1
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024; 51:1151-1161. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
2
|
Ouzounidis VR, Prevo B, Cheerambathur DK. Sculpting the dendritic landscape: Actin, microtubules, and the art of arborization. Curr Opin Cell Biol 2023; 84:102214. [PMID: 37544207 DOI: 10.1016/j.ceb.2023.102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Dendrites are intricately designed neuronal compartments that play a vital role in the gathering and processing of sensory or synaptic inputs. Their diverse and elaborate structures are distinct features of neuronal organization and function. Central to the generation of these dendritic arbors is the neuronal cytoskeleton. In this review, we delve into the current progress toward our understanding of how dendrite arbors are generated and maintained, focusing on the role of the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Vasileios R Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
3
|
Park SHE, Kulkarni A, Konopka G. FOXP1 orchestrates neurogenesis in human cortical basal radial glial cells. PLoS Biol 2023; 21:e3001852. [PMID: 37540706 PMCID: PMC10431666 DOI: 10.1371/journal.pbio.3001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/16/2023] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
During cortical development, human basal radial glial cells (bRGCs) are highly capable of sustained self-renewal and neurogenesis. Selective pressures on this cell type may have contributed to the evolution of the human neocortex, leading to an increase in cortical size. bRGCs have enriched expression for Forkhead Box P1 (FOXP1), a transcription factor implicated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder. However, the cell type-specific roles of FOXP1 in bRGCs during cortical development remain unexplored. Here, we examine the requirement for FOXP1 gene expression regulation underlying the production of bRGCs using human brain organoids. We examine a developmental time point when FOXP1 expression is highest in the cortical progenitors, and the bRGCs, in particular, begin to actively produce neurons. With the loss of FOXP1, we show a reduction in the number of bRGCs, as well as reduced proliferation and differentiation of the remaining bRGCs, all of which lead to reduced numbers of excitatory cortical neurons over time. Using single-nuclei RNA sequencing and cell trajectory analysis, we uncover a role for FOXP1 in directing cortical progenitor proliferation and differentiation by regulating key signaling pathways related to neurogenesis and NDDs. Together, these results demonstrate that FOXP1 regulates human-specific features in early cortical development.
Collapse
Affiliation(s)
- Seon Hye E. Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
4
|
Wong W, Estep JA, Treptow AM, Rajabli N, Jahncke JN, Ubina T, Wright KM, Riccomagno MM. An adhesion signaling axis involving Dystroglycan, β1-Integrin, and Cas adaptor proteins regulates the establishment of the cortical glial scaffold. PLoS Biol 2023; 21:e3002212. [PMID: 37540708 PMCID: PMC10431685 DOI: 10.1371/journal.pbio.3002212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/16/2023] [Accepted: 06/23/2023] [Indexed: 08/06/2023] Open
Abstract
The mature mammalian cortex is composed of 6 architecturally and functionally distinct layers. Two key steps in the assembly of this layered structure are the initial establishment of the glial scaffold and the subsequent migration of postmitotic neurons to their final position. These processes involve the precise and timely regulation of adhesion and detachment of neural cells from their substrates. Although much is known about the roles of adhesive substrates during neuronal migration and the formation of the glial scaffold, less is understood about how these signals are interpreted and integrated within these neural cells. Here, we provide in vivo evidence that Cas proteins, a family of cytoplasmic adaptors, serve a functional and redundant role during cortical lamination. Cas triple conditional knock-out (Cas TcKO) mice display severe cortical phenotypes that feature cobblestone malformations. Molecular epistasis and genetic experiments suggest that Cas proteins act downstream of transmembrane Dystroglycan and β1-Integrin in a radial glial cell-autonomous manner. Overall, these data establish a new and essential role for Cas adaptor proteins during the formation of cortical circuits and reveal a signaling axis controlling cortical scaffold formation.
Collapse
Affiliation(s)
- Wenny Wong
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
| | - Jason A. Estep
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Alyssa M. Treptow
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Niloofar Rajabli
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Jennifer N. Jahncke
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Teresa Ubina
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
| | - Kevin M. Wright
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Martin M. Riccomagno
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| |
Collapse
|
5
|
Wu X, Sosunov AA, Lado W, Teoh JJ, Ham A, Li H, Al-Dalahmah O, Gill BJA, Arancio O, Schevon CA, Frankel WN, McKhann GM, Sulzer D, Goldman JE, Tang G. Synaptic hyperexcitability of cytomegalic pyramidal neurons contributes to epileptogenesis in tuberous sclerosis complex. Cell Rep 2022; 40:111085. [PMID: 35858542 PMCID: PMC9376014 DOI: 10.1016/j.celrep.2022.111085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures. Wu et al. demonstrate that Tsc1 inactivation in late embryonic radial glial cells (RGCs) produces cytomegalic pyramidal neurons that mimic TSC-like dysplastic neurons. They find that enhanced excitatory synaptic transmission in Tsc1-null cytomegalic pyramidal neurons contributes to cortical hyperexcitability and epileptogenesis.
Collapse
Affiliation(s)
- Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wudu Lado
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia Jie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Janach GMS, Böhm M, Döhne N, Kim HR, Rosário M, Strauss U. Interferon-γ enhances neocortical synaptic inhibition by promoting membrane association and phosphorylation of GABA A receptors in a protein kinase C-dependent manner. Brain Behav Immun 2022; 101:153-164. [PMID: 34998939 DOI: 10.1016/j.bbi.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Interferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions. To close the gap between basic research, behavioral implications and clinical applicability, knowledge of the mechanism behind IFN-γ related changes in brain function is crucial. Here, we studied the underlying mechanism of acutely augmented neocortical inhibition by IFN-γ (1.000 IU ml-1) in layer 5 pyramidal neurons of male Wistar rats. We demonstrate postsynaptic mediation of IFN-γ augmented inhibition by pressure application of GABA and analysis of paired pulse ratios. IFN-γ increases membrane presence of GABAAR γ2, as quantified by cell surface biotinylation and functional synaptic GABAAR number, as determined by peak-scaled non-stationary noise analysis. The increase in functional receptor number was comparable to the increase in underlying miniature inhibitory postsynaptic current (mIPSC) amplitudes. Blockage of putative intracellular mediators, namely phosphoinositide 3-kinase and protein kinase C (PKC) by Wortmannin and Calphostin C, respectively, revealed PKC-dependency of the pro-inhibitory IFN-γ effect. This was corroborated by increased serine phosphorylation of P-serine PKC motifs on GABAAR γ2 upon IFN-γ application. GABAAR single channel conductance, intracellular chloride levels and GABAAR driving force are unlikely to contribute to the effect, as shown by single channel recordings and chloride imaging. The effect of IFN-γ on mIPSC amplitudes was similar in female and male rats, suggesting a gender-independent mechanism of action. Collectively, these results indicate a novel mechanism for the regulation of inhibition by IFN-γ, which could impact on neocortical function and therewith behavior.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maximilian Böhm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ha-Rang Kim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
7
|
Hou L, Wang L, Zhao Z, Xu W, Wang Y, Cui G. Regulation of dendrite growth by Cdc42 effector protein‑4 in hippocampal neurons in vitro. Mol Med Rep 2022; 25:128. [PMID: 35169866 PMCID: PMC8867466 DOI: 10.3892/mmr.2022.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Cell division control protein 42 homolog (Cdc42), one of the most characteristic members of the Rho protein family, is required for multiple aspects of dendritic morphogenesis. However, the proteins mediating the regulatory effects of Cdc42 activity on neuronal morphology are largely unknown. Cdc42 effector protein-4 (CEP4) was identified to be a binding partner of Rho GTPase 4 and is ubiquitously expressed in all adult tissues. However, the physiological function of CEP4 in neurons is unknown. In the present study, immunofluorescence and western blot analysis were conducted, revealing that CEP4 is highly expressed in the brain, and that the expression of CEP4 is gradually increased during neurodevelopment. Knockdown of CEP4 with short hairpin RNA suppressed dendrite growth, whereas overexpression of wild-type CEP4 promoted dendrite growth in primary isolated mouse hippocampal neurons. Collectively, these results indicated an important role for CEP4 in dendrite growth in hippocampal neurons.
Collapse
Affiliation(s)
- Lei Hou
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhijie Zhao
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Wei Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
8
|
Parthasarathy S, Srivatsa S, Weber AI, Gräber N, Britanova OV, Borisova E, Bessa P, Ambrozkiewicz MC, Rosário M, Tarabykin V. TrkC-T1, the Non-Catalytic Isoform of TrkC, Governs Neocortical Progenitor Fate Specification by Inhibition of MAP Kinase Signaling. Cereb Cortex 2021; 31:5470-5486. [PMID: 34259839 DOI: 10.1093/cercor/bhab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Neocortical projection neurons are generated by neural progenitor cells (NPCs) within the ventricular and subventricular zone. While early NPCs can give rise to both deep and upper layer neurons, late progenitors are restricted to upper layer neurogenesis. The molecular mechanisms controlling the differentiation potential of early versus late NPCs are unknown. Here, we report a novel function for TrkC-T1, the non-catalytic isoform of the neurotrophin receptor TrkC, that is distinct from TrkC-TK+, the full-length isoform. We provide direct evidence that TrkC-T1 regulates the switch in NPC fate from deep to upper layer neuron production. Elevated levels of TrkC-T1 in early NPCs promote the generation of deep layer neurons. Conversely, downregulation of TrkC-T1 in these cells promotes upper layer neuron fate. Furthermore, we show that TrkC-T1 exerts this control by interaction with the signaling adaptor protein ShcA. TrkC-T1 prevents the phosphorylation of Shc and the downstream activation of the MAP kinase (Erk1/2) pathway. In vivo manipulation of the activity of ShcA or Erk1/2, directly affects cortical neuron cell fate. We thus show that the generation of upper layer neurons by late progenitors is dependent on the downregulation of TrkC-T1 in late progenitor cells and the resulting activation of the ShcA/Erk1/2 pathway.
Collapse
Affiliation(s)
- Srinivas Parthasarathy
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| | - Swathi Srivatsa
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| | - A Ioana Weber
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| | - Nikolaus Gräber
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117871, Russian Federation
| | - Ekaterina Borisova
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Paraskevi Bessa
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| | - Mateusz C Ambrozkiewicz
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| | - Marta Rosário
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| | - Victor Tarabykin
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Cell and Neurobiology, Cluster of Excellence NeuroCure, 10117, Germany
| |
Collapse
|
9
|
Epifanova E, Salina V, Lajkó D, Textoris-Taube K, Naumann T, Bormuth O, Bormuth I, Horan S, Schaub T, Borisova E, Ambrozkiewicz MC, Tarabykin V, Rosário M. Adhesion dynamics in the neocortex determine the start of migration and the post-migratory orientation of neurons. SCIENCE ADVANCES 2021; 7:eabf1973. [PMID: 34215578 PMCID: PMC11060048 DOI: 10.1126/sciadv.abf1973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.
Collapse
Affiliation(s)
- Ekaterina Epifanova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Valentina Salina
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Denis Lajkó
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Biochemistry, Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Naumann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Functional Neuroanatomy, Charitéplatz 1, 10117 Berlin, Germany
| | - Olga Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingo Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephen Horan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Theres Schaub
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ekaterina Borisova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Mateusz C Ambrozkiewicz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor Tarabykin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Marta Rosário
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
10
|
Tavosanis G. Dendrite enlightenment. Curr Opin Neurobiol 2021; 69:222-230. [PMID: 34134010 DOI: 10.1016/j.conb.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
Neuronal dendrites acquire complex morphologies during development. These are not just the product of cell-intrinsic developmental programs; rather they are defined in close interaction with the cellular environment. Thus, to understand the molecular cascades that yield appropriate morphologies, it is essential to investigate them in vivo, in the actual complex tissue environment encountered by the differentiating neuron in the developing animal. Particularly, genetic approaches have pointed to factors controlling dendrite differentiation in vivo. These suggest that localized and transient molecular cascades might underlie the formation and stabilization of dendrite branches with neuron type-specific characteristics. Here, I highlight the need for studies of neuronal dendrite differentiation in the animal, the challenges provided by such an approach, and the promising pathways that have recently opened.
Collapse
Affiliation(s)
- Gaia Tavosanis
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, Bonn, 53127, Germany; LIMES Institute, University of Bonn, Carl-Troll-Str. 3, Bonn, 53115, Germany.
| |
Collapse
|
11
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
12
|
Ambrozkiewicz MC, Borisova E, Schwark M, Ripamonti S, Schaub T, Smorodchenko A, Weber AI, Rhee HJ, Altas B, Yilmaz R, Mueller S, Piepkorn L, Horan ST, Straussberg R, Zaqout S, Jahn O, Dere E, Rosário M, Boehm-Sturm P, Borck G, Willig KI, Rhee J, Tarabykin V, Kawabe H. The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc. Mol Psychiatry 2021; 26:1980-1995. [PMID: 32249816 DOI: 10.1038/s41380-020-0714-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner. Moreover, Ube3b knockout (KO) neurons exhibit increased density and aberrant morphology of dendritic spines, altered synaptic physiology, and changes in hippocampal circuit activity. Dorsal forebrain-specific Ube3b KO animals show impaired spatial learning, altered social interactions, and repetitive behaviors. We further demonstrate that Ube3b ubiquitinates the catalytic γ-subunit of calcineurin, Ppp3cc, the overexpression of which phenocopies Ube3b loss with regard to dendritic spine density. This work provides insights into the molecular pathologies underlying intellectual disability-like phenotypes in a genetically engineered mouse model.
Collapse
Affiliation(s)
- Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany. .,International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstr. 5, 37077, Göttingen, Germany. .,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Ekaterina Borisova
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russian Federation
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - A Ioana Weber
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Hong Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.,International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstr. 5, 37077, Göttingen, Germany
| | - Rüstem Yilmaz
- Center for Rare Diseases (ZSE Ulm), Ulm University Hospital, Eythstraße 24, 89075, Ulm, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Stephen T Horan
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rachel Straussberg
- Institute of Child Neurology, Schneider's Children Medical Center, Petah Tikvah, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Sami Zaqout
- Basic Medical Science Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Guntram Borck
- Center for Rare Diseases (ZSE Ulm), Ulm University Hospital, Eythstraße 24, 89075, Ulm, Germany
| | - Katrin I Willig
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russian Federation
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany. .,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
13
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
14
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
15
|
Palavalli A, Tizón-Escamilla N, Rupprecht JF, Lecuit T. Deterministic and Stochastic Rules of Branching Govern Dendrite Morphogenesis of Sensory Neurons. Curr Biol 2020; 31:459-472.e4. [PMID: 33212017 DOI: 10.1016/j.cub.2020.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Dendrite morphology is necessary for the correct integration of inputs that neurons receive. The branching mechanisms allowing neurons to acquire their type-specific morphology remain unclear. Classically, axon and dendrite patterns were shown to be guided by molecules, providing deterministic cues. However, the extent to which deterministic and stochastic mechanisms, based upon purely statistical bias, contribute to the emergence of dendrite shape is largely unknown. We address this issue using the Drosophila class I vpda multi-dendritic neurons. Detailed quantitative analysis of vpda dendrite morphogenesis indicates that the primary branch grows very robustly in a fixed direction, though secondary branch numbers and lengths showed fluctuations characteristic of stochastic systems. Live-tracking dendrites and computational modeling revealed how neuron shape emerges from few local statistical parameters of branch dynamics. We report key opposing aspects of how tree architecture feedbacks on the local probability of branch shrinkage. Child branches promote stabilization of parent branches, although self-repulsion promotes shrinkage. Finally, we show that self-repulsion, mediated by the adhesion molecule Dscam1, indirectly patterns the growth of secondary branches by spatially restricting their direction of stable growth perpendicular to the primary branch. Thus, the stochastic nature of secondary branch dynamics and the existence of geometric feedback emphasize the importance of self-organization in neuronal dendrite morphogenesis.
Collapse
Affiliation(s)
- Amrutha Palavalli
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Nicolás Tizón-Escamilla
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Jean-François Rupprecht
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France.
| | - Thomas Lecuit
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France; Collège de France, 11 Place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
16
|
Schill Y, Bijata M, Kopach O, Cherkas V, Abdel-Galil D, Böhm K, Schwab MH, Matsuda M, Compan V, Basu S, Bijata K, Wlodarczyk J, Bard L, Cole N, Dityatev A, Zeug A, Rusakov DA, Ponimaskin E. Serotonin 5-HT 4 receptor boosts functional maturation of dendritic spines via RhoA-dependent control of F-actin. Commun Biol 2020; 3:76. [PMID: 32060357 PMCID: PMC7021812 DOI: 10.1038/s42003-020-0791-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2020] [Indexed: 01/24/2023] Open
Abstract
Activity-dependent remodeling of excitatory connections underpins memory formation in the brain. Serotonin receptors are known to contribute to such remodeling, yet the underlying molecular machinery remains poorly understood. Here, we employ high-resolution time-lapse FRET imaging in neuroblastoma cells and neuronal dendrites to establish that activation of serotonin receptor 5-HT4 (5-HT4R) rapidly triggers spatially-restricted RhoA activity and G13-mediated phosphorylation of cofilin, thus locally boosting the filamentous actin fraction. In neuroblastoma cells, this leads to cell rounding and neurite retraction. In hippocampal neurons in situ, 5-HT4R-mediated RhoA activation triggers maturation of dendritic spines. This is paralleled by RhoA-dependent, transient alterations in cell excitability, as reflected by increased spontaneous synaptic activity, apparent shunting of evoked synaptic responses, and enhanced long-term potentiation of excitatory transmission. The 5-HT4R/G13/RhoA signaling thus emerges as a previously unrecognized molecular pathway underpinning use-dependent functional remodeling of excitatory synaptic connections.
Collapse
Affiliation(s)
- Yvonne Schill
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Monika Bijata
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Olga Kopach
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Volodymyr Cherkas
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Dalia Abdel-Galil
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Katrin Böhm
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Markus H Schwab
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Michiyuki Matsuda
- Bioimaging and Cell Signaling, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Subhadip Basu
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
- Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Krystian Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Lucie Bard
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas Cole
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Gehrke LJ, Capitan A, Scheper C, König S, Upadhyay M, Heidrich K, Russ I, Seichter D, Tetens J, Medugorac I, Thaller G. Are scurs in heterozygous polled (Pp) cattle a complex quantitative trait? Genet Sel Evol 2020; 52:6. [PMID: 32033534 PMCID: PMC7006098 DOI: 10.1186/s12711-020-0525-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Breeding genetically hornless, i.e. polled, cattle provides an animal welfare-friendly and non-invasive alternative to the dehorning of calves. However, the molecular regulation of the development of horns in cattle is still poorly understood. Studying genetic characters such as polledness and scurs, can provide valuable insights into this process. Scurs are hornlike formations that occur occasionally in a wide variety of sizes and forms as an unexpected phenotype when breeding polled cattle. Methods We present a unique dataset of 885 Holstein–Friesian cattle with polled parentage. The horn phenotype was carefully examined, and the phenotypic heterogeneity of the trait is described. Using a direct gene test for polledness, the polled genotype of the animals was determined. Subsequently, the existence of a putative scurs locus was investigated using high-density genotype data of a selected subset of 232 animals and two mapping approaches: mixed linear model-based association analyses and combined linkage disequilibrium and linkage analysis. Results The results of an exploratory data analysis indicated that the expression of scurs depends on age at phenotyping, sex and polled genotype. Scurs were more prevalent in males than in females. Moreover, homozygous polled animals did not express any pronounced scurs and we found that the Friesian polled allele suppresses the development of scurs more efficiently than the Celtic polled allele. Combined linkage and linkage disequilibrium mapping revealed four genome-wide significant loci that affect the development of scurs, one on BTA5 and three on BTA12. Moreover, suggestive associations were detected on BTA16, 18 and 23. The mixed linear model-based association analysis supports the results of the combined linkage and linkage disequilibrium analysis. None of the mapping approaches provided convincing evidence for a monogenic inheritance of scurs. Conclusions Our results contradict the initial and still broadly accepted model for the inheritance of horns and scurs. We hypothesise an oligogenetic model to explain the development of scurs and polledness.
Collapse
Affiliation(s)
- Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany. .,Vereinigte Informationssysteme Tierhaltung w.V. (Vit) Verden, 27283, Verden, Germany.
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Kristin Heidrich
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany.,Tierzuchtforschung e.V. München, Grub, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Grub, Germany
| | | | - Jens Tetens
- Department of Animal Sciences, Georg-August University, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, 37077, Göttingen, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany
| |
Collapse
|
18
|
Tang FL, Zhao L, Zhao Y, Sun D, Zhu XJ, Mei L, Xiong WC. Coupling of terminal differentiation deficit with neurodegenerative pathology in Vps35-deficient pyramidal neurons. Cell Death Differ 2020; 27:2099-2116. [PMID: 31907392 PMCID: PMC7308361 DOI: 10.1038/s41418-019-0487-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Vps35 (vacuolar protein sorting 35) is a key component of retromer that regulates transmembrane protein trafficking. Dysfunctional Vps35 is a risk factor for neurodegenerative diseases, including Parkinson’s and Alzheimer’s diseases. Vps35 is highly expressed in developing pyramidal neurons, and its physiological role in developing neurons remains to be explored. Here, we provide evidence that Vps35 in embryonic neurons is necessary for axonal and dendritic terminal differentiation. Loss of Vps35 in embryonic neurons results in not only terminal differentiation deficits, but also neurodegenerative pathology, such as cortical brain atrophy and reactive glial responses. The atrophy of neocortex appears to be in association with increases in neuronal death, autophagosome proteins (LC3-II and P62), and neurodegeneration associated proteins (TDP43 and ubiquitin-conjugated proteins). Further studies reveal an increase of retromer cargo protein, sortilin1 (Sort1), in lysosomes of Vps35-KO neurons, and lysosomal dysfunction. Suppression of Sort1 diminishes Vps35-KO-induced dendritic defects. Expression of lysosomal Sort1 recapitulates Vps35-KO-induced phenotypes. Together, these results demonstrate embryonic neuronal Vps35’s function in terminal axonal and dendritic differentiation, reveal an association of terminal differentiation deficit with neurodegenerative pathology, and uncover an important lysosomal contribution to both events.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Lu Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.,Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.,Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yang Zhao
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.,Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dong Sun
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.,Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.,Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia. .,Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
20
|
Wang D, Enck J, Howell BW, Olson EC. Ethanol Exposure Transiently Elevates but Persistently Inhibits Tyrosine Kinase Activity and Impairs the Growth of the Nascent Apical Dendrite. Mol Neurobiol 2019; 56:5749-5762. [PMID: 30674037 DOI: 10.1007/s12035-019-1473-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
Dendritogenesis can be impaired by exposure to alcohol, and aspects of this impairment share phenotypic similarities to dendritic defects observed after blockade of the Reelin-Dab1 tyrosine kinase signaling pathway. In this study, we find that 10 min of alcohol exposure (400 mg/dL ethanol) by itself causes an unexpected increase in tyrosine phosphorylation of many proteins including Src and Dab1 that are essential downstream effectors of Reelin signaling. This increase in phosphotyrosine is dose-dependent and blockable by selective inhibitors of Src Family Kinases (SFKs). However, the response is transient, and phosphotyrosine levels return to baseline after 30 min of continuous ethanol exposure, both in vitro and in vivo. During this latter period, Src is inactivated and Reelin application cannot stimulate Dab1 phosphorylation. This suggests that ethanol initially activates but then silences the Reelin-Dab1 signaling pathway by brief activation and then sustained inactivation of SFKs. Time-lapse analyses of dendritic growth dynamics show an overall decrease in growth and branching compared to controls after ethanol-exposure that is similar to that observed with Reelin-deficiency. However, unlike Reelin-signaling disruptions, the dendritic filopodial speeds are decreased after ethanol exposure, and this decrease is associated with sustained dephosphorylation and activation of cofilin, an F-actin severing protein. These findings suggest that persistent Src inactivation coupled to cofilin activation may contribute to the dendritic disruptions observed with fetal alcohol exposure.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA.,Developmental Exposure to Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, 13902, USA
| | - Joshua Enck
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA.,Developmental Exposure to Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, 13902, USA
| | - Brian W Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA. .,Developmental Exposure to Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
21
|
Shen Y, Zhao H, Li P, Peng Y, Cui P, Miao F, Zhang Y, Zhang A, Zhang J. MHC Class I Molecules and PirB Shape Neuronal Morphology by Affecting the Dendritic Arborization of Cortical Neurons. Neurochem Res 2018; 44:312-322. [PMID: 30406910 DOI: 10.1007/s11064-018-2676-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022]
Abstract
Neuronal MHC class I proteins have been previously reported to regulate synaptic plasticity. Several reports indicate MHC class I proteins are expressed early during development of the nervous system, suggesting they may also play a role in neuronal development. Using cultured cortical neurons, we show MHC class I proteins aggregate at specific sites in neuronal cell bodies, which overlap with the actin cytoskeleton. Knockout of MHC class I in cultured neurons increases total dendritic length and the number of branch points. These effects are abolished by reintroducing MHC class I expression. Similarly, blocking of MHC class I proteins or PirB by an MHCI antibody or a soluble PirB ectodomain respectively, mimics the knock out phenotype of increased dendritic branching. This effect is correlated with decreased phosphorylation of both LIMK and cofilin, suggesting it may be mediated by an induction of cofilin activity. Finally, layer II and III cortical neurons in the sensorimotor region of an MHC class I deficiency mouse model show increased dendritic growth and branching. Altogether, our results suggest MHC class I plays a role in inhibiting or limiting the degree of dendrite arborization during the development of cortical neurons.
Collapse
Affiliation(s)
- Yuqing Shen
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Huanhuan Zhao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ping Li
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yaqin Peng
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Pengfei Cui
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China. .,Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
22
|
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Mol Sci 2018; 19:ijms19061821. [PMID: 29925821 PMCID: PMC6032284 DOI: 10.3390/ijms19061821] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
Collapse
|
23
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
24
|
Hyperactivity of Rac1-GTPase pathway impairs neuritogenesis of cortical neurons by altering actin dynamics. Sci Rep 2018; 8:7254. [PMID: 29740022 PMCID: PMC5940682 DOI: 10.1038/s41598-018-25354-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
The small-GTPase Rac1 is a key molecular regulator linking extracellular signals to actin cytoskeleton dynamics. Loss-of-function mutations in RAC1 and other genes of the Rac signaling pathway have been implicated in the pathogenesis of Intellectual Disability (ID). The Rac1 activity is negatively controlled by GAP proteins, however the effect of Rac1 hyperactivity on neuronal networking in vivo has been poorly studied. ArhGAP15 is a Rac-specific negative regulator, expressed in the main subtypes of pyramidal cortical neurons. In the absence of ArhGAP15, cortical pyramidal neurons show defective neuritogenesis, delayed axonal elongation, reduced dendritic branching, both in vitro and in vivo. These phenotypes are associated with altered actin dynamics at the growth cone due to increased activity of the PAK-LIMK pathway and hyperphosphorylation of ADF/cofilin. These results can be explained by shootin1 hypo-phosphorylation and uncoupling with the adhesion system. Functionally, ArhGAP15−/− mice exhibit decreased synaptic density, altered electroencephalographic rhythms and cognitive deficits. These data suggest that both hypo- and hyperactivation of the Rac pathway due to mutations in Rac1 regulators can result in conditions of ID, and that a tight regulation of Rac1 activity is required to attain the full complexity of the cortical networks.
Collapse
|
25
|
Synapse Formation in Monosynaptic Sensory-Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42. J Neurosci 2017; 36:5724-35. [PMID: 27225763 DOI: 10.1523/jneurosci.2146-15.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/13/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory-motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory-motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory-motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory-motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory-motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory-motor circuits.
Collapse
|
26
|
Scheuer T, Sharkovska Y, Tarabykin V, Marggraf K, Brockmöller V, Bührer C, Endesfelder S, Schmitz T. Neonatal Hyperoxia Perturbs Neuronal Development in the Cerebellum. Mol Neurobiol 2017; 55:3901-3915. [PMID: 28547531 DOI: 10.1007/s12035-017-0612-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Impaired postnatal brain development of preterm infants often results in neurological deficits. Besides pathologies of the forebrain, maldeveolopment of the cerebellum is increasingly recognized to contribute to psychomotor impairments of many former preterm infants. However, causes are poorly defined. We used a hyperoxia model to define neonatal damage in cerebellar granule cell precursors (GCPs) and in Purkinje cells (PCs) known to be essential for interaction with GCPs during development. We exposed newborn rats to 24 h 80% O2 from age P6 to P7 to identify postnatal and long-term damage in cerebellar GCPs at age P7 after hyperoxia and also after recovery in room air thereafter until P11 and P30. We determined proliferation and apoptosis of GCPs and immature neurons by immunohistochemistry, quantified neuronal damage by qPCR and Western blots for neuronal markers, and measured dendrite outgrowth of PCs by CALB1 immunostainings and by Sholl analysis of Golgi stainings. After hyperoxia, proliferation of PAX6+ GCPs was decreased at P7, while DCX + CASP3+ cells were increased at P11. Neuronal markers Pax6, Tbr2, and Prox1 were downregulated at P11 and P30. Neuronal damage was confirmed by reduced NeuN protein expression at P30. Sonic hedgehog (SHH) was significantly decreased at P7 and P11 after hyperoxia and coincided with lower CyclinD2 and Hes1 expression at P7. The granule cell injury was accompanied by hampered PC maturation with delayed dendrite formation and impaired branching. Neonatal injury induced by hyperoxia inhibits PC functioning and impairs granule cell development. As a conclusion, maldevelopment of the cerebellar neurons found in preterm infants could be caused by postnatal oxygen toxicity.
Collapse
Affiliation(s)
- Till Scheuer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany. .,Institute of Bioanalytics, Technische Universität Berlin, 13355, Berlin, Germany. .,Klinik für Neonatologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuliya Sharkovska
- Department for Neonatology, Charité University Medical Center, Berlin, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Katharina Marggraf
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Vivien Brockmöller
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | | | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
27
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
28
|
Huang GH, Sun ZL, Li HJ, Feng DF. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol Cell Neurosci 2017; 80:18-31. [PMID: 28163190 DOI: 10.1016/j.mcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
The Rho family of small GTPases was considered as molecular switches in regulating multiple cellular events, including cytoskeleton reorganization. The Rho GTPase-activating proteins (RhoGAPs) are one of the major families of Rho GTPase regulators. RhoGAPs were initially considered negative mediators of Rho signaling pathways via their GAP domain. Recent studies have demonstrated that RhoGAPs also regulate numerous aspects of neuronal development and are related to various neurodegenerative diseases in GAP-dependent and GAP-independent manners. Moreover, RhoGAPs are regulated through various mechanisms, such as phosphorylation. To date, approximately 70 RhoGAPs have been identified; however, only a small portion has been thoroughly investigated. Thus, the characterization of important RhoGAPs in the central nervous system is crucial to understand their spatiotemporal role during different stages of neuronal development. In this review, we summarize the current knowledge of RhoGAPs in the brain with an emphasis on their molecular function, regulation mechanism and disease implications in the central nervous system.
Collapse
Affiliation(s)
- Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China; Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
29
|
Zamboni V, Armentano M, Sarò G, Ciraolo E, Ghigo A, Germena G, Umbach A, Valnegri P, Passafaro M, Carabelli V, Gavello D, Bianchi V, D'Adamo P, de Curtis I, El-Assawi N, Mauro A, Priano L, Ferri N, Hirsch E, Merlo GR. Disruption of ArhGAP15 results in hyperactive Rac1, affects the architecture and function of hippocampal inhibitory neurons and causes cognitive deficits. Sci Rep 2016; 6:34877. [PMID: 27713499 PMCID: PMC5054378 DOI: 10.1038/srep34877] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/19/2016] [Indexed: 11/12/2022] Open
Abstract
During brain development, the small GTPases Rac1/Rac3 play key roles in neuronal migration, neuritogenesis, synaptic formation and plasticity, via control of actin cytoskeleton dynamic. Their activity is positively and negatively regulated by GEFs and GAPs molecules, respectively. However their in vivo roles are poorly known. The ArhGAP15 gene, coding for a Rac-specific GAP protein, is expressed in both excitatory and inhibitory neurons of the adult hippocampus, and its loss results in the hyperactivation of Rac1/Rac3. In the CA3 and dentate gyrus (DG) regions of the ArhGAP15 mutant hippocampus the CR+, PV+ and SST+ inhibitory neurons are reduced in number, due to reduced efficiency and directionality of their migration, while pyramidal neurons are unaffected. Loss of ArhGAP15 alters neuritogenesis and the balance between excitatory and inhibitory synapses, with a net functional result consisting in increased spike frequency and bursts, accompanied by poor synchronization. Thus, the loss of ArhGAP15 mainly impacts on interneuron-dependent inhibition. Adult ArhGAP15−/− mice showed defective hippocampus-dependent functions such as working and associative memories. These findings indicate that a normal architecture and function of hippocampal inhibitory neurons is essential for higher hippocampal functions, and is exquisitely sensitive to ArhGAP15-dependent modulation of Rac1/Rac3.
Collapse
Affiliation(s)
- Valentina Zamboni
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Maria Armentano
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Gabriella Sarò
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Elisa Ciraolo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Giulia Germena
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Alessandro Umbach
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | | | | | | | | | - Veronica Bianchi
- IRCSS San Raffaele Scientific Institute and San Raffaele University, Division of Neuroscience, Milano, Italy
| | - Patrizia D'Adamo
- IRCSS San Raffaele Scientific Institute and San Raffaele University, Division of Neuroscience, Milano, Italy
| | - Ivan de Curtis
- IRCSS San Raffaele Scientific Institute and San Raffaele University, Division of Neuroscience, Milano, Italy
| | - Nadia El-Assawi
- Department of Neurosciences, University of Turin &Div. of Neurology and Neurorehabilitation, S.Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy
| | - Alessandro Mauro
- Department of Neurosciences, University of Turin &Div. of Neurology and Neurorehabilitation, S.Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy
| | - Lorenzo Priano
- Department of Neurosciences, University of Turin &Div. of Neurology and Neurorehabilitation, S.Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Science, University of Padova, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| |
Collapse
|
30
|
Bastian TW, von Hohenberg WC, Mickelson DJ, Lanier LM, Georgieff MK. Iron Deficiency Impairs Developing Hippocampal Neuron Gene Expression, Energy Metabolism, and Dendrite Complexity. Dev Neurosci 2016; 38:264-276. [PMID: 27669335 DOI: 10.1159/000448514] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments including deficits in hippocampus-mediated learning and memory. Neonatal rats with fetal/neonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of the iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown. Embryonic hippocampal neuron cultures were chronically treated with deferoxamine (DFO, an iron chelator) beginning at 3 days in vitro (DIV). Levels of mRNA for Tfr1 and Slc11a2, iron-responsive genes involved in iron uptake, were significantly elevated in DFO-treated cultures at 11DIV and 18DIV, indicating a degree of neuronal ID similar to that seen in rodent ID models. DFO treatment decreased mRNA levels for genes indexing dendritic and synaptic development (i.e. BdnfVI,Camk2a,Vamp1,Psd95,Cfl1, Pfn1,Pfn2, and Gda) and mitochondrial function (i.e. Ucp2,Pink1, and Cox6a1). At 18DIV, DFO reduced key aspects of energy metabolism including basal respiration, maximal respiration, spare respiratory capacity, ATP production, and glycolytic rate, capacity, and reserve. Sholl analysis revealed a significant decrease in distal dendritic complexity in DFO-treated neurons at both 11DIV and 18DIV. At 11DIV, the length of primary dendrites and the number and length of branches in DFO-treated neurons were reduced. By 18DIV, partial recovery of the dendritic branch number in DFO-treated neurons was counteracted by a significant reduction in the number and length of primary dendrites and the length of branches. Our findings suggest that early neuronal iron loss, at least partially driven through altered mitochondrial function and neuronal energy metabolism, is responsible for the effects of fetal/neonatal ID and IDA on hippocampal neuron dendritic and synaptic maturation. Impairments in these neurodevelopmental processes likely underlie the negative impact of early life ID and IDA on hippocampus-mediated learning and memory.
Collapse
Affiliation(s)
- Thomas W Bastian
- Department of Pediatrics and Center for Neurobehavioral Development, School of Medicine, Minneapolis, Minn., USA
| | | | | | | | | |
Collapse
|
31
|
Schulz J, Franke K, Frick M, Schumacher S. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity. J Neurochem 2016; 139:26-39. [DOI: 10.1111/jnc.13735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Jana Schulz
- Institute of Molecular and Cellular Anatomy; Ulm University; Ulm Germany
| | - Kristin Franke
- Institute of Molecular and Cellular Anatomy; Ulm University; Ulm Germany
| | - Manfred Frick
- Institute of General Physiology; Ulm University; Ulm Germany
| | - Stefan Schumacher
- Institute of Molecular and Cellular Anatomy; Ulm University; Ulm Germany
| |
Collapse
|
32
|
Nakazawa T, Hashimoto R, Sakoori K, Sugaya Y, Tanimura A, Hashimotodani Y, Ohi K, Yamamori H, Yasuda Y, Umeda-Yano S, Kiyama Y, Konno K, Inoue T, Yokoyama K, Inoue T, Numata S, Ohnuma T, Iwata N, Ozaki N, Hashimoto H, Watanabe M, Manabe T, Yamamoto T, Takeda M, Kano M. Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders. Nat Commun 2016; 7:10594. [PMID: 26839058 PMCID: PMC4742909 DOI: 10.1038/ncomms10594] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders. The molecular mechanisms of neurotrophin receptor trafficking are only partially understood. Here the authors show that ARHGAP33 interacts with SORT1 to regulate TrkB trafficking, the dysfunction of which impairs synapse development and leads to schizophrenia-related behavioural abnormalities in mice.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Asami Tanimura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hashimotodani
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuji Kiyama
- Division of Neuronal Network, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Inoue
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazumasa Yokoyama
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shusuke Numata
- Department of Psychiatry, Course of Integrated Brain Sciences, School of Medicine, University of Tokushima, Tokushima 770-8503, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Hitoshi Hashimoto
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tadashi Yamamoto
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son 904-0495, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Schuster S, Rivalan M, Strauss U, Stoenica L, Trimbuch T, Rademacher N, Parthasarathy S, Lajkó D, Rosenmund C, Shoichet SA, Winter Y, Tarabykin V, Rosário M. NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Mol Psychiatry 2015; 20:1120-31. [PMID: 25869807 DOI: 10.1038/mp.2015.42] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
Neuropsychiatric developmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia, are typically characterized by alterations in social behavior and have been linked to aberrant dendritic spine and synapse development. Here we show, using genetically engineered mice, that the Cdc42 GTPase-activating multiadaptor protein, NOMA-GAP, regulates autism-like social behavior in the mouse, as well as dendritic spine and synapse development. Surprisingly, we were unable to restore spine morphology or autism-associated social behavior in NOMA-GAP-deficient animals by Cre-mediated deletion of Cdc42 alone. Spine morphology can be restored in vivo by re-expression of wild-type NOMA-GAP or a mutant of NOMA-GAP that lacks the RhoGAP domain, suggesting that other signaling functions are involved. Indeed, we show that NOMA-GAP directly interacts with several MAGUK (membrane-associated guanylate kinase) proteins, and that this modulates NOMA-GAP activity toward Cdc42. Moreover, we demonstrate that NOMA-GAP is a major regulator of PSD-95 in the neocortex. Loss of NOMA-GAP leads to strong upregulation of serine 295 phosphorylation of PSD-95 and moreover to its subcellular mislocalization. This is associated with marked loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and defective synaptic transmission, thereby providing a molecular basis for autism-like social behavior in the absence of NOMA-GAP.
Collapse
Affiliation(s)
- S Schuster
- Dendritic Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - M Rivalan
- Institute of Cognitive Neurobiology, Humboldt University Berlin and Berlin Mouse Clinic for Neurology and Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - U Strauss
- Ionic Current Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - L Stoenica
- Ionic Current Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - T Trimbuch
- Neuroscience, NeuroCure-NWFZ, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - N Rademacher
- Molecular Neurobiology and Genetics, NeuroCure-NWFZ, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - S Parthasarathy
- Cortical Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - D Lajkó
- Dendritic Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Cortical Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - C Rosenmund
- Neuroscience, NeuroCure-NWFZ, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - S A Shoichet
- Molecular Neurobiology and Genetics, NeuroCure-NWFZ, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Y Winter
- Institute of Cognitive Neurobiology, Humboldt University Berlin and Berlin Mouse Clinic for Neurology and Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - V Tarabykin
- Cortical Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - M Rosário
- Dendritic Development, Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Bijata M, Wlodarczyk J, Figiel I. Dystroglycan controls dendritic morphogenesis of hippocampal neurons in vitro. Front Cell Neurosci 2015; 9:199. [PMID: 26074769 PMCID: PMC4443029 DOI: 10.3389/fncel.2015.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/09/2015] [Indexed: 11/13/2022] Open
Abstract
Dendritic outgrowth and arborization are important for establishing neural circuit formation. To date, little information exists about the involvement of the extracellular matrix (ECM) and its cellular receptors in these processes. In our studies, we focus on the role of dystroglycan (DG), a cell adhesion molecule that links ECM components to the actin cytoskeleton, in dendritic development and branching. Using a lentiviral vector to deliver short-hairpin RNA (shRNA) that specifically silences DG in cultured hippocampal neurons, we found that DG knockdown exerted an inhibitory effect on dendritic tree growth and arborization. The structural changes were associated with activation of the guanosine triphosphatase Cdc42. The overexpression of DG promoted dendritic length and branching. Furthermore, exposure of the cultures to autoactivating matrix metalloproteinase-9 (aaMMP-9), a β-DG-cleaving protease, decreased the complexity of dendritic arbors. This effect was abolished in neurons that overexpressed a β-DG mutant that was defective in MMP-9-mediated cleavage. Altogether, our results indicate that DG controls dendritic arborization in vitro in MMP-9-dependent manner.
Collapse
Affiliation(s)
- Monika Bijata
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| |
Collapse
|
35
|
Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ 2015; 57:275-90. [DOI: 10.1111/dgd.12213] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| |
Collapse
|
36
|
Azzarelli R, Kerloch T, Pacary E. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Front Cell Neurosci 2015; 8:445. [PMID: 25610373 PMCID: PMC4285737 DOI: 10.3389/fncel.2014.00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022] Open
Abstract
The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge Cambridge, UK
| | - Thomas Kerloch
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| | - Emilie Pacary
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| |
Collapse
|
37
|
Franzoni E, Booker SA, Parthasarathy S, Rehfeld F, Grosser S, Srivatsa S, Fuchs HR, Tarabykin V, Vida I, Wulczyn FG. miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. eLife 2015; 4. [PMID: 25556700 PMCID: PMC4337614 DOI: 10.7554/elife.04263] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/31/2014] [Indexed: 12/13/2022] Open
Abstract
miR-128, a brain-enriched microRNA, has been implicated in the control of neurogenesis and synaptogenesis but its potential roles in intervening processes have not been addressed. We show that post-transcriptional mechanisms restrict miR-128 accumulation to post-mitotic neurons during mouse corticogenesis and in adult stem cell niches. Whereas premature miR-128 expression in progenitors for upper layer neurons leads to impaired neuronal migration and inappropriate branching, sponge-mediated inhibition results in overmigration. Within the upper layers, premature miR-128 expression reduces the complexity of dendritic arborization, associated with altered electrophysiological properties. We show that Phf6, a gene mutated in the cognitive disorder Börjeson-Forssman-Lehmann syndrome, is an important regulatory target for miR-128. Restoring PHF6 expression counteracts the deleterious effect of miR-128 on neuronal migration, outgrowth and intrinsic physiological properties. Our results place miR-128 upstream of PHF6 in a pathway vital for cortical lamination as well as for the development of neuronal morphology and intrinsic excitability. DOI:http://dx.doi.org/10.7554/eLife.04263.001 The unique capabilities of the mammalian brain depend on the patterns formed by spatial arrangements and connections between millions (sometimes billions) of electrically active cells called neurons, and on the connections between these neurons. During the development of the cortex, the largest part of the brain, neurons are born in stem cell areas that lie deep inside the brain, and these newly made neurons then migrate outwards to their final positions close to the surface of the adult brain. Franzoni et al. have examined how two molecules, a small RNA called miR-128 and a protein called PHF6, control when and how neurons migrate through the cortex and then grow to form connections with other neurons as they mature. Mutations that disrupt PHF6 can cause intellectual disabilities, and one possible reason for this is that PHF6 is needed to ensure that the neurons migrate to the correction location. Franzoni et al. now show that miR-128 can reduce the production of PHF6 and is therefore responsible for controlling when and where PHF6 is active. Studying miR-128 in detail, they show that although an inactive precursor form of miR-128 is present in stem cells and migrating neurons, the active form of miR-128 is only found in neurons that have already reached their final position in the cortex. Franzoni et al. used genetic methods to override the switch that controls when miR-128 becomes active. When the amount of miR-128 was artificially reduced, the neurons migrated too far. Artificially increasing the amount of miR-128 had the opposite effect: both the movement of the neurons and, later, their growth were defective. PHF6 was the key to these effects: if PHF6 levels were kept close to normal, miR-128 could no longer interfere with the movement and growth of the neurons. Further work will be required to better understand how miR-128 is turned off and on, and how PHF6 acts to control neuronal movement and growth. DOI:http://dx.doi.org/10.7554/eLife.04263.002
Collapse
Affiliation(s)
- Eleonora Franzoni
- Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sam A Booker
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Srinivas Parthasarathy
- Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frederick Rehfeld
- Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Swathi Srivatsa
- Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko R Fuchs
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - F Gregory Wulczyn
- Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Abstract
The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors.
Collapse
|
39
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Hobson SA, Vanderplank PA, Pope RJP, Kerr NCH, Wynick D. Galanin stimulates neurite outgrowth from sensory neurons by inhibition of Cdc42 and Rho GTPases and activation of cofilin. J Neurochem 2013; 127:199-208. [PMID: 23895321 PMCID: PMC3935412 DOI: 10.1111/jnc.12379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/17/2023]
Abstract
We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies.
Collapse
Affiliation(s)
- Sally-Ann Hobson
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
41
|
Kim Y, Ha CM, Chang S. SNX26, a GTPase-activating protein for Cdc42, interacts with PSD-95 protein and is involved in activity-dependent dendritic spine formation in mature neurons. J Biol Chem 2013; 288:29453-66. [PMID: 24003235 DOI: 10.1074/jbc.m113.468801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SNX26, a brain-enriched RhoGAP, plays a key role in dendritic arborization during early neuronal development in the neocortex. In mature neurons, it is localized to dendritic spines, but little is known about its role in later stages of development. Our results show that SNX26 interacts with PSD-95 in dendritic spines of cultured hippocampal neurons, and as a GTPase-activating protein for Cdc42, it decreased the F-actin content in COS-7 cells and in dendritic spines of neurons. Overexpression of SNX26 resulted in a GTPase-activating protein activity-dependent decrease in total protrusions and spine density together with dramatic inhibition of filopodia-to-spine transformations. Such effects of SNX26 were largely rescued by a constitutively active mutant of Cdc42. Consistently, an shRNA-mediated knockdown of SNX26 significantly increased total protrusions and spine density, resulting in an increase in thin or stubby type spines at the expense of the mushroom spine type. Moreover, endogenous expression of SNX26 was shown to be bi-directionally modulated by neuronal activity. Therefore, we propose that in addition to its key role in neuronal development, SNX26 also has a role in the activity-dependent structural change of dendritic spines in mature neurons.
Collapse
Affiliation(s)
- Yoonju Kim
- From the Department of Physiology and Biomedical Sciences
| | | | | |
Collapse
|
42
|
DeGeer J, Lamarche-Vane N. Rho GTPases in neurodegeneration diseases. Exp Cell Res 2013; 319:2384-94. [PMID: 23830879 DOI: 10.1016/j.yexcr.2013.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Rho GTPases are molecular switches that modulate multiple intracellular signaling processes by means of various effector proteins. As a result, Rho GTPase activities are tightly spatiotemporally regulated in order to ensure homeostasis within the cell. Though the roles of Rho GTPases during neural development have been well documented, their participation during neurodegeneration has been far less characterized. Herein we discuss our current knowledge of the role and function of Rho GTPases and regulators during neurodegeneration, and highlight their potential as targets for therapeutic intervention in common neurodegenerative disorders.
Collapse
Affiliation(s)
- Jonathan DeGeer
- McGill University, Department of Anatomy and Cell Biology, Montreal, QC, Canada H3A 0C7
| | | |
Collapse
|
43
|
Abstract
Nerve cells form elaborate, highly branched dendritic trees that are optimized for the receipt of synaptic signals. Recent work published in this issue of Genes & Development by Rosario and colleagues (pp. 1743-1757) shows that a Cdc42-specific GTPase-activating protein (NOMA-GAP) regulates the branching of dendrites by neurons in the top layers of the mouse cortex. The results raise interesting questions regarding the specification of arbors in different cortical layers and the mechanisms of dendrite branching.
Collapse
|