1
|
Feng J, Huang Z, Lu J, Chan L, Feng X, Lei L, Huang Z, Lin L, Yao Y, Zhang X. Loss of signal transducer and activator of transcription 3 in osteoblasts impaired the bone healing in inflammatory microenvironment. Mol Oral Microbiol 2024; 39:136-151. [PMID: 37347649 DOI: 10.1111/omi.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION This study aimed to investigate the effect of Stat3 on the osteoblast-mediated bone healing in the inflammatory lesion. METHODS The conditional knockout of Stat3 in osteoblasts (Stat3 CKO) was generated via the Cre-loxP recombination system using Osterix-Cre transgenic mice. The calvarial bone inflammatory lesions were established on both Stat3 CKO and wild-type mice, then harvested to assess the bone healing. In response to lipopolysaccharide (LPS) stimulation, osteoblasts from Stat3 CKO and wild-type mice were subjected to examine the formation of calcium deposits, the expression of osteogenic markers (i.e., Runx2, OPN, COL1A1), and osteoclast-related markers (i.e., RANKL, OPG). The EdU and transwell assays were performed to assess the proliferation and migration of the cells. RESULTS A decrease in bone mass and an increase in osteolysis were found in the inflammatory lesions on Stat3 CKO mice when compared with the control. More osteoclastic-like cells and an increased expression of RANKL were observed in Stat3 CKO mice. Both mRNA and protein expressions of Stat3 and osteogenic markers in the lesions were significantly decreased in Stat3 CKO mice. After co-cultured with osteogenic medium, the Stat3-deficient osteoblasts were found with a significant decrease in calcium deposits and the expression of osteogenic markers, and with a significant increased expression of RANKL. The impaired ossification of Stat3-deficient osteoblasts was even more pronounced with the presence of lipopolysaccharides in vitro. The most decrease in cell proliferation and migration was found in Stat3-deficient osteoblasts in response to LPS. CONCLUSIONS Loss of Stat3 in osteoblasts impaired bone healing in an inflammatory microenvironment.
Collapse
Affiliation(s)
- Jingyi Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, P. R. China
| | - Zijing Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiarui Lu
- Department of Stomatology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Laiting Chan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, P. R. China
| | - Xin Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, P. R. China
| | - Lizhen Lei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, P. R. China
| | - Zhuwei Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, P. R. China
| | - Lichieh Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, P. R. China
| | - Yichen Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, P. R. China
| | - Xiaolei Zhang
- Department of Stomatology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
2
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
3
|
Sanyal S, Rajput S, Sadhukhan S, Rajender S, Mithal A, Chattopadhyay N. Polymorphisms in the Runx2 and osteocalcin genes affect BMD in postmenopausal women: a systematic review and meta-analysis. Endocrine 2024; 84:63-75. [PMID: 38055125 DOI: 10.1007/s12020-023-03621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Runx2 and osteocalcin have pivotal roles in bone homeostasis. Polymorphism of these two genes could alter the function of osteoblasts and consequently bone mineral density (BMD). Attempts to understand the relationship between these polymorphisms and BMD in postmenopausal women across a variety of populations have yielded inconsistent results. This meta-analysis seeks to define the relationship between these polymorphisms with BMD in postmenopausal women. METHODS Eligible studies were identified from three electronic databases. Data were extracted from the eligible studies (4 studies on Runx2 and 6 studies on osteocalcin), and associations of Runx2 T > C and osteocalcin HindIII polymorphisms with BMD in postmenopausal women were assessed using standard difference in means (SDM) and 95% confidence intervals (CI) as statistical measures. RESULTS A significant difference in the lumbar spine (LS) BMD in postmenopausal women was observed between the TT and CC homozygotes for the Runx2 T > C (SDM = -0.445, p-value = 0.034). The mutant genotypes (CC) showed significantly lower LS BMD in comparison to wild type genotypes under recessive model of genetic analysis (TC + TT vs. CC: SDM = -0.451, p-value = 0.032). For osteocalcin, HindIII polymorphism, the mutant genotypes (HH) was associated with significantly higher BMD for both LS and femoral neck (FN) than the wild type (hh) homozygotes (SDM = 0.152, p-value = 0.008 and SDM = 0.139, p-value = 0.016 for LS and FN, respectively). There was no association between total hip (TH) BMD and the osteocalcin HindIII polymorphism. CONCLUSIONS Runx2 T > C and osteocalcin HindIII polymorphisms influence the level of BMD in postmenopausal women and may be used as predictive markers of osteoporosis.
Collapse
Affiliation(s)
- Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, 226018, India.
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, Institutional Area, Press Enclave Road, Saket, New Delhi, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Ma E, Smith S, Simon J, Prabhu V, Pittman A. Progressive Skull Osteolysis in the Setting of Endotine Implantation: A Case Report. Ann Otol Rhinol Laryngol 2024; 133:239-243. [PMID: 37534717 DOI: 10.1177/00034894231190969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To report a case of a 71-year-old woman who presented 8 years following 2 endoscopic brow lift procedures for evaluation of bony irregularities of her frontoparietal skull. To highlight a novel complication of Endotine fixation following an endoscopic brow lift procedure. METHODS A chart review, bicoronal cranioplasty and a review of literature. RESULTS The patient was satisfied with her post-surgical outcome and no complications were observed at the 1-month follow-up visit. A review of the literature revealed no previous reports of focal skull osteolysis relating to Endotine implants. CONCLUSION We believe that our patient's focal calvarial osteolysis is a direct complication of Endotine fixation. Future research into the long-term effects of endoscopic brow lift procedures using Endotine implants is necessary to help ensure patient safety and guide future practices.
Collapse
Affiliation(s)
- Emily Ma
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Sullivan Smith
- Department of Otolaryngology-Head and Neck Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Joshua Simon
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Vikram Prabhu
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Amy Pittman
- Department of Otolaryngology-Head and Neck Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
5
|
Patel A, Allbritton-King JD, Paul S, Bhattacharyya T. Bone health is improving over time: data from Framingham cohorts. Arch Osteoporos 2023; 18:119. [PMID: 37715080 DOI: 10.1007/s11657-023-01327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Hip fractures have steadily declined in the USA. We found that bone health, as measured by bone mineral density, has significantly improved over the past 30 years. Our findings contradict previous studies and offer one explanation for the decline in hip fractures. PURPOSE Despite the widespread undertreatment of osteoporosis, hip fractures have been declining in the USA. The reasons for this decline are unclear; however, one possible explanation could be that the bone health has improved over time. METHODS To determine the trends in bone density in the USA, we analyzed the bone mineral density scans of 7216 subjects across three generations in the Framingham Heart Study. We compared the mean femoral bone mineral density (BMD) between cohorts then constructed a linear regression model controlling for age, sex, BMI, and smoking rates. RESULTS We observed that the mean BMD of each successive Framingham cohort increased (p < 0.001). After controlling for age, subjects born later had higher BMD. The results from the linear-regression model developed on the original cohort indicated that the BMD of the women from the offspring and third generation were higher than what would be predicted. Younger generations demonstrated higher activity scores (p < 0.001), and lower smoking rates (p = 0.045). CONCLUSION These data suggest that bone health, measured by bone mineral density scans, is improving in later generations, in part due to decreased smoking rates and higher rates of activity.
Collapse
Affiliation(s)
- Amit Patel
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, Bldg. 10-CRC, Room 4-2339, MSC1498, Bethesda, MD, 20892, USA
| | - Jules D Allbritton-King
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, Bldg. 10-CRC, Room 4-2339, MSC1498, Bethesda, MD, 20892, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, USA
| | - Subrata Paul
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, Maryland, USA
| | - Timothy Bhattacharyya
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, Bldg. 10-CRC, Room 4-2339, MSC1498, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Xiao X, Wu Q. Ethnic disparities in fracture risk assessment using polygenic scores. Osteoporos Int 2023; 34:943-953. [PMID: 36840773 PMCID: PMC11225529 DOI: 10.1007/s00198-023-06712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Whether the PGS developed using data from European ancestry is predictive of fracture risk for minorities remains unclear. This study demonstrated that PGSs based on common BMD-related genetic variants discovered in the European ancestry cohort are predictive of fracture risk in people of Asian but not African ancestry. PURPOSE Large-scale genome-wide association studies (GWAS) on bone mineral density (BMD) have been conducted predominantly in European cohorts. Genetic models based on common variants associated with BMD have been evaluated using almost exclusively European data, which could potentially exacerbate health disparities due to different linkage disequilibrium among different ethnic groups. METHODS UK Biobank (UKB) is a large-scale population-based observational study starting in 2006 that recruited 502,617 individuals aged between 40 and 69 years with genotypic and phenotypic data available. Based on the summary statistics of two GWAS studies of femoral neck BMD and total body BMD, we derived four PGSs and assessed the association between each PGS and prevalent/incident fractures within each ethnic group separately using Multivariate logistic regressions and Cox proportional hazard models. All models were adjusted for age, sex, and the first four principal components. RESULTS We assessed four PGSs derived from European cohorts. Significant associations were observed between PGSs and fracture in European and Asian cohorts but not in the African cohort. Of all four PGSs, [Formula: see text] performed the best. A standard deviation decreases in [Formula: see text] were associated with an increased hazard ratio (HR) of 1.24 (1.22-1.27), 1.28 (0.83-1.99), and 1.34 (1.10-1.64) in European, African, and Asian ancestry, respectively. A low BMD-related PGS is associated with up to 2.35- and 4.31-fold increased fracture risk in European and Asian populations. CONCLUSIONS These results showed that PGSs based on common BMD-related genetic variants discovered in the European ancestry cohort are predictive of fracture risk in people of Asian but not African ancestry.
Collapse
Affiliation(s)
- Xiangxue Xiao
- Nevada Institute of Personalized Medicine, College of Science, University of Nevada, Las Vegas, NV, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Qing Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320K Lincoln Tower, 1800 Cannon Dr., Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Jówko E, Długołęcka B, Cieśliński I, Kotowska J. Polymorphisms in Genes Encoding VDR, CALCR and Antioxidant Enzymes as Predictors of Bone Tissue Condition in Young, Healthy Men. Int J Mol Sci 2023; 24:ijms24043373. [PMID: 36834780 PMCID: PMC9964706 DOI: 10.3390/ijms24043373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The aim of the study was to assess significant predictors of bone mineral content (BMC) and bone mineral density (BMD) in a group of young, healthy men at the time of reaching peak bone mass. Regression analyses showed that age, BMI and practicing combat sports and team sports at a competitive level (trained vs. untrained group; TR vs. CON, respectively) were positive predictors of BMD/BMC values at various skeletal sites. In addition, genetic polymorphisms were among the predictors. In the whole population studied, at almost all measured skeletal sites, the SOD2 AG genotype proved to be a negative predictor of BMC, while the VDR FokI GG genotype was a negative predictor of BMD. In contrast, the CALCR AG genotype was a positive predictor of arm BMD. ANOVA analyses showed that, regarding SOD2 polymorphism, the TR group was responsible for the significant intergenotypic differences in BMC that were observed in the whole study population (i.e., lower BMC values of leg, trunk and whole body were observed in AG TR compared to AA TR). On the other hand, higher BMC at L1-L4 was observed in the SOD2 GG genotype of the TR group compared to in the same genotype of the CON group. For the FokI polymorphism, BMD at L1-L4 was higher in AG TR than in AG CON. In turn, the CALCR AA genotype in the TR group had higher arm BMD compared to the same genotype in the CON group. In conclusion, SOD2, VDR FokI and CALCR polymorphisms seem to affect the association of BMC/BMD values with training status. In general, at least within the VDR FokI and CALCR polymorphisms, less favorable genotypes in terms of BMD (i.e., FokI AG and CALCR AA) appear to be associated with a greater BMD response to sports training. This suggests that, in healthy men during the period of bone mass formation, sports training (combat and team sports) may attenuate the negative impact of genetic factors on bone tissue condition, possibly reducing the risk of osteoporosis in later age.
Collapse
Affiliation(s)
- Ewa Jówko
- Department of Physiology and Biochemistry, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland
- Correspondence: ; Tel.: +48-608-074-393
| | - Barbara Długołęcka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland
| | - Igor Cieśliński
- Department of Sports and Training Sciences, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland
| | - Jadwiga Kotowska
- Department of Physiology and Biochemistry, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland
| |
Collapse
|
8
|
Saavedra JM, Prentice AM. Nutrition in school-age children: a rationale for revisiting priorities. Nutr Rev 2022:6811793. [PMID: 36346900 DOI: 10.1093/nutrit/nuac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Middle childhood and early adolescence have received disproportionately low levels of scientific attention relative to other life stages, especially as related to nutrition and health. This is partly due to the justified emphasis on the first 1000 days of life, and the idea that early deficits and consequences may not be fully reversible. In addition, these stages of life may superficially appear less "eventful" than infancy or late adolescence. Finally, there has been historical ambiguity and inconsistency in terminology, depending on whether viewing "childhood" through physiologic, social, legal, or other lenses. Nevertheless, this age bracket, which encompasses most of the primary education and basic schooling years for most individuals, is marked by significant changes, inflection points, and sexually driven divergence in somatic and brain growth and development trajectories. These constitute transformative changes, and thus middle childhood and early adolescence represents a major and last opportunity to influence long-term health and productivity. This review highlights the specificities of growth and development in school age, with a focus on middle childhood and early adolescence (5 years-15 years of age, for the purposes of this review), the role of nutrition, the short- and long-term consequences of inadequate nutrition, and the current global status of nutrition in this age group. Adequate attention and emphasis on nutrition in the school-age years is critical: (a) for maintaining an adequate course of somatic and cognitive development, (b) for taking advantage of this last major opportunity to correct deficits of undernutrition and "catch-up" to normal life course development, and (c) for addressing the nutritional inadequacies and mitigating the longer-term consequences of overnutrition. This review summarizes and provides a rationale for prioritizing nutrition in school-age children, and for the need to revisit priorities and focus on this part of the life cycle to maximize individuals' potential and their contribution to society.
Collapse
Affiliation(s)
- Jose M Saavedra
- with the Division of Gastroenterology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Andrew M Prentice
- is with the MRC Unit, The Gambia and MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
9
|
Xie R, Huang X, Liu Q, Liu M. Positive association between high-density lipoprotein cholesterol and bone mineral density in U.S. adults: the NHANES 2011-2018. J Orthop Surg Res 2022; 17:92. [PMID: 35168655 PMCID: PMC8848786 DOI: 10.1186/s13018-022-02986-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background Serum lipids are highly inheritable and play a major role in bone health. However, the relationship between high-density lipoprotein cholesterol (HDL-C) and bone mineral density (BMD) remains uncertain. The goal of this study was to see if there was a link between HDL-C levels and BMD in persons aged 20–59. Methods Multivariate logistic regression models were used to determine the link between HDL-C and lumbar BMD using data from the National Health and Nutrition Examination Survey (NHANES) 2011–2018. Generalized additive models and fitted smoothing curves were also used. Results The analysis included a total of 10,635 adults. After controlling for various variables, we discovered that HDL-C was positively linked with lumbar BMD. The favorable connection of HDL-C with lumbar BMD was maintained in subgroup analyses stratified by sex and race in women, but not in men, and in blacks, but not in whites. The relationship between HDL-C and lumbar BMD in men and whites was a U-shaped curve with the same inflection point: 0.98 mmol/L. Conclusions In people aged 20 to 59, our research discovered a positive relationship among HDL-C and lumbar BMD. Among males and whites, this relationship followed a U-shaped curve (inflection point: 0.98 mmol/L). HDL-C measurement might be used as a responsive biomarker for detecting osteoporosis early and guiding therapy.
Collapse
Affiliation(s)
- Ruijie Xie
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Xiongjie Huang
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Qianlong Liu
- Department of Hand Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Mingjiang Liu
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China.
| |
Collapse
|
10
|
Genetic factors contributing to late adverse musculoskeletal effects in childhood acute lymphoblastic leukemia survivors. THE PHARMACOGENOMICS JOURNAL 2022; 22:19-24. [PMID: 34446917 DOI: 10.1038/s41397-021-00252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND A substantial number of survivors of childhood acute lymphoblastic leukemia (ALL) suffer from treatment-related late adverse effects. While multiple studies have identified the effects of chemotherapeutics and radiation therapy on musculoskeletal outcomes, few have investigated their associations with genetic factors. METHODS Here we analyzed musculoskeletal complications in relation to common and rare genetic variants derived through whole-exome sequencing of the PETALE cohort. Top-ranking associations were further assessed through stratified and multivariate analyses. RESULTS DUOX2 variant was associated with skeletal muscle function deficit, as defined by peak muscle power Z score ≤ -2 SD (P = 4.5 × 10-5 for genotyping model). Upon risk stratification analysis, common variants in the APOL3, COL12A1, and LY75 genes were associated with Z score ≤ -2 SD at the cross-sectional area (CSA) at 4% radial length and lumbar bone mineral density (BMD) in high-risk patients (P ≤ 0.01). The modulation of the effect by risk group was driven by the interaction of the genotype with cumulative glucocorticoid dose. Identified variants remained significant throughout multivariate analyses incorporating non-genetic factors of the studied cohort. CONCLUSION This exploratory study identified novel genetic variants associated with long-term musculoskeletal impairments in childhood ALL survivors. Replication in an independent cohort is needed to confirm the association found in this study.
Collapse
|
11
|
Whole Genome Sequencing Unravels New Genetic Determinants of Early-Onset Familial Osteoporosis and Low BMD in Malta. Genes (Basel) 2022; 13:genes13020204. [PMID: 35205249 PMCID: PMC8871631 DOI: 10.3390/genes13020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Osteoporosis is a skeletal disease with a strong genetic background. The study aimed to identify the genetic determinants of early-onset familial osteoporosis and low bone mineral density (BMD) in a two-generation Maltese family. Methods: Fifteen relatives aged between 28–74 years were recruited. Whole genome sequencing was conducted on 12 relatives and shortlisted variants were genotyped in the Malta Osteoporotic Fracture Study (MOFS) for replication. Results: Sequential variant filtering following a dominant inheritance pattern identified rare missense variants within SELP, TGF-β2 and ADAMTS20, all of which were predicted to be likely pathogenic and participate in osteoimmunology. TGF-β2 c.1136C>T was identified in five individuals from the MOFS in heterozygosity, four of whom had osteopenia/osteoporosis at the lumbar spine and hip, and/or had sustained a low-trauma fracture. Heterozygosity for the ADAMTS20 c.4090A>T was accompanied by lower total hip BMD (p = 0.018) and lower total serum calcium levels in MOFS (p < 0.01), recapitulating the findings from the family. Women carrying at least one copy of the alternative allele (TC/CC) for SELP c.2177T>C exhibited a tendency for lower lumbar spine BMD and/or wrist fracture history relative to women with TT genotype. Conclusions: Our findings suggest that the identified variants, alone or in combination, could be causal factors of familial osteoporosis and low BMD, requiring replication in larger collections.
Collapse
|
12
|
Eisa NH, Sudharsan PT, Herrero SM, Herberg SA, Volkman BF, Aguilar-Pérez A, Kondrikov D, Elmansi AM, Reitman C, Shi X, Fulzele S, McGee-Lawrence ME, Isales CM, Hamrick MW, Johnson MH, Chen J, Hill WD. Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone 2021; 153:116154. [PMID: 34403754 PMCID: PMC8935397 DOI: 10.1016/j.bone.2021.116154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Nada H Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Periyasamy T Sudharsan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sergio Mas Herrero
- Universitat de Barcelona, Unitat Farmacologia, Dpt. Fonaments Clínics, 08036 Barcelona, Spain
| | - Samuel A Herberg
- Departments of Ophthalmology and Visual Sciences, and Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexandra Aguilar-Pérez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Charles Reitman
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America
| | - Xingming Shi
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Carlos M Isales
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Maribeth H Johnson
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Jie Chen
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
13
|
Ueno M, Zhang N, Hirata H, Barati D, Utsunomiya T, Shen H, Lin T, Maruyama M, Huang E, Yao Z, Wu JY, Zwingenberger S, Yang F, Goodman SB. Sex Differences in Mesenchymal Stem Cell Therapy With Gelatin-Based Microribbon Hydrogels in a Murine Long Bone Critical-Size Defect Model. Front Bioeng Biotechnol 2021; 9:755964. [PMID: 34738008 PMCID: PMC8560789 DOI: 10.3389/fbioe.2021.755964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy and novel biomaterials are promising strategies for healing of long bone critical size defects. Interleukin-4 (IL-4) over-expressing MSCs within a gelatin microribbon (µRB) scaffold was previously shown to enhance the bridging of bone within a critical size femoral bone defect in male Balb/c mice. Whether sex differences affect the healing of this bone defect in conjunction with different treatments is unknown. In this study, we generated 2-mm critical-sized femoral diaphyseal bone defects in 10–12-week-old female and male Balb/c mice. Scaffolds without cells and with unmodified MSCs were implanted immediately after the primary surgery that created the bone defect; scaffolds with IL-4 over-expressing MSCs were implanted 3 days after the primary surgery, to avoid the adverse effects of IL-4 on the initial inflammatory phase of fracture healing. Mice were euthanized 6 weeks after the primary surgery and femurs were collected. MicroCT (µCT), histochemical and immunohistochemical analyses were subsequently performed of the defect site. µRB scaffolds with IL-4 over-expressing MSCs enhanced bone healing in both female and male mice. Male mice showed higher measures of bone bridging and increased alkaline phosphatase (ALP) positive areas, total macrophages and M2 macrophages compared with female mice after receiving scaffolds with IL-4 over-expressing MSCs. Female mice showed higher Tartrate-Resistant Acid Phosphatase (TRAP) positive osteoclast numbers compared with male mice. These results demonstrated that sex differences should be considered during the application of MSC-based studies of bone healing.
Collapse
Affiliation(s)
- Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Danial Barati
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Joy Y Wu
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
14
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
15
|
Association of TGF-β1 and IL-10 Gene Polymorphisms with Osteoporosis in a Study of Taiwanese Osteoporotic Patients. Genes (Basel) 2021; 12:genes12060930. [PMID: 34207210 PMCID: PMC8233820 DOI: 10.3390/genes12060930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is a rising health threat in the increasingly aging world population. It is a common skeletal disease strongly linked to genetic predisposition. We aim to identify the effects of the anti-inflammatory TGF-β1- and IL-10-specific single-nucleotide polymorphism (SNP) combination on the risk for osteoporosis. We investigated and analyzed the relationships between three TGF-β1 SNPs (-509C/T, +869 T/C and +29T/C), one IL-10 SNP (+1927A/C) and the level of bone mineral density (BMD), as well as the risk of osteoporosis in Taiwanese osteoporotic patients. A total of 217 subjects were recruited, including 88 osteoporotic patients and 129 healthy controls, for SNPs, BMD and clinical characteristics statistical analyses. Females with TGF-β1 SNP (-509 C/C) and IL-10 SNP (+1927 C/C) genotypes showed a great benefit for femoral neck T-scores. However, the combination of TGF-β1 SNP (-509 T/T) and IL-10 SNP (+1927 A/A) genotypes in all subjects showed a significant decrease in total hip BMD T-scores. The TGF-β1 SNP (-509 C/T) genotype in all subjects and TGF-β1 SNP (-509 T/T) and IL-10 SNP (+1927 A/C) genotypes in males showed positive effects on body height. The combination of the many SNPs in the anti-inflammatory TGF-β1 and IL-10 genes may be cooperatively involved in the development of osteoporosis. Our data suggested that the specific SNP combination of TGF-β1 (-509) and IL-10 (+1927) may act as a predictive factor for postmenopausal osteoporosis in Taiwanese women.
Collapse
|
16
|
Abstract
Objective This study aimed to explore the correlation between the SRY-related high-mobility-group box gene 4 (SOX4) 3′ untranslated region (UTR) single nucleotide polymorphism (SNP) and osteoporosis susceptibility. Methods The study recruited 330 osteoporosis patients (the case group) and 330 non-osteoporosis patients (the control group) in Sichuan Chengdu First People’s Hospital and Zibo Central Hospital from August 2016 to August 2019. Sanger sequencing was used to analyze the genotypes of SOX4 gene rs79958549, rs139085828, and rs201335371 loci. Multi-factor dimensionality reduction (MDR) was used to analyze the interaction between the SOX4 gene rs79958549, rs139085828, and rs201335371 loci and the clinical characteristics of the subjects. Results The risk of osteoporosis in the carriers of A allele at SOX4 rs79958549 was 5.40 times that in the carriers of the G allele (95% CI 3.25–8.96, P < 0.01). The risk of osteoporosis in the carriers of the A allele at SOX4 rs139085828 was 1.68 times that in the carriers of the G allele (95% CI 1.45–1.85, P < 0.01). The risk of osteoporosis in the carriers of the T allele at SOX4 rs201335371 was 0.54 times that in the carriers of the C allele (95% CI 0.43–0.69, P < 0.01). The SOX4 gene rs79958549, rs139085828, and rs201335371 A-A-C haplotype (OR = 5.14, 95% CI 2.45–10.57, P < 0.01) were associated with increased risk of osteoporosis and G-G-T haplotype was significantly associated with decreased risk of osteoporosis (OR = 0.48, 95% CI 0.38–0.62, P < 0.01). The interaction among the factors of sex, smoking, drinking, rs79958549, rs201335371 was the best model for osteoporosis prediction, and the risk for osteoporosis in ‘high-risk combination’ was 2.74 times that of ‘low-risk combination’ (95% CI 1.01–7.43, P = 0.04). Multiple logistic regression analysis revealed that the risk factors for osteoporosis were BMD (OR = 5.85, 95% CI 2.88–8.94, P < 0.01), T score (OR = 8.54, 95% CI 5.66–10.49, P < 0.01), Z score (OR = 3.77, 95% CI 2.15–8.50, P < 0.01), rs79958549 SNP (OR = 6.92, 95% CI 3.58–8.93, P < 0.01), and rs139085828 SNP (OR = 2.36, 95% CI 1.85–4.27, P < 0.01). The protective factor for osteoporosis was rs201335371SNP (OR = 0.48, 95% CI 0.32–0.75, P < 0.01). Conclusion The SOX4 gene SNPs rs79958549, rs139085828, and rs201335371 loci were significantly associated with osteoporosis risk.
Collapse
|
17
|
Sabik OL, Calabrese GM, Taleghani E, Ackert-Bicknell CL, Farber CR. Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data. Cell Rep 2021; 32:108145. [PMID: 32937138 DOI: 10.1016/j.celrep.2020.108145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The "omnigenic" model of the genetic architecture of complex traits proposed two categories of causal genes: core and peripheral. Core genes are hypothesized to directly regulate disease and may serve as therapeutic targets. Using a cell-type- and time-point-specific gene co-expression network for mineralizing osteoblasts, we identify a co-expression module enriched for genes implicated by bone mineral density (BMD) genome-wide association studies (GWASs), correlated with in vitro osteoblast mineralization and associated with skeletal phenotypes in human monogenic disease and mouse knockouts. Four genes from this module (B4GALNT3, CADM1, DOCK9, and GPR133) are located within the BMD GWAS loci with colocalizing expression quantitative trait loci (eQTL) and exhibit altered BMD in mouse knockouts, suggesting that they are causal genetic drivers of BMD in humans. Our network-based approach identifies a "core" module for BMD and provides a resource for expanding our understanding of the genetics of bone mass.
Collapse
Affiliation(s)
- Olivia L Sabik
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Gina M Calabrese
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric Taleghani
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester, Rochester, NY 14624, USA
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
18
|
Abstract
UNLABELLED Insulin resistance may be linked to bone health in young people. This study is the first on adolescents that jointly examined the association of bone health with insulin resistance and body composition. Our results revealed significant negative association between bone parameters and insulin resistance, even after adjustment for confounding factors. PURPOSE Previous studies are suggestive of the protective role of insulin on bone in adults. Whether this association exists in younger individuals is not clear, yet. This investigation aimed to evaluate the association between insulin resistance, bone parameters, and body composition amongst Iranian adolescents᾽ population. METHODS A cross-sectional study was conducted on 423 participants (224 girls and 199 boys) aged 9-19 years old. Insulin resistance was assessed, using a homeostatic model assessment of insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI). Bone mineral density (BMD), bone mineral content (BMC), total body fat mass (TBFM), and total body lean mass (TBLM) were measured, using dual energy X-ray absorptiometry (DXA), and bone mineral apparent density (BMAD) was calculated. RESULTS In multiple regression analyses adjusted for potential confounders, the HOMA-IR showed statistically significant negative association with most of the bone parameters (β = - 1.1 to - 0.002, P = 0.004 to 0.036). On the subject of QUICKI index, this relationship was detected only for lumbar spine (LS) parameters (β = 0.062 to 37.21, P = 0.0001 to 0.026) and femoral neck bone mineral content (FNBMC) (β = 1.297, P = 0.013). CONCLUSION Our results suggest that insulin resistance may be inversely and independently associated with the bone indices in younger individuals. Whether high insulin levels have detrimental effects on growing bone is still unclear and has to be answered.
Collapse
|
19
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
20
|
Zhang YX, Zhang SS, Ran S, Liu Y, Zhang H, Yang XL, Hai R, Shen H, Tian Q, Deng HW, Zhang L, Pei YF. Three pleiotropic loci associated with bone mineral density and lean body mass. Mol Genet Genomics 2021; 296:55-65. [PMID: 32970232 PMCID: PMC7903521 DOI: 10.1007/s00438-020-01724-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/09/2020] [Indexed: 11/26/2022]
Abstract
Both bone mineral density (BMD) and lean body mass (LBM) are important physiological measures with strong genetic determination. Besides, BMD and LBM might have common genetic factors. Aiming to identify pleiotropic genomic loci underlying BMD and LBM, we performed bivariate genome-wide association study meta-analyses of femoral neck bone mineral density and LBM at arms and legs, and replicated in the large-scale UK Biobank cohort sample. Combining the results from discovery meta-analysis and replication sample, we identified three genomic loci at the genome-wide significance level (p < 5.0 × 10-8): 2p23.2 (lead SNP rs4477866, discovery p = 3.47 × 10-8, replication p = 1.03 × 10-4), 16q12.2 (rs1421085, discovery p = 2.04 × 10-9, replication p = 6.47 × 10-14) and 18q21.32 (rs11152213, discovery p = 3.47 × 10-8, replication p = 6.69 × 10-6). Our findings not only provide useful insights into lean mass and bone mass development, but also enhance our understanding of the potential genetic correlation between BMD and LBM.
Collapse
Affiliation(s)
- Yu-Xue Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd.Jiangsu, Suzhou, 215123, People's Republic of China
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Shan-Shan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, Suzhou, People's Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd.Jiangsu, Suzhou, 215123, People's Republic of China
| | - Shu Ran
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yu Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Hong Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd.Jiangsu, Suzhou, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Xiao-Lin Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd.Jiangsu, Suzhou, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Rong Hai
- Inner Mongolia Autonomous Region Center of Health Management Service, Baotou, Inner Mongolia, People's Republic of China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA.
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd.Jiangsu, Suzhou, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, Suzhou, People's Republic of China.
| | - Yu-Fang Pei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, Suzhou, People's Republic of China.
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, 199 Ren-ai Rd.Jiangsu, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
21
|
Swan AL, Schütt C, Rozman J, del Mar Muñiz Moreno M, Brandmaier S, Simon M, Leuchtenberger S, Griffiths M, Brommage R, Keskivali-Bond P, Grallert H, Werner T, Teperino R, Becker L, Miller G, Moshiri A, Seavitt JR, Cissell DD, Meehan TF, Acar EF, Lelliott CJ, Flenniken AM, Champy MF, Sorg T, Ayadi A, Braun RE, Cater H, Dickinson ME, Flicek P, Gallegos J, Ghirardello EJ, Heaney JD, Jacquot S, Lally C, Logan JG, Teboul L, Mason J, Spielmann N, McKerlie C, Murray SA, Nutter LMJ, Odfalk KF, Parkinson H, Prochazka J, Reynolds CL, Selloum M, Spoutil F, Svenson KL, Vales TS, Wells SE, White JK, Sedlacek R, Wurst W, Lloyd KCK, Croucher PI, Fuchs H, Williams GR, Bassett JHD, Gailus-Durner V, Herault Y, Mallon AM, Brown SDM, Mayer-Kuckuk P, Hrabe de Angelis M. Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genet 2020; 16:e1009190. [PMID: 33370286 PMCID: PMC7822523 DOI: 10.1371/journal.pgen.1009190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/22/2021] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease. Patients affected by osteoporosis frequently present with decreased BMD and increased fracture risk. Genes are known to control the onset and progression of bone diseases such as osteoporosis. Therefore, we aimed to identify osteoporosis-related genes using BMD measures obtained from a large pool of mutant mice genetically modified for deletion of individual genes (knockout mice). In a collaborative endeavor involving several research sites world-wide, we generated and phenotyped 3,823 knockout mice and identified 200 genes which regulated BMD. Of the 200 BMD genes, 141 genes were previously not known to affect BMD. The discovery and study of novel BMD genes will help to better understand the causes and therapeutic options for patients with low BMD. In the long run, this will improve the clinical management of osteoporosis.
Collapse
Affiliation(s)
- Anna L. Swan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Christine Schütt
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | | | - Stefan Brandmaier
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Mark Griffiths
- Mouse Informatics Group, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Robert Brommage
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Piia Keskivali-Bond
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Harald Grallert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Werner
- Internal Medicine Nephrology and Center for Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Raffaele Teperino
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Gregor Miller
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Ala Moshiri
- University of California-Davis School of Medicine, Sacramento, California, United States of America
| | - John R. Seavitt
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Derek D. Cissell
- Department of Surgical & Radiological Sciences, University of California, Davis, California, United States of America
| | - Terrence F. Meehan
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Elif F. Acar
- The Center for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Ann M. Flenniken
- The Center for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marie-France Champy
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Abdel Ayadi
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Robert E. Braun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Heather Cater
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - Mary E. Dickinson
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Departments of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston,Texas, United States of America
| | - Paul Flicek
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Juan Gallegos
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
| | - Elena J. Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Jason D. Heaney
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
| | - Sylvie Jacquot
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Connor Lally
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - John G. Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Lydia Teboul
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - Jeremy Mason
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Colin McKerlie
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stephen A. Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Lauryl M. J. Nutter
- The Center for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristian F. Odfalk
- Advanced Technologies Cores, Baylor College of Medicine, One Baylor Plaza, Houston Texas, United States of America
| | - Helen Parkinson
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jan Prochazka
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | - Corey L. Reynolds
- Departments of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston,Texas, United States of America
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Frantisek Spoutil
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | - Karen L. Svenson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Taylor S. Vales
- Advanced Technologies Cores, Baylor College of Medicine, One Baylor Plaza, Houston Texas, United States of America
| | - Sara E. Wells
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - Jacqueline K. White
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - K. C. Kent Lloyd
- Department of Surgery, School of Medicine and Mouse Biology Program, University of California Davis
| | - Peter I. Croucher
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, IGBMC, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Ann-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Steve D. M. Brown
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Philipp Mayer-Kuckuk
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
- * E-mail:
| | | |
Collapse
|
22
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
23
|
Li L, Park YR, Shrestha SK, Cho HK, Soh Y. Suppression of Inflammation, Osteoclastogenesis and Bone Loss by PZRAS Extract. J Microbiol Biotechnol 2020; 30:1543-1551. [PMID: 32807758 PMCID: PMC9728228 DOI: 10.4014/jmb.2004.04016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Panax ginseng has a wide range of activities including a neuroprotective effect, skin protective effects, enhanced DNA repairing, anti-diabetic activity, and protective effects against vascular inflammation. In the present study, we sought to discover the inhibitory effects of a mixture of natural products containing Panax ginseng, Ziziphus jujube, Rubi fructus, Artemisiae asiaticae and Scutellaria baicalensis (PZRAS) on osteoclastogenesis and bone remodeling, as neither the effects of a mixture containing Panax ginseng extract, nor its molecular mechanism on bone inflammation, have been clarified yet. PZRAS upregulated the levels of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH-R) and glutathione peroxidase (GSH-Px) and reduced malondialdehyde (MDA) in LPS-treated RAW264.7 cells. Moreover, treatment with PZRAS decreased the production of IL-1β and TNF-α. PZRAS also inhibited osteoclast differentiation through inhibiting osteoclastspecific genes like MMP-2, 9, cathepsin K, and TRAP in RANKL-treated RAW264.7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPStreated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.
Collapse
Affiliation(s)
- Liang Li
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young-Ran Park
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Kwon Cho
- Hanpoong Pharm and Foods Co., Ltd., Jeonju 561-841, Republic of Korea
| | - Yunjo Soh
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea,Department of Pharmacology, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea,Corresponding author Phone: +82-63-270-4038 Fax: +82-63-270-4037 E-mail:
| |
Collapse
|
24
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
25
|
Nguyen TV, Eisman JA. Post-GWAS Polygenic Risk Score: Utility and Challenges. JBMR Plus 2020; 4:e10411. [PMID: 33210063 PMCID: PMC7657393 DOI: 10.1002/jbm4.10411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, through genome‐wide association studies, more than 300 genetic variants have been identified to be associated with either BMD or fracture risk. These genetic variants are common in the general population, but they exert small to modest effects on BMD, suggesting that the utility of any single variant is limited. However, a combination of effect sizes from multiple variants in the form of the polygenic risk score (PRS) can provide a useful indicator of fracture risk beyond that obtained by conventional clinical risk factors. In this perspective, we review the progress of genetics of osteoporosis and approaches for creating PRSs, their uses, and caveats. Recent studies support the idea that the PRS, when integrated into existing fracture prediction models, can help clinicians and patients alike to better assess the fracture risk for an individual, and raise the possibility of precision risk assessment. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Healthy Ageing Theme Garvan Institute of Medical Research Sydney Australia.,St Vincent's Clinical School UNSW Medicine, UNSW Sydney Australia.,School of Medicine Sydney University of Notre Dame Sydney Australia.,School of Biomedical Engineering University of Technology Sydney Australia
| | - John A Eisman
- Healthy Ageing Theme Garvan Institute of Medical Research Sydney Australia.,St Vincent's Clinical School UNSW Medicine, UNSW Sydney Australia.,School of Medicine Sydney University of Notre Dame Sydney Australia
| |
Collapse
|
26
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Mohammadian Amiri R. The rs2302685 polymorphism in the LRP6 gene is associated with bone mineral density and body composition in Iranian children. J Gene Med 2020; 22:e3245. [PMID: 32573887 DOI: 10.1002/jgm.3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/25/2020] [Accepted: 03/15/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Some 60-80% of the variability in bone mineral density (BMD) is determined by genetic factors. In the present study, we investigated the impact of the rs2302685 polymorphism of LRP6 on BMD and body composition in Iranian children. METHODS In total, 200 children (101 boys and 99 girls) were enrolled in the study. Body composition and BMD were computed using the Hologic DXA System (Hologic, Marlborough, MA, USA). The single nucleotide polymorphism of LRP6 rs2302685 (V1062I) was determined using a polymerase chain reaction/restriction fragment length polymorphism. A generalized linear model was performed to find the association between LRP6 polymorphisms, BMD and body composition in two adjusted models. RESULTS In model 1, a significant difference was found between LRP6 (rs2302685) polymorphism, trochanteric BMD (p = 0.007), intertrochanteric BMD (p = 0.007), total fat (p = 0.001), total fat (%) (p = 0.034), total lean mass (p = 0.031), total Lean + BMC (p = 0.036) and total mass (p = 0.001). In model 2, LRP6 (rs2302685) polymorphisms showed a significant effect on the trochanteric BMD (p = 0.005), intertrochanteric BMD (p = 0.005), total fat (p = 0.001), total fat (%) (p = 0.013) and total mass (p = 0.01). Total fat, total fat (%) and total body mass were higher in subjects with the CC genotype compared to the TT/CT genotype, whereas total lean mass and total Lean + BMC were higher in the TT/CT genotype. CONCLUSIONS The present study shows that the LRP6 polymorphism may be associated with body composition and BMD in Iranian children.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rajeeh Mohammadian Amiri
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
28
|
The Pharmacological Activity of Camellia sinensis (L.) Kuntze on Metabolic and Endocrine Disorders: A Systematic Review. Biomolecules 2020; 10:biom10040603. [PMID: 32294991 PMCID: PMC7226397 DOI: 10.3390/biom10040603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tea made from Camellia sinensis leaves is one of the most consumed beverages worldwide. This systematic review aims to update Camellia sinensis pharmacological activity on metabolic and endocrine disorders. Inclusion criteria were preclinical and clinical studies of tea extracts and isolated compounds on osteoporosis, hypertension, diabetes, metabolic syndrome, hypercholesterolemia, and obesity written in English between 2014 and 2019 and published in Pubmed, Science Direct, and Scopus. From a total of 1384 studies, 80 reports met inclusion criteria. Most papers were published in 2015 (29.3%) and 2017 (20.6%), conducted in China (28.75%), US (12.5%), and South Korea (10%) and carried out with extracts (67.5%, especially green tea) and isolated compounds (41.25%, especially epigallocatechin gallate). Most pharmacological studies were in vitro and in vivo studies focused on diabetes and obesity. Clinical trials, although they have demonstrated promising results, are very limited. Future research should be aimed at providing more clinical evidence on less studied pathologies such as osteoporosis, hypertension, and metabolic syndrome. Given the close relationship among all endocrine disorders, it would be of interest to find a standard dose of tea or their bioactive constituents that would be beneficial for all of them.
Collapse
|
29
|
Wu Q, Xiao X, Xu Y. Evaluating the Performance of the WHO International Reference Standard for Osteoporosis Diagnosis in Postmenopausal Women of Varied Polygenic Score and Race. J Clin Med 2020; 9:E499. [PMID: 32059423 PMCID: PMC7074342 DOI: 10.3390/jcm9020499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Whether the bone mineral density (BMD) T-score performs differently in osteoporosis classification in women of different genetic profiling and race background remains unclear. METHODS The genomic data in the Women's Health Initiative study was analyzed (n = 2417). The polygenic score (PGS) was calculated from 63 BMD-associated single nucleotide polymorphisms (SNPs) for each participant. The World Health Organization's (WHO) definition of osteoporosis (BMD T-score ≤-2.5) was used to estimate the cumulative incidence of fracture. RESULTS T-score classification significantly underestimated the risk of major osteoporotic fracture (MOF) in the WHI study. An enormous underestimation was observed in African American women (POR: 0.52, 95% CI: 0.30-0.83) and in women with low PGS (predicted/observed ratio [POR]: 0.43, 95% CI: 0.28-0.64). Compared to Caucasian women, African American, African Indian, and Hispanic women respectively had a 59%, 41%, and 55% lower hazard of MOF after the T-score was adjusted for. The results were similar when used for any fractures. CONCLUSIONS Our study suggested the BMD T-score performance varies significantly by race in postmenopausal women.
Collapse
Affiliation(s)
- Qing Wu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA; (X.X.); (Y.X.)
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada Las Vegas, NV 89154, USA
| | - Xiangxue Xiao
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA; (X.X.); (Y.X.)
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada Las Vegas, NV 89154, USA
| | - Yingke Xu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA; (X.X.); (Y.X.)
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada Las Vegas, NV 89154, USA
| |
Collapse
|
30
|
Qiu C, Yu F, Su K, Zhao Q, Zhang L, Xu C, Hu W, Wang Z, Zhao L, Tian Q, Wang Y, Deng H, Shen H. Multi-omics Data Integration for Identifying Osteoporosis Biomarkers and Their Biological Interaction and Causal Mechanisms. iScience 2020; 23:100847. [PMID: 32058959 PMCID: PMC6997862 DOI: 10.1016/j.isci.2020.100847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is characterized by low bone mineral density (BMD). The advancement of high-throughput technologies and integrative approaches provided an opportunity for deciphering the mechanisms underlying osteoporosis. Here, we generated genomic, transcriptomic, methylomic, and metabolomic datasets from 119 subjects with high (n = 61) and low (n = 58) BMDs. By adopting sparse multiple discriminative canonical correlation analysis, we identified an optimal multi-omics biomarker panel with 74 differentially expressed genes (DEGs), 75 differentially methylated CpG sites (DMCs), and 23 differential metabolic products (DMPs). By linking genetic data, we identified 199 targeted BMD-associated expression/methylation/metabolite quantitative trait loci (eQTLs/meQTLs/metaQTLs). The reconstructed networks/pathways showed extensive biomarker interactions, and a substantial proportion of these biomarkers were enriched in RANK/RANKL, MAPK/TGF-β, and WNT/β-catenin pathways and G-protein-coupled receptor, GTP-binding/GTPase, telomere/mitochondrial activities that are essential for bone metabolism. Five biomarkers (FADS2, ADRA2A, FMN1, RABL2A, SPRY1) revealed causal effects on BMD variation. Our study provided an innovative framework and insights into the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Fangtang Yu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Kuanjui Su
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis 38163, TN, USA
| | - Lan Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, OK, USA
| | - Wenxing Hu
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Zun Wang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Lanjuan Zhao
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Yuping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Hongwen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA.
| |
Collapse
|
31
|
Saad FA. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann N Y Acad Sci 2019; 1462:37-52. [PMID: 31556133 DOI: 10.1111/nyas.14231] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a prevalent osteodegenerative disease and silent killer linked to a decrease in bone mass and decline of bone microarchitecture, due to impaired bone matrix mineralization, raising the risk of fracture. Nevertheless, the process of bone matrix mineralization is still an unsolved mystery. Osteoporosis is a polygenic disorder associated with genetic and environmental risk factors; however, the majority of genes associated with osteoporosis remain largely unknown. Several signaling pathways regulate bone mass; therefore, dysregulation of a single signaling pathway leads to metabolic bone disease owing to high or low bone mass. Parathyroid hormone, core-binding factor α-1 (Cbfa1), Wnt/β-catenin, the receptor activator of the nuclear factor kappa-B (NF-κB) ligand (RANKL), myostatin, and osteogenic exercise signaling pathways play pivotal roles in the regulation of bone mass. The myostatin signaling pathway increases bone resorption by activating the RANKL signaling pathway, whereas osteogenic exercise inhibits myostatin and sclerostin while inducing irisin that consequentially activates the Cbfa1 and Wnt/β-catenin bone formation pathways. The aims of this review are to summarize what is known about osteoporosis-related signaling pathways; define the role of these pathways in osteoporosis drug discovery; focus light on the link between bone, muscle, pancreas, and adipose integrative physiology and osteoporosis; and underline the emerging role of osteogenic exercise in the prevention of, and care for, osteoporosis, obesity, and diabetes.
Collapse
Affiliation(s)
- Fawzy Ali Saad
- Department of Orthopaedic Surgery, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
32
|
Kow M, Akam E, Singh P, Singh M, Cox N, Bhatti JS, Tuck SP, Francis RM, Datta H, Mastana S. Vitamin D receptor (VDR) gene polymorphism and osteoporosis risk in White British men. Ann Hum Biol 2019; 46:430-433. [PMID: 31448632 DOI: 10.1080/03014460.2019.1659851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In this study, VDR gene ApaI (rs7975232), BsmI (rs 1544410) and TaqI (rs731236) genotypes were compared in men with osteoporosis and male controls. Osteoporosis affects around 20% of all men and overall mortality in the first year after hip fracture is significantly higher in men than women, yet the genetic basis of osteoporosis is less well studied in males. This study consisted of White British males; 69 osteoporosis patients and 122 controls. BMDs at the lumbar spine (vertebrae L1-L4) and hip (femur neck) were measured by dual-energy X-ray absorptiometry (DEXA). The VDR gene ApaI, BsmI and TaqI genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and association analysis was carried out at genotype and haplotype level. Our study suggests that TaqI polymorphism CC genotype frequency is lower in controls and further analysis of genotypes and BMD revealed a significant effect of TaqI polymorphism on Lumbar spine BMD. Two haplotypes (GCC and AAT) were associated with increased osteoporosis risk. In conclusion, VDR gene TaqI polymorphism in recessive mode had a significant effect on lumbar spine BMD within our study. Haplotypes GCC and AAT increase the risk of osteoporosis among White British males.
Collapse
Affiliation(s)
- Melissa Kow
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, UK
| | - Elizabeth Akam
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, UK
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Monica Singh
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Nick Cox
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, UK
| | | | - Stephen P Tuck
- James Cook University Hospital, Middlesbrough, and Newcastle University, Newcastle upon Tyne, UK
| | - Roger M Francis
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Harish Datta
- James Cook University Hospital, Middlesbrough, and Newcastle University, Newcastle upon Tyne, UK
| | - Sarabjit Mastana
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
33
|
Kwon RY, Watson CJ, Karasik D. Using zebrafish to study skeletal genomics. Bone 2019; 126:37-50. [PMID: 30763636 PMCID: PMC6626559 DOI: 10.1016/j.bone.2019.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/20/2019] [Accepted: 02/09/2019] [Indexed: 12/26/2022]
Abstract
While genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of skeletal diseases, animal models are required to identify causal mechanisms and to translate underlying biology into new therapies. Despite large-scale knockout mouse phenotyping efforts, the skeletal functions of most genes residing at GWAS-identified loci remain unknown, highlighting a need for complementary model systems to accelerate gene discovery. Over the past several decades, zebrafish (Danio rerio) has emerged as a powerful system for modeling the genetics of human diseases. In this review, our goal is to outline evidence supporting the utility of zebrafish for accelerating our understanding of human skeletal genomics, as well as gaps in knowledge that need to be filled for this purpose. We do this by providing a basic foundation of the zebrafish skeletal morphophysiology and phenotypes, and surveying evidence of skeletal gene homology and the use of zebrafish for post-GWAS analysis in other tissues and organs. We also outline challenges in translating zebrafish mutant phenotypes. Finally, we conclude with recommendations of future directions and how to leverage the large body of tools and knowledge of skeletal genetics in zebrafish for the needs of human skeletal genomic exploration. Due to their amenability to rapid genetic approaches, as well as the large number of conserved genetic and phenotypic features, there is a strong rationale supporting the use of zebrafish for human skeletal genomic studies.
Collapse
Affiliation(s)
- Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| | - Claire J Watson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA.
| |
Collapse
|
34
|
Li G, Jiang X, Liu L, Liu X, Liu H, Zhang Z. Effect of estradiol on high glucose‑induced osteoblast injury. Mol Med Rep 2019; 20:3019-3026. [PMID: 31432111 PMCID: PMC6755179 DOI: 10.3892/mmr.2019.10552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Estradiol (E2) serves an important role in the changes of postmenopausal bone turnover rate and the development of osteoporosis. The present study aimed to investigate the effects of E2 on high glucose (HG)‑induced osteoblast injury. Cell Counting Kit‑8 was used to determine cell viability. Reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting was used to analyze the mRNA and protein expression levels of osteocalcin, Runt‑related transcription factor 2 (Runx2), nuclear factor E2‑related factor 2 (Nrf2) and heme oxygenase‑1 (HO1). Flow cytometry was performed to analyze apoptosis. The results revealed that cell viability was lower in cells treated with HG (100, 200 or 300 mg/dl) compared with the control group. Cell viability was decreased in cells treated with 200 mg/dl HG on days 3, 5 and 7. In addition, cell viability was increased by 0.1 µM E2. E2 with HG co‑treatment increased cell viability, osteocalcin and Runx2 mRNA expression levels and nuclear Nrf2 and HO1 protein expression levels compared with the HG‑only group. All these changes, with the exception of Runx2, were reversed by silencing Nrf2 expression using small interfering (si)RNA (siNrf2). Additionally, apoptosis was reduced by E2 in HG‑treated cells, which was reversed by siNrf2 transfection. These results demonstrated that E2 may prevent HG‑induced osteoblast injury by activating Nrf2/HO1 signaling pathways.
Collapse
Affiliation(s)
- Guangrun Li
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaofeng Jiang
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Liping Liu
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaoyang Liu
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Hongtao Liu
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Zuofu Zhang
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
35
|
Xing W, Godwin C, Pourteymoor S, Mohan S. Conditional disruption of the osterix gene in chondrocytes during early postnatal growth impairs secondary ossification in the mouse tibial epiphysis. Bone Res 2019; 7:24. [PMID: 31646014 PMCID: PMC6804621 DOI: 10.1038/s41413-019-0064-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
In our previous studies, we have found that the prepubertal increase in thyroid hormone levels induces osterix (Osx) signaling in hypertrophic chondrocytes to transdifferentiate them into osteoblasts. To test if Osx expressed in chondrocytes directly contributes to transdifferentiation and secondary ossification, we generated Osx flox/flox ; Col2-Cre-ERT2 mice and knocked out Osx with a single injection of tamoxifen at postnatal day (P) 3 prior to evaluation of the epiphyseal bone phenotype by µCT, histology, and immunohistochemistry (IHC) at P21. Vehicle (oil)-treated Osx flox/flox ; Col2-Cre-ERT2 and tamoxifen-treated, Cre-negative Osx flox/flox mice were used as controls. µCT analysis of tibial epiphyses revealed that trabecular bone mass was reduced by 23% in the Osx conditional knockout (cKO) compared with control mice. Trabecular number and thickness were reduced by 28% and 8%, respectively, while trabecular separation was increased by 24% in the cKO mice. Trichrome staining of longitudinal sections of tibial epiphyses showed that bone area and bone area adjusted for total area were decreased by 22% and 18%, respectively. IHC studies revealed the presence of abundant Osx-expressing prehypertrophic chondrocytes in the epiphyses of control mice at P10, but not in the cKO mice. Furthermore, expression levels of MMP13, COL10, ALP, and BSP were considerably reduced in the epiphyses of cKO mice. We also found that Osx overexpression in ATDC5 chondrocytes increased expression of Col10, Mmp13, Alp, and Bsp. Our data indicate that Osx expressed in chondrocytes plays a significant role in secondary ossification by regulating expression of genes involved in chondrocyte hypertrophy and osteoblast transdifferentiation.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92357 USA
| | - Catrina Godwin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92357 USA
- Department of Orthopedics, Loma Linda University, Loma Linda, CA 92357 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92357 USA
| |
Collapse
|
36
|
Ruan Z, Zhu Y, Lin Z, Long H, Zhao R, Sun B, Cheng L, Zhao S. Association between rs12742784 polymorphism and hip fracture, bone mineral density, and EPHB2 mRNA expression levels in elderly Chinese women. Climacteric 2019; 23:93-98. [PMID: 31352841 DOI: 10.1080/13697137.2019.1640195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: This study aimed to determine the association between rs12742784 polymorphism in the non-coding area and hip fracture, bone mineral density (BMD), and EPHB2 mRNA expression levels in elderly Chinese women.Methods: We investigated 250 Chinese women (mean age: 63.5 ± 8.3 years) including 123 hip fracture patients and 127 non-fracture controls. All participants underwent clinical examination to meet the inclusion criteria. Lumbar and hip BMD were detected by dual-energy X-ray absorptiometry. rs12742784 polymorphism was determined by restriction fragment length polymorphism and EPHB2 mRNA expression levels were measured by real-time polymerase chain reaction.Results: Distribution of rs12742784 genotypes agreed with Hardy-Weinberg equilibrium. The frequency of the CT + TT genotype was significantly associated with decreased risk of hip fracture (adjusted odds ratio = 0.57, p < 0.01) after adjusting for age and body mass index, and with increased BMD and EPHB2 mRNA expression levels. The T allele of the rs12742784 single nucleotide polymorphism (SNP) was a protective factor for hip fracture (adjusted odds ratio = 0.56, p < 0.01).Conclusion: rs12742784 polymorphism was associated with EPHB2 mRNA expression levels, BMD, and hip fracture in Chinese women. The T allele of the rs12742784 SNP was a protective factor for osteoporosis and hip fracture.
Collapse
Affiliation(s)
- Z Ruan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Y Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Z Lin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - H Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - R Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - B Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - L Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - S Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
37
|
Ma M, Huang DG, Liang X, Zhang L, Cheng S, Cheng B, Qi X, Li P, Du Y, Liu L, Zhao Y, Ding M, Wen Y, Guo X, Zhang F. Integrating transcriptome-wide association study and mRNA expression profiling identifies novel genes associated with bone mineral density. Osteoporos Int 2019; 30:1521-1528. [PMID: 30993394 DOI: 10.1007/s00198-019-04958-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/25/2019] [Indexed: 01/16/2023]
Abstract
UNLABELLED To scan novel candidate genes associated with osteoporosis, a two-stage transcriptome-wide association study (TWAS) of bone mineral density (BMD) was conducted. The BMD-associated genes identified by TWAS were then compared with the gene expression profiling of BMD in bone cells, B cells, and mesenchymal stem cells. We identified multiple candidate genes and gene ontology (GO) terms associated with BMD. INTRODUCTION Osteoporosis (OP) is a metabolic bone disease characterized by decrease in BMD. Our objective is to scan novel candidate genes associated with OP. METHODS A transcriptome-wide association study (TWAS) was performed by integrating the genome-wide association study (GWAS) summary of bone mineral density (BMD) with two pre-computed mRNA expression weights of peripheral blood and muscle skeleton. Then, another independent GWAS data of BMD was used to verify the discovery results. The BMD-associated genes identified between discovery and replicate TWAS were further subjected to gene ontology (GO) analysis implemented by DAVID. Finally, the BMD-associated genes and GO terms were further compared with the mRNA expression profiling results of BMD to detect the common genes and GO terms shared by both DNA-level TWAS and mRNA expression profile analysis. RESULTS TWAS identified 95 common genes with permutation P value < 0.05 for peripheral blood and muscle skeleton, such as TMTC4 in muscle skeleton and DDX17 in peripheral blood. Further comparing the genes detected by discovery-replicate TWAS with the differentially expressed genes identified by mRNA expression profiling of OP patients found 18 overlapped genes, such as MUL1 in muscle skeleton and SPTBN1 in peripheral blood. GO analysis of the genes identified by discovery-replicate TWAS detected 12 BMD-associated GO terms, such as negative regulation of cell growth and regulation of glycogen catabolic process. Further comparing the GO results of discovery-replicate TWAS and mRNA expression profiles found 6 overlapped GO terms, such as membrane and cell adhesion. CONCLUSION Our study identified multiple candidate genes and GO terms for BMD, providing novel clues for understanding the genetic mechanism of OP.
Collapse
Affiliation(s)
- M Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - D-G Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - X Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - L Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - S Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - B Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - X Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - P Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Y Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - L Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Y Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - M Ding
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Y Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - X Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - F Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
38
|
Soibam D, Singh TA, Nandy P, Dewan SK, Baruah A. Sp1 Binding Site Polymorphism at COL1A1 Gene and Its Relation to Bone Mineral Density for Osteoporosis Risk Factor Among the Sikkimese Men and Women of Northeast India. Indian J Clin Biochem 2019; 34:230-233. [PMID: 31092999 DOI: 10.1007/s12291-017-0728-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
Single nucleotide polymorphism in the first intron of Collagen type I alpha 1 (COL1A1) gene which is the binding site of specificity protein 1 (Sp1) transcription factor associated with low bone mineral density and osteoporosis. To evaluate such genetic factors among the Sikkimese population, a total of 150 cases (75 men and 75 women) with primary osteopenia and osteoporosis and 150 healthy controls (75 men and 75 women) of age range between 35 and 65 years were enrolled in this study. The COL1A1 genotypes [SS, Ss and ss] were assessed by restriction enzyme [MscI] digestion of DNA after amplification by polymerase chain reaction. There, only 2.7% women and 1.3% men cases had restriction site with heterozygous genotype (Ss) and no homozygous genotype (ss) were detected. There was no statistically significant association between low bone mass and genotypes on analysis (χ2 = 1.014, P = 0.314; RR = 1.510) that, the Sp1 binding site polymorphism at the COLIA1 gene is very rare and has no contribution in the development low bone mineral density.
Collapse
Affiliation(s)
- Deepa Soibam
- 1Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, 5th Mile Tadong, Gangtok, East Sikkim, 737101 India
| | - T A Singh
- 1Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, 5th Mile Tadong, Gangtok, East Sikkim, 737101 India
| | - Parvati Nandy
- 2Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim India
| | - Sunder Kishore Dewan
- 3Department of Orthopedics, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim India
| | - Ankur Baruah
- North East Medical Care Hospital and Research Centre, Guwahati, India
| |
Collapse
|
39
|
Neugebauer J, Heilig J, Hosseinibarkooie S, Ross BC, Mendoza-Ferreira N, Nolte F, Peters M, Hölker I, Hupperich K, Tschanz T, Grysko V, Zaucke F, Niehoff A, Wirth B. Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum Mol Genet 2019; 27:4249-4262. [PMID: 30204862 DOI: 10.1093/hmg/ddy318] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Over 200 million people suffer from osteoporosis worldwide, one third of which will develop osteoporotic bone fractures. Unfortunately, no effective cure exists. Mutations in plastin 3 (PLS3), an F-actin binding and bundling protein, cause X-linked primary osteoporosis in men and predisposition to osteoporosis in postmenopausal women. Moreover, the strongest association so far for osteoporosis in elderly women after menopause was connected to a rare SNP in PLS3, indicating a possible role of PLS3 in complex osteoporosis as well. Interestingly, 5% of the general population are overexpressing PLS3, with yet unknown consequences. Here, we studied ubiquitous Pls3 knockout and PLS3 overexpression in mice and demonstrate that both conditions influence bone remodeling and structure: while Pls3 knockout mice exhibit osteoporosis, PLS3 overexpressing mice show thickening of cortical bone and increased bone strength. We show that unbalanced PLS3 levels affect osteoclast development and function, by misregulating the NFκB pathway. We found upregulation of RELA (NFκB subunit p65) in PLS3 overexpressing mice-known to stimulate osteoclastogenesis-but strikingly reduced osteoclast resorption. We identify NFκB repressing factor (NKRF) as a novel PLS3 interactor, which increasingly translocates to the nucleus when PLS3 is overexpressed. We show that NKRF binds to the NFκB downstream target and master regulator of osteoclastogenesis nuclear factor of activated T cells 1 (Nfatc1), thereby reducing its transcription and suppressing osteoclast function. We found the opposite in Pls3 knockout osteoclasts, where decreased nuclear NKRF augmented Nfatc1 transcription, causing osteoporosis. Regulation of osteoclastogenesis and bone remodeling via the PLS3-NKRF-NFκB-NFATC1 axis unveils a novel possibility to counteract osteoporosis.
Collapse
Affiliation(s)
- Janine Neugebauer
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Bryony C Ross
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Franziska Nolte
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Miriam Peters
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany.,Endocrine Research Unit, Medical Clinic and Policlinic IV, Hospital of the University of Munich, Munich, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Theresa Tschanz
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Grysko
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Orthopaedic University Hospital Friedrichsheim, Frankfurt am Main, Germany
| | - Anja Niehoff
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Mesner LD, Calabrese GM, Al-Barghouthi B, Gatti DM, Sundberg JP, Churchill GA, Godfrey DA, Ackert-Bicknell CL, Farber CR. Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass. PLoS Genet 2019; 15:e1008123. [PMID: 31042701 PMCID: PMC6513102 DOI: 10.1371/journal.pgen.1008123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/13/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022] Open
Abstract
Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P = 3.1 x 10−12) BMD locus on Chromosome 3@52.5 Mbp that replicated in two separate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts. Furthermore, its expression was regulated by a local expression QTL (eQTL), which overlapped the BMD association. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/-) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- mice displayed increased osteogenic differentiation. Lhfp-/- mice also had elevated BMD due to increased cortical bone mass. Lastly, we identified SNPs in human LHFP that were associated (P = 1.2 x 10−5) with heel BMD. In conclusion, we used GWAS and systems genetics to identify Lhfp as a regulator of osteoblast activity and bone mass. Osteoporosis is a common, chronic disease characterized by low bone mineral density (BMD) that puts millions of Americans at high risk of fracture. Variation in BMD in the general population is, in large part, determined by genetic factors. To identify novel genes influencing BMD, we performed a genome-wide association study in a panel of inbred mouse strains. We identified a locus on Chromosome 3 strongly associated with BMD. Using a combination of systems genetics approaches, we connected the expression of the Lhfp gene with BMD-associated genetic variants and predicted it influenced BMD by altering the activity of bone-forming osteoblasts. Using mice deficient in Lhfp, we demonstrated that Lhfp negatively regulates bone formation and BMD. These data suggest that inhibiting Lhfp may represent a novel therapeutic strategy to increase BMD and decrease the risk of fracture.
Collapse
Affiliation(s)
- Larry D. Mesner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States of America
| | - Gina M. Calabrese
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
| | - Basel Al-Barghouthi
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
- Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Dana. A. Godfrey
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States of America
| | - Cheryl L. Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States of America
| | - Charles R. Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States of America
- Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wang X, Diao L, Sun D, Wang D, Zhu J, He Y, Liu Y, Xu H, Zhang Y, Liu J, Wang Y, He F, Li Y, Li D. OsteoporosAtlas: a human osteoporosis-related gene database. PeerJ 2019; 7:e6778. [PMID: 31086734 PMCID: PMC6487800 DOI: 10.7717/peerj.6778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/13/2019] [Indexed: 01/12/2023] Open
Abstract
Background Osteoporosis is a common, complex disease of bone with a strong heritable component, characterized by low bone mineral density, microarchitectural deterioration of bone tissue and an increased risk of fracture. Due to limited drug selection for osteoporosis and increasing morbidity, mortality of osteoporotic fractures, osteoporosis has become a major health burden in aging societies. Current researches for identifying specific loci or genes involved in osteoporosis contribute to a greater understanding of the pathogenesis of osteoporosis and the development of better diagnosis, prevention and treatment strategies. However, little is known about how most causal genes work and interact to influence osteoporosis. Therefore, it is greatly significant to collect and analyze the studies involved in osteoporosis-related genes. Unfortunately, the information about all these osteoporosis-related genes is scattered in a large amount of extensive literature. Currently, there is no specialized database for easily accessing relevant information about osteoporosis-related genes and miRNAs. Methods We extracted data from literature abstracts in PubMed by text-mining and manual curation. Moreover, a local MySQL database containing all the data was developed with PHP on a Windows server. Results OsteoporosAtlas (http://biokb.ncpsb.org/osteoporosis/), the first specialized database for easily accessing relevant information such as osteoporosis-related genes and miRNAs, was constructed and served for researchers. OsteoporosAtlas enables users to retrieve, browse and download osteoporosis-related genes and miRNAs. Gene ontology and pathway analyses were integrated into OsteoporosAtlas. It currently includes 617 human encoding genes, 131 human non-coding miRNAs, and 128 functional roles. We think that OsteoporosAtlas will be an important bioinformatics resource to facilitate a better understanding of the pathogenesis of osteoporosis and developing better diagnosis, prevention and treatment strategies.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lihong Diao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dezhi Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Jiarun Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China.,College of life Sciences, Hebei University, Baoding, China
| | - Yangzhige He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China.,Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Hao Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yi Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China.,College of life Sciences, Hebei University, Baoding, China
| | - Jinying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
42
|
Wu CT, Chen YW, Su YH, Chiu CY, Guan SS, Yang RS, Liu SH. Gender difference of CCAAT/enhancer binding protein homologous protein deficiency in susceptibility to osteopenia. J Orthop Res 2019; 37:942-947. [PMID: 30835896 DOI: 10.1002/jor.24264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Expression of CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) is induced during endoplasmic reticulum (ER) stress, which is related to apoptosis in several cell types. CHOP null mice have been exhibited to decrease bone formation. However, a study of transgenic mice overexpressing CHOP in the bone microenvironment showed that CHOP overexpression impairs the osteoblastic function leading to osteopenia. The regulatory role of CHOP in bone formation is controversial and still remains to be clarified. Here, we investigated the alterations in bone microstructure of CHOP knockout (Chop-/- ) mice and tested the gender difference of CHOP deficiency in susceptibility to osteopenia. Adult female and male mice (WT) and Chop-/- mice were used. The microcomputed tomography (µCT) analysis in trabecular bone and cortical bone of tibia was determined. Trabecular bone volume fraction (BV/TV), trabecular number, and bone mineral density (BMD) in tibia are markedly decreased in both male and female Chop-/- mice compared to the control WT mice. Unexpectedly, the BMD and BV/TV in trabecular bone of tibia in female Chop-/- mice were significantly lower than in male Chop-/- mice. The similar results could also be observed in the cortical bone of tibia in Chop-/- mice. This gender difference was also observed in the decreased capacity of osteoblast differentiation of bone marrow cells isolated from Chop-/- mice. These results indicated that ER stress-related CHOP signaling might play an important role in the bone formation in a mouse model, especially in females. There is the gender difference of CHOP deficiency in susceptibility to osteopenia. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Cheng-Tien Wu
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Hao Su
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Rong-Seg Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, No.1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan
| | - Shing-Hwa Liu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan
| |
Collapse
|
43
|
Zhang-James Y, Vaudel M, Mjaavatten O, Berven FS, Haavik J, Faraone SV. Effect of disease-associated SLC9A9 mutations on protein-protein interaction networks: implications for molecular mechanisms for ADHD and autism. ACTA ACUST UNITED AC 2019; 11:91-105. [PMID: 30927234 DOI: 10.1007/s12402-018-0281-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Na+/H+ Exchanger 9 (NHE9) is an endosomal membrane protein encoded by the Solute Carrier 9A, member 9 gene (SLC9A9). SLC9A9 has been implicated in attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), epilepsy, multiple sclerosis and cancers. To better understand the function of NHE9 and the effects of disease-associated variants on protein-protein interactions, we conducted a quantitative analysis of the NHE9 interactome using co-immunoprecipitation and isobaric labeling-based quantitative mass spectrometry. We identified 100 proteins that interact with NHE9. These proteins were enriched in known functional pathways for NHE9: the endocytosis, protein ubiquitination and phagosome pathways, as well as some novel pathways including oxidative stress, mitochondrial dysfunction, mTOR signaling, cell death and RNA processing pathways. An ADHD-associated mutation (A409P) significantly altered NHE9's interactions with a subset of proteins involved in caveolae-mediated endocytosis and MAP2K2-mediated downstream signaling. An ASD nonsense mutation in SLC9A9, R423X, produced no-detectable amount of NHE9, suggesting the overall loss of NHE9 functional networks. In addition, seven of the NHE9 interactors are products of known autism candidate genes (Simons Foundation Autism Research Initiative, SFARI Gene) and 90% of the NHE9 interactome overlap with SFARI protein interaction network PIN (p < 0.0001), supporting the role of NHE9 interactome in ASDs molecular mechanisms. Our results provide a detailed understanding of the functions of protein NHE9 and its disrupted interactions, possibly underlying ADHD and ASDs. Furthermore, our methodological framework proved useful for functional characterization of disease-associated genetic variants and suggestion of druggable targets.
Collapse
Affiliation(s)
- Yanli Zhang-James
- Departments of Psychiatry, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Marc Vaudel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Mjaavatten
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Stephen V Faraone
- Departments of Psychiatry, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA. .,Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA.
| |
Collapse
|
44
|
Integrative genomic analysis predicts novel functional enhancer-SNPs for bone mineral density. Hum Genet 2019; 138:167-185. [PMID: 30656451 DOI: 10.1007/s00439-019-01971-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023]
Abstract
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and deterioration of bone microarchitecture. To identify novel genetic loci underlying osteoporosis, an effective strategy is to focus on scanning of variants with high potential functional impacts. Enhancers play a crucial role in regulating cell-type-specific transcription. Therefore, single-nucleotide polymorphisms (SNPs) located in enhancers (enhancer-SNPs) may represent strong candidate functional variants. Here, we performed a targeted analysis for potential functional enhancer-SNPs that may affect gene expression and biological processes in bone-related cells, specifically, osteoblasts, and peripheral blood monocytes (PBMs), using five independent cohorts (n = 5905) and the genetics factors for osteoporosis summary statistics, followed by comprehensive integrative genomic analyses of chromatin states, transcription, and metabolites. We identified 15 novel enhancer-SNPs associated with femoral neck and lumbar spine BMD, including 5 SNPs mapped to novel genes (e.g., rs10840343 and rs10770081 in IGF2 gene) and 10 novel SNPs mapped to known BMD-associated genes (e.g., rs2941742 in ESR1 gene, and rs10249092 and rs4342522 in SHFM1 gene). Interestingly, enhancer-SNPs rs10249092 and rs4342522 in SHFM1 were tightly linked, but annotated to different enhancers in PBMs and osteoblasts, respectively, suggesting that even tightly linked SNPs may regulate the same target gene and contribute to the phenotype variation in cell-type-specific manners. Importantly, ten enhancer-SNPs may also regulate BMD variation by affecting the serum metabolite levels. Our findings revealed novel susceptibility loci that may regulate BMD variation and provided intriguing insights into the genetic mechanisms of osteoporosis.
Collapse
|
45
|
Herbert AJ, Williams AG, Hennis PJ, Erskine RM, Sale C, Day SH, Stebbings GK. The interactions of physical activity, exercise and genetics and their associations with bone mineral density: implications for injury risk in elite athletes. Eur J Appl Physiol 2019; 119:29-47. [PMID: 30377780 PMCID: PMC6342881 DOI: 10.1007/s00421-018-4007-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/04/2018] [Indexed: 01/30/2023]
Abstract
Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk and can also have substantial implications for athlete health and injury risk in the elite sporting environment. BMD is a highly multi-factorial phenotype influenced by diet, hormonal characteristics and physical activity. The interrelationships between such factors, and a strong genetic component, suggested to be around 50-85% at various anatomical sites, determine skeletal health throughout life. Genome-wide association studies and case-control designs have revealed many loci associated with variation in BMD. However, a number of the candidate genes identified at these loci have no known associated biological function or have yet to be replicated in subsequent investigations. Furthermore, few investigations have considered gene-environment interactions-in particular, whether specific genes may be sensitive to mechanical loading from physical activity and the outcome of such an interaction for BMD and potential injury risk. Therefore, this review considers the importance of physical activity on BMD, genetic associations with BMD and how subsequent investigation requires consideration of the interaction between these determinants. Future research using well-defined independent cohorts such as elite athletes, who experience much greater mechanical stress than most, to study such phenotypes, can provide a greater understanding of these factors as well as the biological underpinnings of such a physiologically "extreme" population. Subsequently, modification of training, exercise or rehabilitation programmes based on genetic characteristics could have substantial implications in both the sporting and public health domains once the fundamental research has been conducted successfully.
Collapse
Affiliation(s)
- Adam J. Herbert
- Department of Sport and Exercise, School of Health Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Alun G. Williams
- Sports Genomics Laboratory, Manchester Metropolitan University, Cheshire Campus, Crewe Green Road, Crewe, CW1 5DU UK
- Institute of Sport, Exercise and Health, University College London, Tottenham Court Road, London, W17 7HA UK
| | - Philip J. Hennis
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS UK
| | - Robert M. Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
- Institute of Sport, Exercise and Health, University College London, Tottenham Court Road, London, W17 7HA UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS UK
| | - Stephen H. Day
- Department of Biomedical Science & Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Georgina K. Stebbings
- Sports Genomics Laboratory, Manchester Metropolitan University, Cheshire Campus, Crewe Green Road, Crewe, CW1 5DU UK
| |
Collapse
|
46
|
Gharibi B, Ghuman MS, Cama G, Rawlinson SCF, Grigoriadis AE, Hughes FJ. Site-specific differences in osteoblast phenotype, mechanical loading response and estrogen receptor-related gene expression. Mol Cell Endocrinol 2018; 477:140-147. [PMID: 29928929 DOI: 10.1016/j.mce.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 05/08/2018] [Accepted: 06/16/2018] [Indexed: 12/23/2022]
Abstract
The osteoporosis-resistant nature of skull bones implies inherent differences exist between their cellular responses and those of other osteoporosis-susceptible skeletal sites. Phenotypic differences in calvarial and femoral osteoblastic responses to induction of osteogenesis, mechanical loading, estrogen, growth factor and cytokine stimulation were investigated. Primary rat calvarial and femoral adult male osteoblasts were cultured and osteoblastic mineralisation and maturation determined using Alizarin Red staining and expression of osteogenic marker genes assessed. Expression of known mechanically-responsive genes was compared between sites following loading of scaffold-seeded cells in a bioreactor. Cell proliferation and differentiation following growth factor and estrogen stimulation were also compared. Finally expression of estrogen receptors and associated genes during osteogenic differentiation were investigated. Calvarial osteoblasts exhibited delayed maturation (45d. vs 21d.) and produced less mineralised matrix than femoral osteoblasts when osteogenically induced. PDGF-BB and FGF2 both caused a selective increase in proliferation and decrease in osteoblastic differentiation of femoral osteoblasts. Mechanical stimulation resulted in the induction of the expression of Ccl2 and Anx2a selectively in femoral osteoblasts, but remained unchanged in calvarial cells. Estrogen receptor beta expression was selectively upregulated 2-fold in calvarial osteoblasts. Most interestingly, the estrogen responsive transcriptional repressor RERG was constitutively expressed at 1000-fold greater levels in calvarial compared with femoral osteoblasts. RERG expression in calvarial osteoblasts was down regulated during osteogenic induction whereas upregulation occurred in femoral osteoblasts. Bone cells of the skull are inherently different to those of the femur, and respond differentially to a range of stimuli. These site-specific differences may have important relevance in the development of strategies to tackle metabolic bone disorders.
Collapse
Affiliation(s)
- Borzo Gharibi
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
| | - Mandeep S Ghuman
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Giuseppe Cama
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Simon C F Rawlinson
- Centre for Oral Growth and Development, Institute of Dentistry, Queen Mary University of London, New Road, London, E1 2BA, UK
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Francis J Hughes
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
47
|
Hu Y, Tan LJ, Chen XD, Greenbaum J, Deng HW. Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method. Bone 2018; 117:6-14. [PMID: 30172742 PMCID: PMC6364698 DOI: 10.1016/j.bone.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
AIMS Clinical and epidemiological findings point to an association between type 2 diabetes (T2D) and osteoporosis. Genome-wide association studies (GWASs) have been fruitful in identifying some loci potentially associated with osteoporosis and T2D respectively. However, the total genetic variance for each of these two diseases and the shared genetic determination between them are largely unknown. The aim of this study was to identify novel genetic variants for osteoporosis and/or T2D. METHODS First, using a pleiotropic conditional false discovery rate (cFDR) method, we analyzed two GWAS summary data of femoral neck bone mineral density (FN_BMD, n = 53,236) and T2D (n = 159,208) to identify novel shared genetic loci. FN_BMD is an important risk factor for osteoporosis. Next, to explore the potential functions of the identified potential pleiotropic genes, differential expression analysis was performed for them in monocytes and peripheral blood mononuclear cells (PBMCs) as these cells are relevant to the etiology of osteoporosis and/or T2D. Further, weighted gene co-expression analysis (WGCNA) was conducted to identify functional connections between novel pleiotropic genes and known osteoporosis/T2D susceptibility genes by using transcriptomic expression datasets in bone biopsies (E-MEXP-1618) and pancreatic islets (GSE50397). Finally, multi-trait fine mapping for the detected pleiotropic risk loci were conducted to identify the SNPs that have the highest probability of being causal for both FN_BMD and T2D. RESULTS We identified 27 significant SNPs with cFDR<0.05 for FN_BMD and 61 SNPs for T2D respectively. Four loci, rs7068487 (PLEKHA1), rs10885421 (TCF7L2), rs944082 (GNG12-AS1 (WLS)) and rs2065929 (PIFO||PGCP1), were found to be potentially pleiotropic and shared between FN_BMD and T2D (ccFDR<0.05). PLEKHA1 was found differentially expressed in circulating monocytes between high and low BMD subjects, and PBMCs between diabetic and non-diabetic conditions. WGCNA showed that PLEKHA1 and TCF7L2 were interconnected with multiple osteoporosis and T2D associated genes in bone biopsy and pancreatic islets, such as JAG, EN1 and CPE. Fine mapping showed that rs11200594 was a potentially causal variant in the locus of PLEKHA1. rs11200594 is also an eQTL of PLEKHA1 in multiple tissue (e.g. peripheral blood cells, adipose and ovary) and is in strong LD with a number of functional variants. CONCLUSIONS Four potential pleiotropic loci were identified for shared genetic determination of osteoporosis and T2D. Our study highlights PLEKHA1 as an important potentially pleiotropic gene. The findings may help us gain a better understanding of the shared genetic determination between these two important disorders.
Collapse
Affiliation(s)
- Yuan Hu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jonathan Greenbaum
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China; Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
48
|
Qiu C, Shen H, Fu X, Xu C, Deng H. Meta-Analysis of Genome-Wide Association Studies Identifies Novel Functional CpG-SNPs Associated with Bone Mineral Density at Lumbar Spine. Int J Genomics 2018; 2018:6407257. [PMID: 30159320 PMCID: PMC6109501 DOI: 10.1155/2018/6407257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides (CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five independent cohorts (n = 5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p < 7.86 × 10-7) for association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p < 5.00 × 10-5) association, of which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5 regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore, functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and epigenetic mechanisms of complex disease.
Collapse
Affiliation(s)
- Chuan Qiu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hui Shen
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Xiaoying Fu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Chao Xu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hongwen Deng
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
- School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
49
|
A specific haplotype in potential miRNAs binding sites of secreted frizzled-related protein 1 (SFRP1) is associated with BMD variation in osteoporosis. Gene 2018; 677:132-141. [PMID: 30055306 DOI: 10.1016/j.gene.2018.07.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
PURPOSE Osteoporosis is an important multifactorial disease which is largely influenced by Wnt signaling pathway. Considering regulatory single nucleotide polymorphisms in Wnt signaling pathway may pave the road of understanding the genetic basis of predisposition to osteoporosis. The aim of this study was to determine the possible association between variants of SFRP1 and WNT5b, and osteoporosis incidence risk. METHODS The study population comprised 186 osteoporotic patients and 118 normal subjects from Amirkola Health and Ageing Project. rs1127379 (c.1406A>G) and rs3242 (c.3132C>T) variants in 3'UTR of SFRP1 gene, and rs3803164 (c.236C>T) in 3'UTR and rs735890 (c.622-536A>G) in intron 4 of WNT5b gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Regression analyses were used to calculate the association of genotype frequencies with bone mineral density (BMD) and bone mineral content (BMC) values of participants. Bioinformatics algorithms were used to detect the effect of each SNP on the secondary structure of mRNA, and predict putative 3'UTR microRNA target sites and splicing sites changes by related SNPs. RESULTS WNT5b rs735890 was associated with lumbar spine BMD, BMC, and femoral neck BMC (P = 0.035, P = 0.007, and P = 0.038, respectively). WNT5b rs3803164, and SFRP1 rs3242 were significantly associated with lumbar spine BMD (P = 0.028 and P = 0.030, respectively). SFRP1 rs1127379 was associated with lumbar spine BMD in the male gender. Haplotype analysis showed a significant association of SFRP1 c.[1406A; 3132C] haplotype with lumbar spine BMD, and BMC (P = 0.019 and P = 0.030, respectively), and SFRP1 c.[1406G; 3132C] haplotype with lumbar spine BMC (P = 0.045). In silico analyses revealed that the G allele of SFRP1 rs1127379, and WNT5b rs3803164 appear as more possible target sites for many miRNAs. CONCLUSIONS This study is the first evidence of the association of WNT5b rs735890, and c.[1406A; 3132C] and c.[1406G; 3132C] haplotypes of SFRP1 with BMD variation in osteoporosis, probably by altering microRNA target sites, in elderly persons.
Collapse
|
50
|
Starichenko VI. Hereditary component of variation in 90Sr deposition in inbred mice under exogenous conditions that affect bone formation. Appl Radiat Isot 2018; 140:126-132. [PMID: 30015041 DOI: 10.1016/j.apradiso.2018.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/17/2018] [Accepted: 07/05/2018] [Indexed: 11/17/2022]
Abstract
Bone-seeking radionuclides (specifically 90Sr) accumulate in the bone tissue and act as a long-term source of internal irradiation. Their behaviour in the body has been studied in detail, while the impact of inheritance has not been established. On one hand, the genetic determination of both skeletal morphology and calcium metabolism is indirect evidence that the kinetics of deposition of alkaline-earth radioisotopes in the skeleton also have a hereditary component. On the other hand, analysis of 90Sr kinetics in different inbred mouse strains did not reveal any differences between the mice. This study used a classical approach to evaluating the hereditary component of variation in quantitative traits, namely, a variant of familial analysis (the method of twin families). The growth of the skeleton is known to be accompanied by distinct changes in 90Sr accumulation. That is why the hereditary (familial) component of variation in 90Sr kinetics in the bone tissue of CBA mice was analyzed under the influences that modify growth processes Individual parameters of 90Sr accumulation differed between experimental groups by a factor of 2-4.5. At the same time, features of 90Sr accumulation proved to be characteristic of entire families. The results show that the intrafamilial correlation in 90Sr deposition in the skeleton is highly significant (R = 0.542, P ≤ 0.0001) and comparable to that of morphological parameters (R = 0.532-0.546, P ≤ 0.0001). The results confirm the existence of statistically significant intrafamilial correlations of weight and metabolic parameters, which is similarly expressed in different families, thereby providing evidence for hereditary determination of 90Sr metabolism. At the same time, the stability of 90Sr metabolism inheritance to changes in morphophysiology and environmental influences (including those close to pathogenic ones) is shown. This is evidence of its authenticity and significance. The results obtained can be extrapolated to humans instead of directly analyzing the role of hereditary factors in the metabolism of toxic compounds, which are difficult and unethical to perform in human subjects.
Collapse
Affiliation(s)
- V I Starichenko
- Institute of Plants and Animal Ecology UB RAS, Vos'mogo Marta St. 202, Yekaterinburg 620144, Russia.
| |
Collapse
|