of the Kv2.1 channel and mediates transmembrane potassium transport. The functions and mechanisms underlying KCNB1 activation have been examined in various cancer types; however, its role in esophageal squamous cell carcinoma (ESCC) remains unclear. Therefore, the present study investigated the involvement of KCNB1 in tumor progression and the clinicopathological significance of its expression in ESCC. METHODS Knockdown experiments using KCNB1 small interfering RNA were performed on the human ESCC cell lines, KYSE70 and TE5, and changes in cell proliferation, the cell cycle, apoptosis, migration, and invasion were assessed. Gene expression profiles were examined using a microarray analysis. An immunohistochemical (IHC) analysis was performed on 129 primary tumor samples from ESCC patients who underwent curative esophagectomy. RESULTS Cell proliferation, G2-M phase progression, migration, and invasion were inhibited, and apoptosis was induced in KCNB1-depleted cells. Microarray results showed that KCNB1 gene expression affected Ephrin receptor signaling by suppressing EPHB1, EPHB2, and ERK1/2 gene expression. IHC results revealed a relationship between high KCNB1 expression and a poor prognosis. High KCNB1 expression was extracted as an independent prognostic factor in a multivariate analysis of 5-year relapse-free survival in ESCC patients (p = 0.0197). CONCLUSIONS Cell proliferation is controlled by KCNB1 through its regulation of ERK1/2 gene expression via ephrin receptor signaling. A relationship was observed between KCNB1 and the prognosis of ESCC patients, indicating its potential as a biomarker for cancer progression and in targeted therapy for ESCC.
Collapse
Affiliation(s)
- Atsuki Ota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yukiko Morinaga
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
2
|
Gorla M, Guleria DS. Rho GTPase Signaling: A Molecular Switchboard for Regulating the Actin Cytoskeleton in Axon Guidance. J Cell Physiol 2025; 240:e70005. [PMID: 39888031 DOI: 10.1002/jcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues. Axon guidance receptors initiate distinct signaling cascades that eventually influence the cytoskeleton at the growing tip of an axon, called the growth cone. The actin cytoskeleton is the primary target of these guidance signals and plays a key role in growth cone motility, exploration, and behavior. Of the many regulatory molecules that modulate the actin cytoskeleton in response to distinct guidance signals, Rho GTPases play central roles. Rho GTPases are molecular switchboards; their ON (GTP-bound) and OFF (GDP-bound) switches are controlled by their interactions with proteins that regulate the exchange of GDP for GTP or with the proteins that promote GTP hydrolysis. Various upstream signals, including axon guidance signals, regulate the activity of these Rho GTPase switch regulators. As cycling molecular switches, Rho GTPases interact with and control the activities of downstream effectors, which directly influence actin reorganization in a context-dependent manner. A deeper exploration of the spatiotemporal dynamics of Rho GTPase signaling and the molecular basis of their involvement in regulating growth cone actin cytoskeleton can unlock promising therapeutic strategies for neurodevelopmental disorders linked to dysregulated Rho GTPase signaling. This review not only provides a comprehensive overview of the field but also highlights recent discoveries that have considerably advanced our understanding of the complex regulatory roles of Rho GTPases in modulating actin cytoskeleton arrangement at the growth cone during axon guidance.
Collapse
Affiliation(s)
- Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
3
|
Matsumoto M, Gomez-Soler M, Lombardi S, Lechtenberg BC, Pasquale EB. Missense mutations of the ephrin receptor EPHA1 associated with Alzheimer's disease disrupt receptor signaling functions. J Biol Chem 2024; 301:108099. [PMID: 39706267 PMCID: PMC11773478 DOI: 10.1016/j.jbc.2024.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Missense mutations in the EPHA1 receptor tyrosine kinase have been identified in Alzheimer's patients. To gain insight into their potential role in disease pathogenesis, we investigated the effects of four of these mutations. We show that the P460L mutation in the second fibronectin type III (FN2) domain drastically reduces EPHA1 cell surface localization while increasing tyrosine phosphorylation of the cell surface-localized receptor. The R791H mutation in the kinase domain abolishes EPHA1 tyrosine phosphorylation, indicating abrogation of kinase-dependent signaling. Furthermore, both mutations decrease EPHA1 phosphorylation on S906 in the kinase-SAM linker region, suggesting impairment of a noncanonical form of signaling regulated by serine/threonine kinases. The R492Q mutation, also in the FN2 domain, has milder effects than the P460L mutation while the R926C mutation in the SAM domain increases S906 phosphorylation. We also found that EPHA1 undergoes constitutive proteolytic cleavage in the FN2 domain, generating a soluble 55 kDa N-terminal fragment containing the ligand-binding domain and a transmembrane 60 kDa C-terminal fragment. The 60 kDa WT fragment is phosphorylated on both tyrosine residues and S906, suggesting signaling functions. The P460L mutant 60 kDa fragment undergoes proteasomal degradation and the R791H mutant fragment lacks tyrosine phosphorylation and has decreased S906 phosphorylation. These findings advance our understanding of EPHA1 signaling mechanisms and support the notion that alterations in EPHA1 signaling due to missense mutations contribute to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Mike Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sara Lombardi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bernhard C Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
4
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Wang G, Xiao H, Liang Z, Feng Y, Wang L, Feng Y, Guo F, Zhang L. Molecular characteristics and prognostic role of EPHA2 in human tumors via pan-cancer analysis. Medicine (Baltimore) 2024; 103:e40741. [PMID: 39612413 DOI: 10.1097/md.0000000000040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
The tyrosine kinase ephrin type-A receptor 2 (EPHA2) was remarkably elevated expressed in various tumors and plays a crucial role in cancer tumorigenesis and progression, while pan-cancer analyses are currently lacking. This study was designed to analyze the expression status and prognostic significance of EPHA2 in pan-cancer. By mining The Cancer Genome Atlas data, we performed a comprehensive and systematic characterization of EPHA2 across >10,000 samples of 33 types of cancer. EPHA2 expressions were substantially different in most of the normal control and tumor tissues, and it was considerably associated with the prognosis of tumor patients. EPHA2 gene modifications in malignant tumors were mainly missense mutations. There was a significant correlation between EPHA2 expression and cancer-associated fibroblasts in most The Cancer Genome Atlas cancers. Furthermore, functional enrichment analysis showed that the biological role of EPHA2 in tumors was mainly involved in some noticeably pro-oncogenic pathways, such as the Ras signaling pathway, PI3K-Akt signaling pathway, ErbB signaling pathway, MAPK signaling pathway, etc. This study provided the first pan-cancer analyses of EPHA2 in various tumors, and EPHA2 was potentially involved in many cancer types and can be developed as candidates for cancer diagnosis, prognosis, and therapeutic biomarkers. In addition, EPHA2 seemed to be a key modulator of the tumor immune microenvironment and might be a potential biomarker in predicting the immunotherapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Xiao
- Department of Burns and Plastic Surgery, Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhipan Liang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuxin Feng
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liyu Wang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Feng
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fen Guo
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Luyao Zhang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in Cancer: Molecular Complexity and Therapeutic Opportunities. Int J Mol Sci 2024; 25:12191. [PMID: 39596256 PMCID: PMC11594831 DOI: 10.3390/ijms252212191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph tyrosine kinase receptor family that has been linked to various biological processes. In tumors, EphA2 overexpression is associated with noncanonical pathway activation, tumor progression, and a poor prognosis, which has emphasized its importance as a marker of malignancy. Studies on numerous cancer models have highlighted EphA2's dual and often contradictory action, which can be attributed to EphA2's interactions involving multiple pathways and different ligands, as well as the heterogeneity of the tumor microenvironment. In this review, we summarize the main mechanisms underlying EphA2 dysregulation in cancer, highlighting its molecular complexity. Then, we analyze therapies that have been developed over time to counteract its action. We discuss the limitations of the described approaches, emphasizing the fact that the goal of new options is high specificity without losing therapeutic efficacy. For this reason, immunotherapy or the emerging field of targeted protein degradation with proteolysis-targeting chimeras (PROTACs) may represent a promising solution that can be developed based on a deeper understanding of the molecular mechanisms sustaining EphA2 oncogenic activity.
Collapse
Affiliation(s)
- Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| |
Collapse
|
7
|
Chen D, Tang Y, Lapinski PE, Wiggins D, Sevick EM, Davis MJ, King PD. EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis. Circ Res 2024; 135:1048-1066. [PMID: 39421925 PMCID: PMC11560524 DOI: 10.1161/circresaha.124.325383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND EPHB4 (ephrin receptor B4) and the RASA1 (p120 Ras GTPase-activating protein) are necessary for the development of lymphatic vessel (LV) valves. However, precisely how EPHB4 and RASA1 regulate LV valve development is unknown. In this study, we examine the mechanisms by which EPHB4 and RASA1 regulate the development of LV valves. METHODS We used LV-specific inducible EPHB4-deficient mice and EPHB4 knockin mice that express a form of EPHB4 that is unable to bind RASA1 yet retains protein tyrosine kinase activity (EPHB4 2YP) to study the role of EPHB4 and RASA1 in LV valve development in the embryo and LV valve maintenance in adults. We also used human dermal lymphatic endothelial cells in vitro to study the role of EPHB4 and RASA1 as regulators of LV valve specification induced by oscillatory shear stress, considered the trigger for LV valve specification in vivo. RESULTS LV valve specification, continued valve development postspecification, and LV valve maintenance were blocked upon induced loss of EPHB4 in LV. LV valve specification and maintenance were also impaired in EPHB4 2YP mice. Defects in LV valve development were reversed by inhibition of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. In human dermal lymphatic endothelial cells, loss of expression of EPHB4 or its ephrin b2 ligand, loss of expression of RASA1, and inhibition of physical interaction between EPHB4 and RASA1 resulted in dysregulated oscillatory shear stress-induced Ras-MAPK activation and impaired expression of LV specification markers that could be rescued by Ras-MAPK pathway inhibition. The same results were observed when human dermal lymphatic endothelial cells were stimulated with the Yoda1 agonist of the PIEZO1 oscillatory shear stress sensor. Although Yoda1 increased the number of LV valves when administered to wild-type embryos, it did not increase LV valve number when administered to EPHB4 2YP embryos. CONCLUSIONS EPHB4 is necessary for LV valve specification, continued valve development postspecification, and valve maintenance. LV valve specification requires physical interaction between EPHB4 and RASA1 to limit activation of the Ras-MAPK pathway in lymphatic endothelial cells. Specifically, EPHB4-RASA1 physical interaction is necessary to dampen Ras-MAPK activation induced through the PIEZO1 oscillatory shear stress sensor. These findings reveal the mechanism by which EPHB4 and RASA1 regulate the development of LV valves.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Yipei Tang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - David Wiggins
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Eva M. Sevick
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| |
Collapse
|
8
|
Rasool D, Jahani-Asl A. Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches. Transl Psychiatry 2024; 14:462. [PMID: 39505843 PMCID: PMC11541728 DOI: 10.1038/s41398-024-03168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The ephrin receptors (EphRs) are the largest family of receptor tyrosine kinases (RTKs) that are abundantly expressed in the developing brain and play important roles at different stages of neurogenesis ranging from neural stem cell (NSC) fate specification to neural migration, morphogenesis, and circuit assembly. Defects in EphR signalling have been associated with several pathologies including neurodevelopmental disorders (NDDs), intellectual disability (ID), and neurodegenerative diseases (NDs). Here, we review our current understanding of the complex and dynamic role of EphRs in the brain and discuss how deregulation of these receptors contributes to disease, highlighting their potential as valuable druggable targets.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
9
|
Horner JL, Vu MP, Clark JT, Innis IJ, Cheng C. Canonical ligand-dependent and non-canonical ligand-independent EphA2 signaling in the eye lens of wild-type, knockout, and aging mice. Aging (Albany NY) 2024; 16:13039-13075. [PMID: 39466050 PMCID: PMC11552635 DOI: 10.18632/aging.206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024]
Abstract
Disruption of Eph-ephrin bidirectional signaling leads to human congenital and age-related cataracts, but the mechanisms for these opacities in the eye lens remain unclear. Eph receptors bind to ephrin ligands on neighboring cells to induce canonical ligand-mediated signaling. The EphA2 receptor also signals non-canonically without ligand binding in cancerous cells, leading to epithelial-to-mesenchymal transition (EMT). We have previously shown that the receptor EphA2 and the ligand ephrin-A5 have diverse functions in maintaining lens transparency in mice. Loss of ephrin-A5 leads to anterior cataracts due to EMT. Surprisingly, both canonical and non-canonical EphA2 activation are present in normal wild-type lenses and in the ephrin-A5 knockout lenses. Canonical EphA2 signaling is localized exclusively to lens epithelial cells and does not change with age. Non-canonical EphA2 signaling is in both epithelial and fiber cells and increases significantly with age. We hypothesize that canonical ligand-dependent EphA2 signaling is required for the morphogenesis and organization of hexagonal equatorial epithelial cells while non-canonical ligand-independent EphA2 signaling is needed for complex membrane interdigitations that change during fiber cell differentiation and maturation. This is the first demonstration of non-canonical EphA2 activation in a non-cancerous tissue or cell and suggests a possible physiological function for ligand-independent EphA2 signaling.
Collapse
Affiliation(s)
- Jenna L. Horner
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Michael P. Vu
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Jackson T. Clark
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Isaiah J. Innis
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Das A, Biggs MA, Hunt HL, Mahabadi V, Goncalves BG, Phan CAN, Banerjee IA. Design and investigation of novel iridoid-based peptide conjugates for targeting EGFR and its mutants L858R and T790M/L858R/C797S: an in silico study. Mol Divers 2024:10.1007/s11030-024-11007-3. [PMID: 39424745 DOI: 10.1007/s11030-024-11007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
In this work, we designed novel peptide conjugates with plant-based iridoid and lichen-derived depside derivatives to target the wild-type EGFR (WT) and its mutants, L858R and T790M/L858R/C797S triple mutant. These mutations are often expressed in multiple cancers, particularly lung cancer. Specifically, the iridoids included 7-deoxyloganetic acid (7-DGA) and loganic acid (LG), while the depside derivative was sekikaic acid (SK). These compounds are known for their innate anticancer properties and were conjugated with two separate peptide sequences KLPGWSG (K) and YSIPKSS (Y). These sequences have been shown to target EGFR in previous phage display library screening, although the mechanism is unknown. Thus, we created the di-conjugates for dual targeting and investigated their interactions of the di-conjugates and that of the neat peptides with the kinase domain of EGFR (WT) and the two mutants using molecular docking, molecular dynamics (MD) simulations, and MM-GBSA analysis. Docking studies revealed that the (7-DGA)2-K showed the highest binding affinity at - 9.3 kcal/mol with the L858R mutant, while (LG)2-Y displayed the highest binding affinity at - 9.0 kcal/mol for the triple mutant receptor. Our results indicated that several of the conjugates interacted with crucial residues of the kinase domain, including ASP855 and THR854 (activation loop), MET793 and PRO794 (hinge region), ARG841 (catalytic loop), and LYS728 and LEU718 of the glycine-rich P-loop. Interestingly, strong hydrophobic interactions were also observed with the C-terminal tail residues, such as PHE997 and ALA1000 as well as with ARG999 for the YSIPKSS peptide and most of the conjugates. The hydroxyl group of the cyclopentane ring and the oxygen of the pyran ring of the (7-DGA)2-peptide conjugates contributed to binding particularly in the hinge region, while the peptide components formed an extended structure that bound well into the C-lobe. The (SK)2-Y di-conjugate and KLPGWSG peptide formed hydrogen bonds with the SER797 residue of the triple mutant. Overall, our results show that the (7-DGA)2-K, di-conjugate, the (7-DGA)2-Y di-conjugate, and the neat YSIPKSS demonstrated strong and stable binding with the L858R mutant and the highly resistant triple mutant EGFR, respectively. The novel designed conjugates demonstrate potential for further optimization for laboratory studies aimed at developing new therapeutics for targeting specific EGFR mutant expressing cells.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Vida Mahabadi
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Chau Anh N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
11
|
Bashir B, Wang JS, Falchook G, Fontana E, Arkenau HT, Carter L, Galot R, Basu B, Greystoke A, Subbiah V, Richardson DL, Orr H, Bennett G, Sharma R, Xu H, Paganoni P, Xu C, Campbell C, McKean M. Results From First-in-Human Phase I Dose-Escalation Study of a Novel Bicycle Toxin Conjugate Targeting EphA2 (BT5528) in Patients With Advanced Solid Tumors. J Clin Oncol 2024; 42:3443-3452. [PMID: 39231383 DOI: 10.1200/jco.23.01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/02/2023] [Accepted: 05/22/2024] [Indexed: 09/06/2024] Open
Abstract
PURPOSE BT5528 is a Bicycle Toxin Conjugate, a novel class of chemically synthesized molecules, comprising a bicyclic peptide targeting EphA2 tumor antigen, linked to a cytotoxin (monomethyl auristatin E [MMAE]). EphA2 is overexpressed in many solid tumors and contributes to oncogenesis, tumor-associated angiogenesis, and metastasis. MATERIALS AND METHODS The primary objectives were to investigate the safety and tolerability of BT5528 and to define the maximum-tolerated dose, if observed, and recommended phase II dose (RP2D)/expansion dose. Dose escalation exploring once every week or once every 2 weeks administration of BT5528 employed a 3 + 3 dose-escalation design for the first two dose levels, followed by a Bayesian logistic regression model. Secondary and exploratory end points included preliminary efficacy and the pharmacokinetics of BT5528 and MMAE. RESULTS Forty-five patients were enrolled and received BT5528 doses between 2.2 mg/m2 once every week to 10.0 mg/m2 once every 2 weeks within the dose-escalation stage of the study. The most frequent BT5528-related adverse events (AEs) were nausea (44.4%), diarrhea (35.6%), and fatigue (33.3%), and the most common grade ≥3 BT5528-related AE was neutropenia/neutrophil count decrease (22.2%). Dose level 6.5 mg/m2 once every 2 weeks was selected as a RP2D. At 6.5 mg/m2 once every 2 weeks, the overall response rate was 6.7%, and the disease control rate was 20.0%. BT5528 and MMAE pharmacokinetics are generally dose proportional. BT5528 has a short half-life (0.4-0.7 hours), and the half-life of MMAE is longer (35-47 hours). CONCLUSION BT5528 was well tolerated and demonstrated favorable and preliminary antitumor activity. We believe these data provide preliminary validation of a Bicycle Toxin Conjugate approach to EphA2 tumor antigen. The study is ongoing and is evaluating BT5528 as monotherapy at a RP2D of 6.5 mg/m2 once every 2 weeks.
Collapse
Affiliation(s)
- Babar Bashir
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
- Sarah Cannon Research Institute, Nashville, TN
| | - Judy S Wang
- Sarah Cannon Research Institute, Nashville, TN
- Florida Cancer Specialists, Sarasota, FL
| | | | - Elisa Fontana
- Sarah Cannon Research Institute, London, United Kingdom
| | | | - Louise Carter
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Rachel Galot
- Saint Luc Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bristi Basu
- University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | - Debra L Richardson
- Sarah Cannon Research Institute, Nashville, TN
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK
| | - Hanna Orr
- BicycleTX Ltd, Cambridge, United Kingdom
| | | | | | | | | | - Cong Xu
- Bicycle Therapeutics, Cambridge, MA
| | | | | |
Collapse
|
12
|
Nishida M, Sato A, Shimizu A, Rahman N, Wada A, Kageyama S, Ogita H. EphA-Mediated Regulation of Stomatin Expression in Prostate Cancer Cells. Cancer Med 2024; 13:e70276. [PMID: 39377541 PMCID: PMC11459579 DOI: 10.1002/cam4.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND AIMS Tumor growth and progression are affected by interactions between tumor cells and stromal cells within the tumor microenvironment. We previously showed that the expression of an integral membrane protein, called stomatin, was increased in cancer cells following their association with stromal cells. Additionally, stomatin impaired the Akt signaling pathway to suppress tumor growth. However, it remains unclear how stomatin expression is regulated. To explore this, we examined the cell surface molecules that can transduce the intercellular communication signals between cancer cells and stromal cells. RESULTS Among these molecules, EphA3 and EphA7 receptors and their ligand ephrin-A5 were found to be expressed in prostate cancer cells, but not in prostate stromal cells. Cell-to-cell contact of prostate cancer cells through the EphA-ephrin-A interaction suppressed stomatin expression, while knockdown of EphA3/7 or ephrin-A5 increased stomatin expression. This increase contributed to an inhibition of prostate cancer cell proliferation. Intracellularly, the binding of ephrin-A to EphA attenuated extracellular signaling-regulated kinase (ERK) activation that promoted stomatin expression. Furthermore, ELK1 and ELK4, which are Ets family transcription factors phosphorylated by ERK, were involved in the induction of stomatin expression. We also found that higher Gleason score prostate cancer tissue samples had increased activation of EphA, while the stomatin expression and activated ERK and ELK levels were all low. In the mouse xenograft tumor samples generated by implantation of prostate cancer cells, EphA3 phosphorylation was attenuated and the ERK-ELK signaling and stomatin expression were enhanced in the area where stromal cells infiltrated the tumor. CONCLUSION The EphA-mediated signaling suppresses the ERK-ELK pathway, leading to the reduction of stomatin expression that affects prostate cancer malignancy.
Collapse
Affiliation(s)
- Masanari Nishida
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Nor Idayu A. Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Akinori Wada
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Susumu Kageyama
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
13
|
Morton AB, Jacobsen NL, Diller AR, Kendra JA, Golpasandi S, Cornelison DDW, Segal SS. Inducible deletion of endothelial cell Efnb2 delays capillary regeneration and attenuates myofibre reinnervation following myotoxin injury in mice. J Physiol 2024; 602:4907-4927. [PMID: 39196901 PMCID: PMC11466691 DOI: 10.1113/jp285402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Acute injury of skeletal muscle disrupts myofibres, microvessels and motor innervation. Myofibre regeneration is well characterized, however its relationship with the regeneration of microvessels and motor nerves is undefined. Endothelial cell (EC) ephrin-B2 (Efnb2) is required for angiogenesis during embryonic development and promotes neurovascular regeneration in the adult. We hypothesized that, following acute injury to skeletal muscle, loss of EC Efnb2 would impair microvascular regeneration and the recovery of neuromuscular junction (NMJ) integrity. Mice (aged 3-6 months) were bred for EC-specific conditional knockout (CKO) of Efnb2 following tamoxifen injection with non-injected CKO mice as controls (CON). The gluteus maximus, tibialis anterior or extensor digitorum longus muscle was then injured with local injection of BaCl2. Intravascular staining with wheat germ agglutinin revealed diminished capillary area in the gluteus maximus of CKO vs. CON at 5 days post-injury (dpi); both recovered to uninjured (0 dpi) level by 10 dpi. At 0 dpi, tibialis anterior isometric force of CKO was less than CON. At 10 dpi, isometric force was reduced by half in both groups. During intermittent contractions (75 Hz, 330 ms s-1, 120 s), isometric force fell during indirect (sciatic nerve) stimulation whereas force was maintained during direct (electrical field) stimulation of myofibres. Neuromuscular transmission failure correlated with perturbed presynaptic (terminal Schwann cells) and postsynaptic (nicotinic acetylcholine receptors) NMJ morphology in CKO. Resident satellite cell number on extensor digitorum longus myofibres did not differ between groups. Following acute injury of skeletal muscle, loss of Efnb2 in ECs delays capillary regeneration and attenuates recovery of NMJ structure and function. KEY POINTS: The relationship between microvascular regeneration and motor nerve regeneration following skeletal muscle injury is undefined. Expression of Efnb2 in endothelial cells (ECs) is essential to vascular development and promotes neurovascular regeneration in the adult. To test the hypothesis that EfnB2 in ECs is required for microvascular regeneration and myofibre reinnervation, we induced conditional knockout of Efnb2 in ECs of mice. Acute injury was then induced by BaCl2 injection into gluteus maximus, tibialis anterior or extensor digitorum longus (EDL) muscle. Capillary regeneration was reduced at 5 days post-injury (dpi) in gluteus maximus of conditional knockout vs. controls; at 10 dpi, neither differed from uninjured. Nerve stimulation revealed neuromuscular transmission failure in tibialis anterior with perturbed neuromuscular junction structure. Resident satellite cell number on EDL myofibres did not differ between groups. Conditional knockout of EC Efnb2 delays capillary regeneration and attenuates recovery of neuromuscular junction structure and function.
Collapse
Affiliation(s)
- Aaron B. Morton
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | - Nicole L. Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | | | - Jacob A. Kendra
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Shadi Golpasandi
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65211
- Department of Biomedical Sciences, University of Missouri; Columbia, MO 65201
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri; Columbia, MO 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
14
|
Kraski A, Migdał P, Klopfleisch R, Räckel C, Sharbati J, Heimesaat MM, Alter T, Hanisch C, Gölz G, Einspanier R, Sharbati S. Structured multicellular intestinal spheroids (SMIS) as a standardized model for infection biology. Gut Pathog 2024; 16:47. [PMID: 39289703 PMCID: PMC11406839 DOI: 10.1186/s13099-024-00644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND 3D cell culture models have recently garnered increasing attention for replicating organ microarchitecture and eliciting in vivo-like responses, holding significant promise across various biological disciplines. Broadly, 3D cell culture encompasses organoids as well as single- and multicellular spheroids. While the latter have found successful applications in tumor research, there is a notable scarcity of standardized intestinal models for infection biology that mimic the microarchitecture of the intestine. Hence, this study aimed to develop structured multicellular intestinal spheroids (SMIS) specifically tailored for studying molecular basis of infection by intestinal pathogens. RESULTS We have successfully engineered human SMIS comprising four relevant cell types, featuring a fibroblast core enveloped by an outer monolayer of enterocytes and goblet cells along with monocytic cells. These SMIS effectively emulate the in vivo architecture of the intestinal mucosal surface and manifest differentiated morphological characteristics, including the presence of microvilli, within a mere two days of culture. Through analysis of various differentiation factors, we have illustrated that these spheroids attain heightened levels of differentiation compared to 2D monolayers. Moreover, SMIS serve as an optimized intestinal infection model, surpassing the capabilities of traditional 2D cultures, and exhibit a regulatory pattern of immunological markers similar to in vivo infections after Campylobacter jejuni infection. Notably, our protocol extends beyond human spheroids, demonstrating adaptability to other species such as mice and pigs. CONCLUSION Based on the rapid attainment of enhanced differentiation states, coupled with the emergence of functional brush border features, increased cellular complexity, and replication of the intestinal mucosal microarchitecture, which allows for exposure studies via the medium, we are confident that our innovative SMIS model surpasses conventional cell culture methods as a superior model. Moreover, it offers advantages over stem cell-derived organoids due to scalability and standardization capabilities of the protocol. By showcasing differentiated morphological attributes, our model provides an optimal platform for diverse applications. Furthermore, the investigated differences of several immunological factors compared to monotypic monolayers after Campylobacter jejuni infection underline the refinement of our spheroid model, which closely mimics important features of in vivo infections.
Collapse
Affiliation(s)
- Angelina Kraski
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Paweł Migdał
- Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Clara Räckel
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | | | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
16
|
Li J, Wang D, Tang F, Ling X, Zhang W, Zhang Z. Pan-cancer integrative analyses dissect the remodeling of endothelial cells in human cancers. Natl Sci Rev 2024; 11:nwae231. [PMID: 39345334 PMCID: PMC11429526 DOI: 10.1093/nsr/nwae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 10/01/2024] Open
Abstract
Therapeutics targeting tumor endothelial cells (TECs) have been explored for decades, with only suboptimal efficacy achieved, partly due to an insufficient understanding of the TEC heterogeneity across cancer patients. We integrated single-cell RNA-seq data of 575 cancer patients from 19 solid tumor types, comprehensively charting the TEC phenotypic diversities. Our analyses uncovered underappreciated compositional and functional heterogeneity in TECs from a pan-cancer perspective. Two subsets, CXCR4 + tip cells and SELE + veins, represented the prominent angiogenic and proinflammatory phenotypes of TECs, respectively. They exhibited distinct spatial organization patterns, and compared to adjacent non-tumor tissues, tumor tissue showed an increased prevalence of CXCR4 + tip cells, yet with SELE + veins depleted. Such functional and spatial characteristics underlie their differential associations with the response of anti-angiogenic therapies and immunotherapies. Our integrative resources and findings open new avenues to understand and clinically intervene in the tumor vasculature.
Collapse
Affiliation(s)
- Jinhu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xinnan Ling
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Gholizadeh N, Rokni GR, Zaresharifi S, Gheisari M, Tabari MAK, Zoghi G. Revolutionizing non-melanoma skin cancer treatment: Receptor tyrosine kinase inhibitors take the stage. J Cosmet Dermatol 2024; 23:2793-2806. [PMID: 38812406 DOI: 10.1111/jocd.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Innovative treatments for non-melanoma skin cancers (NMSCs) are required to enhance patient outcomes. AIMS This review examines the effectiveness and safety of receptor tyrosine kinase inhibitors (RTKIs). METHODS A comprehensive review was conducted on the treatment potential of several RTKIs, namely cetuximab, erlotinib, gefitinib, panitumumab, and lapatinib. RESULTS The findings indicate that these targeted therapies hold great promise for the treatment of NMSCs. However, it is crucial to consider relapse rates and possible adverse effects. Further research is needed to improve treatment strategies, identify patient groups that would benefit the most, and assess the long-term efficacy and safety, despite the favorable results reported in previous studies. Furthermore, it is crucial to investigate the potential benefits of integrating RTKIs with immunotherapy and other treatment modalities to enhance the overall efficacy of therapy for individuals with NMSC. CONCLUSIONS Targeted therapies for NMSCs may be possible with the use of RTKIs. The majority of studies focused on utilizing epidermal growth factor receptor inhibitors as the primary class of RTKIs for the treatment of NMSC. Other RTKIs were only employed in experimental investigations. Research indicates that RTKIs could potentially serve as a suitable alternative for elderly patients who are unable to undergo chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirin Zaresharifi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Gheisari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ghazal Zoghi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
18
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Li Y, Fei H, Xiao Z, Lu X, Zhang H, Liu M. Comprehensive analysis of EphA2 in pan-cancer: A prognostic biomarker associated with cancer immunity. Clin Exp Pharmacol Physiol 2024; 51:e13902. [PMID: 38886133 DOI: 10.1111/1440-1681.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Several studies have reported a significant relationship between Ephrin receptor A2 (EphA2) and malignant progression in numerous cancers. However, there is a lack of comprehensive pan-cancer analysis on the prognostic value, mutation status, methylation landscape, and potential immunological function of EphA2. METHOD Using The Cancer Genome Atlas, Genotype Tissue Expression Database and GEO data, we analysed the differences in EphA2 expression between normal and tumour tissues and the effects of EphA2 on the prognosis of different tumours. Furthermore, using GSCALite, cBioPortal, TISDB, ULCLAN and TIMER 2.0 databases or platforms, we comprehensively analysed the potential oncogenic mechanisms or manifestations of EphA2 in 33 different tumour types, including tumour mutation status, DNA methylation status and immune cell infiltration. The correlation of EphA2 with immune checkpoints, tumour mutational burden, DNA microsatellite instability and DNA repair genes was also calculated. Finally, the effects of EphA2 inhibitors on the proliferation of human glioma and lung cancer cells were verified in cellular experiments. RESULTS EphA2 is differentially expressed in different tumours, and patients with overexpression have poorer overall survival. In addition, gene mutations, gene copy number variation and DNA/RNA methylation of EphA2 have been identified in various tumours. Moreover, EphA2 is positively associated with immune infiltration involving macrophages and CD8+ T cells. Further, EphA2 mRNA expression is significantly associated with immune checkpoint in various cancers, especially programmed death-ligand 1. Finally, the EphA2 inhibitor ALW-II-41-27 shows potent anti-tumour activity. CONCLUSION Our first pan-cancer study of EphA2 provides insight into the prognostic and immunological roles of EphA2 in different tumours, suggesting that EphA2 might be a potential biomarker for poor prognosis and immune infiltration in cancer.
Collapse
Affiliation(s)
- Yuchun Li
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
- Clinical Technology Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanxiao Fei
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuxia Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Zhang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
| | - Mengmeng Liu
- Department of Oncology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Egal ESA, Kamdem SD, Yoshigi M, Yang CC, Pellizzari S, Kameni EM, Helms MN, Assassi S, Henkemeyer M, Frech TM, Mimche PN. EphB2 Receptor Promotes Dermal Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2024; 76:1303-1316. [PMID: 38589317 PMCID: PMC11288787 DOI: 10.1002/art.42858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/20/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE Erythropoietin-producing hepatocellular (Eph)/Ephrin cell-cell signaling is emerging as a key player in tissue fibrogenesis. The aim of this study was to test the hypothesis that the receptor tyrosine kinase EphB2 mediates dermal fibrosis in systemic sclerosis (SSc). METHODS We assessed normal and SSc human skin biopsies for EphB2 expression. The in vivo role of EphB2 in skin fibrosis was investigated by subjecting EphB2-knockout mice to both bleomycin-induced and tight skin (Tsk1/+) genetic mouse models of skin fibrosis. EphB2 kinase-dead and overactive point mutant mice were used to evaluate the role of EphB2 forward signaling in bleomycin-induced dermal fibrosis. In vitro studies were performed on dermal fibroblasts from patients with SSc and healthy controls, which was followed by in vivo analysis of fibroblast-specific Ephb2-deficient mice. RESULTS Expression of EphB2 is up-regulated in SSc skin tissue and explanted SSc dermal fibroblasts compared with healthy controls. EphB2 expression is elevated in two animal models of dermal fibrosis. In mice, EphB2 drives dermal fibrosis in both the bleomycin and the Tsk1/+ models of skin fibrosis. EphB2 forward signaling is a critical mediator of dermal fibrosis. Transforming growth factor-β (TGF-β) cytokines up-regulate EphB2 in dermal fibroblasts via noncanonical TGF-β/mother against decapentaplegic signaling, and silencing EPHB2 in human dermal fibroblasts is sufficient to dampen TGF-β-induced fibroblast-to-myofibroblast differentiation. Moreover, mice with fibroblast-specific deletion of EphB2 showed impaired fibroblast-to-myofibroblast differentiation and reduced skin fibrosis upon bleomycin challenge. CONCLUSION Our data implicate TGF-β regulation of EphB2 overexpression and kinase-mediated forward signaling in the development of dermal fibrosis in SSc. EphB2 thus represents a potential new therapeutic target for SSc.
Collapse
Affiliation(s)
- Erika SA Egal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112, USA
| | - Severin Donald Kamdem
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112, USA
| | - Masaaki Yoshigi
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112, USA
| | - Ching-Chu Yang
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112, USA
| | - Sarah Pellizzari
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112, USA
| | - Ernest M Kameni
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112, USA
| | - My N Helms
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT84132, USA
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX77030
| | - Mark Henkemeyer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX75390, USA
| | - Tracy M Frech
- Vanderbilt University Medical Center, Division of Rheumatology and Immunology, Nashville, TN 37232, USA
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112, USA
| |
Collapse
|
21
|
Harris ED, Sharpe JC, Strozen T, Abdi S, Kliewer M, Sanchez MG, Hogan NS, MacDonald-Dickinson V, Vizeacoumar FJ, Toosi BM. The EphA2 Receptor Regulates Invasiveness and Drug Sensitivity in Canine and Human Osteosarcoma Cells. Cells 2024; 13:1201. [PMID: 39056783 PMCID: PMC11275032 DOI: 10.3390/cells13141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Osteosarcoma is an aggressive bone cancer affecting both humans and dogs, often leading to pulmonary metastasis. Despite surgery and chemotherapy being the primary treatment modalities, survival rates remain low in both species, underscoring the urgent need for more efficacious therapeutic options. Accumulating evidence indicates numerous biological and clinical similarities between human and canine osteosarcoma, making it an ideal choice for comparative oncological research that should benefit both species. The EphA2 receptor has been implicated in controlling invasive responses across different human malignancies, and its expression is associated with poor prognosis. In this study, we utilized a comparative approach to match EphA2 functions in human and canine osteosarcoma models. Our objectives were to assess EphA2 levels and its pro-malignant action in osteosarcoma cells of both species. We found that EphA2 is overexpressed in most of both canine and human osteosarcoma cell lines, while its silencing significantly reduced cell viability, migration, and invasion. Moreover, EphA2 silencing enhanced the sensitivity of osteosarcoma cells to cisplatin, a drug commonly used for treating this cancer. Furthermore, inhibition of EphA2 expression led to a significant reduction in tumor development capability of canine osteosarcoma cells. Our data suggest that these EphA2 effects are likely mediated through various signaling mechanisms, including the SRC, AKT, and ERK-MAPK pathways. Collectively, our findings indicate that EphA2 promotes malignant behaviors in both human and canine osteosarcoma and that targeting EphA2, either alone or in combination with chemotherapy, could offer potential benefits to osteosarcoma patients.
Collapse
Affiliation(s)
- Evelyn D. Harris
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Jessica C. Sharpe
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Timothy Strozen
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Shabnam Abdi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Maya Kliewer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Malkon G. Sanchez
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Natacha S. Hogan
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Valerie MacDonald-Dickinson
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Franco J. Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Behzad M. Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| |
Collapse
|
22
|
Wirth D, Özdemir E, Wimley WC, Pasquale EB, Hristova K. Transmembrane helix interactions regulate oligomerization of the receptor tyrosine kinase EphA2. J Biol Chem 2024; 300:107441. [PMID: 38838777 PMCID: PMC11263659 DOI: 10.1016/j.jbc.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
The transmembrane helices of receptor tyrosine kinases (RTKs) have been proposed to switch between two different dimeric conformations, one associated with the inactive RTK and the other with the active RTK. Furthermore, recent work has demonstrated that some full-length RTKs are associated into oligomers that are larger than dimers, raising questions about the roles of the TM helices in the assembly and function of these oligomers. Here we probe the roles of the TM helices in the assembly of EphA2 RTK oligomers in the plasma membrane. We employ mutagenesis to evaluate the relevance of a published NMR dimeric structure of the isolated EphA2 TM helix in the context of the full-length EphA2 in the plasma membrane. We use two fluorescence methods, Förster Resonance Energy Transfer and Fluorescence Intensity Fluctuations spectrometry, which yield complementary information about the EphA2 oligomerization process. These studies reveal that the TM helix mutations affect the stability, structure, and size of EphA2 oligomers. However, the effects are multifaceted and point to a more complex role of the TM helix than the one expected from the "TM dimer switch" model.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elena B Pasquale
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Venu A, Zhang Y, Seong J, Hong Y, Lee WS, Min JJ. Engineering of an EPHA2-Targeted Monobody for the Detection of Colorectal Cancer. Cancer Genomics Proteomics 2024; 21:285-294. [PMID: 38670584 PMCID: PMC11059598 DOI: 10.21873/cgp.20447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Colorectal cancer (CRC) is the third most common cancer worldwide, and is second only to lung cancer with respect to cancer-related deaths. Noninvasive molecular imaging using established markers is a new emerging method to diagnose CRC. The human ephrin receptor family type-A 2 (hEPHA2) oncoprotein is overexpressed at the early, but not late, stages of CRC. Previously, we reported development of an E1 monobody that is specific for hEPHA2-expressing cancer cells both in vitro and in vivo. Herein, we investigated the ability of the E1 monobody to detect hEPHA2 expressing colorectal tumors in a mouse model, as well as in CRC tissue. MATERIALS AND METHODS The expression of hEPHA2 on the surface of CRC cells was analyzed by western blotting and flow cytometry. The targeting efficacy of the E1 monobody for CRC cells was examined by flow cytometry, and immunofluorescence staining. E1 conjugated to the Renilla luciferase variant 8 (Rluc8) reporter protein was used for in vivo imaging in mice. Additionally, an enhanced green fluorescence protein (EGFP) conjugated E1 monobody was used to check the ability of the E1 monobody to target CRC tissue. RESULTS The E1 monobody bound efficiently to hEPHA2-expressing CRC cell lines, and E1 conjugated to the Rluc8 reporter protein targeted tumor tissues in mice transplanted with HCT116 CRC tumor cells. Finally, E1-EGFP stained tumor tissues from human CRC patients, showing a pattern similar to that of an anti-hEPHA2 antibody. CONCLUSION The E1 monobody has utility as an EPHA2 targeting agent for the detection of CRC.
Collapse
Affiliation(s)
- Akhil Venu
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
| | - Ying Zhang
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Jihyoun Seong
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Wan-Sik Lee
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea;
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea;
| |
Collapse
|
25
|
Wang W, Camley BA. Limits on the accuracy of contact inhibition of locomotion. Phys Rev E 2024; 109:054408. [PMID: 38907435 PMCID: PMC11193850 DOI: 10.1103/physreve.109.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/25/2024] [Indexed: 06/24/2024]
Abstract
Cells that collide with each other repolarize away from contact, in a process called contact inhibition of locomotion (CIL), which is necessary for correct development of the embryo. CIL can occur even when cells make a micron-scale contact with a neighbor-much smaller than their size. How precisely can a cell sense cell-cell contact and repolarize in the correct direction? What factors control whether a cell recognizes it has contacted a neighbor? We propose a theoretical model for the limits of CIL where cells recognize the presence of another cell by binding the protein ephrin with the Eph receptor. This recognition is made difficult by the presence of interfering ligands that bind nonspecifically. Both theoretical predictions and simulation results show that it becomes more difficult to sense cell-cell contact when it is difficult to distinguish ephrin from the interfering ligands, or when there are more interfering ligands, or when the contact width decreases. However, the error of estimating contact position remains almost constant when the contact width changes. This happens because the cell gains spatial information largely from the boundaries of cell-cell contact. We study using statistical decision theory the likelihood of a false-positive CIL event in the absence of cell-cell contact, and the likelihood of a false negative where CIL does not occur when another cell is present. Our results suggest that the cell is more likely to make incorrect decisions when the contact width is very small or so large that it nears the cell's perimeter. However, in general, we find that cells have the ability to make reasonably reliable CIL decisions even for very narrow (micron-scale) contacts, even if the concentration of interfering ligands is ten times that of the correct ligands.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
26
|
Liang LY, Geoghegan ND, Mlodzianoski M, Leis A, Whitehead LW, Surudoi MG, Young SN, Janes P, Shepherd D, Ghosal D, Rogers KL, Murphy JM, Lucet IS. Co-clustering of EphB6 and ephrinB1 in trans restrains cancer cell invasion. Commun Biol 2024; 7:461. [PMID: 38627519 PMCID: PMC11021433 DOI: 10.1038/s42003-024-06118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.
Collapse
Affiliation(s)
- Lung-Yu Liang
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael Mlodzianoski
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Andrew Leis
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Minglyanna G Surudoi
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Peter Janes
- Olivia Newton-John Cancer Research Institute and La Trobe School of Cancer Medicine, Level 5, ONJ Centre, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Doulin Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
27
|
Al-Jamaei AAH, Subramanyam RV, Helder MN, Forouzanfar T, van der Meij EH, Al-Jamei S, de Visscher JGAM. A narrative review of the role of Eph receptors in head and neck squamous cell carcinoma. Oral Dis 2024; 30:833-845. [PMID: 37279081 DOI: 10.1111/odi.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Tyrosine kinase receptors (TKR) coordinate a variety of pathological processes in head and neck squamous cell carcinoma (HNSCC), and eventually play a role in patient outcomes. In this review, the role of Eph receptors in HNSCC progression and the possibility of targeting these receptors are illustrated. All relevant studies were identified through a comprehensive search of four electronic databases, including PubMed, Scopus, web of science, and Embase till August 2022. EphA2 and EphB4, along with ephrin-B2, were the most extensively studied proteins in this family. However, overexpression of EphB4 and its ligand ephrin-B2 were the only proteins that consistently showed association with a poor outcome, indicating that these proteins might serve as valuable prognostic markers in HNSCC. High expression of EphA3 and EphB4 was found to play a crucial role in radioresistance of HNSCC. EphB4 loss, in particular, was observed to induce an immunosuppression phenotypic HNSCC. Currently, ongoing clinical trials are investigating the benefits of EphB4-ephrin-B2 blockade in combination with standard of care treatment in HNSCC. Further efforts are needed to explore the biological role and behavioral complexity of this family of TKR in HNSCC with great attention to avoid heterogeneity of HNSCC subsites.
Collapse
Affiliation(s)
- Aisha A H Al-Jamaei
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Department of Oral Surgery and Oral Medicine, Collage of Dentistry, Al-Razi University, Sana'a, Yemen
| | | | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Erik H van der Meij
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Sayida Al-Jamei
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus TU, Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jan G A M de Visscher
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
28
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
29
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
30
|
Gao G, Zhou Z. Isthmin-1: A critical regulator of branching morphogenesis and metanephric mesenchyme condensation during early kidney development. Bioessays 2024; 46:e2300189. [PMID: 38161234 DOI: 10.1002/bies.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8β1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
31
|
Rasool D, Burban A, Sharanek A, Madrigal A, Hu J, Yan K, Qu D, Voss AK, Slack RS, Thomas T, Bonni A, Picketts DJ, Soleimani VD, Najafabadi HS, Jahani-Asl A. PHF6-mediated transcriptional control of NSC via Ephrin receptors is impaired in the intellectual disability syndrome BFLS. EMBO Rep 2024; 25:1256-1281. [PMID: 38429579 PMCID: PMC10933485 DOI: 10.1038/s44319-024-00082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Audrey Burban
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada
| | - Ahmad Sharanek
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montréal, QC, H3A 0G1, Canada
| | - Jinghua Hu
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Keqin Yan
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Azad Bonni
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Picketts
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Vahab D Soleimani
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada.
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montréal, QC, H3A 0G1, Canada.
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
32
|
Wurz AI, Zheng KS, Hughes RM. Optogenetic Regulation of EphA1 RTK Activation and Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579139. [PMID: 38370612 PMCID: PMC10871282 DOI: 10.1101/2024.02.06.579139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Eph receptors are ubiquitous class of transmembrane receptors that mediate cell-cell communication, proliferation, differentiation, and migration. EphA1 receptors specifically play an important role in angiogenesis, fetal development, and cancer progression; however, studies of this receptor can be challenging as its ligand, ephrinA1, binds and activates several EphA receptors simultaneously. Optogenetic strategies could be applied to circumvent this requirement for ligand activation and enable selective activation of the EphA1 subtype. In this work, we designed and tested several iterations of an optogenetic EphA1 - Cryptochrome 2 (Cry2) fusion, investigating their capacity to mimic EphA1-dependent signaling in response to light activation. We then characterized the key cell signaling target of MAPK phosphorylation activated in response to light stimulation. The optogenetic regulation of Eph receptor RTK signaling without the need for external stimulus promises to be an effective means of controlling individual Eph receptor-mediated activities and creates a path forward for the identification of new Eph-dependent functions.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Kevin S. Zheng
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
33
|
Xie Y, Zhang L, Wang L, Chen B, Guo X, Yang Y, Shi W, Chen A, Yi J, Tang J, Xiang J. EphB1 promotes the differentiation and maturation of dendritic cells in non-small cell lung cancer. Cancer Lett 2024; 582:216567. [PMID: 38070822 DOI: 10.1016/j.canlet.2023.216567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
EphB1 is implicated in numerous physiological and pathological processes, including nervous system diseases, cardiovascular diseases and cancers. It binds to membrane-bound ligands and drives bidirectional signaling. EphB1, along with its ligand ehrinB, plays a pivotal role in activating immune cells. However, despite its presence in dendritic cells (DCs), EphB1's involvement in the differentiation and maturation of DCs in cancers remains inadequately understood. In this study, we found compromised differentiation and maturation of DCs in EphB1-/- mice bearing lung adenocarcinoma syngeneic tumors. Our in vitro assays revealed that EphB1 phosphorylation induced DC differentiation and maturation. Cox-2, a key enzyme involved in the production of proinflammatory molecules, is implicated in DC differentiation induced by phosphorylated EphB1. Additionally, the study has identified lead compounds that specifically target EphB1 phosphorylation sites. Collectively, this research on EphB1 phosphorylation has provided valuable insights into the regulation of immune cell functionality and holds the potential for the development of innovative therapeutic strategies for a range of diseases.
Collapse
Affiliation(s)
- Yaohuan Xie
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujuan Wang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoting Guo
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenhua Shi
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anqi Chen
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Junqi Yi
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jingqun Tang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Juanjuan Xiang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Kim Y, Miller WT. Contrasting Effects of Cancer-Associated Mutations in EphA3 and EphB2 Kinases. Biochemistry 2024:10.1021/acs.biochem.3c00674. [PMID: 38252844 PMCID: PMC11265570 DOI: 10.1021/acs.biochem.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Erythropoietin-producing hepatoma (Eph) receptors are a family of tyrosine kinases that can act as tumor promoters or tumor suppressors, depending on the receptor and cancer cell type. Cancer-associated somatic mutations have been identified in all Eph receptors, but in most cases, the functional effects of the mutations are unknown. In this study, we expressed and purified the kinase domains of wild-type (WT) EphA3 and EphB2 along with 16 cancer-associated mutants. We identified mutations that decrease EphA3 activity and both activating and inhibitory mutations in EphB2. To shed light on the mechanisms by which the mutations altered kinase activity, we measured the thermal stabilities of the enzymes and performed steady-state kinetic experiments. We also expressed the full-length receptors in HEK293T cells to determine the cellular effects. WT EphB2 promoted downstream ERK signaling, while a kinase-inactive mutant (S706F) was similar to the control cells. In contrast, WT EphA3 (but not loss-of-function mutants) inhibited ERK signaling. The reciprocal effects of EphB2 and EphA3 on ERK phosphorylation in HEK293T cells were also evident in Ras-GTP loading. Thus, consistent with the dual roles of Eph receptors as tumor promoters and tumor suppressors, somatic mutations have the potential to increase or decrease Eph function, resulting in changes in the downstream signaling transduction.
Collapse
Affiliation(s)
- Yunyoung Kim
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Veterans Affairs Medical Center, Northport, New York 11768, United States
| |
Collapse
|
35
|
Schilling K. Revisiting the development of cerebellar inhibitory interneurons in the light of single-cell genetic analyses. Histochem Cell Biol 2024; 161:5-27. [PMID: 37940705 PMCID: PMC10794478 DOI: 10.1007/s00418-023-02251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The present review aims to provide a short update of our understanding of the inhibitory interneurons of the cerebellum. While these cells constitute but a minority of all cerebellar neurons, their functional significance is increasingly being recognized. For one, inhibitory interneurons of the cerebellar cortex are now known to constitute a clearly more diverse group than their traditional grouping as stellate, basket, and Golgi cells suggests, and this diversity is now substantiated by single-cell genetic data. The past decade or so has also provided important information about interneurons in cerebellar nuclei. Significantly, developmental studies have revealed that the specification and formation of cerebellar inhibitory interneurons fundamentally differ from, say, the cortical interneurons, and define a mode of diversification critically dependent on spatiotemporally patterned external signals. Last, but not least, in the past years, dysfunction of cerebellar inhibitory interneurons could also be linked with clinically defined deficits. I hope that this review, however fragmentary, may stimulate interest and help focus research towards understanding the cerebellum.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut - Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, 53115, Bonn, Germany.
| |
Collapse
|
36
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
37
|
Vincenzi M, Mercurio FA, Leone M. EPHA2 Receptor as a Possible Therapeutic Target in Viral Infections. Curr Med Chem 2024; 31:5670-5701. [PMID: 37828671 DOI: 10.2174/0109298673256638231003111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections. OBJECTIVE Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies. METHODS Research and review articles along with preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database. RESULTS EphA2 assumes a key role in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSION Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| |
Collapse
|
38
|
Thapa K, Khan H, Kaur G, Kumar P, Singh TG. Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun 2023; 687:149130. [PMID: 37944468 DOI: 10.1016/j.bbrc.2023.149130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | | |
Collapse
|
39
|
Bhardwaj R, Mishra P. Engineered Recombinant EGFP-Azurin Theranostic Nanosystem for Targeted Therapy of Prostate Cancer. Mol Pharm 2023; 20:6066-6078. [PMID: 37906960 DOI: 10.1021/acs.molpharmaceut.3c00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Erythropoietin-producing hepatocellular (Eph) receptors and their ligands, ephrins, are the largest subfamily of receptor tyrosine kinases (RTKs) that have emerged as a new class of cancer biomarkers due to their aberrant expression in cancer progression. The activation of Eph receptors either due to their hyperexpression or via high affinity binding with their respective ephrin ligands initiates a cascade of signals that impacts cancer development and progression. In prostate cancer, the overexpression of the EphA6 receptor has been correlated with increased metastatic potential. Azurin, a small redox protein, is known to prevent tumor progression by binding to cell surface Eph receptors, inhibiting its autophosphorylation in the kinase domain and thereby disrupting Eph-ephrin signaling. Hence, a self-assembled, theranostic nanosystem of recombinant fusion protein his6EGFP-azu (80-128) was designed by conjugating enhanced green fluorescent protein (EGFP) with the C-terminal region of azurin. This design was inspired by the in silico binding study, where the analogue of ephrinA, his6EGFP-azu (80-128) showed higher binding affinity for the EphA6 receptor than the ephrinA ligands. The his6EGFP-azu (80-128) nanosystem which assembled as nanoparticles was tested for its ability to simultaneously detect and kill the prostate cancer cells, LNCaP. This was achieved by specifically targeting EphA6 receptors overexpressed on the cancer cell surface via C-terminal peptide, azu (80-128). Herein, we report antiproliferative, apoptotic, antimigratory, and anti-invasive effects of this nanosystem on LNCaP cells, while having no similar effects on EphA6 negative human normal lung cells, WI-38.
Collapse
Affiliation(s)
- Ritu Bhardwaj
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
40
|
Chen D, Wiggins D, Sevick EM, Davis MJ, King PD. An EPHB4-RASA1 signaling complex inhibits shear stress-induced Ras-MAPK activation in lymphatic endothelial cells to promote the development of lymphatic vessel valves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568378. [PMID: 38045382 PMCID: PMC10690291 DOI: 10.1101/2023.11.22.568378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
EPHB4 is a receptor protein tyrosine kinase that is required for the development of lymphatic vessel (LV) valves. We show here that EPHB4 is necessary for the specification of LV valves, their continued development after specification, and the maintenance of LV valves in adult mice. EPHB4 promotes LV valve development by inhibiting the activation of the Ras-MAPK pathway in LV endothelial cells (LEC). For LV specification, this role for EPHB4 depends on its ability to interact physically with the p120 Ras-GTPase-activating protein (RASA1) that acts as a negative regulator of Ras. Through physical interaction, EPHB4 and RASA1 dampen oscillatory shear stress (OSS)-induced Ras-MAPK activation in LEC, which is required for LV specification. We identify the Piezo1 OSS sensor as a focus of EPHB4-RASA1 regulation of OSS-induced Ras-MAPK signaling mediated through physical interaction. These findings contribute to an understanding of the mechanism by which EPHB4, RASA1 and Ras regulate lymphatic valvulogenesis.
Collapse
|
41
|
Soliman E, Leonard J, Basso EKG, Gershenson I, Ju J, Mills J, de Jager C, Kaloss AM, Elhassanny M, Pereira D, Chen M, Wang X, Theus MH. Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/MERTK signaling following brain injury. J Neuroinflammation 2023; 20:256. [PMID: 37941008 PMCID: PMC10633953 DOI: 10.1186/s12974-023-02940-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. METHODS We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. RESULTS Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. CONCLUSIONS Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Ilana Gershenson
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Roanoke, VA, 24001, USA
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mohamed Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniela Pereira
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA.
- Translational Biology Medicine and Health Graduate Program, Roanoke, VA, 24001, USA.
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, 24061, USA.
- VT-Biomedical Engineering and School of Neuroscience, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
| |
Collapse
|
42
|
Chang FL, Tsai KC, Lin TY, Chiang CW, Pan SL, Lee YC. Effectiveness of anti-erythropoietin producing Hepatocellular receptor Type-A2 antibody in pancreatic cancer treatment. Heliyon 2023; 9:e21774. [PMID: 38034633 PMCID: PMC10682614 DOI: 10.1016/j.heliyon.2023.e21774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Erythropoietin-producing hepatocyte receptor type A2 (EphA2) is a tyrosine kinase that binds to ephrins (e.g., ephrin-A1) to initiate bidirectional signaling between cells. The binding of EphA2 and ephrin-A1 leads to the inhibition of Ras-MAPK activity and tumor growth. During tumorigenesis, the normal interaction between EphA2 and ephrin-A1 is hindered, which leads to the overexpression of EphA2 and induces cancer. The overexpression of EphA2 has been identified as a notable tumor marker in diagnosing and treating pancreatic cancer. In this study, we used phage display to isolate specific antibodies against the active site of EphA2 by using a discontinuous recombinant epitope for immunization. The therapeutic efficacy and inhibition mechanism of the generated antibody against pancreatic cancer was validated and clarified. The generated antibodies were bound to the conformational epitope of endogenous EphA2 on cancer cells, thus inducing cellular endocytosis and causing EphA2 degradation. Molecule signals pAKT, pERK, pFAK, and pSTAT3 were weakened, inhibiting the proliferation and migration of pancreatic cancer cells. The humanized antibody hSD5 could effectively inhibit the growth of the xenograft pancreatic cancer tumor cells BxPc-3 and Mia PaCa-2 in mice, respectively. When antibody hSD5 was administered with gemcitabine, significantly improved effects on tumor growth inhibition were observed. Based on the efficacy of the IgG hSD5 antibodies, clinical administration of the hSD5 antibodies is likely to suppress tumors in patients with pancreatic cancer and abnormal activation or overexpression of EphA2 signaling.
Collapse
Affiliation(s)
- Fu-Ling Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Wei Chiang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
43
|
Cash A, de Jager C, Brickler T, Soliman E, Ladner L, Kaloss AM, Zhu Y, Pridham KJ, Mills J, Ju J, Basso EKG, Chen M, Johnson Z, Sotiropoulos Y, Wang X, Xie H, Matson JB, Marvin EA, Theus MH. Endothelial deletion of EPH receptor A4 alters single-cell profile and Tie2/Akap12 signaling to preserve blood-brain barrier integrity. Proc Natl Acad Sci U S A 2023; 120:e2204700120. [PMID: 37796990 PMCID: PMC10576133 DOI: 10.1073/pnas.2204700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Neurobiological consequences of traumatic brain injury (TBI) result from a complex interplay of secondary injury responses and sequela that mediates chronic disability. Endothelial cells are important regulators of the cerebrovascular response to TBI. Our work demonstrates that genetic deletion of endothelial cell (EC)-specific EPH receptor A4 (EphA4) using conditional EphA4f/f/Tie2-Cre and EphA4f/f/VE-Cadherin-CreERT2 knockout (KO) mice promotes blood-brain barrier (BBB) integrity and tissue protection, which correlates with improved motor function and cerebral blood flow recovery following controlled cortical impact (CCI) injury. scRNAseq of capillary-derived KO ECs showed increased differential gene expression of BBB-related junctional and actin cytoskeletal regulators, namely, A-kinase anchor protein 12, Akap12, whose presence at Tie2 clustering domains is enhanced in KO microvessels. Transcript and protein analysis of CCI-injured whole cortical tissue or cortical-derived ECs suggests that EphA4 limits the expression of Cldn5, Akt, and Akap12 and promotes Ang2. Blocking Tie2 using sTie2-Fc attenuated protection and reversed Akap12 mRNA and protein levels cortical-derived ECs. Direct stimulation of Tie2 using Vasculotide, angiopoietin-1 memetic peptide, phenocopied the neuroprotection. Finally, we report a noteworthy rise in soluble Ang2 in the sera of individuals with acute TBI, highlighting its promising role as a vascular biomarker for early detection of BBB disruption. These findings describe a contribution of the axon guidance molecule, EphA4, in mediating TBI microvascular dysfunction through negative regulation of Tie2/Akap12 signaling.
Collapse
Affiliation(s)
- Alison Cash
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA24061
| | - Thomas Brickler
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Liliana Ladner
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Kevin J. Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | | | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Zachary Johnson
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Yianni Sotiropoulos
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
- Center for Engineered Health, Virginia Tech, Blacksburg, VA24061
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Eric A. Marvin
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
44
|
Nanamiya R, Suzuki H, Kaneko MK, Kato Y. Development of an Anti-EphB4 Monoclonal Antibody for Multiple Applications Against Breast Cancers. Monoclon Antib Immunodiagn Immunother 2023; 42:166-177. [PMID: 37824755 DOI: 10.1089/mab.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest receptor tyrosine kinase family. EphB4 is essential for cell adhesion and motility during embryogenesis. Pathologically, EphB4 is overexpressed and contributes to poor prognosis in various tumors. Therefore, specific monoclonal antibodies (mAbs) should be developed to predict the prognosis for multiple tumors with high EphB4 expression, including breast and gastric cancers. This study aimed to develop specific anti-EphB4 mAbs for multiple applications using the Cell-Based Immunization and Screening method. EphB4-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/EphB4) cells were immunized into mice, and we established an anti-EphB4 mAb (clone B4Mab-7), which is applicable for flow cytometry, Western blot, and immunohistochemistry (IHC). B4Mab-7 reacted with endogenous EphB4-positive breast cancer cell line, MCF-7, but did not react with EphB4-knockout MCF-7 (BINDS-52) in flow cytometry. Dissociation constant (KD) values were determined to be 2.9 × 10-9 M and 1.3 × 10-9 M by flow cytometric analysis for CHO/EphB4 and MCF-7 cells, respectively. B4Mab-7 detected the EphB4 protein bands from breast cancer cells in Western blot, and stained breast cancer tissues in IHC. Altogether, B4Mab-7 is very useful for detecting EphB4 in various applications.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
45
|
Gu D, Liu H, Qiu X, Yu Y, Tang X, Liu C, Miao L. Erythropoietin induces odontoblastic differentiation of human-derived pulp stem cells via EphB4-Mediated MAPK signaling pathway. Oral Dis 2023; 29:2816-2826. [PMID: 36577689 DOI: 10.1111/odi.14486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Human-derived pulp stem cells play key roles during dentinogenesis. Erythropoietin is reportedly involved in osteoblastogenesis and facilitates bone formation. However, the mechanism is still unknown. This research was to study the potential of erythropoietin in enhancing odontoblastic differentiation of human-derived pulp stem cells and to determine the underlying mechanism. METHODS The human-derived pulp stem cells were treated with erythropoietin, EphB4 inhibitor, and MAPK inhibitors, and the odontoblastic differentiation was measured by ALP staining, ALP activity assay, alizarin red S staining, and their quantitative analysis, and RT-qPCR of DSPP, DMP1, OCN, and RUNX2. The direct pulp capping model was established to evaluate the formation of tertiary dentin after treatment with erythropoietin. Western blot assay was conducted to assess relevant protein expressions in the phosphorylated EphB4 and MAPK pathway. RESULTS The results showed that erythropoietin promoted odontoblastic differentiation of human-derived pulp stem cells at 20 U/ml. Erythropoietin induced tertiary dentin formation in vivo. The potential mechanism of this was upregulating phosphorylated EphB4 and phosphorylated MAPK; furthermore, this effect could be decreased by EphB4 inhibitors, which inhibited MAPK phosphorylation. Blockage of MAPK pathways attenuated human-derived pulp stem cells' odontoblastic differentiation, suggesting that MAPK pathways are involved. CONCLUSION Erythropoietin induced tertiary dentin formation in vivo. And erythropoietin enhanced human-derived pulp stem cells' odontoblastic differentiation via the EphB4-mediated MAPK signaling pathway.
Collapse
Affiliation(s)
- Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hanxiao Liu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Pediatric Dentistry, Zhengzhou Stomatology Hospital, Zhengzhou, China
| | - Xinyi Qiu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuna Tang
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Kim Y, Ahmed S, Miller WT. Colorectal cancer-associated mutations impair EphB1 kinase function. J Biol Chem 2023; 299:105115. [PMID: 37527777 PMCID: PMC10463257 DOI: 10.1016/j.jbc.2023.105115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptor tyrosine kinases regulate the migration and adhesion of cells that are required for many developmental processes and adult tissue homeostasis. In the intestinal epithelium, Eph signaling controls the positioning of cell types along the crypt-villus axis. Eph activity can suppress the progression of colorectal cancer (CRC). The most frequently mutated Eph receptor in metastatic CRC is EphB1. However, the functional effects of EphB1 mutations are mostly unknown. We expressed and purified the kinase domains of WT and five cancer-associated mutant EphB1 and developed assays to assess the functional effects of the mutations. Using purified proteins, we determined that CRC-associated mutations reduce the activity and stability of the folded structure of EphB1. By mammalian cell expression, we determined that CRC-associated mutant EphB1 receptors inhibit signal transducer and activator of transcription 3 and extracellular signal-regulated kinases 1 and 2 signaling. In contrast to the WT, the mutant EphB1 receptors are unable to suppress the migration of human CRC cells. The CRC-associated mutations also impair cell compartmentalization in an assay in which EphB1-expressing cells are cocultured with ligand (ephrin B1)-expressing cells. These results suggest that somatic mutations impair the kinase-dependent tumor suppressor function of EphB1 in CRC.
Collapse
Affiliation(s)
- Yunyoung Kim
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA; Department of Veterans Affairs Medical Center, Northport, New York, USA.
| |
Collapse
|
47
|
Vish KJ, Stiegler AL, Boggon TJ. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. J Biol Chem 2023; 299:105098. [PMID: 37507023 PMCID: PMC10470053 DOI: 10.1016/j.jbc.2023.105098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
RasGAP (p120RasGAP), the founding member of the GTPase-activating protein (GAP) family, is one of only nine human proteins to contain two SH2 domains and is essential for proper vascular development. Despite its importance, its interactions with key binding partners remains unclear. In this study we provide a detailed viewpoint of RasGAP recruitment to various binding partners and assess their impact on RasGAP activity. We reveal the RasGAP SH2 domains generate distinct binding interactions with three well-known doubly phosphorylated binding partners: p190RhoGAP, Dok1, and EphB4. Affinity measurements demonstrate a 100-fold weakened affinity for RasGAP-EphB4 binding compared to RasGAP-p190RhoGAP or RasGAP-Dok1 binding, possibly driven by single versus dual SH2 domain engagement with a dominant N-terminal SH2 interaction. Small-angle X-ray scattering reveals conformational differences between RasGAP-EphB4 binding and RasGAP-p190RhoGAP binding. Importantly, these interactions do not impact catalytic activity, implying RasGAP utilizes its SH2 domains to achieve diverse spatial-temporal regulation of Ras signaling in a previously unrecognized fashion.
Collapse
Affiliation(s)
- Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale University, New Haven, Connecticut, USA; Department of Yale Cancer Center, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
48
|
Law J, Orbach SM, Weston BR, Steele PA, Rajagopalan P, Murali TM. Computational Construction of Toxicant Signaling Networks. Chem Res Toxicol 2023; 36:1267-1277. [PMID: 37471124 PMCID: PMC10445288 DOI: 10.1021/acs.chemrestox.2c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 07/21/2023]
Abstract
Humans and animals are regularly exposed to compounds that may have adverse effects on health. The Toxicity Forecaster (ToxCast) program was developed to use high throughput screening assays to quickly screen chemicals by measuring their effects on many biological end points. Many of these assays test for effects on cellular receptors and transcription factors (TFs), under the assumption that a toxicant may perturb normal signaling pathways in the cell. We hypothesized that we could reconstruct the intermediate proteins in these pathways that may be directly or indirectly affected by the toxicant, potentially revealing important physiological processes not yet tested for many chemicals. We integrate data from ToxCast with a human protein interactome to build toxicant signaling networks that contain physical and signaling protein interactions that may be affected as a result of toxicant exposure. To build these networks, we developed the EdgeLinker algorithm, which efficiently finds short paths in the interactome that connect the receptors to TFs for each toxicant. We performed multiple evaluations and found evidence suggesting that these signaling networks capture biologically relevant effects of toxicants. To aid in dissemination and interpretation, interactive visualizations of these networks are available at http://graphspace.org.
Collapse
Affiliation(s)
- Jeffrey
N. Law
- Interdisciplinary
Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Blacksburg, Virginia 24061, United States
| | - Sophia M. Orbach
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bronson R. Weston
- Interdisciplinary
Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Blacksburg, Virginia 24061, United States
| | - Peter A. Steele
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Padmavathy Rajagopalan
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T. M. Murali
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
49
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
50
|
Hanover G, Vizeacoumar FS, Banerjee SL, Nair R, Dahiya R, Osornio-Hernandez AI, Morales AM, Freywald T, Himanen JP, Toosi BM, Bisson N, Vizeacoumar FJ, Freywald A. Integration of cancer-related genetic landscape of Eph receptors and ephrins with proteomics identifies a crosstalk between EPHB6 and EGFR. Cell Rep 2023; 42:112670. [PMID: 37392382 DOI: 10.1016/j.celrep.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.
Collapse
Affiliation(s)
- Glinton Hanover
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Sara L Banerjee
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Raveena Nair
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Renuka Dahiya
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Ana I Osornio-Hernandez
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Alain Morejon Morales
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Juha P Himanen
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Nicolas Bisson
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada.
| | - Franco J Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|