1
|
Liu Y, Yang F, Wan S, Wang X, Guan L, Li Y, Xu C, Xie B, Wang S, Tan XL, Tang B. Comparative transcriptomic and metabolomics analysis of ovary in Nilaparvata lugens after trehalase inhibition. BMC Genomics 2025; 26:98. [PMID: 39893429 PMCID: PMC11787742 DOI: 10.1186/s12864-025-11268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
The fecundity of Nilaparvata lugens (brown planthopper) is influenced by trehalase (TRE). To investigate the mechanism by which trehalose affects the reproduction of N. lugens, we conducted a comparative transcriptomic and metabolomic analysis of the ovaries of N. lugens following injection with dsTREs and validamycin (a TRE inhibitor). The results revealed that 844 differentially expressed genes (DEGs) were identified between the dsGFP and dsTREs injection groups, with 317 up-regulated genes and 527 down-regulated genes. Additionally, 1451 DEGs were identified between the water and validamycin injection groups, with 637 up-regulated genes and 814 down-regulated genes. The total number of DEGs identified between the two comparison groups was 236. The overlapping DEGs were implicated in various biological processes, including protein metabolism, fatty acid metabolism, AMPK signaling, mTOR signaling, insulin/insulin-like growth factor signaling (IIS), the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and the cellular process of meiosis in oocytes. These results suggest that the inhibition of TRE expression may lead to alterations in ovarian nutrient and energy metabolism by modulating glucose transport and affecting amino acid metabolic pathways. These alterations may influence the reproduction of N. lugens by modulating reproductive regulatory signals. These findings provide robust evidence supporting the mechanism through which trehalase inhibition reduces the reproductive capacity of N. lugens.
Collapse
Affiliation(s)
- Yongkang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Fan Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Sijing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Xianzhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Liwen Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Caidi Xu
- Chinese Education Modernization Research Institute of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Binghua Xie
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China
| | - Xiao-Ling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, P.R. China.
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P.R. China.
| |
Collapse
|
2
|
Liu B, Lu T, Ding M, Zhou X, Jiang Y, Shang J, Sun W, Hu S, Wang X, Zhou X. Targeting TTK Inhibits Tumorigenesis of T-Cell Lymphoma Through Dephosphorylating p38α and Activating AMPK/mTOR Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413990. [PMID: 39836493 DOI: 10.1002/advs.202413990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
T-cell lymphoma (TCL) is a group of non-Hodgkin's lymphoma with high heterogeneity and unfavorable prognosis. Current standard treatments have demonstrated limited efficacy in improving the outcomes for TCL patients. Therefore, identification of novel drug targets is urgently needed to improve the prognosis of TCL patients. Through multi-omics analysis, aberrant expression of threonine tyrosine kinase (TTK) in TCL is identified. High expression of TTK is closely associated with poor prognosis in TCL patients. Targeting TTK through gene knockdown exerts anti-tumor effects in vitro and in vivo, including inhibiting the cell proliferation, inducing G2/M phase arrest, enhancing DNA damage and cell apoptosis. Mechanically, p38α is identified as the potential phosphorylation substrate of TTK through phosphoproteomic quantification and motif prediction. Furthermore, inhibition of TTK suppresses activation of p38α through dephosphorylating it at Thr180/Tyr182, thereby promoting the activation of AMPK/mTOR pathway. In addition, targeting TTK enhances the autophagy in TCL cells through dephosphorylating p38α. CFI-402257, a specific inhibitor of TTK, is found to exhibit anti-tumor effects and exerted synergistic efficacy with PI3K inhibitor, Duvelisib, in TCL. The study shows that TTK contributes to the development of TCL by regulating p38α-mediated AMPK/mTOR pathway. CFI-402257 is expected to be a promising strategy for TCL treatment.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoli Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Wenyue Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| |
Collapse
|
3
|
Hawsawi O, Xue W, Du T, Guo M, Yu X, Zhang M, Hoffman PS, Bollag R, Li J, Zhou J, Wang H, Zhang J, Fu Z, Chen X, Yan C. Mitochondrial uncouplers inhibit oncogenic E2F1 activity and prostate cancer growth. Cell Rep Med 2025; 6:101890. [PMID: 39793570 DOI: 10.1016/j.xcrm.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/08/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025]
Abstract
Mitochondrial uncouplers dissipate proton gradients and deplete ATP production from oxidative phosphorylation (OXPHOS). While the growth of prostate cancer depends on OXPHOS-generated ATP, the oncogenic pathway mediated by the transcription factor E2F1 is crucial for the progression of this deadly disease. Here, we report that mitochondrial uncouplers, including tizoxanide (TIZ), the active metabolite of the Food and Drug Administration (FDA)-approved anthelmintic nitazoxanide (NTZ), inhibit E2F1-mediated expression of genes involved in cell cycle progression, DNA synthesis, and lipid synthesis. Consequently, NTZ/TIZ induces S-phase kinase-associated protein 2 (SKP2)-mediated G1 arrest while impeding DNA synthesis, lipogenesis, and the growth of prostate cancer cells. The anti-cancer activity of TIZ correlates with its OXPHOS-uncoupling activity. NTZ/TIZ appears to inhibit ATP production, thereby activating the AMP-activated kinase (AMPK)-p38 pathway, leading to cyclin D1 degradation, Rb dephosphorylation, and subsequent E2F1 inhibition. Our results thus connect OXPHOS uncoupling to the inhibition of an essential oncogenic pathway, supporting repositioning NTZ and other mitochondrial uncouplers for prostate cancer therapy.
Collapse
Affiliation(s)
- Ohuod Hawsawi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Weinan Xue
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Tingting Du
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China
| | - Mengqi Guo
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; College of Pharmacy, Yantai University, Yantai, Shandong Province 264005, China
| | - Xiaolin Yu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Mingyi Zhang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China
| | - Paul S Hoffman
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA 22903, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Jun Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongbo Wang
- College of Pharmacy, Yantai University, Yantai, Shandong Province 264005, China
| | - Junran Zhang
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA
| | - Zheng Fu
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiaoguang Chen
- Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
4
|
Cheng AC, Lin CJ, Wang ST, Liu CH. Salinity stress impairs disease resistance in white shrimp, Penaeus vannamei through AMPK pathway, ameliorated by dietary glucose-mediated energy homeostasis. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111799. [PMID: 39765311 DOI: 10.1016/j.cbpa.2024.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
This study presents a comprehensive examination of the physiological adaptations of white shrimp (Penaeus vannamei) to low-salinity conditions and evaluates the effects of supplementing dietary glucose on disease resistance. Compared to the control group, shrimp cultured at a salinity of 4 psu exhibit significantly elevated expression levels of adenosine 5'-monophosphate-activated protein kinase (AMPK) in the hepatopancreas, which leads to increased energy expenditure and a corresponding reduction in resistance to infection by Vibrio alginolyticus. The suppression of AMPK via dsAMPK treatment markedly enhances disease resistance. Moreover, shrimp raised in low salinity conditions exhibit downregulation of mTOR-associated molecules, including Lipin-1 and hypoxia-inducible factor 1-α (HIF-1α), both of which are essential for immune regulation. Metabolic assessments revealed reduced ATP levels and disrupted ATP/AMP and ATP/ADP ratios, indicating energy imbalance under low salinity stress. Notably, supplementing the diet with 1 % glucose significantly increased glycogen reserves and ATP content, stabilized hemolymph glucose levels, and upregulated glycolysis-related genes, thereby optimizing energy metabolism and enhancing resilience to stress. This study underscores that AMPK activation in response to low salinity conditions leads to increased energy expenditure, which in turn lowers disease resistance. Furthermore, it underscores the critical role of strategic dietary management in maintaining energy homeostasis and improving disease resistance in white shrimp under stressful environmental conditions associated with climate change, offering valuable insights for aquaculture nutrition strategies.
Collapse
Affiliation(s)
- Ann-Chang Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Sz-Tsan Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| |
Collapse
|
5
|
Qin W, Ding Y, Zhang W, Sun L, Weng J, Zheng X, Luo S. Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD. J Lipid Res 2025; 66:100740. [PMID: 39755206 DOI: 10.1016/j.jlr.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation. Through comprehensive screening of our in-house chemical library, we identified tranilast, a small molecule with remarkable inhibitory efficacy against lipid deposition induced by palmitic acid/oleic acid (PO). In this study, we investigated the novel biological function and mechanism of tranilast in regulating hepatic lipid response in NAFLD, focusing on its role in LKB1 deacetylation within hepatocytes. Our findings demonstrate that tranilast effectively reduced hepatic steatosis, inflammation, and fibrosis in NASH models induced by high-fat and high-cholesterol (HFHC) and methionine choline-deficient (MCD) diets. Mechanistic analysis using RNA sequencing revealed that tranilast mitigated hepatic lipid response by promoting LKB1 deacetylation and activating AMPK. Notably, in vivo experiments showed that the beneficial effects of tranilast in MCD diet-induced NASH model were reversed by the compound C (C-C), a known AMPK inhibitor, confirming that tranilast's effects on hepatic lipid response are mediated through the AMPK pathway. In summary, tranilast inhibits hepatic lipid response in NAFLD through LKB1 deacetylation, providing robust experimental evidence for the role of LKB1 in NAFLD. These findings position tranilast as a promising therapeutic candidate for the pharmacological management of metabolic diseases.
Collapse
Affiliation(s)
- Weiwei Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Ding
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenhao Zhang
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Sun
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Lanna A, Rinaldi F. Investigation of Signaling in Primary Populations of Human Senescent T Cells. Methods Mol Biol 2025; 2857:61-77. [PMID: 39348055 DOI: 10.1007/978-1-0716-4128-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mitogen-activated protein kinases, a family of three stress-related kinases, the Erks and Jnks and p38s, are activated by three-layer transphosphorylation cascades and are important for the activation, differentiation, and effector functions of lymphocytes. Recent studies on the aged immune systems from both humans and mice have uncovered a different mode of MAPK signaling that is independent of canonical activation cascades and instead occurs through simultaneous self-phosphorylation reactions within the sestrin-MAPK activation complex (sMAC), an immune-inhibitory complex not previously observed. In this chapter, we discuss methodologies to study these pathways at the population and single cell level, which allows rejuvenating immune cell differentiation and fate.
Collapse
Affiliation(s)
- Alessio Lanna
- , Monte-Carlo, Principality of Monaco.
- Division of Medicine, University College London, London, UK.
- Sentcell UK Laboratories, Tuscany Life Sciences, GSK campus, Siena, Italy.
| | - Federica Rinaldi
- , Monte-Carlo, Principality of Monaco
- Sentcell UK Laboratories, Tuscany Life Sciences, GSK campus, Siena, Italy
| |
Collapse
|
7
|
Liu B, Zhang Y, Wang Y, Meng Q, Zhang D, Yang H, Li G, Wang Y, Zhou H. Pharmacological targeting of AMPK to restore glucose and fatty acid metabolism homeostasis attenuates transplanted kidney fibrosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167510. [PMID: 39278511 DOI: 10.1016/j.bbadis.2024.167510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/10/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Chronic fibrosis often occurs in transplanted kidneys, leading to progressive functional decline. The underlying mechanisms may involve disruption in the metabolism of renal tubular epithelial cells. The liver kinase B1 (LKB1)-AMPK pathway is a pivotal regulatory hub for glucose and fatty acid metabolism and may play a role in transplanted kidney fibrosis, but it has not been reported. In this study we administered fenofibrate, 2-deoxyglucose, or metformin to modulate metabolism in Brown Norway rat kidney transplants and investigated pathways involved in fibrosis using various assays. We identified an impaired LKB1-AMPK pathway within epithelial cells, resulting in perturbed glucose and fatty acid metabolism, collagen secretion, extracellular matrix remodeling, and epithelial-mesenchymal transition. ACOX1, a pivotal enzyme in the fatty acid peroxisomal β-oxidation pathway, played an important role in transplanted renal fibrosis. Furthermore, several metabolism-targeting drugs, particularly metformin, emerged as potent fibrosis inhibitors. Metformin attenuated fibrosis, improved renal function, and reduced inflammation and macrophage infiltration in the transplanted kidneys. These results provide new perspectives for understanding the complex molecular basis underlying transplanted renal fibrosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yanghe Zhang
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuxiong Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
8
|
Melo BP, Zacarias AC, Oliveira JCC, de Souza Cordeiro LM, Horta NAC, Poletini MO, Tonoli C, Dos Santos ML, Wanner SP, Meeusen R, Heyman E, Avelar GF, Soares DD. Enhancing metabolic and inflammatory status in insulin-resistant rats: Acute intervention with cocoa flavanols and submaximal aerobic exercise activates intracellular signaling pathways for glucose metabolism. Clin Nutr 2025; 44:166-177. [PMID: 39675158 DOI: 10.1016/j.clnu.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Type 2 diabetes, characterized by hyperglycemia, is closely linked to obesity and low-grade inflammation. Acute cocoa flavanols (CF) intake has demonstrated benefits in vasoreactivity, cognitive functions, and antioxidant enzyme activity. However, the physiological mechanisms of CF concerning glucose uptake, inflammatory mediators, and their interplay with aerobic exercise remain unclear in populations with metabolic diseases. OBJECTIVE This study aims to investigate the acute effects of CF, alone or combined with acute aerobic exercise on mechanisms involved in glucose uptake and inflammatory mediators in the liver, skeletal muscle, pancreas, and adipose tissue in insulin-resistant (IR) rats. METHODS Sixty-four Wistar rats (250 ± 10g; 15 weeks age) were subjected to a regular chow (CON) or an obesity-associated insulin-resistant (IR) state induced by a high-fat diet and fructose-rich beverage for 30 days. Seventy-two hours after an incremental maximal treadmill running test, rats received a placebo solution or CF supplementation (45 mg·kg-1 of body weight). One hour later, they either rested or ran on a treadmill at 60 % of peak oxygen uptake (VO2peak) for 30 min. Euthanasia occurred 30 min post-experimental sessions. Inflammatory and anti-inflammatory cytokines were assayed using ELISA in the liver, pancreas, gastrocnemius muscle, and epididymal adipose tissues. TRB3 and CPT1 mRNA were assessed by q-RTPCR in the liver and gastrocnemius muscle while Akt and AMPK phosphorylation were examined by immunohistochemistry. RESULTS CF attenuated hyperglycemia observed after submaximal aerobic exercise in IR rats (p < 0.001). In the liver, CF exhibited additive effects to aerobic exercise, enhancing Akt protein phosphorylation, potentially contributing to improved glucose uptake in IR rats. Submaximal aerobic exercise and CF increased AMPK protein phosphorylation in the liver (p < 0.001) and skeletal muscle (p < 0.001), reduced TRB3 gene expression (p < 0.01), elevated CPT-1a gene expression (p < 0.001), and ameliorated the inflammatory milieu in the pancreas, adipose tissue, liver, and gastrocnemius muscle. CONCLUSION Acute intake, of CF combined with submaximal aerobic exercise activates key proteins and genes involved in glucose uptake and lipid metabolism, improving the inflammatory milieu. This synergistic effect may contribute to mitigating metabolic complications associated with insulin resistance.
Collapse
Affiliation(s)
- B P Melo
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil.
| | - A C Zacarias
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - J C C Oliveira
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - L M de Souza Cordeiro
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 693 Rochester, NY 14642, Rochester, USA
| | - N A C Horta
- Federal University of Minas Gerais, Institute of Biological Sciences, Physiology and Biophysics Department, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - M O Poletini
- Federal University of Minas Gerais, Institute of Biological Sciences, Physiology and Biophysics Department, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - C Tonoli
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Universiteit Gent, Campus Heymans (UZ Gent), Building B3-De Pintelaan 185, 9000, Ghent, Belgium
| | - M L Dos Santos
- Federal University of Minas Gerais, Department of Morphology, Cellular Biology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - S P Wanner
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - R Meeusen
- Human Physiology Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - E Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Institut Universitaire de France, Paris, France
| | - G F Avelar
- Federal University of Minas Gerais, Department of Morphology, Cellular Biology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - D D Soares
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Lee MS, Doo M, Kim IH, Kim Y. Effects of Capsicum Oleoresin on the Energy Expenditure and Mitochondrial Content of Brown Adipose Tissue in Mice Fed a High-Fat Diet. Prev Nutr Food Sci 2024; 29:422-429. [PMID: 39759824 PMCID: PMC11699576 DOI: 10.3746/pnf.2024.29.4.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 01/07/2025] Open
Abstract
Capsicum oleoresin (CO) is a concentrated extract derived from peppers (Capsicum annum L.) containing capsaicin (the active compound responsible for its pungency) and other bioactive components. The present study aimed to determine whether CO affects the energy expenditure and mitochondrial content of brown adipose tissue (BAT) in diet-induced obese mice. Four-week-old C57BL/6J mice were divided into three groups and fed with a normal chow diet, 45% high-fat diet (HF), or HF supplemented with 0.01% CO (HF+CO) for 16 weeks. The results showed that CO supplementation significantly suppressed weight gain and improved serum lipid profiles compared with HF feeding. The energy expenditure was significantly higher in the HF+CO group than in the HF group. Compared with the HF group, the HF+CO group had significantly upregulated the messenger RNA expression levels of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in BAT. The mitochondrial DNA content, which was reduced by HF intake, was significantly restored in the HF+CO group. Furthermore, the mitochondrial size and number were restored in the HF+CO group than in in the HF group. The activity of adenosine monophosphate-activated protein kinase (AMPK) in BAT was significantly increased in the HF+CO group than in the HF group. In conclusion, CO potentially inhibits weight gain by increasing energy expenditure in diet-induced obese mice. This beneficial effect is likely associated with the enhancement of mitochondrial content by upregulating key markers, including UCP1, PGC-1α, and AMPK, in BAT.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Korea
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
10
|
Marin TL, Wilson CG, Ramirez ML, Sun W, Malhotra A, Gongol B. AMPK Phosphorylates LMX1b to Regulate a Brainstem Neurogenic Network Important for Control of Breathing in Neonatal Mice. Int J Mol Sci 2024; 26:213. [PMID: 39796072 PMCID: PMC11720625 DOI: 10.3390/ijms26010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Ventilatory drive is modulated by a variety of neurochemical inputs that converge on spatially oriented clusters of cells within the brainstem. This regulation is required to maintain energy homeostasis and is essential to sustain life across all mammalian organisms. Therefore, the anatomical orientation of these cellular clusters during development must have a defined mechanistic basis with redundant genomic variants. Failure to completely develop these features causes several conditions including apnea of prematurity (AOP) and sudden infant death syndrome (SIDS). AOP is associated with many adverse outcomes including increased risk of interventricular hemorrhage. However, there are no pharmacological interventions that reduce SIDS and AOP prevalence by promoting brainstem development. AMP-activated protein kinase (AMPK) is a kinase that regulates ventilatory control to maintain homeostasis. This study identifies a signaling axis in which the pharmacological activation of AMPK in vivo via metformin in brainstem ventilatory control centers results in the phosphorylation of LIM homeobox transcription factor 1-beta (Lmx1b), a key player in dorsal-ventral patterning during fetal development. The phosphorylation of Lmx1b transactivates a neurogenic interactome important for the development and regulation of ventilatory control centers. These findings highlight the potential for metformin in the treatment and prevention of AOP.
Collapse
Affiliation(s)
- Traci L. Marin
- Department of Respiratory Therapy, Victor Valley College, Victorville, CA 92395, USA
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Christopher G. Wilson
- Department of Basic Sciences, Division of Physiology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Miguel Lopez Ramirez
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Wei Sun
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- VA San Deigo Medical Center, San Diego, CA 92161, USA
| | - Atul Malhotra
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Brendan Gongol
- Department of Respiratory Therapy, Victor Valley College, Victorville, CA 92395, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92697, USA
| |
Collapse
|
11
|
Chen Y, Lin Q, Cheng H, Xiang Q, Zhou W, Wu J, Wang X. Immunometabolic shifts in autoimmune disease: Mechanisms and pathophysiological implications. Autoimmun Rev 2024; 24:103738. [PMID: 39743123 DOI: 10.1016/j.autrev.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages. In systemic lupus erythematosus (SLE), type I interferon (IFN) causes immune cell metabolic dysregulation, linking activation to metabolic shifts that may worsen the disease. In systemic sclerosis (SSc), mitochondrial changes affect fibroblast metabolism and the immune response. Idiopathic inflammatory myopathies (IIMs) patients have mitochondrial and metabolic issues. In primary Sjögren's syndrome (pSS), immune cell metabolism is imbalanced and mitochondrial damage can lead to cell/tissue damage. Metabolic reprogramming links cellular energy needs and immune dysfunctions, causing inflammation, damage, and symptoms in these diseases. It also affects immune cell functions like differentiation, proliferation, and secretion. This review discusses the potential of targeting metabolic pathways to restore immune balance, offering directions for future autoimmune disease research and treatment.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Hui Cheng
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
13
|
Ramatchandirane M, Rajendran P, Athira MP, Suchiang K. Coniferaldehyde activates autophagy and enhances oxidative stress resistance and lifespan of Caenorhabditis elegans via par-4/aak-2/skn-1 pathway. Biogerontology 2024; 26:25. [PMID: 39674829 DOI: 10.1007/s10522-024-10163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Aging represents the gradual accumulation of alterations within an organism over time. The physical and chemical characteristics of our cells gradually change as we age, making it more difficult for our tissues and organs to self-regulate, regenerate, and maintain their structural and functional integrity. AMP- activated protein kinase (AMPK), a well-known sensor of cellular energy status acts as a central regulator of an integrated signalling network that control homeostasis, metabolism, stress resistance, cell survival and autophagy. Coniferaldehyde (CFA), a phenolic compound found in many edible plants, has multiple biological and pharmacological functions. Our findings demonstrated that 50 µM CFA could significantly activate autophagy and reduce oxidative stress, which enhanced the activity of antioxidant enzymes and increased resistance under oxidative stress. CFA treatment could efficiently decrease reactive oxygen species (ROS) levels and positively enhance the expression of antioxidant genes in Caenorhabditis elegans (C. elegans). On the other hand, CFA did not have any role in the lifespan extension of the several mutants linked to the AAK-2/AMPK pathway and it promotes SKN-1 (Skinhead-1) localization into the nucleus, which modulates downstream gene gst-4 (Glutathione S-transferase). In depth investigations revealed that CFA could lower oxidative stress and enhance the lifespan of C. elegans by activating the PAR-4/LKB-1-AAK-2/AMPK-SKN-1/NRF-2 pathway, with crucial involvement of bec-1 and lgg-1 genes for autophagy mediated lifespan extension. This study might contribute to understanding the interactions and mechanisms that allow natural compounds like CFA to treat age-related disorders among several species.
Collapse
Affiliation(s)
- Mahesh Ramatchandirane
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Ponsankaran Rajendran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - M P Athira
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
14
|
Wass SY, Barnard J, Kim HS, Sun H, Telfer W, Schilling T, Barzilai B, Bruemmer D, Cho L, Huang J, Hussein A, Kashyap SR, Laffin L, Mehra R, Moravec C, Saliba W, Sanders P, Nissen S, Varma N, Smith J, Van Wagoner D, Chung MK. Upstream targeting for the prevention of atrial fibrillation: Targeting Risk Interventions and Metformin for Atrial Fibrillation (TRIM-AF)-rationale and study design. J Interv Card Electrophysiol 2024:10.1007/s10840-024-01955-z. [PMID: 39671157 DOI: 10.1007/s10840-024-01955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Despite advances in ablation and other therapies for AF, progression of atrial fibrillation (AF) remains a significant clinical problem, associated with worse prognosis and worse treatment outcomes. Upstream therapies targeting inflammatory or antifibrotic mechanisms have been disappointing in preventing AF progression, but more recently genetic and genomic studies in AF suggest novel cellular and metabolic stress targets, supporting prior studies of lifestyle and risk factor modification (LRFM) for AF. However, while obesity is a significant risk factor, weight loss and risk factor modification have not been successfully applied in a US population with AF. Metformin, a common drug that targets metabolic stress pathways, has demonstrated potential in reducing the burden of AF. METHODS The Targeting Risk Interventions and Metformin for Atrial Fibrillation (TRIM-AF, NCT03603912) is a randomized clinical trial designed to examine reduction of AF burden and progression, targeting metabolic upstream therapies. This single center trial, at the Cleveland Clinic, is designed as a prospective randomized open-label blinded endpoint (PROBE) 2 × 2 factorial study of metformin extended release up to 750 mg twice daily and lifestyle and risk factor modification (LRFM) in patients with a cardiovascular implantable electronic device (CIED) that have had at least one ≥ 5-min episode of atrial fibrillation (AF) over the prior 3 months. Randomization is stratified by pacemaker vs. ICD and rhythm at enrollment (sinus rhythm/atrial paced vs. AF). CONCLUSION TRIM-AF trial aims to determine if metformin, lifestyle, and risk factor modification (LRFM) reduce AF burden and its progression and assess whether combined therapy outperforms individual treatments. TRIAL REGISTRATION URL: https://clinicaltrials.gov/ ; Unique Identifier: NCT03603912.
Collapse
Affiliation(s)
- Sojin Y Wass
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
| | - John Barnard
- Departments of Quantitative Health Sciences, Lerner Research Institute, Cleveland, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hyun Su Kim
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
| | - Han Sun
- Departments of Quantitative Health Sciences, Lerner Research Institute, Cleveland, USA
| | - William Telfer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
| | - Taylor Schilling
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
| | - Benico Barzilai
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Dennis Bruemmer
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Leslie Cho
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Julie Huang
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Ayman Hussein
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Sangeeta R Kashyap
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
| | - Luke Laffin
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Reena Mehra
- Department of Endocrinology, Cleveland Clinic, Cleveland, USA
| | - Chris Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Walid Saliba
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Steven Nissen
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Niraj Varma
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA
| | - Jonathan Smith
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David Van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, USA.
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
15
|
Chen X, Xie X, Liu C, Chen L, Zhang M, Zhang Y. Maduramicin ammonium impairs autophagic flux through activating AMPK-mediated eIF2α-ATF4 endoplasmic reticulum stress pathway in skeletal muscle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39660505 DOI: 10.1002/jsfa.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Maduramicin ammonium (MA), a widely used coccidiostat, has been reported to cause skeletal muscle degeneration in animals and even humans. In this study, we explore the underlying mechanism of its toxicity in skeletal muscle. RESULTS First, we observed that MA impaired autophagic flux which was evidenced by increased protein level of LC3-II and p62 in skeletal myoblast C2C12 and L6 cell lines and rectus femoris muscle tissues of rats and broilers. Then, we found that MA induced eIF2α phosphorylation and ATF4 expression in the cells and tissues. Co-treatment with ISRIB attenuated MA-induced LC3-II and p62 in C2C12 and L6 cells, suggesting that MA-induced eIF2α-ATF4 pathway contributed to impairment of autophagic flux in the cells. Lastly, we showed that MA activated AMPK signaling in skeletal muscle, since the phosphorylation of AMPK was increased by MA treatment in skeletal myoblast cell lines and muscle tissues. Furthermore, in AMPK downregulated C2C12 cells, MA-induced LC3-II, ATF4 and phosphorylation of eIF2α was reversed, supporting that AMPK was involved in the regulation of the eIF2α-ATF4 pathway and autophagic flux during MA exposure. CONCLUSION Our findings showed that MA impairs autophagic flux through activating the AMPK-induced eIF2α-ATF4 pathway in skeletal muscle. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xin Xie
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Chang Liu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Lin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Meng Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Yumei Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
16
|
Elmitwalli O, Darwish R, Al-Jabery L, Algahiny A, Roy S, Butler AE, Hasan AS. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int J Mol Sci 2024; 25:13209. [PMID: 39684919 DOI: 10.3390/ijms252313209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In the context of cell cycle inhibition, anti-proliferation, and the dysregulation observed in certain cancer pathologies, the protein p21 assumes a pivotal role. p21 links DNA damage responses to cellular processes such as apoptosis, senescence, and cell cycle arrest, primarily functioning as a regulator of the cell cycle. However, accumulating empirical evidence suggests that p21 is both directly and indirectly linked to a number of different metabolic processes. Intriguingly, recent investigations indicate that p21 significantly contributes to the pathogenesis of diabetes. In this review, we present a comprehensive evaluation of the scientific literature regarding the involvement of p21 in metabolic processes, diabetes etiology, pancreatic function, glucose homeostasis, and insulin resistance. Furthermore, we provide an encapsulated overview of therapies that target p21 to alleviate metabolic disorders. A deeper understanding of the complex interrelationship between p21 and diabetes holds promise for informing current and future therapeutic strategies to address this rapidly escalating health crisis.
Collapse
Affiliation(s)
- Omar Elmitwalli
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Radwan Darwish
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Lana Al-Jabery
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ahmed Algahiny
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Sornali Roy
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Alexandra E Butler
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ammar S Hasan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| |
Collapse
|
17
|
Singh S, Singh PK, Ahmad Z, Das S, Foretz M, Viollet B, Giri S, Kumar A. Myeloid Cell-Specific Deletion of AMPKα1 Worsens Ocular Bacterial Infection by Skewing Macrophage Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1656-1665. [PMID: 39413004 PMCID: PMC11573643 DOI: 10.4049/jimmunol.2400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
AMP-activated protein kinase (AMPK) plays a crucial role in governing essential cellular functions such as growth, proliferation, and survival. Previously, we observed increased vulnerability to bacterial (Staphylococcus aureus) endophthalmitis in global AMPKα1 knockout mice. In this study, we investigated the specific involvement of AMPKα1 in myeloid cells using LysMCre;AMPKα1fl mice. Our findings revealed that whereas endophthalmitis resolved in wild-type C57BL/6 mice, the severity of the disease progressively worsened in AMPKα1-deficient mice over time. Moreover, the intraocular bacterial load and inflammatory mediators (e.g., IL-1β, TNF-α, IL-6, and CXCL2) were markedly elevated in the LysMCre;AMPKα1fl mice. Mechanistically, the deletion of AMPKα1 in myeloid cells skewed macrophage polarization toward the inflammatory M1 phenotype and impaired the phagocytic clearance of S. aureus by macrophages. Notably, transferring AMPK-competent bone marrow from wild-type mice to AMPKα1 knockout mice preserved retinal function and mitigated the severity of endophthalmitis. Overall, our study underscores the role of myeloid-specific AMPKα1 in promoting the resolution of inflammation in the eye during bacterial infection. Hence, therapeutic strategies aimed at restoring or enhancing AMPKα1 activity could improve visual outcomes in endophthalmitis and other ocular infections.
Collapse
Affiliation(s)
- Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology/ Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marc Foretz
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris 75014, France
| | - Benoit Viollet
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris 75014, France
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
18
|
Li X, Lakshmi SP, Uemasu K, Lane Z, Reddy RT, Chandra D, Zou C, Jiang Y, Nyunoya T. FBXL19 Targeted STK11 Degradation Enhances Cigarette Smoke-Induced Airway Epithelial Cell Cytotoxicity. COPD 2024; 21:2342797. [PMID: 38712759 PMCID: PMC11186665 DOI: 10.1080/15412555.2024.2342797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Sowmya P. Lakshmi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Kiyoshi Uemasu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zachary Lane
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Rajan T. Reddy
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| | - Yu Jiang
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, PA 15240, USA
| |
Collapse
|
19
|
López-González D, Muñoz Usero M, Hermida-Ramón JM, Álvarez-Rodríguez S, Araniti F, Teijeira M, Verdeguer M, Sánchez-Moreiras AM. Pelargonic acid's interaction with the auxin transporter PIN1: A potential mechanism behind its phytotoxic effects on plant metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112278. [PMID: 39395675 DOI: 10.1016/j.plantsci.2024.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Pelargonic acid (PA) is a saturated fatty acid commonly found in several organisms, that is known for its phytotoxic effect and its use as bioherbicide for sustainable weed management. Although PA is already commercialised as bioherbicide, its molecular targets and mode of action is unknown according to the Herbicide Resistance Action Committee. Therefore, the aim of this work was focusing on the way this natural active substance impacts the plant metabolism of the model species Arabidopsis thaliana. PA caused increase of secondary and adventitious roots, as well as torsion, loss of gravitropism and phytotoxic effects. Moreover, PA altered the cellular arrangement and the PIN proteins activity. Computational simulations revealed that the intermolecular interactions between PA and the polar auxin transporter protein PIN1 are very similar to those established between the natural auxin IAA and PIN1. However, under intracellular conditions, the PA-PIN1 binding is more energetically stable than the IAA-PIN1. These results suggest that PA could act as an auxin-mimics bioherbicide. The exogenous application of PA would be responsible for the alterations observed both at structural and ultrastructural levels, which would be caused by the alteration on the transport of auxins into the plant, inducing root inhibition and ultimately total stop of root growth.
Collapse
Affiliation(s)
- David López-González
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo 36310, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| | - Marta Muñoz Usero
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| | - José M Hermida-Ramón
- Departamento de Química Física, Facultade de Química, Universidade de Vigo, Vigo 36310, Spain; Biologically Active Organic Compounds and Ionic Liquids Group (BIOILS), Instituto de Investigación Sanitaria Galicia Sur, (IIS Galicia Sur). SERGAS-UVIGO, Spain.
| | - Sara Álvarez-Rodríguez
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo 36310, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| | - Fabrizio Araniti
- Dipartamento di Science Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, Milano 20133, Italy.
| | - Marta Teijeira
- Biologically Active Organic Compounds and Ionic Liquids Group (BIOILS), Instituto de Investigación Sanitaria Galicia Sur, (IIS Galicia Sur). SERGAS-UVIGO, Spain; Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Vigo, Spain.
| | - Mercedes Verdeguer
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo 36310, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| |
Collapse
|
20
|
Ye J, Yin J. Type 2 diabetes: a sacrifice program handling energy surplus. LIFE METABOLISM 2024; 3:loae033. [PMID: 39873003 PMCID: PMC11748514 DOI: 10.1093/lifemeta/loae033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss. The body employs three adaptive strategies in response to energy surplus: the first one is adipose tissue expansion to store the energy for weight gain under normal weight conditions; the second one is insulin resistance to slow down adipose tissue expansion and weight gain under overweight conditions; and the third one is the onset of T2DM following β cell failure to reverse the weight gain in obese conditions. The primary signaling molecules driving the compensatory responses are adenosine derivatives, such as adenosine triphosphate (ATP), acetyl coenzyme A (acetyl-CoA), and reduced nicotinamide adenine dinucleotide (NADH). These molecules exert their effects through allosteric, post-translational, and transcriptional regulation of metabolic pathways. The insights suggest that insulin resistance and T2DM are protective mechanisms in the defense against excessive adiposity to avert severe obesity. The perspective provides a unified framework explaining the interactions between the two diseases and opens new avenues in the study of T2DM.
Collapse
Affiliation(s)
- Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Key Laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| |
Collapse
|
21
|
Alasmari AA, Alhussain MH, Al-Khalifah AS, Alshiban NM, Alharthi R, Alyami NM, Alodah HS, Alahmed MF, Aljahdali BA, BaHammam AS. Ramadan fasting model modulates biomarkers of longevity and metabolism in male obese and non-obese rats. Sci Rep 2024; 14:28731. [PMID: 39567585 PMCID: PMC11579461 DOI: 10.1038/s41598-024-79557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
The health advantages of Ramadan fasting, a time-restricted eating from dawn to dusk, have garnered attention. Nevertheless, prior observational studies have found inconsistent findings because of challenges regulating variables such as sleep patterns, dietary habits, and physical activity. This study sought to investigate the impact of the Ramadan fasting model (RFM) on longevity and metabolic biomarkers in obese and non-obese rats. For 12 weeks, 48 male Wistar albino rats were separated into two groups and fed either a standard or a high-fat diet (HFD). During the final four weeks, rats in each group were separated into four subgroups to investigate the effect of RFM with/without training (on Treadmill) or glucose administration on the biomarkers of interest. The HFD groups subjected to RFM had significantly lower Insulin-like growth factor 1 (IGF-1) and mechanistic target of rapamycin (mTOR) serum, whereas AMPK, anti-inflammatory, and antioxidative stress serum levels were significantly higher. All groups reported decreased serum levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) compared to the HFD control group. Furthermore, the Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) results indicated a significant elevation in the TP53 gene expression in groups subjected to RFM. The data indicate that RFM can improve longevity and metabolic biomarkers and reduce pro-inflammation and oxidative stress. Also, RFM improves anti-inflammatory and antioxidant markers in HFD-induced obese rats.
Collapse
Affiliation(s)
- Abeer Abdallah Alasmari
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha H Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Mohammed Alshiban
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rawan Alharthi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham S Alodah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alahmed
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bayan A Aljahdali
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024; 68:363-377. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
23
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
Cruz-Ramos M, Cabrera-Nieto SA, Murguia-Perez M, Fajardo-Espinoza FS. The Role of Adenosine in Overcoming Resistance in Sarcomas. Int J Mol Sci 2024; 25:12209. [PMID: 39596278 PMCID: PMC11594806 DOI: 10.3390/ijms252212209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Resistance to systemic therapies in sarcomas poses a significant challenge to improving clinical outcomes. Recent research has concentrated on the tumor microenvironment's role in sarcoma progression and treatment resistance. This microenvironment comprises a variety of cell types and signaling molecules that influence tumor behavior, including proliferation, metastasis, and resistance to therapy. Adenosine, abundant in the tumor microenvironment, has been implicated in promoting immunosuppression and chemoresistance. Targeting adenosine receptors and associated pathways offers a novel approach to enhancing immune responses against tumors, potentially improving immunotherapy outcomes in cancers, including sarcomas. Manipulating adenosine signaling also shows promise in overcoming chemotherapy resistance in these tumors. Clinical trials investigating adenosine receptor antagonists in sarcomas have fueled interest in this pathway for sarcoma treatment. Ultimately, a comprehensive understanding of the tumor and vascular microenvironments, as well as the adenosine pathway, may open new avenues for improving treatment outcomes and overcoming resistance in sarcoma. Further studies and clinical trials are crucial to validate these findings and optimize therapeutic strategies, particularly for osteosarcoma. This study provides a literature review exploring the potential role of the adenosine pathway in sarcomas.
Collapse
Affiliation(s)
- Marlid Cruz-Ramos
- Investigadora por México del Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan 52786, Mexico; (S.A.C.-N.); (F.S.F.-E.)
| | - Sara Aileen Cabrera-Nieto
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan 52786, Mexico; (S.A.C.-N.); (F.S.F.-E.)
| | - Mario Murguia-Perez
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León 37180, Mexico;
- Departamento de Patología Quirúrgica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León 37328, Mexico
| | | |
Collapse
|
25
|
Kim YS, Kimball SR, Piskounova E, Begley TJ, Hempel N. Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer. Proc Natl Acad Sci U S A 2024; 121:e2317846121. [PMID: 39495917 PMCID: PMC11572934 DOI: 10.1073/pnas.2317846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors. Here, we review the major stress signaling pathways involved in translational regulation and discuss how these are affected by oxidative stress to promote prosurvival changes that manipulate antioxidant enzyme expression. We describe how tumors elicit these adaptive responses and detail how stress-induced translation can be regulated by kinases, RNA-binding proteins, RNA species, and RNA modification systems. We also highlight opportunities for further studies focused on the role of mRNA translation and RNA systems in the regulation of antioxidant enzyme expression, which may be of particular importance in the context of metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Elena Piskounova
- Department of Dermatology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Thomas J. Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY12222
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| |
Collapse
|
26
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
27
|
Song J, Fang Y, Rao X, Wu L, Zhang C, Ying J, Hua F, Lin Y, Wei G. Beyond conventional treatment: ASGR1 Leading the new era of hypercholesterolemia management. Biomed Pharmacother 2024; 180:117488. [PMID: 39316974 DOI: 10.1016/j.biopha.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, with hypercholesterolemia being a major risk factor. Although various lipid-lowering therapies exist, many patients fail to achieve optimal cholesterol control, highlighting the need for novel therapeutic approaches. ASGR1 (asialoglycoprotein receptor 1), predominantly expressed on hepatocytes, has emerged as a key regulator of cholesterol metabolism and low-density lipoprotein (LDL) clearance. This receptor's ability to regulate lipid homeostasis positions it as a promising target for therapeutic intervention in hypercholesterolemia and related cardiovascular diseases. This review critically examines the biological functions and regulatory mechanisms of ASGR1 in cholesterol metabolism, with a focus on its potential as a therapeutic target for hypercholesterolemia and related cardiovascular diseases. By analyzing recent advances in ASGR1 research, this article explores its role in liver-specific pathways, the implications of ASGR1 variants in CVD risk, and the prospects for developing ASGR1-targeted therapies. This review aims to provide a foundation for future research and clinical applications in hypercholesterolemia management.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yang Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
28
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
29
|
Zhang H, Zhu Y, Xue D. Moderate embryonic delay of paternal mitochondrial elimination impairs mating and cognition and alters behaviors of adult animals. SCIENCE ADVANCES 2024; 10:eadp8351. [PMID: 39365857 PMCID: PMC11451536 DOI: 10.1126/sciadv.adp8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Rapid elimination of paternal mitochondria following fertilization is a conserved event in most animals, but its physiological significance remains unclear. We find that modest delay of paternal mitochondrial elimination (PME) in Caenorhabditis elegans embryos unexpectedly impairs mating and cognition of adult animals and alters their locomotion behaviors. Delayed PME causes decreased adenosine triphosphate (ATP) levels in early embryos, which lead to impaired physiological functions of adult animals through an energy-sensing pathway mediated by an adenosine monophosphate (AMP)-activated protein kinase, AAK-2, and a forkhead box class O (FOXO) transcription factor, DAF-16. Treatment of PME-delayed animals with MK-4, a subtype of vitamin K2 that can improve mitochondrial ATP production, restores ATP levels in early embryos, and rescues physiological defects of adult animals. Our results suggest that moderate PME delay during embryo development adversely affects crucial physiological functions in adults, which could be evolutionarily disadvantageous. These observations provide mechanistic explanations for the need to swiftly remove paternal mitochondria early during embryo development.
Collapse
Affiliation(s)
| | | | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
30
|
Almujri SS, Almalki WH. The paradox of autophagy in cancer: NEAT1's role in tumorigenesis and therapeutic resistance. Pathol Res Pract 2024; 262:155523. [PMID: 39173466 DOI: 10.1016/j.prp.2024.155523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Cancer remains a current active problem of modern medicine, a process during which cell growth and proliferation become uncontrolled. However, the role of autophagy in the oncological processes is counterintuitive and, at the same time, increasingly influential on the formation, development, and response to therapy of oncological diseases. Autophagy is a vital cellular process that removes defective proteins and organelles and supports cellular homeostasis. Autophagy can enhance the ability to form new tumors and suppress this formation in cancer. The dual potential of apoptosis may be the reason for this duality in either promoting or impeding the survival of cancer cells, depending on the situation, including starvation or treatment stress. Furthermore, long non-coding RNA NEAT1, which has been linked to several stages of carcinogenesis and in all forms of the illness, has drawn attention as a major player in cancer biology. NEAT1 is a structural portion of nuclear paraspeckles and has roles in deactivating expression in both transcriptional and post-transcriptional levels. NEAT1 acts in carcinogenesis in numerous ways, comprising interactions with microRNAs, the influence of gene articulation, regulation of epigenetics, and engagement in signalling cascades. In addition, the complexity of NEAT1's role in cancer occurrence is amplified by its place in regulating cancer stem cells and the tumor microenvironment. NEAT1's interaction with autophagy further complicates the already complicated function of this RNA in cancer biology. NEAT1 has been linked to autophagy in several types of cancer, influencing autophagy pathways and altering its stress response and tumor cell viability. Understanding the interrelation between NEAT1, autophagy, and cancer will enable practitioners to identify novel treatment targets and approaches to disrupt oncogenic processes, reduce the occurrence of treatment resistance, and increase patient survival rates. Specialized treatment strategies and regimens are thus achievable. In the present review, the authors analyze sophisticated relationship schemes in cancer: The NEAT1 pathway and the process of autophagy.
Collapse
Affiliation(s)
- Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
31
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
32
|
Krause PN, McGeorge G, McPeek JL, Khalid S, Nelin LD, Liu Y, Chen B. Pde3a and Pde3b regulation of murine pulmonary artery smooth muscle cell growth and metabolism. Physiol Rep 2024; 12:e70089. [PMID: 39435735 PMCID: PMC11494452 DOI: 10.14814/phy2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
A role for metabolically active adipose tissue in pulmonary hypertension (PH) pathogenesis is emerging. Alterations in cellular metabolism in metabolic syndrome are triggers of PH-related vascular dysfunction. Metabolic reprogramming in proliferative pulmonary vascular cells causes a metabolic switch from oxidative phosphorylation to glycolysis. PDE3A and PDE3B subtypes in the regulation of metabolism in pulmonary artery smooth muscle cells (PASMC) are poorly understood. We previously found that PDE3A modulates the cellular energy sensor, AMPK, in human PASMC. We demonstrate that global Pde3a knockout mice have right ventricular (RV) hypertrophy, elevated RV systolic pressures, and metabolic dysfunction with elevated serum free fatty acids (FFA). Therefore, we sought to delineate Pde3a/Pde3b regulation of metabolic pathways in PASMC. We found that PASMC Pde3a deficiency, and to a lesser extent Pde3b deficiency, downregulates AMPK, CREB and PPARγ, and upregulates pyruvate kinase dehydrogenase expression, suggesting decreased oxidative phosphorylation. Interestingly, siRNA Pde3a knockdown in adipocytes led to elevated FFA secretion. Furthermore, PASMC exposed to siPDE3A-transfected adipocyte media led to decreased α-SMA, AMPK and CREB phosphorylation, and greater viable cell numbers compared to controls under the same conditions. These data demonstrate that deficiencies of Pde3a and Pde3b alter pathways that affect cell growth and metabolism in PASMC.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/genetics
- Cell Proliferation
- Cells, Cultured
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
Collapse
Affiliation(s)
- Paulina N. Krause
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Gabrielle McGeorge
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Jennifer L. McPeek
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Sidra Khalid
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Leif D. Nelin
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Yusen Liu
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Bernadette Chen
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|
33
|
Lee JO, Kim YJ, Jang YN, Lee JM, Shin K, Jeong S, Chung HJ, Kim BJ. ICP5249 Promotes Hair Growth by Activating the AMPK-Autophagy Signaling Pathway. J Microbiol Biotechnol 2024; 34:1810-1818. [PMID: 39155393 PMCID: PMC11473489 DOI: 10.4014/jmb.2406.06015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Autophagy is essential for regulating hair growth. Accordingly, we developed autophagy activator ICP5249 (pentasodium tetracarboxymethyl palmitoyl dipeptide) and investigated its potential role in hair growth. We evaluated its effect on hair growth using in vitro human dermal papilla cells (hDPCs) culture model, human hair follicles (hHFs) organ culture model, and telogenic mouse model. ICP5249 increased hDPCs proliferation and alkaline phosphatase (ALP) expression. It also increased microtubule-associated protein (MAP) light chain 3-II (LC3-II) expression and AMP-activated protein kinase α (AMPKα) and unc-51-like kinase 1 (ULK1) phosphorylation in hDPCs. ICP5249 extended the length of hHFs and increased LC3-II please revised from LC3 II to LC3-II in all manuscript expression. Consistently, ICP5249 also significantly increased hair growth area, dermis thickness, and anagen and telogen ratio in telogenic mice. Furthermore, it upregulated Ki-67 and LC3-II expression and AMPKα phosphorylation on the mice’s dorsal skin. To investigate whether AMPK regulates ICP5249-induced hair growth, following treatment with the compound C, AMPK inhibitor, the activity of ICP5249 was evaluated. The effects of ICP5249 on hair growth were assessed following pretreatment with the AMPK inhibitor compound C. The results showed that compound C suppressed ICP5249-mediated proliferation and hair inductivity in hDPCs. Additionally, compound C inhibited ICP5249-mediated hair growth area, dermis thickness, anagen and telogen ration, and LC3-II expression in mice, suggesting that ICP5249 promotes hair growth by modulating autophagy, with AMPKα playing a regulatory role in this process. Taken together, we demonstrate that ICP5249 has the potential as an ingredient for improving hair growth.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yu-jin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - You Na Jang
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Kayoung Shin
- R&D Center, Incospharm Corporation, Daejeon 34000, Republic of Korea
| | - Sekyoo Jeong
- R&D Center, Incospharm Corporation, Daejeon 34000, Republic of Korea
| | - Hwa-Jee Chung
- R&D Center, Incospharm Corporation, Daejeon 34000, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
34
|
Erdoğan Y, Pilic J, Gottschalk B, Yiğit EN, Zaki AG, Öztürk G, Eroğlu E, Okutan B, Sommer NG, Weinberg AM, Schindl R, Graier WF, Malli R. Development of a Dual Reporter System to Simultaneously Visualize Ca 2+ Signals and AMPK Activity. ACS Sens 2024; 9:4680-4689. [PMID: 39167044 PMCID: PMC11443530 DOI: 10.1021/acssensors.4c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
In this study, we introduce a new separation of phases-based activity reporter of kinase (SPARK) for AMP-activated kinase (AMPK), named AMPK-SPARK, which reports the AMPK activation by forming bright fluorescent clusters. Furthermore, we introduce a dual reporter system, named GCaMP-AMPK-SPARK, by incorporating a single-fluorescent protein (FP)-based Ca2+ biosensor, GCaMP6f, into our initial design, enabling simultaneous monitoring of Ca2+ levels and AMPK activity. This system offers the essential quality of information by single-channel fluorescence microscopy without the need for coexpression of different biosensors and elaborate filter layouts to overcome spectral limitations. We used AMPK-SPARK to map endogenous AMPK activity in different cell types and visualized the dynamics of AMPK activation in response to various stimuli. Using GCaMP-AMPK-SPARK, we revealed cell-to-cell heterogeneities in AMPK activation by Ca2+ mobilization. We anticipate that this dual reporter strategy can be employed to study the intricate interplays between different signaling networks and kinase activities.
Collapse
Affiliation(s)
- Yusuf
C. Erdoğan
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- BioTechMed
Graz, Mozartgasse 12/2, Graz 8010, Austria
| | - Johannes Pilic
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Benjamin Gottschalk
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Esra N. Yiğit
- Regenerative
and Restorative Medicine Research Center (REMER), Research Institute
for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Department
of Physiology, International School of Medicine, İstanbul Medipol University, İstanbul 34810, Türkiye
| | - Asal G. Zaki
- Regenerative
and Restorative Medicine Research Center (REMER), Research Institute
for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Gürkan Öztürk
- Regenerative
and Restorative Medicine Research Center (REMER), Research Institute
for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Emrah Eroğlu
- Regenerative
and Restorative Medicine Research Center (REMER), Research Institute
for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Begüm Okutan
- Department
of Orthopedics and Traumatology, Medical
University of Graz, Auenbruggerplatz
5, Graz 8036, Austria
| | - Nicole G. Sommer
- Department
of Orthopedics and Traumatology, Medical
University of Graz, Auenbruggerplatz
5, Graz 8036, Austria
| | - Annelie M. Weinberg
- Department
of Orthopedics and Traumatology, Medical
University of Graz, Auenbruggerplatz
5, Graz 8036, Austria
| | - Rainer Schindl
- Gottfried
Schatz Research Center, Biophysics, Medical
University of Graz, Neue
Stiftingtalstrasse 6, Graz 8010, Austria
| | - Wolfgang F. Graier
- Gottfried
Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- BioTechMed
Graz, Mozartgasse 12/2, Graz 8010, Austria
| | - Roland Malli
- BioTechMed
Graz, Mozartgasse 12/2, Graz 8010, Austria
- Center
for Medical Research, Bioimaging, Medial
University of Graz, Neue
Stiftingtalstrasse 6, Graz 8010, Austria
| |
Collapse
|
35
|
Alotaibi SR, Renno WM, Al-Maghrebi M. c-Jun N-terminal Kinase Supports Autophagy in Testicular Ischemia but Triggers Apoptosis in Ischemia-Reperfusion Injury. Int J Mol Sci 2024; 25:10446. [PMID: 39408774 PMCID: PMC11476662 DOI: 10.3390/ijms251910446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of oxidative-stress-induced c-Jun N-terminal Kinase (JNK) as a cytoprotective mechanism. Sixty male Sprague-Dawley rats were divided into five groups: sham, ischemia only, ischemia+SP600125 (a JNK inhibitor), tIRI only, and tIRI+SP600125. The tIRI rats underwent an ischemic injury for 1 h followed by 4 h of reperfusion, while ischemic rats were subjected to 1 h of ischemia only without reperfusion. Testicular-ischemia-induced Beclin 1 and LC3B expression was associated with decreased p62/SQSTM1 expression, increased ATP and alkaline phosphatase (AP) activity, and slightly impaired spermatogenesis. SP600125 treatment improved p62 expression and reduced the levels of Beclin 1 and LC3B but did not affect ATP or AP levels. The tIRI-induced apoptosis lowered the expression of the three ATG proteins and AP activity, activated caspase 3, and caused spermatogenic arrest. SP600125-inhibited JNK during tIRI restored sham levels to all investigated parameters. This study emphasizes the regulatory role of JNK in balancing autophagy and apoptosis during testicular oxidative injuries.
Collapse
Affiliation(s)
- Sarah R. Alotaibi
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Waleed M. Renno
- Department of Anatomy, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - May Al-Maghrebi
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| |
Collapse
|
36
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
37
|
Lee SH, Rinaudo PF. Metabolic regulation of preimplantation embryo development in vivo and in vitro: Molecular mechanisms and insights. Biochem Biophys Res Commun 2024; 726:150256. [PMID: 38909536 DOI: 10.1016/j.bbrc.2024.150256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Understanding of embryonic development has led to the clinical application of Assisted Reproductive technologies (ART), with the resulting birth of millions of children. Recent developments in metabolomics, proteomics, and transcriptomics have brought to light new insights into embryonic growth dynamics, with implications spanning reproductive medicine, stem cell research, and regenerative medicine. The review explores the key metabolic processes and molecular pathways active during preimplantation embryo development, including PI3K-Akt, mTOR, AMPK, Wnt/β-catenin, TGF-β, Notch and Jak-Stat signaling pathways. We focused on analyzing the differences occurring in vitro as opposed to in vivo development and we discussed significant physiological and clinical implications.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Paolo F Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
38
|
Caturano A, Vetrano E, Galiero R, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Advances in the Insulin-Heart Axis: Current Therapies and Future Directions. Int J Mol Sci 2024; 25:10173. [PMID: 39337658 PMCID: PMC11432093 DOI: 10.3390/ijms251810173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The insulin-heart axis plays a pivotal role in the pathophysiology of cardiovascular disease (CVD) in insulin-resistant states, including type 2 diabetes mellitus. Insulin resistance disrupts glucose and lipid metabolism, leading to systemic inflammation, oxidative stress, and atherogenesis, which contribute to heart failure (HF) and other CVDs. This review was conducted by systematically searching PubMed, Scopus, and Web of Science databases for peer-reviewed studies published in the past decade, focusing on therapeutic interventions targeting the insulin-heart axis. Studies were selected based on their relevance to insulin resistance, cardiovascular outcomes, and the efficacy of pharmacologic treatments. Key findings from the review highlight the efficacy of lifestyle modifications, such as dietary changes and physical activity, which remain the cornerstone of managing insulin resistance and improving cardiovascular outcomes. Moreover, pharmacologic interventions, such as metformin, sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors, have shown efficacy in reducing cardiovascular risk by addressing metabolic dysfunction, reducing inflammation, and improving endothelial function. Furthermore, emerging treatments, such as angiotensin receptor-neprilysin inhibitors, and mechanical interventions like ventricular assist devices offer new avenues for managing HF in insulin-resistant patients. The potential of these therapies to improve left ventricular ejection fraction and reverse pathological cardiac remodeling highlights the importance of early intervention. However, challenges remain in optimizing treatment regimens and understanding the long-term cardiovascular effects of these agents. Future research should focus on personalized approaches that integrate lifestyle and pharmacologic therapies to effectively target the insulin-heart axis and mitigate the burden of cardiovascular complications in insulin-resistant populations.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
39
|
Wang Y, Chao T, Li Q, He P, Zhang L, Wang J. Metabolomic and Transcriptomic Analyses Reveal the Potential Mechanisms of Dynamic Ovarian Development in Goats during Sexual Maturation. Int J Mol Sci 2024; 25:9898. [PMID: 39337386 PMCID: PMC11432265 DOI: 10.3390/ijms25189898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The ovary is a crucial reproductive organ in mammals, and its development directly influences an individual's sexual maturity and reproductive capacity. To comprehensively describe ovarian sexual maturation in goats, we integrated phenotypic, hormonal, metabolomic, and transcriptomic data from four specific time points: after birth (D1), at 2 months old (M2), at 4 months old (M4), and at 6 month old (M6). The study showed that during the early stage (D1-M2), ovarian growth was the most rapid, with weight and morphology increasing by 284% and 65%, respectively, and hormone levels rose significantly, with estradiol increasing by 57%. Metabolomic analysis identified 1231 metabolites, primarily lipids, lipid molecules, and organic acids, which can support hormone balance and follicle development by providing energy and participating in signaling transduction. Transcriptomic analysis identified 543 stage-specific differentially expressed genes, mainly enriched in steroid biosynthesis, amino acid metabolism, and the PI3K/AKT pathway, which are key factors influencing ovarian cell proliferation, apoptosis, hormone secretion, and metabolism. The integrated analysis revealed the key processes in the ovarian steroid hormone biosynthesis pathway and gene/metabolite networks associated with ovarian phenotypes and hormone levels, ultimately highlighting scavenger receptor class B type 1 (SCARB1), Cytochrome P450 Family 1 Subfamily A Member 1 (CYP11A1), 3beta-hydroxysteroid dehydrogenase (3BHSD), progesterone, estradiol, and L-phenylalanine as key regulators of ovarian morphological and functional changes at different developmental stages. This study is the first to reveal the metabolic changes and molecular regulatory mechanisms during ovarian sexual maturation in goats, providing valuable insights for understanding reproductive system development and optimizing reproductive performance and breeding efficiency.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| |
Collapse
|
40
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. eLife 2024; 12:RP91002. [PMID: 39255192 PMCID: PMC11386957 DOI: 10.7554/elife.91002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues of ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - YuNing Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
41
|
Zadegan SB, Kim W, Abbas HMK, Kim S, Krishnan HB, Hewezi T. Differential symbiotic compatibilities between rhizobium strains and cultivated and wild soybeans revealed by anatomical and transcriptome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1435632. [PMID: 39290740 PMCID: PMC11405202 DOI: 10.3389/fpls.2024.1435632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Various species of rhizobium establish compatible symbiotic relationships with soybean (Glycine max) leading to the formation of nitrogen-fixing nodules in roots. The formation of functional nodules is mediated through complex developmental and transcriptional reprogramming that involves the activity of thousands of plant genes. However, host transcriptome that differentiate between functional or non-functional nodules remain largely unexplored. In this study, we investigated differential compatibilities between rhizobium strains (Bradyrhizobium diazoefficiens USDA110 Bradyrhizobium sp. strain LVM105) and cultivated and wild soybeans. The nodulation assays revealed that both USDA110 and LVM105 strains effectively nodulate G. soja but only USDA110 can form symbiotic relationships with Williams 82. LVM105 formed pseudonodules on Williams 82 that consist of a central nodule-like mass that are devoid of any rhizobia. RNA-seq data revealed that USDA110 and LVM105 induce distinct transcriptome programing in functional mature nodules formed on G. soja roots, where genes involved in nucleosome assembly, DNA replication, regulation of cell cycle, and defense responses play key roles. Transcriptome comparison also suggested that activation of genes associated with cell wall biogenesis and organization and defense responses together with downregulation of genes involved in the biosynthesis of isoprenoids and antioxidant stress are associated with the formation of non-functional nodules on Williams 82 roots. Moreover, our analysis implies that increased activity of genes involved in oxygen binding, amino acid transport, and nitrate transport differentiates between fully-developed nodules in cultivated versus wild soybeans.
Collapse
Affiliation(s)
- Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - Wonseok Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | | | - Sunhyung Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, United States
- Plant Genetics Research, The United States Department of Agriculture (USDA) Agricultural Research Service, Columbia, MO, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
42
|
Mirza Z, Karim S. Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer. Cells 2024; 13:1474. [PMID: 39273044 PMCID: PMC11394487 DOI: 10.3390/cells13171474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer research has advanced tremendously with the identification of causative genes, proteins, and signaling pathways. Numerous antitumor drugs have been designed and screened for cancer therapeutics; however, designing target-specific drugs for malignant cells with minimal side effects is challenging. Recently, energy-sensing- and homeostasis-associated molecules and signaling pathways playing a role in proliferation, apoptosis, autophagy, and angiogenesis have received increasing attention. Energy-metabolism-based studies have shown the contribution of energetics to cancer development, where tumor cells show increased glycolytic activity and decreased oxidative phosphorylation (the Warburg effect) in order to obtain the required additional energy for rapid division. The role of energy homeostasis in the survival of normal as well as malignant cells is critical; therefore, fuel intake and expenditure must be balanced within acceptable limits. Thus, energy-sensing enzymes detecting the disruption of glycolysis, AMP, ATP, or GTP levels are promising anticancer therapeutic targets. Here, we review the common energy mediators and energy sensors and their metabolic properties, mechanisms, and associated signaling pathways involved in carcinogenesis, and explore the possibility of identifying drugs for inhibiting the energy metabolism of tumor cells. Furthermore, to corroborate our hypothesis, we performed meta-analysis based on transcriptomic profiling to search for energy-associated biomarkers and canonical pathways.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21587, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21587, Saudi Arabia;
| | - Sajjad Karim
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21587, Saudi Arabia;
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21587, Saudi Arabia
| |
Collapse
|
43
|
Ramzan NUH, Shahjahan K, Dhillon RA, Khan NTA, Hashmat MB, Anwer MU, Ahmed D, Afzal F, Tahir MM, Muzaffar A. Vitamin B12 Deficiency in Patients Taking Metformin: Pathogenesis and Recommendations. Cureus 2024; 16:e68550. [PMID: 39233729 PMCID: PMC11374140 DOI: 10.7759/cureus.68550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Metformin is a cornerstone therapy for type 2 diabetes mellitus due to its glucose-lowering efficacy and additional benefits such as reducing cardiovascular mortality. However, accumulating evidence suggests an association between long-term metformin use and vitamin B12 deficiency, which can lead to serious clinical consequences. This review aims to synthesize current knowledge on the pathogenesis, prevalence, clinical implications, and management of metformin-induced vitamin B12 deficiency. Given the significant clinical implications, it is crucial to monitor and manage vitamin B12 levels in patients using metformin. This review emphasizes the importance of early detection and supplementation to prevent adverse outcomes. By analyzing the current evidence, the review aims to inform healthcare professionals about best practices for managing vitamin B12 deficiency in patients on metformin, offering insights to guide future clinical practices and research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dawood Ahmed
- Medicine, Faisalabad Medical University, Faisalabad, PAK
| | - Fazila Afzal
- Medicine, Faisalabad Medical University, Faisalabad, PAK
| | | | | |
Collapse
|
44
|
Li J, Xiao F, Wang S, Fan X, He Z, Yan T, Zhang J, Yang M, Yang D. LncRNAs are involved in regulating ageing and age-related disease through the adenosine monophosphate-activated protein kinase signalling pathway. Genes Dis 2024; 11:101042. [PMID: 38966041 PMCID: PMC11222807 DOI: 10.1016/j.gendis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2024] Open
Abstract
A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor β-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase β (CaMKKβ), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.
Collapse
Affiliation(s)
- Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610017, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
45
|
Surugiu R, Iancu MA, Vintilescu ȘB, Stepan MD, Burdusel D, Genunche-Dumitrescu AV, Dogaru CA, Dumitra GG. Molecular Mechanisms of Healthy Aging: The Role of Caloric Restriction, Intermittent Fasting, Mediterranean Diet, and Ketogenic Diet-A Scoping Review. Nutrients 2024; 16:2878. [PMID: 39275194 PMCID: PMC11397047 DOI: 10.3390/nu16172878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
As the population ages, promoting healthy aging through targeted interventions becomes increasingly crucial. Growing evidence suggests that dietary interventions can significantly impact this process by modulating fundamental molecular pathways. This review focuses on the potential of targeted dietary strategies in promoting healthy aging and the mechanisms by which specific nutrients and dietary patterns influence key pathways involved in cellular repair, inflammation, and metabolic regulation. Caloric restriction, intermittent fasting, the Mediterranean diet, as well as the ketogenic diet showed promising effects on promoting healthy aging, possibly by modulating mTORC1 AMPK, an insulin signaling pathway. By understanding the intricate interplay between diet and molecular pathways, we can develop personalized dietary strategies that not only prevent age-related diseases, but also promote overall health and well-being throughout the aging process.
Collapse
Affiliation(s)
- Roxana Surugiu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (D.B.)
| | - Mihaela Adela Iancu
- Department of Internal Medicine (Cardiology, Gastroenterology, Hepatology, Rheumatology, Geriatrics), Family Medicine, Labor Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Ștefănița Bianca Vintilescu
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (Ș.B.V.); (M.D.S.)
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (Ș.B.V.); (M.D.S.)
| | - Daiana Burdusel
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (D.B.)
| | | | - Carmen-Adriana Dogaru
- Department of Family Medicine, University of Medicine and Pharmacy of Craiova, St. Petru Rareș, No. 2-4, 200349 Craiova, Romania;
| | - Gheorghe Gindrovel Dumitra
- Department of Family Medicine, University of Medicine and Pharmacy of Craiova, St. Petru Rareș, No. 2-4, 200349 Craiova, Romania;
| |
Collapse
|
46
|
Kwiatkowski M, Wong A, Fiderewicz A, Gehring C, Jaworski K. A SNF1-related protein kinase regulatory subunit functions as a molecular tuner. PHYTOCHEMISTRY 2024; 224:114146. [PMID: 38763313 DOI: 10.1016/j.phytochem.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Metabolic processes in prokaryotic and eukaryotic organisms are often modulated by kinases which are in turn, dependent on Ca2+ and the cyclic mononucleotides cAMP and cGMP. It has been established that some proteins have both kinase and cyclase activities and that active cyclases can be embedded within the kinase domains. Here, we identified phosphodiesterase (PDE) sites, enzymes that hydrolyse cAMP and cGMP, to AMP and GMP, respectively, in some of these proteins in addition to their kinase/cyclase twin-architecture. As an example, we tested the Arabidopsis thaliana KINγ, a subunit of the SnRK2 kinase, to demonstrate that all three enzymatic centres, adenylate cyclase (AC), guanylate cyclase (GC) and PDE, are catalytically active, capable of generating and hydrolysing cAMP and cGMP. These data imply that the signal output of the KINγ subunit modulates SnRK2, consequently affecting the downstream kinome. Finally, we propose a model where a single protein subunit, KINγ, is capable of regulating cyclic mononucleotide homeostasis, thereby tuning stimulus specific signal output.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland.
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, Zhejiang Province, China; Research Center for Integrative Plant Sciences, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, Zhejiang Province, China.
| | - Adam Fiderewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy.
| | - Krzysztof Jaworski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland.
| |
Collapse
|
47
|
Yi Q, Xi Y, Li J, Wu Z, Ma Y, Jiang Y, Yang D, Huang S. The interaction between 20-hydroxyecdysone and AMPK through PI3K activation in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105194. [PMID: 38754572 DOI: 10.1016/j.dci.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
In crustaceans, the steroid hormone 20-hydroxyecdysone (20E) initiates molting, and the molting process is also regulated by energy metabolism. AMPK is an energy sensor and plays a critical role in systemic energy balance. Here, the regulatory mechanism in the interaction between 20E and AMPK was investigated in Chinese mitten crab, Eriocheir sinensis. The results showed that the 20E concentration and the mRNA expression levels of 20E receptors in hepatopancreas were down-regulated post AMPK activator (AICAR) treatment, and were up-regulated after AMPK inhibitor (Compound C) injection in crabs. Besides, the molt-inhibiting hormone (MIH) gene expression in eyestalk showed the opposite patterns in response to the AICAR and Compound C treatment, respectively. Further investigation found that there was a significant reduction in 20E concentration post PI3K inhibitor (LY294002) treatment, and the phosphorylation level of PI3K was increased in hepatopancreas after AMPK inhibitor injection. On the other hand, the positive regulation of PI3K-mediated activation of AMPK was also observed, the phosphorylation levels of AMPKα, AMPKβ and PI3K in hepatopancreas were significantly increased post 20E injection. In addition, the phosphorylation levels of AMPKα and AMPKβ induced by 20E were decreased after the injection of PI3K inhibitor. Taken together, these results suggest that the regulatory cross-talk between 20E and AMPK is likely to act through PI3K pathway in E. sinensis, which appeared to be helpful for a better understanding in molting regulation.
Collapse
Affiliation(s)
- Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
48
|
Horiuchi S, Kuroda Y, Oyafuso R, Komizu Y, Maeda K, Ishida S. Formation of functional, extended bile canaliculi, and increased bile acid production in sandwich-cultured human cryopreserved hepatocytes using commercially available culture medium. Arch Toxicol 2024; 98:2605-2617. [PMID: 38753187 PMCID: PMC11272753 DOI: 10.1007/s00204-024-03757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 07/26/2024]
Abstract
Drug-induced cholestasis results in drug discontinuation and market withdrawal, and the prediction of cholestasis risk is critical in the early stages of drug development. Animal tests and membrane vesicle assay are currently being conducted to assess the risk of cholestasis in the preclinical stage. However, these methods have drawbacks, such as species differences with humans and difficulties in evaluating the effects of drug metabolism and other transporters, implying the need for a cholestasis risk assessment system using human hepatocytes. However, human hepatocytes hardly form functional, extended bile canaliculi, a requirement for cholestasis risk assessment. We previously established a culture protocol for functional, extended bile canaliculi formation in human iPSC-derived hepatocytes. In this study, we modified this culture protocol to support the formation of functional, extended bile canaliculi in human cryopreserved hepatocytes (cryoheps). The production of bile acids, which induces bile canaliculi extension, increased time-dependently during bile canaliculi formation using this protocol, suggesting that increased bile acid production may be involved in the extended bile canaliculi formation. We have also shown that our culture protocol can be applied to cryoheps from multiple donors and that bile canaliculi can be formed stably among different culture batches. Furthermore, this protocol enables long-term maintenance of bile canaliculi and scaling down to culture in 96-well plates. We expect our culture protocol to be a breakthrough for in vitro cholestasis risk assessment.
Collapse
Affiliation(s)
- Shinichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - Yukie Kuroda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - Ryota Oyafuso
- Graduate School of Engineering, Department of Life Science, Sojo University, Kumamoto, Japan
| | - Yuji Komizu
- Graduate School of Engineering, Department of Life Science, Sojo University, Kumamoto, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan.
- Graduate School of Engineering, Department of Life Science, Sojo University, Kumamoto, Japan.
| |
Collapse
|
49
|
Li Y, Cao Q, Hu Y, He B, Cao T, Tang Y, Zhou XP, Lan XP, Liu SQ. Advances in the interaction of glycolytic reprogramming with lactylation. Biomed Pharmacother 2024; 177:116982. [PMID: 38906019 DOI: 10.1016/j.biopha.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Lactylation is a novel post-translational modification (PTM) involving proteins that is induced by lactate accumulation. Histone lysine lactylation alters chromatin spatial configuration, influencing gene transcription and regulating the expression of associated genes. This modification plays a crucial role as an epigenetic regulatory factor in the progression of various diseases. Glycolytic reprogramming is one of the most extensively studied forms of metabolic reprogramming, recognized as a key hallmark of cancer cells. It is characterized by an increase in glycolysis and the inhibition of the tricarboxylic acid (TCA) cycle, accompanied by significant lactate production and accumulation. The two processes are closely linked by lactate, which interacts in various physiological and pathological processes. On the one hand, lactylation levels generally correlate positively with the extent of glycolytic reprogramming, being directly influenced by the lactate concentration produced during glycolytic reprogramming. On the other hand, lactylation can also regulate glycolytic pathways by affecting the transcription and structural functions of essential glycolytic enzymes. This review comprehensively outlines the mechanisms of lactylation and glycolytic reprogramming and their interactions in tumor progression, immunity, and inflammation, with the aim of elucidating the relationship between glycolytic reprogramming and lactylation.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qian Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Ping Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao Peng Lan
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang Quan Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
50
|
Malla A, Gupta S, Sur R. Inhibition of lactate dehydrogenase A by diclofenac sodium induces apoptosis in HeLa cells through activation of AMPK. FEBS J 2024; 291:3628-3652. [PMID: 38767406 DOI: 10.1111/febs.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cancer cells exhibit a unique metabolic preference for the glycolytic pathway over oxidative phosphorylation for maintaining the tumor microenvironment. Lactate dehydrogenase A (LDHA) is a key enzyme that facilitates glycolysis by converting pyruvate to lactate and has been shown to be upregulated in multiple cancers due to the hypoxic tumor microenvironment. Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, has been shown to exhibit anticancer effects by interfering with the glucose metabolism pathway. However, the specific targets of this drug remain unknown. Using in silico, biochemical, and biophysical studies, we show that DCF binds to LDHA adjacent to the substrate binding site and inhibits its activity in a dose-dependent and allosteric manner in HeLa cells. Thus, DCF inhibits the hypoxic microenvironment and induces apoptosis-mediated cell death. DCF failed to induce cytotoxicity in HeLa cells when LDHA was knocked down, confirming that DCF exerts its antimitotic effects via LDHA inhibition. DCF-induced LDHA inhibition alters pyruvate, lactate, NAD+, and ATP production in cells, and this could be a possible mechanism through which DCF inhibits glucose uptake in cancer cells. DCF-induced ATP deprivation leads to mitochondria-mediated oxidative stress, which results in DNA damage, lipid peroxidation, and apoptosis-mediated cell death. Reduction in intracellular ATP levels additionally activates the sensor kinase, adenosine monophosphate-activated protein kinase (AMPK), which further downregulates phosphorylated ribosomal S6 kinase (p-S6K), leading to apoptosis-mediated cell death. We find that in LDHA knocked down cells, intracellular ATP levels were depleted, resulting in the inhibition of p-S6K, suggesting the involvement of DCF-induced LDHA inhibition in the activation of the AMPK/S6K signaling pathway.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Suvroma Gupta
- Khejuri College, Purba Medinipur, West Bengal, India
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| |
Collapse
|