1
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Yassine M, Hassan SA, Yücel LA, Purath FFA, Korf HW, von Gall C, Ali AAH. Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus. Biomedicines 2024; 12:2202. [PMID: 39457515 PMCID: PMC11504045 DOI: 10.3390/biomedicines12102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver-brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: homeostatic regulation and the circadian system. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the key component of the circadian system. It generates circadian rhythms in physiology and behavior and controls their entrainment to the surrounding light/dark cycle. Neuron-glia interactions are crucial for the functional integrity of the SCN. Under pathological conditions, oxidative stress can compromise these interactions and thus circadian timekeeping and entrainment. To date, little is known about the impact of peripheral pathologies such as hepatocellular carcinoma (HCC) on SCN. Materials and Methods: In this study, HCC was induced in adult male mice. The key neuropeptides (vasoactive intestinal peptide: VIP, arginine vasopressin: AVP), an essential component of the molecular clockwork (Bmal1), markers for activity of neurons (c-Fos), astrocytes (GFAP), microglia (IBA1), as well as oxidative stress (8-OHdG) in the SCN were analyzed by immunohistochemistry at four different time points in HCC-bearing compared to control mice. Results: The immunoreactions for VIP, Bmal1, GFAP, IBA1, and 8-OHdG were increased in HCC mice compared to control mice, especially during the activity phase. In contrast, c-Fos was decreased in HCC mice, especially during the late inactive phase. Conclusions: Our data suggest that HCC affects the circadian system at the level of SCN. This involves an alteration of neuropeptides, neuronal activity, Bmal1, activation of glia cells, and oxidative stress in the SCN.
Collapse
Affiliation(s)
- Mona Yassine
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Zoology, Faculty of Science, Suez University, P.O. Box 43221, Suez 43533, Egypt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lea Aylin Yücel
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Fathima Faiba A. Purath
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Zhu X, Han X, Li Z, Zhou X, Yoo SH, Chen Z, Ji Z. CircaKB: a comprehensive knowledgebase of circadian genes across multiple species. Nucleic Acids Res 2024:gkae817. [PMID: 39329269 DOI: 10.1093/nar/gkae817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Circadian rhythms, which are the natural cycles that dictate various physiological processes over a 24-h period, have been increasingly recognized as important in the management and treatment of various human diseases. However, the lack of sufficient data and reliable analysis methods have been a major obstacle to understanding the bidirectional interaction between circadian variation and human health. We have developed CircaKB, a comprehensive knowledgebase of circadian genes across multiple species. CircaKB is the first knowledgebase that provides systematic annotations of the oscillatory patterns of gene expression at a genome-wide level for 15 representative species. Currently, CircaKB contains 226 time-course transcriptome datasets, covering a wide variety of tissues, organs, and cell lines. In addition, CircaKB integrates 12 computational models to facilitate reliable data analysis and identify oscillatory patterns and their variations in gene expression. CircaKB also offers powerful functionalities to its users, including easy search, fast browsing, strong visualization, and custom upload. We believe that CircaKB will be a valuable tool and resource for the circadian research community, contributing to the identification of new targets for disease prevention and treatment. We have made CircaKB freely accessible at https://cdsic.njau.edu.cn/CircaKB.
Collapse
Affiliation(s)
- Xingchen Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| | - Xiao Han
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| | - Zhijin Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| |
Collapse
|
4
|
Porri D, Luppino G, Aversa T, Corica D, Valenzise M, Messina MF, Pepe G, Morabito LA, La Rosa E, Lugarà C, Abbate T, Coco R, Franchina F, Lanzafame A, Toscano F, Li Pomi A, Cavallaro P, Wasniewska MG. Preventing and treating childhood obesity by sleeping better: a systematic review. Front Endocrinol (Lausanne) 2024; 15:1426021. [PMID: 39363896 PMCID: PMC11446760 DOI: 10.3389/fendo.2024.1426021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 10/05/2024] Open
Abstract
Background Childhood obesity represents a major public health issue worldwide. Evidence showed the need to implement prevention strategies mainly focused on lifestyle habits. Sleep hygiene is a variable of great interest and this review systematically examined the effects of sleep duration in increasing childhood obesity risk. Methods A systematic literature review was conducted from December 2023 to February 2024. Study selection and data extraction procedures were performed in accordance with Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines and Statement, and risk of publication bias was assessed by the Effective Public Health Practice Project Quality Assessment Tool for Quantitative Studies. Results Original works in English were eligible for review and eleven studies that met the inclusion criteria were included. Studies collected were heterogeneous in terms of duration, sample characteristics, hours of sleep manipulation, anthropometric and hematological parameters collected, therefore it was not possible to perform a meta-analysis. A narrative synthesis of the reported evidence highlighted the impact of sleep duration above all on food intake, eating habits and hormone levels and consequently on the risk of childhood obesity development. Conclusion This finding suggests the need to consider sleep hygiene as a modifiable lifestyle habit like diet and physical activity, in order to early prevent childhood obesity. Poor sleep hygiene can significantly contribute to weight gain and exacerbation of metabolic disorders linked to childhood obesity. Although more rigorous studies are needed, clinicians need to be aware of the role of sleep hygiene in reducing childhood obesity risk.
Collapse
Affiliation(s)
- Debora Porri
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giovanni Luppino
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Mariella Valenzise
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Maria Francesca Messina
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giorgia Pepe
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | | | - Elisa La Rosa
- Pediatric Unit "G. Martino", University Hospital, Messina, Italy
| | - Cecilia Lugarà
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tiziana Abbate
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Roberto Coco
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Francesca Franchina
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Aurora Lanzafame
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Fabio Toscano
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Alessandra Li Pomi
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Paola Cavallaro
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | | |
Collapse
|
5
|
Zheng W, Gu C, Yang H, Wang H, Rohling JHT. Adaptive coupling between neurons widens the entrainment range of the suprachiasmatic nucleus. Phys Rev E 2024; 110:034212. [PMID: 39425370 DOI: 10.1103/physreve.110.034212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
In many realistic systems, such as neural networks in the brain, the coupling strength between neurons is not fixed, but adaptively adjusts according to their activities. The suprachiasmatic nucleus (SCN), as the main clock in the mammalian brain, has been found to be a plastic neural network, and the coupling strength between neurons is highly dynamical. An important function of the SCN is entrainment, reflecting the ability of the SCN to synchronize with the external light-dark cycle. The entrainment ability is reflected by the entrainment range, which is a period range for the external light-dark cycle to which the SCN can entrain. In this article, we investigated whether the entrainment range of the SCN is affected by the adaptive coupling. We use a modified Kuramoto model with external light-dark cycle. We found that when the light sensitivity is larger than the fixed coupling strength (the coupling strength without adaptive rules), adaptive coupling can widen the entrainment range. Our findings help to understand the impact of the adaptive coupling between oscillatorty neurons on the collective behavior of the SCN, and provides a possible explanation for the plasticity of coupling in the master clock network.
Collapse
|
6
|
Guan D, Chen Y, Liu P, Sabo A. Human genetic variation determines 24-hour rhythmic gene expression and disease risk. RESEARCH SQUARE 2024:rs.3.rs-4790200. [PMID: 39149455 PMCID: PMC11326361 DOI: 10.21203/rs.3.rs-4790200/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
24-hour biological rhythms are essential to maintain physiological homeostasis. Disruption of these rhythms increases the risks of multiple diseases. The biological rhythms are known to have a genetic basis formed by core clock genes, but how individual genetic variation shapes the oscillating transcriptome and contributes to human chronophysiology and disease risk is largely unknown. Here, we mapped interactions between temporal gene expression and genotype to identify quantitative trait loci (QTLs) contributing to rhythmic gene expression. These newly identified QTLs were termed as rhythmic QTLs (rhyQTLs), which determine previously unappreciated rhythmic genes in human subpopulations with specific genotypes. Functionally, rhyQTLs and their associated rhythmic genes contribute extensively to essential chronophysiological processes, including bile acid and lipid metabolism. The identification of rhyQTLs sheds light on the genetic mechanisms of gene rhythmicity, offers mechanistic insights into variations in human disease risk, and enables precision chronotherapeutic approaches for patients.
Collapse
|
7
|
Stevenson TJ. Defining the brain control of physiological stability. Horm Behav 2024; 164:105607. [PMID: 39059231 DOI: 10.1016/j.yhbeh.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The last few decades have seen major advances in neurobiology and uncovered novel genetic and cellular substrates involved in the control of physiological set points. In this Review, I discuss the limitations in the definition of homeostatic set points established by Walter B Canon and highlight evidence that two other physiological systems, namely rheostasis and allostasis provide distinct inputs to independently modify set-point levels. Using data collected over the past decade, the hypothalamic and genetic basis of regulated changes in set-point values by rheostatic mechanisms are described. Then, the role of higher-order brain regions, such as hippocampal circuits, for experience-dependent, allostatic induced changes in set-points are outlined. I propose that these systems provide a hierarchical organization of physiological stability that exists to maintain set-point values. The hierarchical organization of physiology has direct implications for basic and medical research, and clinical practice.
Collapse
Affiliation(s)
- Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
8
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Jan M, Jimenez S, Hor CN, Dijk DJ, Skeldon AC, Franken P. Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles. Cell Syst 2024; 15:610-627.e8. [PMID: 38986625 DOI: 10.1016/j.cels.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Maxime Jan
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland.
| | - Sonia Jimenez
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Charlotte N Hor
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK
| | - Anne C Skeldon
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK; School of Mathematics and Physics, University of Surrey, Guildford, UK
| | - Paul Franken
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Yamaguchi Y. Arginine vasopressin: Critical regulator of circadian homeostasis. Peptides 2024; 177:171229. [PMID: 38663583 DOI: 10.1016/j.peptides.2024.171229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan.
| |
Collapse
|
12
|
Sagun E, Akyol A, Kaymak C. Chrononutrition in Critical Illness. Nutr Rev 2024:nuae078. [PMID: 38904422 DOI: 10.1093/nutrit/nuae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Circadian rhythms in humans are biological rhythms that regulate various physiological processes within a 24-hour time frame. Critical illness can disrupt the circadian rhythm, as can environmental and clinical factors, including altered light exposure, organ replacement therapies, disrupted sleep-wake cycles, noise, continuous enteral feeding, immobility, and therapeutic interventions. Nonpharmacological interventions, controlling the ICU environment, and pharmacological treatments are among the treatment strategies for circadian disruption. Nutrition establishes biological rhythms in metabolically active peripheral tissues and organs through appropriate synchronization with endocrine signals. Therefore, adhering to a feeding schedule based on the biological clock, a concept known as "chrononutrition," appears to be vitally important for regulating peripheral clocks. Chrononutritional approaches, such as intermittent enteral feeding that includes overnight fasting and consideration of macronutrient composition in enteral solutions, could potentially restore circadian health by resetting peripheral clocks. However, due to the lack of evidence, further studies on the effect of chrononutrition on clinical outcomes in critical illness are needed. The purpose of this review was to discuss the role of chrononutrition in regulating biological rhythms in critical illness, and its impact on clinical outcomes.
Collapse
Affiliation(s)
- Eylul Sagun
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, 06100, Turkey
| | - Asli Akyol
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, 06100, Turkey
| | - Cetin Kaymak
- Gülhane Faculty of Medicine, Department of Anesthesiology and Reanimation, University of Health Sciences, Ankara Training and Research Hospital, Intensive Care Unit, Ankara, 06230, Turkey
| |
Collapse
|
13
|
Abedalaziz W, Al-Sharman A, Aburub A, Latrous MS, Esser P, Dawes H, El-Salem K, Khalil H. The relationship between sleep quality and gait in people with multiple sclerosis: A pilot study. Hong Kong Physiother J 2024; 44:11-19. [PMID: 38577391 PMCID: PMC10988269 DOI: 10.1142/s1013702523500129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/15/2023] [Indexed: 04/06/2024] Open
Abstract
Background Gait deficits are common among people with multiple sclerosis (PwMS). Therefore, investigating factors that may influence walking in PwMS is important. Previous studies in older adults and other neurological populations demonstrated the relationship between sleep quality and gait performance. Despite the fact that the prevalence of poor sleep quality is very high among PwMS, little is known about the effect of sleep quality on gait among PwMS. Objective This study aimed to explore the relationship between sleep quality and gait performance in PwMS. Methods Forty-one PwMS participated in the study between February 2019 and December 2019. Participants were asked to walk at a self-selected speed over 10 m with an inertial measurement unit (IMU) attached over the back. Walking speed, step length (left and right), and step time were calculated. Sleep was estimated objectively using a wrist-worn triaxle-accelerometer; the derived parameters were sleep efficiency (SE) and the number of awakening after sleep onset (NASO). Results SE significantly correlated with step length (p = 0 . 02 ). Furthermore, the NASO significantly correlated with gait speed (p = 0 . 03 ), and step-time (p = 0 . 02 ). These correlations remained significant even after adjusting for age and disease duration. Conclusion We observed that when corrected for disease duration and age there were relationships between NASO and SE to gait parameters; these observations warrant further investigations.
Collapse
Affiliation(s)
- Wlla Abedalaziz
- Faculty of Applied Medical Sciences, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Alham Al-Sharman
- Faculty of Applied Medical Sciences, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
- College of Health Sciences, Physiotherapy Department, University of Sharjah, Sharjah, UAE
| | - Aseel Aburub
- Department of Physiotherapy, Applied Science Private University, Amman, Jordan
| | - Mariem Syrine Latrous
- Department of Physical Therapy and Rehabilitation Sciences College of Health Sciences, QU health, Qatar University, Doha, Qatar
| | - Patrick Esser
- Centre for Movement, Occupation and Rehabilitation Sciences, Oxford Brookes University, Oxford, UK
| | - Helen Dawes
- NIHR Exeter BRC, Medical School, University of Exeter, UK
| | - Khalid El-Salem
- Faculty of Medicine, Department of Neurosciences Jordan University of Science and Technology, Irbid, Jordan
| | - Hanan Khalil
- Department of Physical Therapy and Rehabilitation Sciences College of Health Sciences, QU health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Zhang Y, Yang W, Xue Y, Hou D, Chen S, Xu Z, Peng S, Zhao H, Wang C, Liu C. Timing Matters: Time of Day Impacts the Ergogenic Effects of Caffeine-A Narrative Review. Nutrients 2024; 16:1421. [PMID: 38794659 PMCID: PMC11124133 DOI: 10.3390/nu16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Caffeine has attracted significant attention from researchers in the sports field due to its well-documented ergogenic effects across various athletic disciplines. As research on caffeine continues to progress, there has been a growing emphasis on evaluating caffeine dosage and administration methods. However, investigations into the optimal timing of caffeine intake remain limited. Therefore, this narrative review aimed to assess the ergogenic effects of caffeine administration at different times during the morning (06:00 to 10:00) and evening (16:00 to 21:00). The review findings suggest that circadian rhythms play a substantial role in influencing sports performance, potentially contributing to a decline in morning performance. Caffeine administration has demonstrated effectiveness in mitigating this phenomenon, resulting in ergogenic effects and performance enhancement, even comparable to nighttime levels. While the specific mechanisms by which caffeine regulates circadian rhythms and influences sports performance remain unclear, this review also explores the mechanisms underlying caffeine's ergogenic effects, including the adenosine receptor blockade, increased muscle calcium release, and modulation of catecholamines. Additionally, the narrative review underscores caffeine's indirect impact on circadian rhythms by enhancing responsiveness to light-induced phase shifts. Although the precise mechanisms through which caffeine improves morning performance declines via circadian rhythm regulation necessitate further investigations, it is noteworthy that the timing of caffeine administration significantly affects its ergogenic effects during exercise. This emphasizes the importance of considering caffeine intake timing in future research endeavors to optimize its ergogenic potential and elucidate its mechanisms.
Collapse
Affiliation(s)
- Ye Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Weijun Yang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Yizhang Xue
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Dingchun Hou
- Institute of Population Research, Peking University, Beijing 100871, China
| | - Songyue Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhiqin Xu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Sijia Peng
- National Engineering Research Center of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Can Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
15
|
Kumar A, Vaca-Dempere M, Mortimer T, Deryagin O, Smith JG, Petrus P, Koronowski KB, Greco CM, Segalés J, Andrés E, Lukesova V, Zinna VM, Welz PS, Serrano AL, Perdiguero E, Sassone-Corsi P, Benitah SA, Muñoz-Cánoves P. Brain-muscle communication prevents muscle aging by maintaining daily physiology. Science 2024; 384:563-572. [PMID: 38696572 DOI: 10.1126/science.adj8533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oleg Deryagin
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jacob G Smith
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital IRCCS, 20089, Rozzano (Milan), Italy
| | - Jessica Segalés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Vera Lukesova
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Patrick-Simon Welz
- Cancer Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Deceased
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
16
|
Liu X, Shi L, Hao E, Chen X, Liu Z, Chen Y, Wang D, Huang C, Ai J, Wu M, Sun Y, Li Y, Xu L, Sun E, Chen J, Chen H. Effects of 28 h ahemeral light cycle on production performance, egg quality, blood parameters, and uterine characteristics of hens during the late laying period. Poult Sci 2024; 103:103489. [PMID: 38518666 PMCID: PMC10973186 DOI: 10.1016/j.psj.2024.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 03/24/2024] Open
Abstract
This study aimed to systematically determined the effect of 28 h ahemeral light cycle on production performance, egg quality, blood parameters, uterine morphological characteristics, and gene expression of hens during the late laying period. At 74 wk, 260 Hy-Line Brown layers were randomly divided into 2 groups of 130 birds each and in duplicates. Both a regular (16L:8D) and an ahemeral light cycle (16L:12D) were provided to the hens. The oviposition pattern in an ahemeral cycle shifted into darkness, with oviposition mostly occurring 3 to 5 h after light out. Production performance was unaffected by light cycle (P > 0.05). Nonetheless, compared to the normal group, the ahemeral group exhibited increased egg weight, eggshell weight, eggshell percentage, yolk percentage, eggshell thickness, and eggshell strength (P < 0.05). There were rhythmic changes in the uterine morphological structure in both cycles, however, the ahemeral group maintained a longer duration and had more uterine folds than the normal group. In the ahemeral cycle, the phases of the CLOCK and PER2 genes were phase-advanced for 3.96 h and 4.54 h compared to the normal cycle. The PHLPP1 gene, which controls clock resetting, exhibited a substantial oscillated rhythm in the ahemeral group (P < 0.05), while the expression of genes presenting biological rhythm, such as CRY2 and FBXL3, was rhythmically oscillated in normal cycle (P < 0.05). The ITPR2 gene, which regulates intracellular Ca2+ transport, displayed a significant oscillated rhythm in ahemeral alone (P < 0.05), while the CA2 gene, which presents biomineralization, rhythmically oscillated in both cycles (P < 0.05). The ahemeral cycle caused 2.5 h phase delays in the CA2 gene compared to the normal cycle. In conclusion, the 28 h ahemeral light cycle preserved the high condition of the uterine folds and changed the uterine rhythms of CLOCK, PER2, ITPR2, and CA2 gene expression to improve ion transport and uterine biomineralization.
Collapse
Affiliation(s)
- Xuelu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Xiangyu Chen
- Baoding Livestock Husbandry Workstation, Baoding Hebei 071001, China
| | - Ziwen Liu
- Baoding Livestock Husbandry Workstation, Baoding Hebei 071001, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Chenxuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Jiawei Ai
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Min Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lijun Xu
- Baoding Livestock Husbandry Workstation, Baoding Hebei 071001, China
| | - Erdong Sun
- Hebei Taomu Geda Agricultural Science and Technology Co., Ltd. Baoding Hebei 071001, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China.
| |
Collapse
|
17
|
Han E, Lee SS, Park KH, Blum ID, Liu Q, Mehta A, Palmer I, Issa H, Han A, Brown MP, Sanchez-Franco VM, Velasco M, Tabuchi M, Wu MN. Tob Regulates the Timing of Sleep Onset at Night in Drosophila. J Neurosci 2024; 44:e0389232024. [PMID: 38485259 PMCID: PMC11063825 DOI: 10.1523/jneurosci.0389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Sleep is regulated by homeostatic sleep drive and the circadian clock. While tremendous progress has been made in elucidating the molecular components of the core circadian oscillator, the output mechanisms by which this robust oscillator generates rhythmic sleep behavior remain poorly understood. At the cellular level, growing evidence suggests that subcircuits in the master circadian pacemaker suprachiasmatic nucleus (SCN) in mammals and in the clock network in Drosophila regulate distinct aspects of sleep. Thus, to identify novel molecules regulating the circadian timing of sleep, we conducted a large-scale screen of mouse SCN-enriched genes in Drosophila Here, we show that Tob (Transducer of ERB-B2) regulates the timing of sleep onset at night in female fruit flies. Knockdown of Tob pan-neuronally, either constitutively or conditionally, advances sleep onset at night. We show that Tob is specifically required in "evening neurons" (the LNds and the fifth s-LNv) of the clock network for proper timing of sleep onset. Tob levels cycle in a clock-dependent manner in these neurons. Silencing of these "evening" clock neurons results in an advanced sleep onset at night, similar to that seen with Tob knockdown. Finally, sharp intracellular recordings demonstrate that the amplitude and kinetics of LNd postsynaptic potentials (PSPs) cycle between day and night, and this cycling is attenuated with Tob knockdown in these cells. Our data suggest that Tob acts as a clock output molecule in a subset of clock neurons to potentiate their activity in the evening and enable the proper timing of sleep onset at night.
Collapse
Affiliation(s)
- Emily Han
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| | - Sang Soo Lee
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Kristen H Park
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ian D Blum
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Qiang Liu
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Anuradha Mehta
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Habon Issa
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Alice Han
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Matt P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| | | | - Miguel Velasco
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
18
|
del Olmo M, Schmal C, Mizaikoff C, Grabe S, Gabriel C, Kramer A, Herzel H. Are circadian amplitudes and periods correlated? A new twist in the story. F1000Res 2024; 12:1077. [PMID: 37771612 PMCID: PMC10526121 DOI: 10.12688/f1000research.135533.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 09/30/2023] Open
Abstract
Three parameters are important to characterize a circadian and in general any biological clock: period, phase and amplitude. While circadian periods have been shown to correlate with entrainment phases, and clock amplitude influences the phase response of an oscillator to pulse-like zeitgeber signals, the co-modulations of amplitude and periods, which we term twist, have not been studied in detail. In this paper we define two concepts: parametric twist refers to amplitude-period correlations arising in ensembles of self-sustained, limit cycle clocks in the absence of external inputs, and phase space twist refers to the co-modulation of an individual clock's amplitude and period in response to external zeitgebers. Our findings show that twist influences the interaction of oscillators with the environment, facilitating entrainment, speeding upfastening recovery to pulse-like perturbations or modifying the response of an individual clock to coupling. This theoretical framework might be applied to understand the emerging properties of other oscillating systems.
Collapse
Affiliation(s)
- Marta del Olmo
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Camillo Mizaikoff
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Saskia Grabe
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Christian Gabriel
- Laboratory of Chronobiology, Institute for Medical Immunology, Charite Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charite Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
19
|
Campbell E, Figueiro MG. Postoperative cognitive dysfunction: spotlight on light, circadian rhythms, and sleep. Front Neurosci 2024; 18:1390216. [PMID: 38699675 PMCID: PMC11064652 DOI: 10.3389/fnins.2024.1390216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a neurological disorder characterized by the emergence of cognitive impairment after surgery. A growing body of literature suggests that the onset of POCD is closely tied to circadian rhythm disruption (CRD). Circadian rhythms are patterns of behavioral and physiological change that repeat themselves at approximately, but not exactly, every 24 h. They are entrained to the 24 h day by the daily light-dark cycle. Postoperative CRD affects cognitive function likely by disrupting sleep architecture, which in turn provokes a host of pathological processes including neuroinflammation, blood-brain barrier disturbances, and glymphatic pathway dysfunction. Therefore, to address the pathogenesis of POCD it is first necessary to correct the dysregulated circadian rhythms that often occur in surgical patients. This narrative review summarizes the evidence for CRD as a key contributor to POCD and concludes with a brief discussion of how circadian-effective hospital lighting can be employed to re-entrain stable and robust circadian rhythms in surgical patients.
Collapse
Affiliation(s)
| | - Mariana G. Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
20
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
21
|
Jaramillo JCM, Aitken CM, Lawrence AJ, Ryan PJ. Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation. J Chem Neuroanat 2024; 137:102403. [PMID: 38452468 DOI: 10.1016/j.jchemneu.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
Collapse
Affiliation(s)
- Janine C M Jaramillo
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Connor M Aitken
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Delisle BP, Prabhat A, Burgess DE, Ono M, Esser KA, Schroder EA. Circadian Regulation of Cardiac Arrhythmias and Electrophysiology. Circ Res 2024; 134:659-674. [PMID: 38484028 PMCID: PMC11177776 DOI: 10.1161/circresaha.123.323513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.
Collapse
Affiliation(s)
- Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Abhilash Prabhat
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Makoto Ono
- Division of Cardiology and Rehabilitation, Tamaki Hospital, Japan
| | | | | |
Collapse
|
23
|
van Beurden AW, Tersteeg MMH, Michel S, van Veldhoven JPD, IJzerman AP, Rohling JHT, Meijer JH. Small-molecule CEM3 strengthens single-cell oscillators in the suprachiasmatic nucleus. FASEB J 2024; 38:e23348. [PMID: 38084798 DOI: 10.1096/fj.202300597rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.
Collapse
Affiliation(s)
- Anouk W van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mayke M H Tersteeg
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaco P D van Veldhoven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jos H T Rohling
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Miyake T, Inoue Y, Maekawa Y, Doi M. Circadian Clock and Body Temperature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:177-188. [PMID: 39289281 DOI: 10.1007/978-981-97-4584-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The circadian fluctuation of body temperature is one of the most prominent and stable outputs of the circadian clock and plays an important role in maintaining optimal day-night energy homeostasis. The body temperature of homothermic animals is not strictly constant, but it shows daily oscillation within a range of 1-3 °C, which is sufficient to synchronize the clocks of peripheral tissues throughout the body. The thermal entrainment mechanisms of the clock are partly mediated by the action of the heat shock transcription factor and cold-inducible RNA-binding protein-both have the ability to affect clock gene expression. Body temperature in the poikilotherms is not completely passive to the ambient temperature change; they can travel to the place of preferred temperature in a manner depending on the time of their endogenous clock. Based on this behavior-level thermoregulation, flies exhibit a clear body temperature cycle. Noticeably, flies and mice share the same molecular circuit for the controlled body temperature; in both species, the calcitonin receptors participate in the formation of body temperature rhythms during the active phase and exhibit rather specific expression in subsets of clock neurons in the brain. We summarize knowledge on mutual relationships between body temperature regulation and the circadian clock.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuichi Inoue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yota Maekawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
25
|
Yamaguchi Y, Maekawa Y, Kabashima K, Mizuno T, Tainaka M, Suzuki T, Dojo K, Tominaga T, Kuroiwa S, Masubuchi S, Doi M, Tominaga K, Kobayashi K, Yamagata S, Itoi K, Abe M, Schwartz WJ, Sakimura K, Okamura H. An intact pituitary vasopressin system is critical for building a robust circadian clock in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2308489120. [PMID: 37844254 PMCID: PMC10614613 DOI: 10.1073/pnas.2308489120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
The circadian clock is a biological timekeeping system that oscillates with a circa-24-h period, reset by environmental timing cues, especially light, to the 24-h day-night cycle. In mammals, a "central" clock in the hypothalamic suprachiasmatic nucleus (SCN) synchronizes "peripheral" clocks throughout the body to regulate behavior, metabolism, and physiology. A key feature of the clock's oscillation is resistance to abrupt perturbations, but the mechanisms underlying such robustness are not well understood. Here, we probe clock robustness to unexpected photic perturbation by measuring the speed of reentrainment of the murine locomotor rhythm after an abrupt advance of the light-dark cycle. Using an intersectional genetic approach, we implicate a critical role for arginine vasopressin pathways, both central within the SCN and peripheral from the anterior pituitary.
Collapse
Grants
- 18H04015 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 15H05642 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K06594 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K18384 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K20864 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18002016 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16H06276 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJCR14W3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- BR220401 MEXT | Japan Society for the Promotion of Science (JSPS)
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita564-8680, Japan
| | - Yota Maekawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kyohei Kabashima
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Takanobu Mizuno
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Motomi Tainaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Toru Suzuki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kumiko Dojo
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Takeichiro Tominaga
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Sayaka Kuroiwa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Satoru Masubuchi
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute480-1195, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Keiko Tominaga
- Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima960-1295, Japan
| | - Satoshi Yamagata
- Graduate School of Information Sciences, Tohoku University, Sendai980-0845, Japan
| | - Keiichi Itoi
- Graduate School of Information Sciences, Tohoku University, Sendai980-0845, Japan
- Department of Nursing, Faculty of Health Sciences, Tohoku Fukushi University, Sendai981-8522, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata951-8585, Japan
| | - William J. Schwartz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX78712
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata951-8585, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
26
|
Thimma Ravindranath P, Smith JG, Niloofar RN, Ebelthite C, Renton T. Sleep disturbances are associated with pain intensity and pain-related functional interference in patients experiencing orofacial pain. J Oral Rehabil 2023; 50:980-990. [PMID: 37243957 DOI: 10.1111/joor.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Sleep and pain have a reciprocal relationship, interacting with psychosocial aspects including depression, anxiety, somatization and significant stressful events. OBJECTIVE The aim of this study was to assess patients with oro-facial pain (OFP) and related sleep disturbances and determine the strongest psychosocial correlates. METHODS A cross-sectional study of anonymized data of consecutive patients with OFP {January 2019 and February 2020} were analysed. Diagnostic and Axis-II data were integrated to assess the relationship between sleep disturbances, measured using Chronic Pain Sleep Inventory, and demographic factors, clinical comorbidities, recent stressful events, pain severity and pain- and psychological-related function. RESULTS Five out of six patients with OFP were presented with pain-related sleep disturbances. Sleep problems were enhanced in patients with primary oro-facial headache compared with other OFP conditions. However, once the level of pain intensity and interference was accounted for, primary headache, was not a significant correlate of pain-related sleep disturbances. Multivariate analysis revealed (average) pain severity and pain interference were both significantly associated with sleep problems. There were also significant independent associations of sleep problems with somatization levels and reported experience of recent stressful events. CONCLUSION Identifying sleep problems as a part of OFP management may be beneficial and could result in better management outcomes.
Collapse
Affiliation(s)
| | - Jared G Smith
- Population Health Research Institute, St George's, University of London, London, UK
| | - Rasooli Nia Niloofar
- Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| | - Candice Ebelthite
- IMPARTS, Mind and Body Programme, King's Health Partners, London, UK
| | - Tara Renton
- Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| |
Collapse
|
27
|
van Beurden AW, Meylahn JM, Achterhof S, Buijink R, Olde Engberink A, Michel S, Meijer JH, Rohling JHT. Reduced Plasticity in Coupling Strength in the Aging SCN Clock as Revealed by Kuramoto Modeling. J Biol Rhythms 2023; 38:461-475. [PMID: 37329153 PMCID: PMC10475211 DOI: 10.1177/07487304231175191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) and consists of a network of coupled neurons, which are entrained to the environmental light-dark cycle. The phase coherence of the neurons is plastic and driven by the duration of daylight. With aging, the capacity to behaviorally adapt to seasonal changes in photoperiod reduces. The mechanisms underlying photoperiodic adaptation are largely unknown, but are important to unravel for the development of novel interventions to improve the quality of life of the elderly. We analyzed the phase coherence of single-cell PERIOD2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN of young and old mice entrained to either long or short photoperiod. The phase coherence was used as input to a 2-community noisy Kuramoto model to estimate the coupling strength between and within neuronal subpopulations. The model revealed a correlation between coupling strength and photoperiod-induced changes in the phase relationship among neurons, suggesting a functional link. We found that the SCN of young mice adapts in coupling strength over a large range, with weak coupling in long photoperiod (LP) and strong coupling in short photoperiod (SP). In aged mice, we also found weak coupling in LP, but a reduced capacity to reach strong coupling in SP. The inability to respond with an increase in coupling strength suggests that manipulation of photoperiod is not a suitable strategy to enhance clock function with aging. We conclude that the inability of aged mice to reach strong coupling contributes to deficits in behavioral adaptation to seasonal changes in photoperiod.
Collapse
Affiliation(s)
- Anouk W. van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janusz M. Meylahn
- Dutch Institute for Emergent Phenomena, University of Amsterdam, Amsterdam, The Netherlands
- Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Stefan Achterhof
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Renate Buijink
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Olde Engberink
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H. Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos H. T. Rohling
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Acosta J, Crespo MT, Plano SA, Golombek DA, Chiesa JJ, Agostino PV. Chronic jet lag reduces motivation and affects other mood-related behaviors in male mice. Front Physiol 2023; 14:1225134. [PMID: 37745237 PMCID: PMC10511878 DOI: 10.3389/fphys.2023.1225134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: The circadian system regulates various physiological processes such as sleep-wake cycles, hormone secretion, metabolism, and the reaction to both natural and drug-based rewards. Chronic disruption of the circadian system caused by unsteady synchronization with light-dark (LD) schedules, such as advancing chronic jet lag (CJL), leads to adverse physiological effects and pathologies, and is linked with changes in mood and depressive behaviors in humans and rodent models. Methods: C57BL/6J male mice were subjected to circadian disruption through phase advances of 6 h every 2 days (CJL +6/2). Mice under 12:12-h LD cycle were used as controls. After 8 weeks under these conditions, a battery of behavioral tests was performed to assess if mood-related behaviors were affected. Results: Compared to controls under 24 h LD cycles, mice under CJL presented desynchronization of activity-rest rhythms that led to several behavioral impairments, including a decrease in motivation for food reward, and an increase in anxiety, anhedonia, and depressive-like behavior. Conclusion: Chronic circadian disruption, caused by an experimental CJL protocol, affects mood-related and reward-related behaviors in mice. Understanding the importance of the circadian system and its potential role for disruption due to CJL is important for maintaining good health and well-being.
Collapse
Affiliation(s)
- Julieta Acosta
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Manuel T. Crespo
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Santiago A. Plano
- Institute for Biomedical Research (BIOMED), Universidad Católica Argentina (UCA)/CONICET, Buenos Aires, Argentina
| | - Diego A. Golombek
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés/CONICET, Buenos Aires, Argentina
| | - Juan J. Chiesa
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Patricia V. Agostino
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| |
Collapse
|
29
|
Liu D, Nanclares C, Simbriger K, Fang K, Lorsung E, Le N, Amorim IS, Chalkiadaki K, Pathak SS, Li J, Gewirtz JC, Jin VX, Kofuji P, Araque A, Orr HT, Gkogkas CG, Cao R. Autistic-like behavior and cerebellar dysfunction in Bmal1 mutant mice ameliorated by mTORC1 inhibition. Mol Psychiatry 2023; 28:3727-3738. [PMID: 35301425 PMCID: PMC9481983 DOI: 10.1038/s41380-022-01499-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Although circadian and sleep disorders are frequently associated with autism spectrum disorders (ASD), it remains elusive whether clock gene disruption can lead to autistic-like phenotypes in animals. The essential clock gene Bmal1 has been associated with human sociability and its missense mutations are identified in ASD. Here we report that global Bmal1 deletion led to significant social impairments, excessive stereotyped and repetitive behaviors, as well as motor learning disabilities in mice, all of which resemble core behavioral deficits in ASD. Furthermore, aberrant cell density and immature morphology of dendritic spines were identified in the cerebellar Purkinje cells (PCs) of Bmal1 knockout (KO) mice. Electrophysiological recordings uncovered enhanced excitatory and inhibitory synaptic transmission and reduced firing rates in the PCs of Bmal1 KO mice. Differential expression of ASD- and ataxia-associated genes (Ntng2, Mfrp, Nr4a2, Thbs1, Atxn1, and Atxn3) and dysregulated pathways of translational control, including hyperactivated mammalian target of rapamycin complex 1 (mTORC1) signaling, were identified in the cerebellum of Bmal1 KO mice. Interestingly, the antidiabetic drug metformin reversed mTORC1 hyperactivation and alleviated major behavioral and PC deficits in Bmal1 KO mice. Importantly, conditional Bmal1 deletion only in cerebellar PCs was sufficient to recapitulate autistic-like behavioral and cellular changes akin to those identified in Bmal1 KO mice. Together, these results unveil a previously unidentified role for Bmal1 disruption in cerebellar dysfunction and autistic-like behaviors. Our findings provide experimental evidence supporting a putative role for dysregulation of circadian clock gene expression in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Konstanze Simbriger
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Kun Fang
- Department of Molecular Medicine, The University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Nam Le
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Inês Silva Amorim
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Kleanthi Chalkiadaki
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Jin Li
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Jonathan C Gewirtz
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychology, Arizona State University, Tempe, AZ, 85287, USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Christos G Gkogkas
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110, Ioannina, Greece.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
30
|
Thirouin ZS, Gizowski C, Murtaz A, Bourque CW. Sex-specific differences in the circadian pattern of action potential firing by rat suprachiasmatic nucleus vasopressin neurons. J Neuroendocrinol 2023; 35:e13273. [PMID: 37132408 DOI: 10.1111/jne.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/04/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus serves as the master circadian clock in mammals. Most SCN neurons express the inhibitory neurotransmitter GABA (gamma amino butyric acid) along with a peptide cotransmitter. Notably, the neuropeptides vasopressin (VP) and vasoactive intestinal peptide (VIP) define two prominent clusters within the SCN: those located in the ventral core (VIP) and those forming the dorsomedial "shell" of the nucleus (VP). Axons emerging from VP neurons in the shell are thought to mediate much of the SCN's output to other brain regions as well as VP release into the cerebrospinal fluid (CSF). Previous work has shown that VP release by SCN neurons is activity dependent and SCN VP neurons fire action potentials at a higher rate during the light phase. Accordingly, CSF VP levels are higher during daytime. Interestingly, the amplitude of the CSF VP rhythm is greater in males than females, suggesting the existence of sex differences in the electrical activity of SCN VP neurons. Here we investigated this hypothesis by performing cell-attached recordings from 1070 SCN VP neurons across the entire circadian cycle in both sexes of transgenic rats that express green fluorescent protein (GFP) driven by the VP gene promoter. Using an immunocytochemical approach we confirmed that >60% of SCN VP neurons display visible GFP. Recordings in acute coronal slices revealed that VP neurons display a striking circadian pattern of action potential firing, but the characteristics of this activity cycle differ in males and females. Specifically, neurons in males reached a significantly higher peak firing frequency during subjective daytime compared to females and the acrophase occurred ~1 h earlier in females. Peak firing rates in females were not significantly different at various phases of the estrous cycle.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Claire Gizowski
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Anzala Murtaz
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Charles W Bourque
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Pehlivan S. The circadian systems genes and their importance of human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:1-15. [PMID: 37709372 DOI: 10.1016/bs.apcsb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian rhythm is the timing mechanism that creates approximately 24-hour rhythms in cellular and bodily functions in almost all living species. These internal clock systems enable living organisms to predict and respond to daily changes in their environment, optimizing temporal physiology and behavior. Circadian rhythms are regulated by both genetic and environmental risk factors. Circadian rhythms play an important role in maintaining homeostasis at the systemic and tissue levels. Disruption of this rhythm lays the groundwork for human health and disease. Disruption in these rhythms increases the susceptibility to many diseases, such as cancer, psychiatric disorders, and neurodegenerative diseases. In this chapter, the characteristics of circadian rhythm and its relationship with diseases will be discussed.
Collapse
Affiliation(s)
- S Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
32
|
Yang ND, Mellor RL, Hermanstyne TO, Nerbonne JM. Effects of NALCN-Encoded Na + Leak Currents on the Repetitive Firing Properties of SCN Neurons Depend on K +-Driven Rhythmic Changes in Input Resistance. J Neurosci 2023; 43:5132-5141. [PMID: 37339878 PMCID: PMC10342223 DOI: 10.1523/jneurosci.0182-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Neurons in the suprachiasmatic nucleus (SCN) generate circadian changes in the rates of spontaneous action potential firing that regulate and synchronize daily rhythms in physiology and behavior. Considerable evidence suggests that daily rhythms in the repetitive firing rates (higher during the day than at night) of SCN neurons are mediated by changes in subthreshold potassium (K+) conductance(s). An alternative "bicycle" model for circadian regulation of membrane excitability in clock neurons, however, suggests that an increase in NALCN-encoded sodium (Na+) leak conductance underlies daytime increases in firing rates. The experiments reported here explored the role of Na+ leak currents in regulating daytime and nighttime repetitive firing rates in identified adult male and female mouse SCN neurons: vasoactive intestinal peptide-expressing (VIP+), neuromedin S-expressing (NMS+) and gastrin-releasing peptide-expressing (GRP+) cells. Whole-cell recordings from VIP+, NMS+, and GRP+ neurons in acute SCN slices revealed that Na+ leak current amplitudes/densities are similar during the day and at night, but have a larger impact on membrane potentials in daytime neurons. Additional experiments, using an in vivo conditional knockout approach, demonstrated that NALCN-encoded Na+ currents selectively regulate daytime repetitive firing rates of adult SCN neurons. Dynamic clamp-mediated manipulation revealed that the effects of NALCN-encoded Na+ currents on the repetitive firing rates of SCN neurons depend on K+ current-driven changes in input resistances. Together, these findings demonstrate that NALCN-encoded Na+ leak channels contribute to regulating daily rhythms in the excitability of SCN neurons by a mechanism that depends on K+ current-mediated rhythmic changes in intrinsic membrane properties.SIGNIFICANCE STATEMENT Elucidating the ionic mechanisms responsible for generating daily rhythms in the rates of spontaneous action potential firing of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals, is an important step toward understanding how the molecular clock controls circadian rhythms in physiology and behavior. While numerous studies have focused on identifying subthreshold K+ channel(s) that mediate day-night changes in the firing rates of SCN neurons, a role for Na+ leak currents has also been suggested. The results of the experiments presented here demonstrate that NALCN-encoded Na+ leak currents differentially modulate daily rhythms in the daytime/nighttime repetitive firing rates of SCN neurons as a consequence of rhythmic changes in subthreshold K+ currents.
Collapse
Affiliation(s)
- Nien-Du Yang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110
| | | | - Tracey O Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeanne M Nerbonne
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110
- Department of Medicine, Cardiovascular Division
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
33
|
Hastings MH, Brancaccio M, Gonzalez-Aponte MF, Herzog ED. Circadian Rhythms and Astrocytes: The Good, the Bad, and the Ugly. Annu Rev Neurosci 2023; 46:123-143. [PMID: 36854316 PMCID: PMC10381027 DOI: 10.1146/annurev-neuro-100322-112249] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This review explores the interface between circadian timekeeping and the regulation of brain function by astrocytes. Although astrocytes regulate neuronal activity across many time domains, their cell-autonomous circadian clocks exert a particular role in controlling longer-term oscillations of brain function: the maintenance of sleep states and the circadian ordering of sleep and wakefulness. This is most evident in the central circadian pacemaker, the suprachiasmatic nucleus, where the molecular clock of astrocytes suffices to drive daily cycles of neuronal activity and behavior. In Alzheimer's disease, sleep impairments accompany cognitive decline. In mouse models of the disease, circadian disturbances accelerate astroglial activation and other brain pathologies, suggesting that daily functions in astrocytes protect neuronal homeostasis. In brain cancer, treatment in the morning has been associated with prolonged survival, and gliomas have daily rhythms in gene expression and drug sensitivity. Thus, circadian time is fast becoming critical to elucidating reciprocal astrocytic-neuronal interactions in health and disease.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Marco Brancaccio
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
34
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
35
|
Bafna A, Banks G, Hastings MH, Nolan PM. Dynamic modulation of genomic enhancer elements in the suprachiasmatic nucleus, the site of the mammalian circadian clock. Genome Res 2023; 33:673-688. [PMID: 37156620 PMCID: PMC10317116 DOI: 10.1101/gr.277581.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, synchronizes and maintains daily cellular and physiological rhythms across the body, in accordance with environmental and visceral cues. Consequently, the systematic regulation of spatiotemporal gene transcription in the SCN is vital for daily timekeeping. So far, the regulatory elements assisting circadian gene transcription have only been studied in peripheral tissues, lacking the critical neuronal dimension intrinsic to the role of the SCN as central brain pacemaker. By using histone-ChIP-seq, we identified SCN-enriched gene regulatory elements that associated with temporal gene expression. Based on tissue-specific H3K27ac and H3K4me3 marks, we successfully produced the first-ever SCN gene-regulatory map. We found that a large majority of SCN enhancers not only show robust 24-h rhythmic modulation in H3K27ac occupancy, peaking at distinct times of day, but also possess canonical E-box (CACGTG) motifs potentially influencing downstream cycling gene expression. To establish enhancer-gene relationships in the SCN, we conducted directional RNA-seq at six distinct times across the day and night, and studied the association between dynamically changing histone acetylation and gene transcript levels. About 35% of the cycling H3K27ac sites were found adjacent to rhythmic gene transcripts, often preceding the rise in mRNA levels. We also noted that enhancers encompass noncoding, actively transcribing enhancer RNAs (eRNAs) in the SCN, which in turn oscillate, along with cyclic histone acetylation, and correlate with rhythmic gene transcription. Taken together, these findings shed light on genome-wide pretranscriptional regulation operative in the central clock that confers its precise and robust oscillation necessary to orchestrate daily timekeeping in mammals.
Collapse
Affiliation(s)
- Akanksha Bafna
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| | - Gareth Banks
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Patrick M Nolan
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| |
Collapse
|
36
|
Birnie M, Claydon M, Troy O, Flynn B, Yoshimura M, Kershaw Y, Zhao Z, Demski-Allen R, Barker G, Warburton E, Bortolotto Z, Lightman S, Conway-Campbell B. Circadian regulation of hippocampal function is disrupted with corticosteroid treatment. Proc Natl Acad Sci U S A 2023; 120:e2211996120. [PMID: 37023133 PMCID: PMC10104554 DOI: 10.1073/pnas.2211996120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/24/2023] [Indexed: 04/07/2023] Open
Abstract
Disrupted circadian activity is associated with many neuropsychiatric disorders. A major coordinator of circadian biological systems is adrenal glucocorticoid secretion which exhibits a pronounced preawakening peak that regulates metabolic, immune, and cardiovascular processes, as well as mood and cognitive function. Loss of this circadian rhythm during corticosteroid therapy is often associated with memory impairment. Surprisingly, the mechanisms that underlie this deficit are not understood. In this study, in rats, we report that circadian regulation of the hippocampal transcriptome integrates crucial functional networks that link corticosteroid-inducible gene regulation to synaptic plasticity processes via an intrahippocampal circadian transcriptional clock. Further, these circadian hippocampal functions were significantly impacted by corticosteroid treatment delivered in a 5-d oral dosing treatment protocol. Rhythmic expression of the hippocampal transcriptome, as well as the circadian regulation of synaptic plasticity, was misaligned with the natural light/dark circadian-entraining cues, resulting in memory impairment in hippocampal-dependent behavior. These findings provide mechanistic insights into how the transcriptional clock machinery within the hippocampus is influenced by corticosteroid exposure, leading to adverse effects on critical hippocampal functions, as well as identifying a molecular basis for memory deficits in patients treated with long-acting synthetic corticosteroids.
Collapse
Affiliation(s)
- Matthew T. Birnie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Matthew D. B. Claydon
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Oliver Troy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Benjamin P. Flynn
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Mitsuhiro Yoshimura
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Zidong Zhao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Rebecca C. R. Demski-Allen
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Gareth R. I. Barker
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - E. Clea Warburton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Zuner A. Bortolotto
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Becky L. Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| |
Collapse
|
37
|
Fukada Y. Kinase signaling in distinct neuronal populations in the mouse brain controls sleep homeostasis and the circadian clock. Proc Natl Acad Sci U S A 2023; 120:e2303354120. [PMID: 37018202 PMCID: PMC10104544 DOI: 10.1073/pnas.2303354120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Affiliation(s)
- Yoshitaka Fukada
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| |
Collapse
|
38
|
Murakami A, Tsuji K, Isoda M, Matsuo M, Abe Y, Yasui M, Okamura H, Tominaga K. Prolonged Light Exposure Induces Circadian Impairment in Aquaporin-4-Knockout Mice. J Biol Rhythms 2023; 38:208-214. [PMID: 36694941 DOI: 10.1177/07487304221146242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Astrocytes are densely present in the suprachiasmatic nucleus (SCN), which is the master circadian oscillator in mammals, and are presumed to play a key role in circadian oscillation. However, specific astrocytic molecules that regulate the circadian clock are not yet well understood. In our study, we found that the water channel aquaporin-4 (AQP4) was abundantly expressed in SCN astrocytes, and we further examined its circadian role using AQP4-knockout mice. There was no prominent difference in circadian behavioral rhythms between Aqp4-/- and Aqp4+/+ mice subjected to light-dark cycles and constant dark conditions. However, exposure to constant light induced a greater decrease in the Aqp4-/- mice rhythmicity. Although the damped rhythm in long-term constant light recovered after transfer to constant dark conditions in both genotypes, the period until the reappearance of original rhythmicity was severely prolonged in Aqp4-/- mice. In conclusion, AQP4 absence exacerbates the prolonged light-induced impairment of circadian oscillations and delays their recovery to normal rhythmicity.
Collapse
Affiliation(s)
- Atsumi Murakami
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Kouki Tsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Japan
| | - Minako Isoda
- Graduate School of Science, Kyoto University, Sakyo-ku, Japan
| | - Masahiro Matsuo
- Department of Psychiatry, Shiga University Graduate School of Medicine, Otsu, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
- Keio University Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
- Keio University Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Japan
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Sakyō-ku, Japan
| | - Keiko Tominaga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
39
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
40
|
Asano F, Kim SJ, Fujiyama T, Miyoshi C, Hotta-Hirashima N, Asama N, Iwasaki K, Kakizaki M, Mizuno S, Mieda M, Sugiyama F, Takahashi S, Shi S, Hirano A, Funato H, Yanagisawa M. SIK3-HDAC4 in the suprachiasmatic nucleus regulates the timing of arousal at the dark onset and circadian period in mice. Proc Natl Acad Sci U S A 2023; 120:e2218209120. [PMID: 36877841 PMCID: PMC10089210 DOI: 10.1073/pnas.2218209120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Mammals exhibit circadian cycles of sleep and wakefulness under the control of the suprachiasmatic nucleus (SCN), such as the strong arousal phase-locked to the beginning of the dark phase in laboratory mice. Here, we demonstrate that salt-inducible kinase 3 (SIK3) deficiency in gamma-aminobutyric acid (GABA)-ergic neurons or neuromedin S (NMS)-producing neurons delayed the arousal peak phase and lengthened the behavioral circadian cycle under both 12-h light:12-h dark condition (LD) and constant dark condition (DD) without changing daily sleep amounts. In contrast, the induction of a gain-of-function mutant allele of Sik3 in GABAergic neurons exhibited advanced activity onset and a shorter circadian period. Loss of SIK3 in arginine vasopressin (AVP)-producing neurons lengthened the circadian cycle, but the arousal peak phase was similar to that in control mice. Heterozygous deficiency of histone deacetylase (HDAC) 4, a SIK3 substrate, shortened the circadian cycle, whereas mice with HDAC4 S245A, which is resistant to phosphorylation by SIK3, delayed the arousal peak phase. Phase-delayed core clock gene expressions were detected in the liver of mice lacking SIK3 in GABAergic neurons. These results suggest that the SIK3-HDAC4 pathway regulates the circadian period length and the timing of arousal through NMS-positive neurons in the SCN.
Collapse
Affiliation(s)
- Fuyuki Asano
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Staci J. Kim
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Nodoka Asama
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa920-8640, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Shoi Shi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Arisa Hirano
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
- Department of Anatomy, Toho University Graduate School of Medicine, Tokyo143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba305-8577, Japan
| |
Collapse
|
41
|
Carbone EA, Menculini G, de Filippis R, D’Angelo M, De Fazio P, Tortorella A, Steardo L. Sleep Disturbances in Generalized Anxiety Disorder: The Role of Calcium Homeostasis Imbalance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4431. [PMID: 36901441 PMCID: PMC10002427 DOI: 10.3390/ijerph20054431] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Patients with a generalized anxiety disorder (GAD) often report preeminent sleep disturbances. Recently, calcium homeostasis gained interest because of its role in the regulation of sleep-wake rhythms and anxiety symptoms. This cross-sectional study aimed at investigating the association between calcium homeostasis imbalance, anxiety, and quality of sleep in patients with GAD. A total of 211 patients were assessed using the Hamilton Rating Scale for Anxiety (HAM-A), Pittsburgh Sleep Quality Index questionnaire (PSQI) and Insomnia Severity Index (ISI) scales. Calcium, vitamin D, and parathyroid hormone (PTH) levels were evaluated in blood samples. A correlation and linear regression analysis were run to evaluate the association of HAM-A, PSQI, and ISI scores with peripheral markers of calcium homeostasis imbalance. Significant correlations emerged between HAM-A, PSQI, ISI, PTH, and vitamin D. The regression models showed that patients with GAD displaying low levels of vitamin D and higher levels of PTH exhibit a poor subjective quality of sleep and higher levels of anxiety, underpinning higher psychopathological burden. A strong relationship between peripheral biomarkers of calcium homeostasis imbalance, insomnia, poor sleep quality, and anxiety symptomatology was underlined. Future studies could shed light on the causal and temporal relationship between calcium metabolism imbalance, anxiety, and sleep.
Collapse
Affiliation(s)
- Elvira Anna Carbone
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giulia Menculini
- Department of Psychiatry, University of Perugia, Piazzale Lucio Severi, 1, 06132 Perugia, Italy
| | - Renato de Filippis
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Martina D’Angelo
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Alfonso Tortorella
- Department of Psychiatry, University of Perugia, Piazzale Lucio Severi, 1, 06132 Perugia, Italy
| | - Luca Steardo
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
42
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
43
|
Organization of serotonergic system in Sphaerotheca breviceps (Dicroglossidae) tadpole brain. Cell Tissue Res 2023; 391:67-86. [PMID: 36394669 DOI: 10.1007/s00441-022-03709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
The monoaminergic neurotransmitter 5-hydroxytryptamine (5-HT) is known to be involved in several physiological, behavioural and neuroendocrine functions in vertebrates. In this study, we investigated the distribution of 5-HT neuronal system in the central nervous system (CNS) of Sphaerotheca breviceps tadpoles at metamorphic climax stage. In the telencephalon, there was no 5-HT-immunoreactive (5-HT-ir) perikarya, but conspicuous fibres were observed in the olfactory bulb, pallium, subpallium and amygdala complexes. The preoptic area showed dense 5-HT-ir somata and cerebrospinal fluid contacting fibres, whereas a few varicose 5-HT-ir fibres were noticed in the suprachiasmatic nucleus. 5-HT-ir cells and fibres were found in the ventral, lateral dorsal subdivisions of the hypothalamus and in the nucleus tuberculi posterioris, but only 5-HT-ir fibres were localised in the periventricular area and pituitary gland. Numerous 5-HT-ir cells and/or fibres were detected in the thalamus, entopeduncular area and mesencephalic subdivisions. In the rhombencephalon, although 5-HT-ir cells and fibres were noticed in the subdivisions of the raphe nucleus and reticular formation, a moderate plexus of fibres was observed in the cerebellum, parabrachial nucleus and solitary tract. Distinct 5-HT-ir fibres, but no perikarya, were observed in the rostral spinal cord. Overall, extensively labelled 5-HT-ir cells and fibres in the CNS of the metamorphic tadpole suggest possible roles for the involvement of 5-HT in various somatosensory, behavioural and neuroendocrine functions during final stages of development.
Collapse
|
44
|
Ravichandran S, Suhasini R, Madheswaran Deepa S, Selvaraj DB, Vergil Andrews JF, Thiagarajan V, Kandasamy M. Intertwining Neuropathogenic Impacts of Aberrant Circadian Rhythm and Impaired Neuroregenerative Plasticity in Huntington’s Disease: Neurotherapeutic Significance of Chemogenetics. JOURNAL OF MOLECULAR PATHOLOGY 2022; 3:355-371. [DOI: 10.3390/jmp3040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by abnormal progressive involuntary movements, cognitive deficits, sleep disturbances, and psychiatric symptoms. The onset and progression of the clinical symptoms have been linked to impaired adult neurogenesis in the brains of subjects with HD, due to the reduced neurogenic potential of neural stem cells (NSCs). Among various pathogenic determinants, an altered clock pathway appears to induce the dysregulation of neurogenesis in neurodegenerative disorders. Notably, gamma-aminobutyric acid (GABA)-ergic neurons that express the vasoactive intestinal peptide (VIP) in the brain play a key role in the regulation of circadian rhythm and neuroplasticity. While an abnormal clock gene pathway has been associated with the inactivation of GABAergic VIP neurons, recent studies suggest the activation of this neuronal population in the brain positively contributes to neuroplasticity. Thus, the activation of GABAergic VIP neurons in the brain might help rectify the irregular circadian rhythm in HD. Chemogenetics refers to the incorporation of genetically engineered receptors or ion channels into a specific cell population followed by its activation using desired chemical ligands. The recent advancement of chemogenetic-based approaches represents a potential scientific tool to rectify the aberrant circadian clock pathways. Considering the facts, the defects in the circadian rhythm can be rectified by the activation of VIP-expressing GABAergic neurons using chemogenetics approaches. Thus, the chemogenetic-based rectification of an abnormal circadian rhythm may facilitate the neurogenic potentials of NSCs to restore the neuroregenerative plasticity in HD. Eventually, the increased neurogenesis in the brain can be expected to mitigate neuronal loss and functional deficits.
Collapse
Affiliation(s)
- Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramalingam Suhasini
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sudhiksha Madheswaran Deepa
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Viruthachalam Thiagarajan
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
45
|
Iacobelli P. Circadian dysregulation and Alzheimer’s disease: A comprehensive review. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD), the foremost variant of dementia, has been associated with a menagerie of risk factors, many of which are considered to be modifiable. Among these modifiable risk factors is circadian rhythm, the chronobiological system that regulates sleep‐wake cycles, food consumption timing, hydration timing, and immune responses amongst many other necessary physiological processes. Circadian rhythm at the level of the suprachiasmatic nucleus (SCN), is tightly regulated in the human body by a host of biomolecular substances, principally the hormones melatonin, cortisol, and serotonin. In addition, photic information projected along afferent pathways to the SCN and peripheral oscillators regulates the synthesis of these hormones and mediates the manner in which they act on the SCN and its substructures. Dysregulation of this cycle, whether induced by environmental changes involving irregular exposure to light, or through endogenous pathology, will have a negative impact on immune system optimization and will heighten the deposition of Aβ and the hyperphosphorylation of the tau protein. Given these correlations, it appears that there is a physiologic association between circadian rhythm dysregulation and AD. This review will explore the physiology of circadian dysregulation in the AD brain, and will propose a basic model for its role in AD‐typical pathology, derived from the literature compiled and referenced throughout.
Collapse
Affiliation(s)
- Peter Iacobelli
- Department of Arts and Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
46
|
Cui L, Xu F, Xu C, Ding Y, Wang S, Du M. Circadian gene Rev-erbα influenced by sleep conduces to pregnancy by promoting endometrial decidualization via IL-6-PR-C/EBPβ axis. J Biomed Sci 2022; 29:101. [PMID: 36419076 PMCID: PMC9685872 DOI: 10.1186/s12929-022-00884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sleep disturbance can cause adverse pregnancy outcomes by changing circadian gene expression. The potential mechanisms remain unclear. Decidualization is critical for the establishment and maintenance of normal pregnancy, which can be regulated by circadian genes. Whether Rev-erbα, a critical circadian gene, affects early pregnancy outcome by regulating decidualization needs to be explored. METHODS QPCR, western blot and artificial decidualization mouse model were used to confirm the effect of sleep disturbance on Rev-erbα expression and decidualization. The regulatory mechanism of Rev-erbα on decidualization was assessed using QPCR, western blot, RNA-Seq, and Chip-PCR. Finally, sleep disturbance mouse model was used to investigate the effect of therapeutic methods targeting Rev-erbα and interleukin 6 (IL-6) on improving adverse pregnancy outcomes induced by sleep disturbance. RESULTS Dysregulation of circadian rhythm due to sleep disturbance displayed abnormal expression profile of circadian genes in uterine including decreased level of Rev-erbα, accompanied by defective decidualization. Rev-erbα could regulate decidualization by directly repressing IL-6, which reduced the expression of CCAAT/enhancer-binding protein β (C/EBPβ) and its target insulin-like growth factor binding protein 1 (IGFBP1), the marker of decidualization, by inhibiting progesterone receptors (PR) expression. Moreover, deficient decidualization, higher abortion rate and lower implantation number were exhibited in the mouse models with sleep disturbance compared with those in normal mouse. Pharmacological activation of Rev-erbα or neutralization of IL-6 alleviated the adverse effect of sleep disturbance on pregnancy outcomes. CONCLUSIONS Taken together, Rev-erbα regulated decidualization via IL-6-PR-C/EBPβ axis and might be a connector between sleep and pregnancy outcome. Therapies targeting Rev-erbα and IL-6 might help improving adverse pregnancy outcomes induced by sleep disturbance.
Collapse
Affiliation(s)
- Liyuan Cui
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Feng Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Chunfang Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Yan Ding
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Songcun Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China.
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China. .,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
47
|
Morimoto T, Yoshikawa T, Nagano M, Shigeyoshi Y. Regionality of short and long period oscillators in the suprachiasmatic nucleus and their manner of synchronization. PLoS One 2022; 17:e0276372. [PMID: 36256675 PMCID: PMC9578605 DOI: 10.1371/journal.pone.0276372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
In mammals, the center of the circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Many studies have suggested that there are multiple regions generating different circadian periods within the SCN, but the exact localization of the regions has not been elucidated. In this study, using a transgenic rat carrying a destabilized luciferase reporter gene driven by a regulatory element of Per2 gene (Per2::dLuc), we investigated the regional variation of period lengths in horizontal slices of the SCN. We revealed a distinct caudal medial region (short period region, SPR) and a rostro-lateral region (long period region, LPR) that generate circadian rhythms with periods shorter than and longer than 24 hours, respectively. We also found that the core region of the SCN marked by dense VIP (vasoactive intestinal peptide) mRNA-expressing neurons covered a part of LPR, and that the shell region of the SCN contains both SPR and the rest of the LPR. Furthermore, we observed how synchronization is achieved between regions generating distinct circadian periods in the SCN. We found that the longer circadian rhythm of the rostral region appears to entrain the circadian rhythm in the caudal region. Our findings clarify the localization of regionality of circadian periods and the mechanism by which the integrated circadian rhythm is formed in the SCN.
Collapse
Affiliation(s)
- Tadamitsu Morimoto
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan,* E-mail:
| |
Collapse
|
48
|
Petrus P, Cervantes M, Samad M, Sato T, Chao A, Sato S, Koronowski KB, Park G, Alam Y, Mejhert N, Seldin MM, Monroy Kuhn JM, Dyar KA, Lutter D, Baldi P, Kaiser P, Jang C, Sassone-Corsi P. Tryptophan metabolism is a physiological integrator regulating circadian rhythms. Mol Metab 2022; 64:101556. [PMID: 35914650 PMCID: PMC9382333 DOI: 10.1016/j.molmet.2022.101556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE The circadian clock aligns physiology with the 24-hour rotation of Earth. Light and food are the main environmental cues (zeitgebers) regulating circadian rhythms in mammals. Yet, little is known about the interaction between specific dietary components and light in coordinating circadian homeostasis. Herein, we focused on the role of essential amino acids. METHODS Mice were fed diets depleted of specific essential amino acids and their behavioral rhythms were monitored and tryptophan was selected for downstream analyses. The role of tryptophan metabolism in modulating circadian homeostasis was studied using isotope tracing as well as transcriptomic- and metabolomic- analyses. RESULTS Dietary tryptophan depletion alters behavioral rhythms in mice. Furthermore, tryptophan metabolism was shown to be regulated in a time- and light- dependent manner. A multi-omics approach and combinatory diet/light interventions demonstrated that tryptophan metabolism modulates temporal regulation of metabolism and transcription programs by buffering photic cues. Specifically, tryptophan metabolites regulate central circadian functions of the suprachiasmatic nucleus and the core clock machinery in the liver. CONCLUSIONS Tryptophan metabolism is a modulator of circadian homeostasis by integrating environmental cues. Our findings propose tryptophan metabolism as a potential point for pharmacologic intervention to modulate phenotypes associated with disrupted circadian rhythms.
Collapse
Affiliation(s)
- Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine (UCI), Irvine, CA, USA
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alina Chao
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Shogo Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Grace Park
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Yasmine Alam
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Marcus M Seldin
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - José Manuel Monroy Kuhn
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Kenneth A Dyar
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Metabolic Physiology, Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Zentrum Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine (UCI), Irvine, CA, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
49
|
O'Siorain JR, Curtis AM. Circadian Control of Redox Reactions in the Macrophage Inflammatory Response. Antioxid Redox Signal 2022; 37:664-678. [PMID: 35166129 DOI: 10.1089/ars.2022.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Macrophages are immune sentinels located throughout the body that function in both amplification and resolution of the inflammatory response. The circadian clock has emerged as a central regulator of macrophage inflammation. Reduction-oxidation (redox) reactions are central to both the circadian clock and macrophage function. Recent Advances: Circadian regulation of metabolism controls the macrophage inflammatory response, whereby disruption of the clock causes dysfunctional inflammation. Altering metabolism and reactive oxygen/nitrogen species (RONS) production rescues the inflammatory phenotype of clock-disrupted macrophages. Critical Issues: The circadian clock possesses many layers of regulation. Understanding how redox reactions coordinate clock function is critical to uncover the full extent of circadian regulation of macrophage inflammation. We provide insights into how circadian regulation of redox affects macrophage pattern recognition receptor signaling, immunometabolism, phagocytosis, and inflammasome activation. Future Directions: Many diseases associated with aberrant macrophage-derived inflammation exhibit time-of-day rhythms in disease symptoms and severity and are sensitive to circadian disruption. Macrophage function is highly dependent on redox reactions that signal through RONS. Future studies are needed to evaluate the extent of circadian control of macrophage inflammation, specifically in the context of redox signaling. Antioxid. Redox Signal. 37, 664-678.
Collapse
Affiliation(s)
- James R O'Siorain
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
50
|
The Mediation Effect of Peripheral Biomarkers of Calcium Metabolism and Chronotypes in Bipolar Disorder Psychopathology. Metabolites 2022; 12:metabo12090827. [PMID: 36144231 PMCID: PMC9505716 DOI: 10.3390/metabo12090827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium (Ca++) metabolism may be impaired in several psychiatric diseases. We hypothesize that calcium imbalance might also correlate with a specific chronotype and could be recognized as a marker of illness severity in bipolar disorder (BD). We aimed to (1) identify the association between calcium imbalance and a specific chronotype in a cohort of BD patients, and (2) test the mediation role of high parathyroid hormone (PTH) levels towards a specific chronotype and illness severity in BD patients. Patients’ socio-demographic and clinical characteristics were collected with an ad-hoc schedule. We administered the Hamilton Depression Rating Scale (HAM-D), the Hamilton Rating Scale for Anxiety (HAM-A), the Young Mania Rating Scale (YMRS), and the Morningness Eveningness Questionnaire (MEQ). 100 patients affected by BD were recruited. The Kruskal-Wallis test showed a significant difference between the three MEQ groups in PTH levels (p < 0.001) and vitamin D levels (p = 0.048) but not in Ca++ levels (p = 0.426). Dwass-Steel-Critchlow-Fligner Pairwise analyses performed concerning three MEQ groups revealed significantly higher scores on PTH levels in MEQ-E subjects compared to MEQ-M and MEQ-I (in both cases, p < 0.001). No differences emerged between calcium levels among the three chronotypes. The mediation analysis has shown that elevated PTH levels are directly influenced by more severe HAM-A, HAM-D, and YMRS scores. MEQ-E could be a marker related to BD and predispose to various factors influencing mood symptoms. The combination of vitamin D therapy in MEQ-E may help to improve prognosis in this subtype of patients affected by BD.
Collapse
|