1
|
Linn P, Kohno S, Sheng J, Kulathunga N, Yu H, Zhang Z, Voon D, Watanabe Y, Takahashi C. Targeting RB1 Loss in Cancers. Cancers (Basel) 2021; 13:cancers13153737. [PMID: 34359636 PMCID: PMC8345210 DOI: 10.3390/cancers13153737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Irreversible defects in RB1 tumor suppressor functions often predict poor outcomes in cancer patients. However, the RB1-defecient status can be a benefit as well for them, as it generates a variety of vulnerabilities induced through the upregulation of RB1 targets, relief from functional restrictions due to RB1 binding, presence of genes whose inactivation cause synthetic lethality with RB1 loss, or collateral synthetic lethality owing to simultaneous loss of neighboring genes. Abstract Retinoblastoma protein 1 (RB1) is encoded by a tumor suppressor gene that was discovered more than 30 years ago. Almost all mitogenic signals promote cell cycle progression by braking on the function of RB1 protein through mono- and subsequent hyper-phosphorylation mediated by cyclin-CDK complexes. The loss of RB1 function drives tumorigenesis in limited types of malignancies including retinoblastoma and small cell lung cancer. In a majority of human cancers, RB1 function is suppressed during tumor progression through various mechanisms. The latter gives rise to the acquisition of various phenotypes that confer malignant progression. The RB1-targeted molecules involved in such phenotypic changes are good quarries for cancer therapy. Indeed, a variety of novel therapies have been proposed to target RB1 loss. In particular, the inhibition of a number of mitotic kinases appeared to be synthetic lethal with RB1 deficiency. A recent study focusing on a neighboring gene that is often collaterally deleted together with RB1 revealed a pharmacologically targetable vulnerability in RB1-deficient cancers. Here we summarize current understanding on possible therapeutic approaches targeting functional or genomic aberration of RB1 in cancers.
Collapse
Affiliation(s)
- Paing Linn
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Yangon General Hospital, Yangon, Myanmar
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Jindan Sheng
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Nilakshi Kulathunga
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Zhiheng Zhang
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Dominic Voon
- Institute of Frontier Sciences Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Correspondence: ; Tel.: +81-76-264-6750; Fax: +81-76-234-4521
| |
Collapse
|
2
|
Voutsadakis IA. Clinical Implications of Chromosomal Instability (CIN) and Kinetochore Abnormalities in Breast Cancers. Mol Diagn Ther 2020; 23:707-721. [PMID: 31372940 DOI: 10.1007/s40291-019-00420-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genetic instability is a defining property of cancer cells and is the basis of various lesions including point mutations, copy number alterations and translocations. Chromosomal instability (CIN) is part of the genetic instability of cancer and consists of copy number alterations in whole or parts of cancer cell chromosomes. CIN is observed in differing degrees in most cancers. In breast cancer, CIN is commonly part of the genomic landscape of the disease and has a higher incidence in aggressive sub-types. Tumor suppressors that are commonly mutated or disabled in cancer, such as p53 and pRB, play roles in protection against CIN, and as a result, their dysfunction contributes to the establishment or tolerance of CIN. Several structural and regulatory proteins of the centromeres and kinetochore, the complex structure that is responsible for the correct distribution of genetic material in the daughter cells during mitosis, are direct or, mostly, indirect transcription targets of p53 and pRB. Thus, despite the absence of structural defects in genes encoding for centromere and kinetochore components, dysfunction of these tumor suppressors may have profound implications for the correct function of the mitotic apparatus contributing to CIN. CIN and its prognostic and therapeutic implications in breast cancer are discussed in this article.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
3
|
Ge JY, Shu S, Kwon M, Jovanović B, Murphy K, Gulvady A, Fassl A, Trinh A, Kuang Y, Heavey GA, Luoma A, Paweletz C, Thorner AR, Wucherpfennig KW, Qi J, Brown M, Sicinski P, McDonald TO, Pellman D, Michor F, Polyak K. Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nat Commun 2020; 11:2350. [PMID: 32393766 PMCID: PMC7214447 DOI: 10.1038/s41467-020-16170-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
BET inhibitors are promising therapeutic agents for the treatment of triple-negative breast cancer (TNBC), but the rapid emergence of resistance necessitates investigation of combination therapies and their effects on tumor evolution. Here, we show that palbociclib, a CDK4/6 inhibitor, and paclitaxel, a microtubule inhibitor, synergize with the BET inhibitor JQ1 in TNBC lines. High-complexity DNA barcoding and mathematical modeling indicate a high rate of de novo acquired resistance to these drugs relative to pre-existing resistance. We demonstrate that the combination of JQ1 and palbociclib induces cell division errors, which can increase the chance of developing aneuploidy. Characterizing acquired resistance to combination treatment at a single cell level shows heterogeneous mechanisms including activation of G1-S and senescence pathways. Our results establish a rationale for further investigation of combined BET and CDK4/6 inhibition in TNBC and suggest novel mechanisms of action for these drugs and new vulnerabilities in cells after emergence of resistance.
Collapse
Affiliation(s)
- Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Mijung Kwon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 120-750, Korea
| | - Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA
| | - Katherine Murphy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anushree Gulvady
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Grace A Heavey
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrienne Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Cloud Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Qi
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas O McDonald
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Franziska Michor
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
She S, Wei Q, Kang B, Wang YJ. Cell cycle and pluripotency: Convergence on octamer‑binding transcription factor 4 (Review). Mol Med Rep 2017; 16:6459-6466. [PMID: 28901500 PMCID: PMC5865814 DOI: 10.3892/mmr.2017.7489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) have unlimited expansion potential and the ability to differentiate into all somatic cell types for regenerative medicine and disease model studies. Octamer-binding transcription factor 4 (OCT4), encoded by the POU domain, class 5, transcription factor 1 gene, is a transcription factor vital for maintaining ESC pluripotency and somatic reprogramming. Many studies have established that the cell cycle of ESCs is featured with an abbreviated G1 phase and a prolonged S phase. Changes in cell cycle dynamics are intimately associated with the state of ESC pluripotency, and manipulating cell-cycle regulators could enable a controlled differentiation of ESCs. The present review focused primarily on the emerging roles of OCT4 in coordinating the cell cycle progression, the maintenance of pluripotency and the glycolytic metabolism in ESCs.
Collapse
Affiliation(s)
- Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qucheng Wei
- Cardiovascular Key Lab of Zhejiang, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
5
|
Vélez-Cruz R, Johnson DG. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int J Mol Sci 2017; 18:ijms18081776. [PMID: 28812991 PMCID: PMC5578165 DOI: 10.3390/ijms18081776] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor is known as a master regulator of the cell cycle. RB is mutated or functionally inactivated in the majority of human cancers. This transcriptional regulator exerts its function in cell cycle control through its interaction with the E2F family of transcription factors and with chromatin remodelers and modifiers that contribute to the repression of genes important for cell cycle progression. Over the years, studies have shown that RB participates in multiple processes in addition to cell cycle control. Indeed, RB is known to interact with over 200 different proteins and likely exists in multiple complexes. RB, in some cases, acts through its interaction with E2F1, other members of the pocket protein family (p107 and p130), and/or chromatin remodelers and modifiers. RB is a tumor suppressor with important chromatin regulatory functions that affect genomic stability. These functions include the role of RB in DNA repair, telomere maintenance, chromosome condensation and cohesion, and silencing of repetitive regions. In this review we will discuss recent advances in RB biology related to RB, partner proteins, and their non-transcriptional functions fighting back against genomic instability.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
- Department of Biochemistry, Midwestern University, Chicago College of Osteopathic Medicine, 555 31st Street, Downers Grove, IL 60515, USA.
| | - David G Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
| |
Collapse
|
6
|
Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin ARMR, Amin A, Aquilano K, Arbiser J, Arreola A, Arzumanyan A, Ashraf SS, Azmi AS, Benencia F, Bhakta D, Bilsland A, Bishayee A, Blain SW, Block PB, Boosani CS, Carey TE, Carnero A, Carotenuto M, Casey SC, Chakrabarti M, Chaturvedi R, Chen GZ, Chen H, Chen S, Chen YC, Choi BK, Ciriolo MR, Coley HM, Collins AR, Connell M, Crawford S, Curran CS, Dabrosin C, Damia G, Dasgupta S, DeBerardinis RJ, Decker WK, Dhawan P, Diehl AME, Dong JT, Dou QP, Drew JE, Elkord E, El-Rayes B, Feitelson MA, Felsher DW, Ferguson LR, Fimognari C, Firestone GL, Frezza C, Fujii H, Fuster MM, Generali D, Georgakilas AG, Gieseler F, Gilbertson M, Green MF, Grue B, Guha G, Halicka D, Helferich WG, Heneberg P, Hentosh P, Hirschey MD, Hofseth LJ, Holcombe RF, Honoki K, Hsu HY, Huang GS, Jensen LD, Jiang WG, Jones LW, Karpowicz PA, Keith WN, Kerkar SP, Khan GN, Khatami M, Ko YH, Kucuk O, Kulathinal RJ, Kumar NB, Kwon BS, Le A, Lea MA, Lee HY, Lichtor T, Lin LT, Locasale JW, Lokeshwar BL, Longo VD, Lyssiotis CA, MacKenzie KL, Malhotra M, Marino M, Martinez-Chantar ML, Matheu A, Maxwell C, McDonnell E, Meeker AK, Mehrmohamadi M, Mehta K, Michelotti GA, Mohammad RM, Mohammed SI, Morre DJ, Muralidhar V, Muqbil I, Murphy MP, Nagaraju GP, Nahta R, Niccolai E, Nowsheen S, Panis C, Pantano F, Parslow VR, Pawelec G, Pedersen PL, Poore B, Poudyal D, Prakash S, Prince M, Raffaghello L, Rathmell JC, Rathmell WK, Ray SK, Reichrath J, Rezazadeh S, Ribatti D, Ricciardiello L, Robey RB, Rodier F, Rupasinghe HPV, Russo GL, Ryan EP, Samadi AK, Sanchez-Garcia I, Sanders AJ, Santini D, Sarkar M, Sasada T, Saxena NK, Shackelford RE, Shantha Kumara HMC, Sharma D, Shin DM, Sidransky D, Siegelin MD, Signori E, Singh N, Sivanand S, Sliva D, Smythe C, Spagnuolo C, Stafforini DM, Stagg J, Subbarayan PR, Sundin T, Talib WH, Thompson SK, Tran PT, Ungefroren H, Vander Heiden MG, Venkateswaran V, Vinay DS, Vlachostergios PJ, Wang Z, Wellen KE, Whelan RL, Yang ES, Yang H, Yang X, Yaswen P, Yedjou C, Yin X, Zhu J, Zollo M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 2016; 35 Suppl:S276-S304. [PMID: 26590477 DOI: 10.1016/j.semcancer.2015.09.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 08/12/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.
Collapse
Affiliation(s)
- Keith I Block
- Block Center for Integrative Cancer Treatment, Skokie, IL, United States.
| | | | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada; Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A R M Ruhul Amin
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Jack Arbiser
- Winship Cancer Institute of Emory University, Atlanta, GA, United States; Atlanta Veterans Administration Medical Center, Atlanta, GA, United States; Department of Dermatology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Penny B Block
- Block Center for Integrative Cancer Treatment, Skokie, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Thomas E Carey
- Head and Neck Cancer Biology Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Marianeve Carotenuto
- Centro di Ingegneria Genetica e Biotecnologia Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Stephanie C Casey
- Stanford University, Division of Oncology, Department of Medicine and Pathology, Stanford, CA, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Georgia Zhuo Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, United States
| | - Beom K Choi
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Sarah Crawford
- Cancer Biology Research Laboratory, Southern Connecticut State University, New Haven, CT, United States
| | - Colleen S Curran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Charlotta Dabrosin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Giovanna Damia
- Department of Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, the University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas - Southwestern Medical Center, Dallas, TX, United States
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Punita Dhawan
- Department of Surgery and Cancer Biology, Division of Surgical Oncology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anna Mae E Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jin-Tang Dong
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Janice E Drew
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Eyad Elkord
- College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Dean W Felsher
- Stanford University, Division of Oncology, Department of Medicine and Pathology, Stanford, CA, United States
| | - Lynnette R Ferguson
- Discipline of Nutrition and Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Gary L Firestone
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, CA, United States
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Molecular Therapy and Pharmacogenomics Unit, Azienda Ospedaliera Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Michelle F Green
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Brendan Grue
- Departments of Environmental Science, Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | | | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
| | - Patricia Hentosh
- School of Medical Laboratory and Radiation Sciences, Old Dominion University, Norfolk, VA, United States
| | - Matthew D Hirschey
- Department of Medicine, Duke University Medical Center, Durham, NC, United States; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Lorne J Hofseth
- College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Gloria S Huang
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Lasse D Jensen
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wen G Jiang
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Lee W Jones
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | | | | | - Sid P Kerkar
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | | | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (Retired), National Institutes of Health, Bethesda, MD, United States
| | - Young H Ko
- University of Maryland BioPark, Innovation Center, KoDiscovery, Baltimore, MD, United States
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Nagi B Kumar
- Moffitt Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Byoung S Kwon
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Republic of Korea; Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Anne Le
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael A Lea
- New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, South Korea
| | - Terry Lichtor
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Bal L Lokeshwar
- Department of Medicine, Georgia Regents University Cancer Center, Augusta, GA, United States
| | - Valter D Longo
- Andrus Gerontology Center, Division of Biogerontology, University of Southern California, Los Angeles, CA, United States
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, United States
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia
| | - Meenakshi Malhotra
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | | | - Christopher Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Eoin McDonnell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mahya Mehrmohamadi
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A Michelotti
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - D James Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Vinayak Muralidhar
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge, United Kingdom
| | | | - Rita Nahta
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Francesco Pantano
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Virginia R Parslow
- Discipline of Nutrition and Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Peter L Pedersen
- Departments of Biological Chemistry and Oncology, Member at Large, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Brad Poore
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Deepak Poudyal
- College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Satya Prakash
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| | - Mark Prince
- Department of Otolaryngology-Head and Neck, Medical School, University of Michigan, Ann Arbor, MI, United States
| | | | - Jeffrey C Rathmell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology, Clinic for Dermatology, Venerology and Allergology, The Saarland University Hospital, Homburg, Germany
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy & National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - R Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT, United States; Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Francis Rodier
- Centre de Rechercher du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Montréal, Quebec, Canada; Université de Montréal, Département de Radiologie, Radio-Oncologie et Médicine Nucléaire, Montréal, Quebec, Canada
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Andrew J Sanders
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Daniele Santini
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Malancha Sarkar
- Department of Biology, University of Miami, Miami, FL, United States
| | - Tetsuro Sasada
- Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Neeraj K Saxena
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University, Health Shreveport, Shreveport, LA, United States
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dong M Shin
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Emanuela Signori
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sharanya Sivanand
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Sliva
- DSTest Laboratories, Purdue Research Park, Indianapolis, IN, United States
| | - Carl Smythe
- Department of Biomedical Science, Sheffield Cancer Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Pharmacie et Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - Pochi R Subbarayan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tabetha Sundin
- Department of Molecular Diagnostics, Sentara Healthcare, Norfolk, VA, United States
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, Jordan
| | - Sarah K Thompson
- Department of Surgery, Royal Adelaide Hospital, Adelaide, Australia
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vasundara Venkateswaran
- Department of Surgery, University of Toronto, Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Panagiotis J Vlachostergios
- Department of Internal Medicine, New York University Lutheran Medical Center, Brooklyn, New York, NY, United States
| | - Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | - Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS, United States
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, CA, United States
| | - Jiyue Zhu
- Washington State University College of Pharmacy, Spokane, WA, United States
| | - Massimo Zollo
- Centro di Ingegneria Genetica e Biotecnologia Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Kohno S, Kitajima S, Sasaki N, Takahashi C. Retinoblastoma tumor suppressor functions shared by stem cell and cancer cell strategies. World J Stem Cells 2016; 8:170-84. [PMID: 27114748 PMCID: PMC4835675 DOI: 10.4252/wjsc.v8.i4.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/30/2015] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic transformation of somatic cells resembles nuclear reprogramming toward the generation of pluripotent stem cells. These events share eternal escape from cellular senescence, continuous self-renewal in limited but certain population of cells, and refractoriness to terminal differentiation while maintaining the potential to differentiate into cells of one or multiple lineages. As represented by several oncogenes those appeared to be first keys to pluripotency, carcinogenesis and nuclear reprogramming seem to share a number of core mechanisms. The retinoblastoma tumor suppressor product retinoblastoma (RB) seems to be critically involved in both events in highly complicated manners. However, disentangling such complicated interactions has enabled us to better understand how stem cell strategies are shared by cancer cells. This review covers recent findings on RB functions related to stem cells and stem cell-like behaviors of cancer cells.
Collapse
Affiliation(s)
- Susumu Kohno
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Shunsuke Kitajima
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Nobunari Sasaki
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Takahashi
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
8
|
|
9
|
Arakaki K, Chinen K, Kamiya M, Tanabe Y, Tawata N, Ikehara F, Uehara K, Shimabukuro H, Kinjo T. Evidence for an association between increased oxidative stress and derangement of FOXO1 signaling in tumorigenesis of a cellular angiofibroma with monoallelic 13q14: a case report. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8972-8979. [PMID: 25674275 PMCID: PMC4313996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas.
Collapse
Affiliation(s)
- Kazunari Arakaki
- Department of Pathology and Cell Biology, Graduate School of Medicine, University of The RyukyusOkinawa, Japan
| | - Katsuya Chinen
- Department of Pathology, Nerima General HospitalTokyo, Japan
| | - Masuzo Kamiya
- Pathological Cytology Section, Hamura Laboratory, SRL, IncTokyo, Japan
| | - Yasuka Tanabe
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | - Natsumi Tawata
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | - Fukino Ikehara
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | - Karina Uehara
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| | | | - Takao Kinjo
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of The RyukyusOkinawa, Japan
| |
Collapse
|
10
|
Almutairi ZM, Sadder MT. Cloning and Expression Profiling of the Polycomb Gene, Retinoblastoma-related Protein from Tomato Solanum lycopersicum L. Evol Bioinform Online 2014; 10:177-85. [PMID: 25374451 PMCID: PMC4213193 DOI: 10.4137/ebo.s16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/05/2014] [Accepted: 07/10/2014] [Indexed: 11/05/2022] Open
Abstract
Cell cycle regulation mechanisms appear to be conserved throughout eukaryotic evolution. One of the important proteins involved in the regulation of cell cycle processes is retinoblastoma-related protein (RBR), which is a negative regulator of cell cycle progression, controlling the G1/S transition in plants and animals. In this study, we present the cloning and genomic structure of a putative SlRBR gene in the tomato Solanum lycopersicum L. by isolating cDNA clones that correspond to the SlRBR gene from tomato using primers that were designed from available Solanaceae ESTs based on conserved sequences between the PcG genes in Arabidopsis thaliana and tomato. The SlRBR cDNAs were cloned into the pBS plasmid and sequenced. Both 5'- and 3'-RACE were generated and sequenced. FlcDNA of the SlRBR gene of 3,554 bp was composed of a 5'-UTR of 140 bp, an ORF of 3,054 bp, and a 3'-UTR of 360 bp. The translated ORF encodes a polypeptide of 1,018 amino acids. An alignment of the deduced amino acids indicates that there are highly conserved regions between the tomato SlRBR predicted protein and plant hypothetical RBR gene family members. Both of the unrooted phylogenetic trees, which were constructed using maximum parsimony and maximum likelihood methods, indicate a close relationship between the SlRBR predicted protein and the RBR protein of Nicotiana benthamiana. QRT-PCR indicates that SlRBR gene is expressed in closed floral bud tissues 1.7 times higher than in flower tissues, whereas the expression level in unripe fruit tissue is lower by about three times than in flower tissues.
Collapse
Affiliation(s)
- Zainab M Almutairi
- Department of Biology, College of Science and Humanities, Salman bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monther T Sadder
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia. ; Plant Biotechnology Lab, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Rosemann M, Gonzalez-Vasconcellos I, Domke T, Kuosaite V, Schneider R, Kremer M, Favor J, Nathrath M, Atkinson MJ. A Rb1 promoter variant with reduced activity contributes to osteosarcoma susceptibility in irradiated mice. Mol Cancer 2014; 13:182. [PMID: 25092376 PMCID: PMC4237942 DOI: 10.1186/1476-4598-13-182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/21/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Syndromic forms of osteosarcoma (OS) account for less than 10% of all recorded cases of this malignancy. An individual OS predisposition is also possible by the inheritance of low penetrance alleles of tumor susceptibility genes, usually without evidence of a syndromic condition. Genetic variants involved in such a non-syndromic form of tumor predisposition are difficult to identify, given the low incidence of osteosarcoma cases and the genetic heterogeneity of patients. We recently mapped a major OS susceptibility QTL to mouse chromosome 14 by comparing alpha-radiation induced osteosarcoma in mouse strains which differ in their tumor susceptibility. METHODS Tumor-specific allelic losses in murine osteosacoma were mapped along chromosome 14 using microsatellite markers and SNP allelotyping. Candidate gene search in the mapped interval was refined using PosMed data mining and mRNA expression analysis in normal osteoblasts. A strain-specific promoter variant in Rb1 was tested for its influence on mRNA expression using reporter assay. RESULTS A common Rb1 allele derived from the BALB/cHeNhg strain was identified as the major determinant of radiation-induced OS risk at this locus. Increased OS-risk is linked with a hexanucleotide deletion in the promoter region which is predicted to change WT1 and SP1 transcription factor-binding sites. Both in-vitro reporter and in-vivo expression assays confirmed an approx. 1.5 fold reduced gene expression by this promoter variant. Concordantly, the 50% reduction in Rb1 expression in mice bearing a conditional hemizygous Rb1 deletion causes a significant rise of OS incidence following alpha-irradiation. CONCLUSION This is the first experimental demonstration of a functional and genetic link between reduced Rb1 expression from a common promoter variant and increased tumor risk after radiation exposure. We propose that a reduced Rb1 expression by common variants in regulatory regions can modify the risk for a malignant transformation of bone cells after radiation exposure.
Collapse
Affiliation(s)
- Michael Rosemann
- Institute of Radiation Biology, Helmholtz-Center Munich, National Research Centre for Health and Environment, Ingolstadter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Inhibition of retinoblastoma mRNA degradation through Poly (A) involved in the neuroprotective effect of berberine against cerebral ischemia. PLoS One 2014; 9:e90850. [PMID: 24603897 PMCID: PMC3946351 DOI: 10.1371/journal.pone.0090850] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023] Open
Abstract
Berberine is one kind of isoquinoline alkaloid with anti-apoptotic effects on the neurons suffering ischemia. To address the explanation for these activities, the berberine-induced cell cycle arrest during neurons suffering ischemia/reperfusion had been studied in the present study. According to the in vitro neurons with oxygen-glucose deprivation and in vivo ICR mice with cerebral ischemia/reperfusion, it was found that berberine could protect the mRNA of retinoblastoma (Rb) from degradation through its function on the poly(A) tail. The prolonged half-life of retinoblastoma 1 (gene of Rb, RB1) mRNA level secures the protein level of retinoblastoma, which facilitates cell cycle arrest of neurons in the process of ischemia/reperfusion and subsequently avoids cells entering in the apoptotic process. The poly(A) tail of RB1 mRNA, as a newly identified target of berberine, could help people focus on the interaction between berberine and mRNA to further understand the biological activities and functions of berberine.
Collapse
|
13
|
Orr B, Compton DA. A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front Oncol 2013; 3:164. [PMID: 23825799 PMCID: PMC3695391 DOI: 10.3389/fonc.2013.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022] Open
Abstract
Most solid tumors are characterized by abnormal chromosome numbers (aneuploidy) and karyotypic profiling has shown that the majority of these tumors are heterogeneous and chromosomally unstable. Chromosomal instability (CIN) is defined as persistent mis-segregation of whole chromosomes and is caused by defects during mitosis. Large-scale genome sequencing has failed to reveal frequent mutations of genes encoding proteins involved in mitosis. On the contrary, sequencing has revealed that most mutated genes in cancer fall into a limited number of core oncogenic signaling pathways that regulate the cell cycle, cell growth, and apoptosis. This led to the notion that the induction of oncogenic signaling is a separate event from the loss of mitotic fidelity, but a growing body of evidence suggests that oncogenic signaling can deregulate cell cycle progression, growth, and differentiation as well as cause CIN. These new results indicate that the induction of CIN can no longer be considered separately from the cancer-associated driver mutations. Here we review the primary causes of CIN in mitosis and discuss how the oncogenic activation of key signal transduction pathways contributes to the induction of CIN.
Collapse
Affiliation(s)
- Bernardo Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , Hanover, NH , USA ; The Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth , Hanover, NH , USA
| | | |
Collapse
|
14
|
Di Fiore R, D'Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 2013; 228:1676-87. [PMID: 23359405 DOI: 10.1002/jcp.24329] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
Abstract
Loss of RB1 gene is considered either a causal or an accelerating event in retinoblastoma. A variety of mechanisms inactivates RB1 gene, including intragenic mutations, loss of expression by methylation and chromosomal deletions, with effects which are species-and cell type-specific. RB1 deletion can even lead to aneuploidy thus greatly increasing cancer risk. The RB1gene is part of a larger gene family that includes RBL1 and RBL2, each of the three encoding structurally related proteins indicated as pRb, p107, and p130, respectively. The great interest in these genes and proteins springs from their ability to slow down neoplastic growth. pRb can associate with various proteins by which it can regulate a great number of cellular activities. In particular, its association with the E2F transcription factor family allows the control of the main pRb functions, while the loss of these interactions greatly enhances cancer development. As RB1 gene, also pRb can be functionally inactivated through disparate mechanisms which are often tissue specific and dependent on the scenario of the involved tumor suppressors and oncogenes. The critical role of the context is complicated by the different functions played by the RB proteins and the E2F family members. In this review, we want to emphasize the importance of the mechanisms of RB1/pRb inactivation in inducing cancer cell development. The review is divided in three chapters describing in succession the mechanisms of RB1 inactivation in cancer cells, the alterations of pRb pathway in tumorigenesis and the RB protein and E2F family in cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Polyclinic, University of Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
15
|
ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol 2013; 33:3113-24. [PMID: 23754744 DOI: 10.1128/mcb.01597-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression.
Collapse
|
16
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|
17
|
Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development 2013; 140:2310-20. [PMID: 23615279 DOI: 10.1242/dev.095653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell cycle dysregulation leads to abnormal proliferation and cell death in a context-specific manner. Cell cycle progression driven via the Rb pathway forces neurons to undergo S-phase, resulting in cell death associated with the progression of neuronal degeneration. Nevertheless, some Rb- and Rb family (Rb, p107 and p130)-deficient differentiating neurons can proliferate and form tumors. Here, we found in mouse that differentiating cerebral cortical excitatory neurons underwent S-phase progression but not cell division after acute Rb family inactivation in differentiating neurons. However, the differentiating neurons underwent cell division and proliferated when Rb family members were inactivated in cortical progenitors. Differentiating neurons generated from Rb(-/-); p107(-/-); p130(-/-) (Rb-TKO) progenitors, but not acutely inactivated Rb-TKO differentiating neurons, activated the DNA double-strand break (DSB) repair pathway without increasing trimethylation at lysine 20 of histone H4 (H4K20), which has a role in protection against DNA damage. The activation of the DSB repair pathway was essential for the cell division of Rb-TKO differentiating neurons. These results suggest that newly born cortical neurons from progenitors become epigenetically protected from DNA damage and cell division in an Rb family-dependent manner.
Collapse
Affiliation(s)
- Mio Oshikawa
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
18
|
Bartesaghi S, Salomoni P. Tumor suppressive pathways in the control of neurogenesis. Cell Mol Life Sci 2013; 70:581-97. [PMID: 22802124 PMCID: PMC11113109 DOI: 10.1007/s00018-012-1063-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 12/16/2022]
Abstract
The generation of specialized neural cells in the developing and postnatal central nervous system is a highly regulated process, whereby neural stem cells divide to generate committed neuronal progenitors, which then withdraw from the cell cycle and start to differentiate. Cell cycle checkpoints play a major role in regulating the balance between neural stem cell expansion and differentiation. Loss of tumor suppressors involved in checkpoint control can lead to dramatic alterations of neurogenesis, thus contributing to neoplastic transformation. Here we summarize and critically discuss the existing literature on the role of tumor suppressive pathways and their regulatory networks in the control of neurogenesis and transformation.
Collapse
Affiliation(s)
- Stefano Bartesaghi
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD UK
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD UK
| |
Collapse
|
19
|
Centelles JJ. General aspects of colorectal cancer. ISRN ONCOLOGY 2012; 2012:139268. [PMID: 23209942 PMCID: PMC3504424 DOI: 10.5402/2012/139268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of death. Cancer is initiated by several DNA damages, affecting proto-oncogenes, tumour suppressor genes, and DNA repairing genes. The molecular origins of CRC are chromosome instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP). A brief description of types of CRC cancer is presented, including sporadic CRC, hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndromes, familiar adenomatous polyposis (FAP), MYH-associated polyposis (MAP), Peutz-Jeghers syndrome (PJS), and juvenile polyposis syndrome (JPS). Some signalling systems for CRC are also described, including Wnt-β-catenin pathway, tyrosine kinase receptors pathway, TGF-β pathway, and Hedgehog pathway. Finally, this paper describes also some CRC treatments.
Collapse
Affiliation(s)
- Josep J. Centelles
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 643, Catalunya, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Rieck S, Zhang J, Li Z, Liu C, Naji A, Takane KK, Fiaschi-Taesch NM, Stewart AF, Kushner JA, Kaestner KH. Overexpression of hepatocyte nuclear factor-4α initiates cell cycle entry, but is not sufficient to promote β-cell expansion in human islets. Mol Endocrinol 2012; 26:1590-602. [PMID: 22798294 DOI: 10.1210/me.2012-1019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transcription factor HNF4α (hepatocyte nuclear factor-4α) is required for increased β-cell proliferation during metabolic stress in vivo. We hypothesized that HNF4α could induce proliferation of human β-cells. We employed adenoviral-mediated overexpression of an isoform of HNF4α (HNF4α8) alone, or in combination with cyclin-dependent kinase (Cdk)6 and Cyclin D3, in human islets. Heightened HNF4α8 expression led to a 300-fold increase in the number of β-cells in early S-phase. When we overexpressed HNF4α8 together with Cdk6 and Cyclin D3, β-cell cycle entry was increased even further. However, the punctate manner of bromodeoxyuridine incorporation into HNF4α(High) β-cells indicated an uncoupling of the mechanisms that control the concise timing and execution of each cell cycle phase. Indeed, in HNF4α8-induced bromodeoxyuridine(+,punctate) β-cells we observed signs of dysregulated DNA synthesis, cell cycle arrest, and activation of a double stranded DNA damage-associated cell cycle checkpoint mechanism, leading to the initiation of loss of β-cell lineage fidelity. However, a substantial proportion of β-cells stimulated to enter the cell cycle by Cdk6 and Cyclin D3 alone also exhibited a DNA damage response. HNF4α8 is a mitogenic signal in the human β-cell but is not sufficient for completion of the cell cycle. The DNA damage response is a barrier to efficient β-cell proliferation in vitro, and we suggest its evaluation in all attempts to stimulate β-cell replication as an approach to diabetes treatment.
Collapse
Affiliation(s)
- Sebastian Rieck
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, 12-126 Translational Research Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5156, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu X, Shi Z, Cui M, Han M, Ruvkun G. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 2012; 8:e1002542. [PMID: 22412383 PMCID: PMC3297578 DOI: 10.1371/journal.pgen.1002542] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/30/2011] [Indexed: 11/22/2022] Open
Abstract
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. In metazoans, soma and germline have specialized functions that require differential tissue-specific gene expression. In C. elegans, explicit chromatin marks deposited by the MES-4 histone methyltransferase and the MRG-1 chromodomain protein allow germline expression of particular suites of target genes. Conversely, the expression of germline-specific genes is repressed in somatic cells by other chromatin regulatory factors, including the retinoblastoma pathway genes. We characterized the distinct profiles of somatic misexpression of normally germline-specific genes in these mutants and mapped out three chromatin complexes that prevent misexpression. We demonstrate that one of the complexes closely counteracts the activity of MES-4 and MRG-1, whereas another complex interacts with additional regulators that are yet to be identified. We show that these intersecting chromatin complexes prevent the upregulation of a suite of germline-specific as well as ubiquitous small RNA pathway genes, which contributes to the enhanced RNAi response in retinoblastoma pathway mutant worms. We suggest that this function of the retinoblastoma pathway chromatin factors to prevent germline-associated gene expression programs in the soma and the upregulation of small RNA pathways may also underlie their role as tumor suppressors.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Shi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mingxue Cui
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Min Han
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tzelepi V, Zhang J, Lu JF, Kleb B, Wu G, Wan X, Hoang A, Efstathiou E, Sircar K, Navone NM, Troncoso P, Liang S, Logothetis CJ, Maity SN, Aparicio A. Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin Cancer Res 2012; 18:666-77. [PMID: 22156612 PMCID: PMC3923417 DOI: 10.1158/1078-0432.ccr-11-1867] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Small-cell prostate carcinoma (SCPC) morphology predicts for a distinct clinical behavior, resistance to androgen ablation, and frequent but short responses to chemotherapy. We sought to develop model systems that reflect human SCPC and can improve our understanding of its biology. EXPERIMENTAL DESIGN We developed a set of castration-resistant prostate carcinomas xenografts and examined their fidelity to their human tumors of origin. We compared the expression and genomic profiles of SCPC and large-cell neuroendocrine carcinoma (LCNEC) xenografts to those of typical prostate adenocarcinoma xenografts. Results were validated immunohistochemically in a panel of 60 human tumors. RESULTS The reported SCPC and LCNEC xenografts retain high fidelity to their human tumors of origin and are characterized by a marked upregulation of UBE2C and other mitotic genes in the absence of androgen receptor (AR), retinoblastoma (RB1), and cyclin D1 (CCND1) expression. We confirmed these findings in a panel of samples of CRPC patients. In addition, array comparative genomic hybridization of the xenografts showed that the SCPC/LCNEC tumors display more copy number variations than the adenocarcinoma counterparts. Amplification of the UBE2C locus and microdeletions of RB1 were present in a subset, but none displayed AR nor CCND1 deletions. The AR, RB1, and CCND1 promoters showed no CpG methylation in the SCPC xenografts. CONCLUSION Modeling human prostate carcinoma with xenografts allows in-depth and detailed studies of its underlying biology. The detailed clinical annotation of the donor tumors enables associations of anticipated relevance to be made. Future studies in the xenografts will address the functional significance of the findings.
Collapse
Affiliation(s)
- Vassiliki Tzelepi
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
- Department of Pathology, University of Patras, Patras, Greece
| | - Jiexin Zhang
- Department of Bioinformatics and Computational Biology, Houston, TX
| | - Jing-Fang Lu
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Brittany Kleb
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Guanglin Wu
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Anh Hoang
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Kanishka Sircar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shoudan Liang
- Department of Bioinformatics and Computational Biology, Houston, TX
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Sankar N. Maity
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, Stanford Alexander Tissue Derivatives Laboratory, David H. Koch Center for Applied Research of Genitourinary Cancers, Houston, TX
| |
Collapse
|
23
|
Abstract
Aneuploidy is a common feature of cancer cells, and is believed to play a critical role in tumorigenesis and cancer progression. Most cancer cells also exhibit high rates of mitotic chromosome mis-segregation, a phenomenon known as chromosomal instability, which leads to high variability of the karyotype. Here, we describe the nature, nuances, and implications of cancer karyotypic diversity. Moreover, we summarize recent studies aimed at identifying the mitotic defects that may be responsible for inducing chromosome mis-segregation in cancer cells. These include kinetochore attachment errors, spindle assembly checkpoint dysfunction, mitotic spindle defects, and other cell division inaccuracies. Finally, we discuss how such mitotic errors generate karyotypic diversity in cancer cells.
Collapse
|
24
|
Abstract
The main route for CO(2) and water vapor exchange between a plant and the environment is through small pores called stomata. The accessibility of stomata and predictable division series that characterize their development provides an excellent system to address fundamental questions in biology. Stomatal cell-state transition and specification are regulated by a suite of transcription factors controlled by positional signaling via peptide ligands and transmembrane receptors. Downstream effectors include several members of the core cell-cycle genes. Environmentally induced signals are integrated into this essential developmental program to modulate stomatal development or function in response to changes in the abiotic environment. In addition, the recent identification of premitotic polarly localized proteins from both Arabidopsis and maize has laid a foundation for the future understanding of intrinsic cell polarity in plants. This review highlights the mechanisms of stomatal development through characterization of genes controlling cell-fate specification, cell polarity, cell division, and cell-cell communication during stomatal development and discusses the genetic framework linking these molecular processes with the correct spacing, density, and differentiation of stomata.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA.
| | | |
Collapse
|
25
|
Abstract
The retinoblastoma (RB) tumor suppressor belongs to a cellular pathway that plays a crucial role in restricting the G1-S transition of the cell cycle in response to a large number of extracellular and intracellular cues. Research in the last decade has highlighted the complexity of regulatory networks that ensure proper cell cycle progression, and has also identified multiple cellular functions beyond cell cycle regulation for RB and its two family members, p107 and p130. Here we review some of the recent evidence pointing to a role of RB as a molecular adaptor at the crossroads of multiple pathways, ensuring cellular homeostasis in different contexts. In particular, we discuss the pro- and anti-tumorigenic roles of RB during the early stages of cancer, as well as the importance of the RB pathway in stem cells and cell fate decisions.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
26
|
Functional interactions between retinoblastoma and c-MYC in a mouse model of hepatocellular carcinoma. PLoS One 2011; 6:e19758. [PMID: 21573126 PMCID: PMC3089631 DOI: 10.1371/journal.pone.0019758] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/10/2011] [Indexed: 12/28/2022] Open
Abstract
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes.
Collapse
|
27
|
Kurzbauer MT, Schlögelhofer P. Retinoblastoma protein goes green: the role of RBR in Arabidopsis meiosis. EMBO J 2011; 30:631-3. [PMID: 21326173 DOI: 10.1038/emboj.2011.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Marie-Therese Kurzbauer
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
28
|
|